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Abstract 
In inventory management, a fundamental issue is the rational use of required space. Among the 

numerous techniques adopted, an important role is played by the determination of the replenishment 

cycle offsetting which minimizes the warehouse space within a considered time horizon. The NP-

completeness of the Offsetting Inventory Cycle Problem (OICP) has led the researchers towards the 

development and the comparison of specific heuristics. We propose and implement a genetic 

algorithm for the OICP, whose effectiveness is validated by comparing its solutions with those found 

by a mixed integer programming model. The algorithm, tested on realistic instances, shows a high 

reduction of the maximum space and a more regular warehouse saturation with negligible increase of 

the total cost. This paper, unlike other papers currently available in literature, provides instances data 

and results necessary for reproducibility, aiming to become a benchmark for future comparisons with 

other OICP algorithms. 
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Public Interest Statement 
One of the main issues in industrial companies concerns a proper inventory management and a 

suitable use of the warehouse space. Consequently, several techniques have been proposed to manage, 

in an efficient and effective way, the inventory and the limited warehouse space. The evolutionary 

approach proposed in this paper can be useful to manage the orders of a large amount of 

items/products with the aim of using in a better way the whole warehouse space, allowing larger order 

quantities while satisfying the market demand. In particular, the developed algorithm allows us to 

select the order quantities, which minimize ordering, holding and purchasing costs, and sets the 

optimal time of the first replenishment of each item in order to minimize the volume peak of the 

warehouse. Unlike other previous studies, this paper also provides data of instances and results of the 

algorithm applications to make possible future comparisons with other approaches. 



Notation 

The following notation will be used in this paper: 

j: index for each item   

N: number of items 

T: finite time horizon 

z: index for each genetic algorithm generation 

Z: maximum number of genetic algorithm generations 

xjt: binary variable that indicates, for each item, when an order occurs 

gj: integer variable that indicates the first replenishment instant for each item j 

gj,z: integer variable that indicates the first replenishment instant for each item j at each generation z  

dj: daily demand for the jth item  

TBOj: time between orders for the jth item 

Qj: replenishment quantity for the jth item  

Ij,t: quantity of the jth item present in the warehouse at time t 

Ij,t,z: quantity of the jth item present in the warehouse at time t and at generation z 

sj: space required per unit time for the jth item 

St,z: total storage space required for all items at time t and at generation z 

Smax: maximum storage space required for all items in the finite time horizon T 

Smax,z: maximum storage space required for all items in the finite time horizon T at each generation z 

Sbest: best value of the maximum occupied space  

tbest,j: best first replenishment instant for the jth item 

1. Introduction 

Inventory management is among the activities that show more criticality in an increasingly complex 

company environment. In the literature, many techniques have been investigated to optimize the use 

and management of the inventory in a warehouse. Among the most used models, the classic Wilson 

model allows minimization of the total cost through the use of an optimal lot for each item. The joint 

replenishment problem (JRP) of a family of items is based on the same assumptions as the Wilson 

model. It considers a uniform and deterministic demand for each item available in the storage, no 

shortages allowed, and no quantity discount. Consequently, cost savings could be achieved by 

coordinating the replenishment of N items. In the general JRP, since the quantities of each item are 

ordered for the first time at the initial instant of the considered period, the maximum occupied space 



occurs at the beginning of the period, and in the following days, the space will be used inefficiently 

with a resulting non-regular saturation of the warehouse. From this consideration, some heuristics 

have been developed with the aim of shifting the instant of first replenishment of the items and 

looking for the optimal offset that allows minimizing the maximum volume peak and guaranteeing a 

more regular saturation (e.g. Murthy et al. (2003); Moon et al. (2008); Boctor (2010); Yao and Chu 

(2008)). In this way, inefficiency can be avoided to a considerable extent, resulting in optimization 

of the inventory management process. This is a particularly complex problem, known in literature as 

Offsetting Inventory Cycle Problem (OICP) that cannot be solved optimally in polynomial time 

(Gallego et al. (1992)). Some heuristic approaches were implemented to obtain a good solution in a 

reasonable time. Anyway, to date, none of them have been validated and tested on instances of large 

dimensions showing the consequences of heuristic application in terms of warehouse space trend, 

value of maximum volume peak, and economic impact. In fact, although in some papers heuristics 

have been proposed and applied to small instances, none of them has detailed of data and results, 

therefore comparisons turn out to be impossible. This manuscript, according to the guidelines of Barr 

et al (1995) for an appropriate representation of experimental results, provides all information 

necessary for reproducibility of the instances, aiming to become a benchmark for any future 

comparison. Furthermore, most of the papers regarding the OICP are based on mathematical 

assumptions (explained in detail at the end of the Literature Review Section) which, on one hand, 

reduce the problem complexity and, on the other hand, make the instances less realistic. Differently 

from what proposed up to now, this paper focuses on realistic instances data without any simplified 

assumption. 

A heuristic procedure focused on the shifting of the first replenishment cycle of items in a warehouse 

and able to overcome the limits just highlighted, is designed, implemented, validated, and finally 

tested on new reproducible instances, proving its effectiveness through the achievement of a high 

minimization of the maximum peak during the considered time horizon and an optimal use of the 

space in the warehouse with a negligible increase of the total cost. 

The paper, after a review of the state of the art related to the JRP and to the problem of offsetting 

inventory replenishment cycles, provides its detailed description and presents a genetic algorithm for 

its solution. Such algorithm is first validated with instances of small-medium dimension and then 

applied to two instances of more realistic dimensions showing its potentiality in terms of a more 

effective use of storage space.  



2. Literature Review 

The JRP has been studied over 30 years. In 1989 Arkin proved that the JRP is an NP-hard problem; 

therefore, heuristics may be used for solving it, and many researches have addressed it (Cha et al., 

2008; Kaspi and Rosenblatt, 1991; Khouja et al., 2000; Lee and Yao, 2003; Tsai et al., 2009; Van 

Eijs, 1993; Viswanathan, 1996; Wang et al., 2012; Wildeman et al., 1997). A review of the JRP 

literature up to the late 1980s was conducted by Aksoy and Erenguc (1988) and Goyal and Satir 

(1989), while Khouja and Goyal (2008) present an interesting review of all the articles about this 

issue from 1989 to 2005. 

Actually, there are many resource restrictions in inventory systems (e.g., space or budget), but the 

classic JRP does not consider this issue. For this reason, if a constraint is violated (e.g., the required 

space is greater than the available space), many textbooks suggest using Lagrange multipliers to find 

reduced order quantities that allow respecting the resource constraint (Hadley and Whitin, 1963; 

Johnson and Montgomery, 1974; Tersine, 1976). Many scientific papers have been written on this 

issue, in particular, the most recent are Amaya et al. (2013), Haksever and Moussourakis (2005), 

Moon and Cha (2006), Yao (2007).  

Another possible approach to the multi-item inventory system with resource constraints, particularly 

considered in the literature, assumes that all the items have a common and fixed cycle time (which 

represents the time between order (TBO) for each item). The most interesting papers in this frame are 

Chiu et al. (2014), Haji and Mansuri (1995), Hall (1998), Rothblum and Rosenblatt (1990), Thomas 

and Hartley (1983), and Zoller (1977).    

Other researchers focused their attention instead on the joint replenishment policy in which the cycle 

of each item is an integer multiple of an established basic cycle time (Goyal (1973); Kaspi and 

Rosenblatt (1983); Silver (1976)). More recently, Yao et al. (2008) studied this type of problem, 

suggested that the warehouse is supplied at the beginning of a basic period and proposed a new 

heuristics to generate a program for minimizing the maximum warehouse space, whereas Miranda et 

al. (2015) proposed a technique based on lot size modification in order to respect space limits with a 

reduced impact on the total warehousing cost. 

However, the main problem of the JRP is that all the items are ordered at the beginning of the 

considered time horizon and, as a consequence, a maximum occupied space will occur at time t = 0 

and will used inefficiently for the rest of the time. To solve this problem, as anticipated in the 

Introduction section, the offsetting can be carried out of N different items’ replenishment cycles that 

share a common space, and it is necessary to distribute the arrivals in an “intelligent” way in order to 

minimize the maximum peak in the warehouse, namely, the joint storage requirements for the items. 



This type of problem, which we are going to debate in this paper, is often called the “staggering 

problem” or “offsetting inventory cycle problem (OICP)”. In 1992, Gallego et al. showed that the 

staggering problem is NP-complete even if only one item has a different reorder interval and, thus, it 

is not possible to find the optimal solution in polynomial time, but a heuristic technique must be used. 

Researches on the offsetting issue are rather few. Teo et al. (1998) deal with the OICP; however, the 

first real turning point came only in 2003 with the work of Murthy, Benton, and Rubin. Such authors 

considered the presence of space constraints and presented an interesting heuristics for offsetting 

independent and unrestricted ordering cycles for items in order to minimize their joint storage 

requirements over an infinite time horizon when warehouse space is limited. Given that the procedure 

developed by Murthy et al. represents the benchmark of many subsequent works in this field, from 

now on, we will call it the Murthy, Benton, and Rubin procedure (MBRP). Later, Moon, Cha, and 

Kim (2008) proposed an MIP model both for a finite and an infinite time horizon and a genetic 

algorithm and compared their procedures with the one previously presented by Murthy et al. (2003). 

Yao and Chu (2008) also conducted theoretical analysis based on Fourier series and Fourier 

transforms and proposed a procedure to calculate the maximum warehouse space requirement and 

showed the improvements compared with the MBRP. Then, Boctor (2010) proposed a new 

formulation of the MBRP and a heuristic algorithm based on simulated annealing through which they 

achieved the same results as Moon et al. (2008). Subsequently, Boctor and Bolduc (2012) presented 

two heuristic approaches for solving the staggering problem and obtained good performances, while 

Croot and Huang (2013) studied this problem from the viewpoint of probability theory and proposed 

a series of algorithms for the OICP. Boctor and Bolduc (2015) presented two heuristic solution 

approaches to solve a bi-objective problem with the aim of minimizing the ordering and holding costs 

and the maximum required storage. In contrast, Franciosi et al. (2015) developed a first algorithm 

targeted to determine the optimal offsetting of item inventory cycles stored in the same warehouse. 

Finally, Russell and Urban (2016) proposed two heuristics for the OICP and they analysed new 

variants of the problem concerning a continuous-time framework as well as the effect of stochastic 

demand. 

Most of the analysed papers consider the time horizon equal to the least common multiplier (LCM) 

of the times between orders (TBOs) associated to the items, since the maximum peak occurs during 

this time interval. In Yao et al. (2008) the authors proved that if this assumption holds then it is 

possible to fix the first replenishment instant of an item j at time zero without loss of generality. 

Thanks to this idea, it is possible to reduce the size of the problem, since all the variables associated 

to the item j are fixed a priori, and to reduce the symmetry issues that heavily affect the OICP.  



Russell and Urban (2016) carried out some tests to verify the performance improvements obtained 

by fixing the first replenishment instant of one or more items. Moreover, they applied the different 

symmetry breaking parameters provided by CPLEX to state what is the best configuration to use for 

the OICP. For instance, on an instance with only 20 items CPLEX requires about 16 hours to 

optimally solve it whereas, the same instance is solved in only 12 minutes by fixing the first 

replenishment instant of an item. 

Due to the LCM assumption, the time horizon considered for the OICP is usually a finite value, for 

instance the 360 days of a year. In several papers concerning the OICP the authors select the TBOs 

as divisors of the time horizon assuring, in this way, that the first replenishment instant of, at least, 

one item can be fixed a priori. However, the choice of selecting the TBOs as divisors of the time 

horizon can be too much restrictive for companies that need to define the TBO of each item with the 

aim of reducing the stock management cost. For this reason, in this paper the time horizon is fixed to 

220 days, corresponding to average number of annual working days, and the TBOs are chosen within 

the range 1-220 without restrictions. Consequently, TBOs may not be divisors of 220 and then the 

LCM assumption does not hold in our instances and no first replenishment instants can be fixed a 

priori. This choice makes the problem more realistic but even more complex and it represents a 

significant novelty of this paper compared to the existing literature. Moreover, since the daily demand 

is equal to the ratio between the replenishment quantity and the TBO, its value can be fractional as 

well as the peak value.  

Such considerations together with the necessity to provide data and results of the instances, have led 

the authors to propose a heuristic able to solve realistic and reproducible cases.  

3. Problem Description and Formulation 

The goal of the OICP is to find the optimal offsetting of each item with the aim of decreasing the 

maximum volume peak in the warehouse and, consequently, stabilizing the saturation of the storage 

for better management of space. 

The Wilson model is widely used for supply problems, and it determines the optimal ordering lot for 

each item, known as EOQ, which minimizes the sum of the purchasing, ordering, and holding costs. 

Furthermore, for simplification, this model fixes the first replenishment time for each item to the 

initial instant of the time horizon, and thus, the items will be available simultaneously in the 

warehouse with a consequent remarkable peak in volume at the initial time and a considerably 

unsaturated warehouse in the following days. 

The example below better explains the problem just described. 



Consider the data reported in the following table: storage space, daily demand, TBOs, and EOQ for 

each item. 

 

Item 
Storage space per 

unit time (𝑚") 
Daily 

demand 
Time between 

orders - TBO (days) 
Economic order 
quantity - EOQ 

#1 1 3 3 9 
#2 1 2 10 20 
#3 1 5 6 30 

Table 1 – Data of the example 

If it considers a time horizon fixed to 20 days, the space required separately from the three items is 

shown in the figure 1, indicated by black dotted lines, while the total space requirement without 

offsetting, namely, with the application of the Wilson model, is shown by a red line. It can be seen 

that the maximum peak occurs at the initial instant of the time horizon and is equal to 59 𝑚". 

 
Figure 1 – Space requirement without offsetting 

When the offsetting is carried out, the items are ordered for the first time on days zero, six, and two, 

as shown in the figure 2, and not simultaneously at the beginning of the time horizon. Consequently, 

the initial quantities are set equal to 9, 12, and 10, respectively. As can be seen, the maximum peak 



does not occur at the initial instant of the time horizon; it is lower than the previous one and is equal 

to 49 𝑚". In this manner, it is possible to have better management of space. 

 
Figure 2 – Space requirement with offsetting 

In this simple example, there are only three items in the storage, but in the real cases, the number of 

items involved significantly increases; therefore, the aforementioned problem is much more 

remarkable. Consequently, there are two main criticalities to face in the OICP: 

1) Violation of potential space constraints. 

2) Bad management of the warehouse due to nonhomogeneous saturation of space. 

In the present work, the same assumptions of Franciosi et al. (2015), Moon et al. (2008), and Murthy 

et al. (2003) about the OICP are used: the daily demand is deterministic and constant, the 

replenishment is instantaneous, the TBO is known and constant for each item over a finite time 

horizon, and shortages and backlogs are not allowed. The objective is to minimize the maximum peak 

during the considered time horizon. Since the total space requirement pattern is periodic, the 

maximum peak will occur in the time interval from t = 0 to t = LCM (TBO1,…,TBON), where LCM 

is the least common multiple and corresponds to the whole time horizon. However, in real cases that 

involve a large number of items, the LCM of the TBOs may become very high, leading to an 

overblown time horizon. For this reason, we use a finite time horizon T that makes the problem more 

realistic, as also explained by Franciosi et al. (2015). In our case, T is fixed to 220 days, which 

approximately correspond to a working year. 

To each item j, three parameters are associated: demand dj, time between orders TBOj, and 

replenishment quantity Qj = dj ∙ TBOj. The formulation of the OICP is based on two sets of variables: 

xjt and Ijt. The binary variable xjt is equal to 1 if and only if an order for item j occurs at time t, with t 

= 0, 1, ... ,TBOj-1. The variable Ijt represents the inventory level for item j at time t, with t = 0, 1, ... 



,T. Finally, we introduce a variable 𝑆%&' equal to the maximum storage space required for all items 

in the time interval t Î [0, T]. Since the dj values can be not integers, Ijt and 𝑆%&' are continuous 

variables. 

𝑴𝑰𝑷 					𝑚𝑖𝑛	𝑆%&'  (1) 

subject to: 

𝑥/0 = 1345678
09: 																																																							𝑗 = 1,… . . , 𝑁   (2) 

𝐼/: = 𝑄/𝑥/: + 𝑑/ 𝑡𝑥/0
345678
098 																𝑗 = 1,… . . , 𝑁  (3) 

𝐼/0 = 𝐼/(078) + 𝑄/𝑥/0 − 𝑑/																																						𝑗 = 1,… ,𝑁; 						𝑡 = 1,… , 𝑇𝐵𝑂/ − 1  (4) 

𝑆%&' ≥ 𝑠/𝐼/N /
O
/98 																	𝑘 𝑗 =

𝑡																																𝑖𝑓	𝑡 < 𝑇𝐵𝑂/
𝑚𝑜𝑑 𝑡 𝑇𝐵𝑂/ 											𝑖𝑓	𝑡 ≥ 𝑇𝐵𝑂/

							𝑡 = 0,… , 𝑇  
(5) 

𝑥/0 ∈ 0,1 																																																																	𝑗 = 1,… ,𝑁; 						𝑡 = 0,… , 𝑇𝐵𝑂/ − 1  (6) 

𝐼/0 ≥ 0																																																																								𝑗 = 1,… ,𝑁; 					𝑡 = 0,… , 𝑇𝐵𝑂/ − 1  (7) 

𝑆%&' ≥ 0		       (8) 

The objective function (1) minimizes the maximum space required in the warehouse over the 

considered time horizon T. Constraints (2) force the first replenishment instant of any item j to occur 

within the range [0, TBOj -1]. Constraints (3) and (4) ensure that the value of variables Ijt coincides 

with the inventory level of item j at time t. More in details, due to the constraints (2) we know that 

there is exactly one xjt equal to 1 into the constraints (3). Now, if xj0=1 then the inventory level of the 

item j is equal to Qj because the replenishment instant for the item j is zero. Otherwise, if xjt=1 then 

Ij0 is equal to t times the daily demand dj. About the constraint (4), if xjt=0 then Ijt is equal to the 

inventory level of item j at time t-1 minus the daily demand dj. Otherwise, if xjt=1 then Ijt is given by 

replenishment quantity Qj minus the daily demand dj. Finally, for any instant of time t, constraints (5) 

force the variable 𝑆%&' to be greater than or equal to the sum of the inventory level of all items.  

The MIP model will be used to verify the effectiveness of the genetic algorithm, described in the next 

section. This comparison will show that the genetic algorithm is able to find good solutions even for 

large instances that involve many items in a warehouse.  

4. Genetic algorithm 

Genetic algorithms are bioinspired metaheuristic techniques introduced by J. Holland in 1975 in his 

book Adaptation in Natural and Artificial Systems. These techniques, based on natural selection and 

evolution, reproduce the evolutionary process of the species. The genetic algorithms consider a 

population of chromosomes (or individuals) that represent feasible or unfeasible solutions to the 



problem. The quality of an individual, namely, how the solution is good for the problem, is measured 

by a fitness function created ad hoc for the specific problem. Therefore, a genetic algorithm is an 

iterative search procedure whose purpose is optimizing the fitness function. Starting from an initial 

population, normally generated randomly, a genetic algorithm produces new generations usually 

containing better individuals than the previous ones: the algorithm progresses to the global optimum 

of the fitness function.  

The great ability of a GA to explore in depth the solutions space and the possibility to effectively 

manage the constraints through the setting of few parameters, make the genetic algorithm, among 

evolutionary algorithms, potentially suitable for the OICP. 

It is necessary to appropriately set the parameters of the genetic algorithm to obtain good solutions. 

The possible parameters are known thanks to the many articles and books presented in the literature: 

Aytug et al. (2003), Dowsland (1996), Hua and Huang (2006), Li and Gen (1996), Maiti et al. (2006), 

Mitchell (1998), and Yokota et al. (1996) are examples of guidelines for GA configuration and 

setting. 

In the OICP, the variables (individuals of the genetic algorithm) are restricted to integer values.  

The logic of our genetic algorithm is explained by the flowchart in Figure 3 and through the pseudo-

code in Figure 4. The algorithm randomly assumes (for the first generation, z = 1) the values of the 

first replenishment instant for each item, and in subsequent generations, it researches, through genetic 

reproduction, the values of gj,z that lead to the minimization of the maximum peak Smax. 

Starting from the first item (j = 1), initial instant of time (t = 0), and first generation (z = 1), the genetic 

algorithm randomly assigns the first replenishment instant for the first item (g1,1), and if g1,1 = 0, the 

initial quantities I1,0,1	=	Q1; otherwise 𝐼8,:,8 	= 	𝑔8,8 ∙ 𝑑8. The values of I1,0,1 are memorized. The 

procedure is repeated for each item j, and then the total storage space required for all items is 

calculated according to the equation 

	𝑆:,Y = 	 𝑠/ ∙ 𝐼/,:,YO
/98 . (9) 

From the following day until the last day of the time horizon T is reached, the algorithm calculates 

the present quantities in the warehouse according to the equation 

𝐼/,0,Y = 	 𝐼/,078,Y + 𝑄/ − 𝑑/, (10) 

in which 𝑄/ = 0 if 𝐼/,078,Y ≥ 𝑑/, while 𝑄/ = 	𝑑/ ∙ 	𝑇𝐵𝑂/ if 𝐼/,078,Y < 	𝑑/. Moreover, the total space St,z 

occupied by the items every day is calculated. At the end of this iterative procedure, the algorithm 

computes the maximum space occupied by the items during the time horizon T and memorizes this 

value, according to the equation 

	𝑆%&' = 	𝑚𝑎𝑥0 𝑆0,Y . (11) 



The aforementioned procedure is repeated for all generations considering the genetic reproduction 

that leads to the best values of the first replenishment instants (tbest,j) and the optimal value of the 

maximum space required by the items in the warehouse (Sbest). When the maximum number of 

generation Z is reached, the algorithm memorizes and shows the best value of the maximum space 

required by items in the warehouse (Sbest) and the corresponding best first replenishment instant for 

every item (tbest,j) that led to the value Sbest. Generally, as the algorithm is structured, Sbest coincides 

with Smax of the last generation. 

 

 
Figure 3 – Flowchart of the genetic algorithm  



 
Figure 4 – Pseudo – code of the genetic algorithm  

In the following paragraphs, we present the choices made for each parameter of the genetic algorithm. 

4.1 Chromosome representation and initial population 

In our genetic algorithm, the length of each chromosome (individual) is equal to the number of items 

within the warehouse; accordingly, each chromosome has as many genes as the items considered and 

each gene j represents the first replenishment instant gj,z of the corresponding item j. Therefore, it is 

necessary that the gene is an integer between 0 (if gj,z = 0, it means that the lot will be ordered for the 

first time at the initial instant as in the Wilson model) and TBOj -1 for each item. If we consider the 

example of three items presented in Section 3, the individual representation of the solution shown in 

Figure 2 is the following: 

0 6 2 

The initial population, namely the first set of solutions, is created randomly, and the population size 

is fixed equal to 50 individuals after a tuning phase carried out with a range of individuals between 



20 and 200 in several instances and with different number of items. By increasing the population size 

over 50 individuals, we observed a negligible improvement of the solutions found with a significant 

increase in the computational time. 

4.2 Fitness function 

The fitness function evaluates the goodness in the individuals of the population. In our problem, the 

fitness of each chromosome is equal to the maximum peak obtained according to the value of each 

gene. In every generation, the algorithm will choose individuals with the best fitness value for the 

following generation that minimizes the space according to equation (1). 

4.3 Methods for selecting individuals 

The chosen technique used for the selection of parents is the tournament selection, which involves 

running several tournaments among individuals chosen at random from the population; then, the 

individual with the best fitness value, namely the winner of the tournament, is selected for the 

following crossover. The tournament size is set equal to three. The tournament selection is explained 

and studied in several previous articles such as Blickle and Thiele (1995), Goldberg and Deb (1991), 

Miller and Goldberg (1995), which affirmed that tournament selection is a useful, simple, and robust 

selection mechanism commonly used in GAs. Moreover, Goldberg and Deb (1991) showed that 

tournament selection has better or equivalent convergence and computational time complexity 

properties when compared to any other reproduction operator that exists in the literature. Finally, as 

clearly explained by Deb (2000), to manage constraints the tournament selection is combined with a 

penalty function, which allows easily selecting only feasible individuals for next generations.  

4.4 Operators to vary genetic composition of individuals during the reproduction: 

Crossover and mutation 

The individuals that survive to the selection step undergo a change through the application of the 

crossover and mutation operators with the aim of generating new individuals in the next generation.  

In our case, “Laplace crossover” and “power mutation” have been chosen as reproduction operators. 

Laplace crossover is a parent centric real coded operator based on Laplace distribution and it was 

introduced by Deep and Thakur (2007a), while power mutation is an operator based on power 

distribution described by Deep and Thakur (2007b). Deep and Thakur (2007a and 2007b) tested 

Laplace crossover and power mutation operators on several algorithms and on 20 benchmark 

problems available in global optimization literature showing that the GA using jointly such operators 

emerged as the best. Moreover, these operators integrate a truncation procedure for integer restrictions 



(Deep et al., 2009), necessary in our GA for getting integer variables. According to Deep et al. (2009), 

the crossover rate and the mutation rate are respectively fixed to 0.8 and 0.005. 

4.5 Stopping criteria 

The established stopping condition is a maximum number of generations. In fact, as indicated in the 

detailed review conducted by Aytug et al. (2003) concerning the use of genetic algorithms to solve 

production and operations-management problems, the most common criterion used for stopping a 

genetic algorithm is a fixed number of generations. After a series of simulations with a large variety 

of instances, the number of generations, which more often permits the convergence to the optimal 

solution or very close to the optimal solution/upper bound of MIP model, is fixed to 300. In fact, a 

number of generations equal to 300 is the right compromise between obtained results and acceptable 

run times: when the number of generations increases, the run time consequently increases, while the 

result remains almost constant. 

5. Validation 

With the aim of testing the validity and the effectiveness of the two aforementioned procedures, both 

have been applied to the example presented in the literature by Murthy et al. (2003). The data of the 

Murthy et al. example (occupied space and TBO for each item), which consider nine items, are shown 

below in Table 2. 

Item j 1 2 3 4 5 6 7 8 9 
𝑠/𝑄/ 100 200 81 144 150 160 90 60 50 
𝑇𝐵𝑂/ 4 5 9 12 15 8 6 12 2 

Table 2  – Data of Murthy et al.’s example 

As previously mentioned, the fixed time horizon is equal to a working year (T = 220 days).  

The Wilson model was applied to this example and, as can be seen in the following table, the highest 

volume peak without offsetting is equal to 1035 𝑚". It occurs at the beginning of the considered time 

period because all the lots Qj are ordered simultaneously at the initial instant of the time horizon (gj 

= 0, ∀j). Murthy et al., through their procedure, obtained a maximum volume peak equal to 875 𝑚" 

with a reduction of 15.46%. Instead, with the application of the offsetting through the MIP model and 

the genetic algorithm, we are able to obtain a maximum peak equal to the optimum value of 760𝑚", 

with a percentage reduction of the occupied volume equal to 26.57%. 

 



 
Without 

Offsetting 
Murthy et al. 

Model 
MIP  

Model 
Genetic 

Algorithm 
Item gj Ij,0	∙ sj gj Ij,0	∙ sj gj Ij,0 ∙ sj gj Ij,0 ∙ sj 
#1 0 100 0 100 3 100 0 100 
#2 0 200 4 160 1 80 1 40 
#3 0 81 0 81 5 54 1 9 
#4 0 144 0 144 1 24 6 72 
#5 0 150 0 150 3 40 8 80 
#6 0 160 6 120 5 120 2 40 
#7 0 90 5 75 4 75 3 45 
#8 0 60 4 20 7 40 0 60 
#9 0 50 1 25 0 25 1 25 

Max peak (𝒎𝟑) 1,035 875 760 760 
Peak Day 0 0 38 42 

% Reduction - 15.46% 26.57% 26.57% 

Table 3 – Application of the two procedures to Murthy et al.’s example 

As shown in Table 3, the maximum peak values found by genetic algorithm and MIP model coincide 

and this means that the genetic algorithm solves optimality this example. Therefore, in Table 3, the 

first replenishment instant for each item (gj) and the corresponding space occupied at the initial instant 

for each item (Ij,0 ∙ sj), which leads to the maximum volume peak equal to 760𝑚", are reported. 

Figure 5 shows the space requirement without offsetting and with the application of the genetic 

algorithm during the considered time horizon T: the black line represents the occupied space with the 

application of the classic Wilson model without offsetting; the red line, instead, represents the space 

requirement after the application of the genetic algorithm.  

 
Figure 5 – Murthy et al. Case. Comparison between the space requirement with and without offsetting 

A reduction of the storage space is possible and a more regular saturation of the warehouse permits a 

more correct management of the items and the space.  



The next section shows the results obtained with the application of the MIP model and the genetic 

algorithm to eight new instances of different dimension, whose data are reported in the appendix. 

6. Experimental Tests 

The purpose of the computational tests presented in this section is to study the effectiveness and the 

performance of our genetic algorithm. Both the genetic algorithm and the MIP model have been 

applied to several instances with 10, 20, 30, 40, 50, 80, and 200 items, respectively. 

Table 4 reports the range of values in which are included the main characteristics of the considered 

items in all cases: the daily demand, the TBOs, and, consequently, the economic order quantity. For 

simplification, the specific volume is fixed to 1	𝑚"/𝑢𝑛𝑖𝑡. 

Characteristic Measure Unit Range 

Daily demand (𝑑/) units/day 1-106 

Time between order (TBOj) Days 1-220 

Economic order quantity (Qj) Units 74-3748 

Table 4 – Characteristics of the items 

Table 5 reports the results obtained by the application of the MIP model to the different instances.  

It has to be noted that, since the peak value can be a not integer value, the upper bounds reported in 

the following table are rounded up to the closest integer value. 

 MIP model 

Case 

study 

Upper Bound 

(𝑚") 

Lower Bound 

(𝑚") 

Run Time 

(sec) 

Stop 

Motivation 
GAP 

9 items 760.00 760.00 3.55 Optimal 0.00% 

10 items 2,854.00 2,854.00 229.95 Optimal 0.00% 

20 items 7,121.00 6,902.06  10,810.01 AbortTimeLim 3.07% 

30 items 12,352.00 12,210.00  10,810.03 AbortTimeLim  1.14% 

40 items 13,795.00 13,585.30 10,810.03  AbortTimeLim  1.52% 

50 items 17,602.00 17,131.80 10,810.04 AbortTimeLim 2.67% 

80 items 27,689.00 27,024.60 10,810.08 AbortTimeLim 2.40% 

200 items 73,309.00 72,477.70 10,810.18  AbortTimeLim 1.13% 

Table 5 – MIP model results 

The MIP model was coded in C++ on an OSX platform running on an Intel i5 2.9GHz processor with 

16GB of RAM and solved by using the Concert library of IBM ILOG CPLEX 12.5. We fixed a limit 



of 3 hours and 8GB of memory for the resolution of each instance. In each row of the table, the upper 

and lower bounds computed by the MIP model for that instance, the computational time, the stop 

status, and the gap between the upper and lower bound are reported. Obviously, when an optimal 

solution is found, the upper and lower bounds coincide and the gap is equal to 0%. 

The instances with 9 and 10 items are optimally solved by the MIP model, while it reaches the time 

limit on the instances with 20 items, 30 items, 40 items, 50 items, 80 items and 200 items. The gap 

values are low and the upper bounds found by the MIP model are close enough to the optimal solution.  

Table 6 shows the solution values found by MIP model and genetic algorithm in each case study. 

Moreover, the run times of the genetic algorithm and the percent gap between the maximum peaks of 

the two procedures are reported. 

 MIP model Genetic Algorithm 
Case 
study 

Max Volume Peak 
(𝐦𝟑) 

Max Volume Peak 
(𝐦𝟑) 

Run Time 
(s) Gap % 

9 items 760 760 87 0.000% 
10 items 2,854.00 2,881.00 88 0.946% 
20 items 7,121.00 7,229.00 110 1.517% 
30 items 12,352.00 12,660.00 137 2.494% 
40 items 13,795.00 14,147.00 177 2.552% 
50 items 17,602.00 18,019.00 206 2.369% 
80 items 27,689.00 28,489.00 294 2.889% 
200 items 73,309.00 75,682.00 733 3.237% 

Table 6 – Comparison between the results of the two procedures 

The genetic algorithm is able to obtain the optimum value only for the instance with 9 items, while, 

in the other cases, it finds solutions very close to the upper bounds of the MIP model with a percent 

error always lower than 3.3%. Regarding performance, the genetic algorithm produces results very 

fast, requiring less than 5 minutes to solve all the instances up to 80 items and 12 minutes for the 

instance with 200 items. Since the running time is so low, we tested the algorithm even on larger 

instances, which involve, respectively, 1,000 and 2,000 items within the boundaries of a company 

warehouse. The results of these tests are described in the next section. 

6.1 Larger instances (1,000 and 2,000 items) 

The genetic algorithm was applied to two more realistic cases of companies managing, respectively, 

1,000 and 2,000 items in the warehouse. Table 7 reports the ranges in which the main data of the 

instances are included, namely, daily demand, TBOs, specific volume, unit purchasing cost, unit 

ordering cost, and unit holding cost for each case. 

 



Characteristic Measure Unit Range 1,000 items Range 2,000 items 
Daily demand (𝑑/) units/day 1-108 1-110 
Time between order (TBOj) Days 1-202 1-373 
Specific volume (sj) 𝑚"/unit 0.002-1 0.002-1 
Unit purchasing cost (pj) €/unit 0.1-7 0.1-7 
Unit ordering cost (Clj) €/order 50-100 50-100 
Unit holding cost (kj) €/(unit∙day) 0.001-0.05 0.001-0.05 

Table 7 – Ranges of values for instances 

Once the data was collected, the economic order quantity Qj has been calculated and, considering the 

classic Wilson model that established the presence of all quantities for the first time at t = 0, it obtains 

a maximum volume peak equal to 318,488 𝑚" for the case of 1,000 and 645,813.24 𝑚" for the case 

of 2,000 items. Both peaks occur on the initial instant of the first day.  

With the application of the proposed genetic algorithm, the maximum volume peak is equal to 

175,813 𝑚" for the case of 1,000 items, which occurs on day 217 with a reduction of occupied space 

of approximately 44.8%. In the case of 2,000 items, the genetic algorithm obtains a maximum peak 

equal to 355,386.67	𝑚", which occurs on the day 46, with a reduction of the occupied space of 

approximately 45%. 

Figure 6 and Figure 7 show the respective space requirements for the two cases during the considered 

time horizon T: the black line represents the occupied space with the application of the classic Wilson 

model without offsetting; the red line represents the space requirement after the application of the 

genetic algorithm.  

 
Figure 6 – 1,000 item case. Comparison between the space requirement with and without offsetting 



 
Figure 7 – 2,000 item case. Comparison between the space requirement with and without offsetting 

In both cases, a huge difference between the two procedures regarding the occupied volume, the 

saturation of the warehouse, can be observed. Moreover, with the application of offsetting through 

the genetic algorithm, better management of the warehouse is possible, and a major space, usable for 

other items or for potential safety stocks, is made available.  

Furthermore, in real cases it is fundamental to consider the costs. Table 8 presents the total 

purchasing, ordering, and holding costs associated with 1,000 items and 2,000 items and incurred by 

the company with both the Wilson model and the genetic algorithm. 

 1,000 item instance 2,000 item instance 

Characteristic Wilson model Genetic 
Algorithm Wilson model Genetic 

Algorithm 
Purchasing  

cost (€) 
38,375,050 38,375,050 75,632,639 75,632,639 

Ordering cost 
(€) 

1,373,354 1,336,834 2,766,932 2,693,515 

Holding cost 
(€) 

1,371,553 1,335,040 2,769,247 2,695,727 

Extra ordering 
cost (€) 

- 71,325 - 145,386 

Extra holding 
cost (€) 

- 22,865 - 46,464 

Total cost (€) 41,119,957 41,141,114 81,168,818 81,213,731 
Max volume 

(𝑚") 
318,488 175,813 645,813.24 355,386.67 

Table 8 – Comparing the costs 



As evidenced in Table 8, the purchasing cost remains constant in the two cases because such cost 

does not depend on the specific lot, but only on the daily demand, the time horizon, and the unit 

purchasing price. 

Instead, the ordering and holding costs depend on the specific lot. For this reason, with the application 

of the genetic algorithm, it is necessary to consider an extra ordering cost and an extra holding cost 

for the hypothesized initial quantities that must satisfy the demand of the first days until the first 

replenishment fixed by the genetic algorithm occurs. However, the considered time horizon is always 

the same and, for this reason, the ordering and holding costs (associated to the lot Qj) with the genetic 

algorithm are inferior to the Wilson model because in the initial days only the initial quantities with 

the associated extra ordering and holding costs have to be considered. After the first replenishment 

and until the end of the time horizon, the ordering and holding costs are the same associated to the lot 

Qj, and so they are calculated in the same way for the two models.  

In both cases, the total cost with the application of the genetic algorithm is greater, but the difference, 

about 0.8% for both cases, is negligible if compared with the value of the total ordering and holding 

cost calculated for each case and with the obtained reduction of the occupied space. 

7. Conclusions 

The present paper deals with the OICP. A genetic algorithm, whose features have been accurately 

chosen for this problem, has been introduced and then validated through comparison with the 

solutions computed by an MIP model. The data and results of all instances used for the validation are 

reported in order to make possible their reproducibility and future comparisons in the OICP field. 

The algorithm has shown good performance also on realistic cases, which involved a large number 

of items and without any simplified mathematical assumption. The obtained solutions reveal that a 

huge reduction in the space requirement is possible and that a more regular saturation of the 

warehouse allows for a better use of space. Therefore, the algorithm is suitable for any type of instance 

and it is able to handle real cases in effective way. 

Further research could be focused on testing different heuristic techniques, applying them to real 

cases, and comparing the results. Another possible next step would concern a model modification by 

including in it the space constraint imposed by the finite dimension of the warehouse, as usually 

happens in many logistic problems. In this last case, the objective function won’t be the occupied 

space minimization but the minimization of the total cost of stock management with the respect of 

the new space constraint. 

 



Appendix 

#Item Q10 
1-10 617 677 81 193 238 341 692 219 524 603  

 
#Item TBO10 
1-10 6 20 81 32 30 23 115 17 8 10 

 
#Item Q20 
1-10 113 823 741 423 562 442 274 1043 443 803 
11-20 612 1343 594 565 406 426 412 508 550 596 

 
#Item TBO20 
1-10 23 39 9 11 6 8 14 33 44 38 
11-20 10 14 14 14 9 7 9 9 7 7 

 
#Item Q30 
1-10 544 326 370 726 547 249 160 1470 1316 607 
11-20 618 544 583 972 1145 485 986 200 335 520 
21-30 2961 420 178 756 686 410 1086 441 505 189 

 
#Item TBO30 
1-10 7 8 10 10 13 83 40 22 14 9 
11-20 7 8 10 13 19 6 10 25 19 10 
21-30 51 16 15 10 8 7 33 5 12 38 

 
#Item Q40 
1-10 261 521 643 408 1169 192 592 696 396 143 
11-20 535 514 706 303 692 501 1510 614 330 459 
21-30 331 74 108 354 263 422 654 327 548 1378 
31-40 862 792 962 197 304 1424 442 636 2023 345 

 

#Item TBO40 
1-10 11 5 10 19 32 19 13 10 11 20 
11-20 7 9 9 14 10 8 21 11 13 9 
21-30 19 74 36 13 10 11 9 8 91 15 
31-40 10 24 13 25 10 24 25 6 38 10 

 
 
 
 
 



#Item Q50 
1-10 502 108 652 844 558 428 399 332 520 585 
11-20 1647 465 857 865 325 339 741 478 356 891 
21-30 1021 150 2424 989 332 501 641 1076 486 273 
31-40 127 735 1298 385 762 189 1183 570 382 293 
41-50 130 297 850 679 354 162 944 563 438 560 

 
#Item TBO50 
1-10 63 27 7 11 8 9 10 7 8 39 
11-20 36 13 15 12 11 12 9 9 18 14 
21-30 13 21 25 19 14 12 15 11 6 39 
31-40 42 7 16 9 9 27 15 6 10 8 
41-50 33 15 12 10 44 23 21 24 219 22 

 
#Item Q80 
1-10 576 1269 644 560 334 363 376 381 501 298 
11-20 525 503 1115 475 612 674 1781 474 775 737 
21-30 192 482 524 581 363 97 307 624 407 753 
31-40 435 539 329 331 179 469 1200 789 708 263 
41-50 466 485 1010 453 484 433 544 956 551 679 
51-60 583 914 755 339 648 964 422 461 233 883 
61-70 354 778 683 174 429 413 2551 227 1188 1237 
71-80 1533 484 566 1604 458 244 465 374 200 786 

 
#Item TBO80 
1-10 9 14 8 11 8 16 7 22 20 27 
11-20 12 42 31 8 8 7 21 5 30 8 
21-30 19 14 7 13 14 49 16 7 10 58 
31-40 12 6 10 9 45 6 15 9 13 88 
41-50 33 5 11 7 8 6 21 10 6 9 
51-60 8 10 31 10 7 37 8 8 16 16 
61-70 14 9 11 58 15 14 43 17 33 39 
71-80 26 6 13 25 7 22 9 8 20 24 

 
 
 
 
 
 
 
 
 
 



#Item Q200 
1-10 518 769 808 450 322 730 725 739 415 603 
11-20 508 353 894 266 3140 1348 552 138 415 324 
21-30 105 543 388 1068 710 289 579 288 1030 758 
31-40 473 238 622 646 732 820 529 449 2923 1106 
41-50 461 491 1017 517 599 569 192 371 692 422 
51-60 299 1013 1033 1532 1538 501 1519 1704 507 810 
61-70 1015 660 326 1143 427 610 559 690 364 295 
71-80 191 1095 424 782 315 606 537 520 1511 628 
81-90 150 622 644 546 573 775 101 484 414 184 
91-100 320 494 361 342 363 558 157 631 634 1120 
101-110 2258 466 174 1387 416 496 444 519 395 525 
111-120 1375 392 3748 1061 456 549 160 289 519 91 
121-130 251 597 236 1895 558 983 544 416 2265 709 
131-140 369 746 554 770 315 474 681 729 247 646 
141-150 551 598 387 806 701 1472 1287 506 581 827 
151-160 831 190 743 151 932 400 515 369 345 351 
161-170 405 468 449 417 124 595 707 251 472 1044 
171-180 566 661 582 1063 360 840 777 519 718 386 
181-190 681 306 646 391 618 679 589 1471 85 562 
191-200 534 588 561 1982 647 475 1524 594 355 915 

 
#Item TBO200 
1-10 10 17 135 10 7 8 9 18 9 10 
11-20 6 10 10 10 34 17 15 23 13 20 
21-30 35 9 15 33 15 13 6 17 13 10 
31-40 9 22 11 9 8 12 9 9 29 17 
41-50 6 5 20 7 12 11 21 13 9 10 
51-60 13 18 13 26 17 10 17 34 9 8 
61-70 11 9 82 52 5 7 7 33 11 10 
71-80 27 17 6 17 8 17 23 20 16 37 
81-90 25 16 19 12 15 12 51 9 10 20 
91-100 11 7 9 14 11 8 26 10 14 14 
101-110 24 11 22 14 35 7 9 7 10 6 
111-120 15 12 44 14 16 55 18 11 7 46 
121-130 63 10 12 20 7 13 11 13 33 10 
131-140 7 9 9 9 45 53 15 9 12 9 
141-150 8 6 10 10 9 49 16 8 7 13 
151-160 17 38 8 38 18 11 17 17 11 13 
161-170 6 7 220 7 41 10 10 13 9 20 
171-180 8 8 8 15 8 11 18 10 8 10 
181-190 8 7 7 14 13 7 6 16 43 8 
191-200 31 7 6 20 9 6 54 13 6 2 
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