
An evolutionary approach for the offsetting inventory cycle problem
Chiara Franciosi a, 1, Francesco Carrabs b, 2, Raffaele Cerulli b, 3, Salvatore Miranda a, 4
a Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy.
b Department of Mathematics, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy.

Abstract
In inventory management, a fundamental issue is the rational use of required space. Among the

numerous techniques adopted, an important role is played by the determination of the replenishment

cycle offsetting which minimizes the warehouse space within a considered time horizon. The NP-

completeness of the Offsetting Inventory Cycle Problem (OICP) has led the researchers towards the

development and the comparison of specific heuristics. We propose and implement a genetic

algorithm for the OICP, whose effectiveness is validated by comparing its solutions with those found

by a mixed integer programming model. The algorithm, tested on realistic instances, shows a high

reduction of the maximum space and a more regular warehouse saturation with negligible increase of

the total cost. This paper, unlike other papers currently available in literature, provides instances data

and results necessary for reproducibility, aiming to become a benchmark for future comparisons with

other OICP algorithms.

Keywords
Replenishment cycle offsetting; genetic algorithm; inventory management; OICP; offsetting

inventory cycle problem; warehouse space; joint replenishment problem; mixed integer

programming.

1 Corresponding Author. Tel.: +39 089 964033; Fax: +39 089 964037.
 Email Address: cfranciosi@unisa.it
2 Tel.: +39 089 963326 Email Address: fcarrabs@unisa.it
3 Tel.: +39 089 963444 Email Address: raffaele@unisa.it
4 Tel.: +39 089 964037 Email Address: smiranda@unisa.it

About the authors
This work originates from the collaboration of the Department of Industrial Engineering and the

Department of Mathematics of University of Salerno, Italy. Chiara Franciosi is a PhD student in

Industrial Engineering at University of Salerno; her current research interests include Inventory

Management, Industrial Maintenance Management, and Sustainable Manufacturing. Francesco

Carrabs is Assistant Professor at the Department of Mathematics of University of Salerno; his

research interests include combinatorial optimization, heuristics, metaheuristics, hybrid heuristics for

mixed integer linear programming problems, vehicle routing problems. Raffaele Cerulli is Associate

Professor at the Department of Mathematics of University of Salerno; his research interests include

combinatorial optimization problems, mainly on mathematical models and algorithm design for

covering problems on graphs and wireless sensor networks problems. Salvatore Miranda is

Associate Professor at the Department of Industrial Engineering of University of Salerno; his research

interests include Operations Management, Maintenance, Human Reliability Analysis, Simulation,

Logistics and Inventory Management.

Public Interest Statement
One of the main issues in industrial companies concerns a proper inventory management and a

suitable use of the warehouse space. Consequently, several techniques have been proposed to manage,

in an efficient and effective way, the inventory and the limited warehouse space. The evolutionary

approach proposed in this paper can be useful to manage the orders of a large amount of

items/products with the aim of using in a better way the whole warehouse space, allowing larger order

quantities while satisfying the market demand. In particular, the developed algorithm allows us to

select the order quantities, which minimize ordering, holding and purchasing costs, and sets the

optimal time of the first replenishment of each item in order to minimize the volume peak of the

warehouse. Unlike other previous studies, this paper also provides data of instances and results of the

algorithm applications to make possible future comparisons with other approaches.

Notation

The following notation will be used in this paper:

j: index for each item

N: number of items

T: finite time horizon

z: index for each genetic algorithm generation

Z: maximum number of genetic algorithm generations

xjt: binary variable that indicates, for each item, when an order occurs

gj: integer variable that indicates the first replenishment instant for each item j

gj,z: integer variable that indicates the first replenishment instant for each item j at each generation z

dj: daily demand for the jth item

TBOj: time between orders for the jth item

Qj: replenishment quantity for the jth item

Ij,t: quantity of the jth item present in the warehouse at time t

Ij,t,z: quantity of the jth item present in the warehouse at time t and at generation z

sj: space required per unit time for the jth item

St,z: total storage space required for all items at time t and at generation z

Smax: maximum storage space required for all items in the finite time horizon T

Smax,z: maximum storage space required for all items in the finite time horizon T at each generation z

Sbest: best value of the maximum occupied space

tbest,j: best first replenishment instant for the jth item

1. Introduction

Inventory management is among the activities that show more criticality in an increasingly complex

company environment. In the literature, many techniques have been investigated to optimize the use

and management of the inventory in a warehouse. Among the most used models, the classic Wilson

model allows minimization of the total cost through the use of an optimal lot for each item. The joint

replenishment problem (JRP) of a family of items is based on the same assumptions as the Wilson

model. It considers a uniform and deterministic demand for each item available in the storage, no

shortages allowed, and no quantity discount. Consequently, cost savings could be achieved by

coordinating the replenishment of N items. In the general JRP, since the quantities of each item are

ordered for the first time at the initial instant of the considered period, the maximum occupied space

occurs at the beginning of the period, and in the following days, the space will be used inefficiently

with a resulting non-regular saturation of the warehouse. From this consideration, some heuristics

have been developed with the aim of shifting the instant of first replenishment of the items and

looking for the optimal offset that allows minimizing the maximum volume peak and guaranteeing a

more regular saturation (e.g. Murthy et al. (2003); Moon et al. (2008); Boctor (2010); Yao and Chu

(2008)). In this way, inefficiency can be avoided to a considerable extent, resulting in optimization

of the inventory management process. This is a particularly complex problem, known in literature as

Offsetting Inventory Cycle Problem (OICP) that cannot be solved optimally in polynomial time

(Gallego et al. (1992)). Some heuristic approaches were implemented to obtain a good solution in a

reasonable time. Anyway, to date, none of them have been validated and tested on instances of large

dimensions showing the consequences of heuristic application in terms of warehouse space trend,

value of maximum volume peak, and economic impact. In fact, although in some papers heuristics

have been proposed and applied to small instances, none of them has detailed of data and results,

therefore comparisons turn out to be impossible. This manuscript, according to the guidelines of Barr

et al (1995) for an appropriate representation of experimental results, provides all information

necessary for reproducibility of the instances, aiming to become a benchmark for any future

comparison. Furthermore, most of the papers regarding the OICP are based on mathematical

assumptions (explained in detail at the end of the Literature Review Section) which, on one hand,

reduce the problem complexity and, on the other hand, make the instances less realistic. Differently

from what proposed up to now, this paper focuses on realistic instances data without any simplified

assumption.

A heuristic procedure focused on the shifting of the first replenishment cycle of items in a warehouse

and able to overcome the limits just highlighted, is designed, implemented, validated, and finally

tested on new reproducible instances, proving its effectiveness through the achievement of a high

minimization of the maximum peak during the considered time horizon and an optimal use of the

space in the warehouse with a negligible increase of the total cost.

The paper, after a review of the state of the art related to the JRP and to the problem of offsetting

inventory replenishment cycles, provides its detailed description and presents a genetic algorithm for

its solution. Such algorithm is first validated with instances of small-medium dimension and then

applied to two instances of more realistic dimensions showing its potentiality in terms of a more

effective use of storage space.

2. Literature Review

The JRP has been studied over 30 years. In 1989 Arkin proved that the JRP is an NP-hard problem;

therefore, heuristics may be used for solving it, and many researches have addressed it (Cha et al.,

2008; Kaspi and Rosenblatt, 1991; Khouja et al., 2000; Lee and Yao, 2003; Tsai et al., 2009; Van

Eijs, 1993; Viswanathan, 1996; Wang et al., 2012; Wildeman et al., 1997). A review of the JRP

literature up to the late 1980s was conducted by Aksoy and Erenguc (1988) and Goyal and Satir

(1989), while Khouja and Goyal (2008) present an interesting review of all the articles about this

issue from 1989 to 2005.

Actually, there are many resource restrictions in inventory systems (e.g., space or budget), but the

classic JRP does not consider this issue. For this reason, if a constraint is violated (e.g., the required

space is greater than the available space), many textbooks suggest using Lagrange multipliers to find

reduced order quantities that allow respecting the resource constraint (Hadley and Whitin, 1963;

Johnson and Montgomery, 1974; Tersine, 1976). Many scientific papers have been written on this

issue, in particular, the most recent are Amaya et al. (2013), Haksever and Moussourakis (2005),

Moon and Cha (2006), Yao (2007).

Another possible approach to the multi-item inventory system with resource constraints, particularly

considered in the literature, assumes that all the items have a common and fixed cycle time (which

represents the time between order (TBO) for each item). The most interesting papers in this frame are

Chiu et al. (2014), Haji and Mansuri (1995), Hall (1998), Rothblum and Rosenblatt (1990), Thomas

and Hartley (1983), and Zoller (1977).

Other researchers focused their attention instead on the joint replenishment policy in which the cycle

of each item is an integer multiple of an established basic cycle time (Goyal (1973); Kaspi and

Rosenblatt (1983); Silver (1976)). More recently, Yao et al. (2008) studied this type of problem,

suggested that the warehouse is supplied at the beginning of a basic period and proposed a new

heuristics to generate a program for minimizing the maximum warehouse space, whereas Miranda et

al. (2015) proposed a technique based on lot size modification in order to respect space limits with a

reduced impact on the total warehousing cost.

However, the main problem of the JRP is that all the items are ordered at the beginning of the

considered time horizon and, as a consequence, a maximum occupied space will occur at time t = 0

and will used inefficiently for the rest of the time. To solve this problem, as anticipated in the

Introduction section, the offsetting can be carried out of N different items’ replenishment cycles that

share a common space, and it is necessary to distribute the arrivals in an “intelligent” way in order to

minimize the maximum peak in the warehouse, namely, the joint storage requirements for the items.

This type of problem, which we are going to debate in this paper, is often called the “staggering

problem” or “offsetting inventory cycle problem (OICP)”. In 1992, Gallego et al. showed that the

staggering problem is NP-complete even if only one item has a different reorder interval and, thus, it

is not possible to find the optimal solution in polynomial time, but a heuristic technique must be used.

Researches on the offsetting issue are rather few. Teo et al. (1998) deal with the OICP; however, the

first real turning point came only in 2003 with the work of Murthy, Benton, and Rubin. Such authors

considered the presence of space constraints and presented an interesting heuristics for offsetting

independent and unrestricted ordering cycles for items in order to minimize their joint storage

requirements over an infinite time horizon when warehouse space is limited. Given that the procedure

developed by Murthy et al. represents the benchmark of many subsequent works in this field, from

now on, we will call it the Murthy, Benton, and Rubin procedure (MBRP). Later, Moon, Cha, and

Kim (2008) proposed an MIP model both for a finite and an infinite time horizon and a genetic

algorithm and compared their procedures with the one previously presented by Murthy et al. (2003).

Yao and Chu (2008) also conducted theoretical analysis based on Fourier series and Fourier

transforms and proposed a procedure to calculate the maximum warehouse space requirement and

showed the improvements compared with the MBRP. Then, Boctor (2010) proposed a new

formulation of the MBRP and a heuristic algorithm based on simulated annealing through which they

achieved the same results as Moon et al. (2008). Subsequently, Boctor and Bolduc (2012) presented

two heuristic approaches for solving the staggering problem and obtained good performances, while

Croot and Huang (2013) studied this problem from the viewpoint of probability theory and proposed

a series of algorithms for the OICP. Boctor and Bolduc (2015) presented two heuristic solution

approaches to solve a bi-objective problem with the aim of minimizing the ordering and holding costs

and the maximum required storage. In contrast, Franciosi et al. (2015) developed a first algorithm

targeted to determine the optimal offsetting of item inventory cycles stored in the same warehouse.

Finally, Russell and Urban (2016) proposed two heuristics for the OICP and they analysed new

variants of the problem concerning a continuous-time framework as well as the effect of stochastic

demand.

Most of the analysed papers consider the time horizon equal to the least common multiplier (LCM)

of the times between orders (TBOs) associated to the items, since the maximum peak occurs during

this time interval. In Yao et al. (2008) the authors proved that if this assumption holds then it is

possible to fix the first replenishment instant of an item j at time zero without loss of generality.

Thanks to this idea, it is possible to reduce the size of the problem, since all the variables associated

to the item j are fixed a priori, and to reduce the symmetry issues that heavily affect the OICP.

Russell and Urban (2016) carried out some tests to verify the performance improvements obtained

by fixing the first replenishment instant of one or more items. Moreover, they applied the different

symmetry breaking parameters provided by CPLEX to state what is the best configuration to use for

the OICP. For instance, on an instance with only 20 items CPLEX requires about 16 hours to

optimally solve it whereas, the same instance is solved in only 12 minutes by fixing the first

replenishment instant of an item.

Due to the LCM assumption, the time horizon considered for the OICP is usually a finite value, for

instance the 360 days of a year. In several papers concerning the OICP the authors select the TBOs

as divisors of the time horizon assuring, in this way, that the first replenishment instant of, at least,

one item can be fixed a priori. However, the choice of selecting the TBOs as divisors of the time

horizon can be too much restrictive for companies that need to define the TBO of each item with the

aim of reducing the stock management cost. For this reason, in this paper the time horizon is fixed to

220 days, corresponding to average number of annual working days, and the TBOs are chosen within

the range 1-220 without restrictions. Consequently, TBOs may not be divisors of 220 and then the

LCM assumption does not hold in our instances and no first replenishment instants can be fixed a

priori. This choice makes the problem more realistic but even more complex and it represents a

significant novelty of this paper compared to the existing literature. Moreover, since the daily demand

is equal to the ratio between the replenishment quantity and the TBO, its value can be fractional as

well as the peak value.

Such considerations together with the necessity to provide data and results of the instances, have led

the authors to propose a heuristic able to solve realistic and reproducible cases.

3. Problem Description and Formulation

The goal of the OICP is to find the optimal offsetting of each item with the aim of decreasing the

maximum volume peak in the warehouse and, consequently, stabilizing the saturation of the storage

for better management of space.

The Wilson model is widely used for supply problems, and it determines the optimal ordering lot for

each item, known as EOQ, which minimizes the sum of the purchasing, ordering, and holding costs.

Furthermore, for simplification, this model fixes the first replenishment time for each item to the

initial instant of the time horizon, and thus, the items will be available simultaneously in the

warehouse with a consequent remarkable peak in volume at the initial time and a considerably

unsaturated warehouse in the following days.

The example below better explains the problem just described.

Consider the data reported in the following table: storage space, daily demand, TBOs, and EOQ for

each item.

Item
Storage space per

unit time (𝑚")
Daily

demand
Time between

orders - TBO (days)
Economic order
quantity - EOQ

#1 1 3 3 9
#2 1 2 10 20
#3 1 5 6 30

Table 1 – Data of the example

If it considers a time horizon fixed to 20 days, the space required separately from the three items is

shown in the figure 1, indicated by black dotted lines, while the total space requirement without

offsetting, namely, with the application of the Wilson model, is shown by a red line. It can be seen

that the maximum peak occurs at the initial instant of the time horizon and is equal to 59 𝑚".

Figure 1 – Space requirement without offsetting

When the offsetting is carried out, the items are ordered for the first time on days zero, six, and two,

as shown in the figure 2, and not simultaneously at the beginning of the time horizon. Consequently,

the initial quantities are set equal to 9, 12, and 10, respectively. As can be seen, the maximum peak

does not occur at the initial instant of the time horizon; it is lower than the previous one and is equal

to 49 𝑚". In this manner, it is possible to have better management of space.

Figure 2 – Space requirement with offsetting

In this simple example, there are only three items in the storage, but in the real cases, the number of

items involved significantly increases; therefore, the aforementioned problem is much more

remarkable. Consequently, there are two main criticalities to face in the OICP:

1) Violation of potential space constraints.

2) Bad management of the warehouse due to nonhomogeneous saturation of space.

In the present work, the same assumptions of Franciosi et al. (2015), Moon et al. (2008), and Murthy

et al. (2003) about the OICP are used: the daily demand is deterministic and constant, the

replenishment is instantaneous, the TBO is known and constant for each item over a finite time

horizon, and shortages and backlogs are not allowed. The objective is to minimize the maximum peak

during the considered time horizon. Since the total space requirement pattern is periodic, the

maximum peak will occur in the time interval from t = 0 to t = LCM (TBO1,…,TBON), where LCM

is the least common multiple and corresponds to the whole time horizon. However, in real cases that

involve a large number of items, the LCM of the TBOs may become very high, leading to an

overblown time horizon. For this reason, we use a finite time horizon T that makes the problem more

realistic, as also explained by Franciosi et al. (2015). In our case, T is fixed to 220 days, which

approximately correspond to a working year.

To each item j, three parameters are associated: demand dj, time between orders TBOj, and

replenishment quantity Qj = dj ∙ TBOj. The formulation of the OICP is based on two sets of variables:

xjt and Ijt. The binary variable xjt is equal to 1 if and only if an order for item j occurs at time t, with t

= 0, 1, ... ,TBOj-1. The variable Ijt represents the inventory level for item j at time t, with t = 0, 1, ...

,T. Finally, we introduce a variable 𝑆%&' equal to the maximum storage space required for all items

in the time interval t Î [0, T]. Since the dj values can be not integers, Ijt and 𝑆%&' are continuous

variables.

𝑴𝑰𝑷 					𝑚𝑖𝑛	𝑆%&' (1)

subject to:

𝑥/0 = 1345678
09: 																																																							𝑗 = 1,… . . , 𝑁 (2)

𝐼/: = 𝑄/𝑥/: + 𝑑/ 𝑡𝑥/0
345678
098 																𝑗 = 1,… . . , 𝑁 (3)

𝐼/0 = 𝐼/(078) + 𝑄/𝑥/0 − 𝑑/																																						𝑗 = 1,… ,𝑁; 						𝑡 = 1,… , 𝑇𝐵𝑂/ − 1 (4)

𝑆%&' ≥ 𝑠/𝐼/N /
O
/98 																	𝑘 𝑗 =

𝑡																																𝑖𝑓	𝑡 < 𝑇𝐵𝑂/
𝑚𝑜𝑑 𝑡 𝑇𝐵𝑂/ 											𝑖𝑓	𝑡 ≥ 𝑇𝐵𝑂/

							𝑡 = 0,… , 𝑇
(5)

𝑥/0 ∈ 0,1 																																																																	𝑗 = 1,… ,𝑁; 						𝑡 = 0,… , 𝑇𝐵𝑂/ − 1 (6)

𝐼/0 ≥ 0																																																																								𝑗 = 1,… ,𝑁; 					𝑡 = 0,… , 𝑇𝐵𝑂/ − 1 (7)

𝑆%&' ≥ 0		 (8)

The objective function (1) minimizes the maximum space required in the warehouse over the

considered time horizon T. Constraints (2) force the first replenishment instant of any item j to occur

within the range [0, TBOj -1]. Constraints (3) and (4) ensure that the value of variables Ijt coincides

with the inventory level of item j at time t. More in details, due to the constraints (2) we know that

there is exactly one xjt equal to 1 into the constraints (3). Now, if xj0=1 then the inventory level of the

item j is equal to Qj because the replenishment instant for the item j is zero. Otherwise, if xjt=1 then

Ij0 is equal to t times the daily demand dj. About the constraint (4), if xjt=0 then Ijt is equal to the

inventory level of item j at time t-1 minus the daily demand dj. Otherwise, if xjt=1 then Ijt is given by

replenishment quantity Qj minus the daily demand dj. Finally, for any instant of time t, constraints (5)

force the variable 𝑆%&' to be greater than or equal to the sum of the inventory level of all items.

The MIP model will be used to verify the effectiveness of the genetic algorithm, described in the next

section. This comparison will show that the genetic algorithm is able to find good solutions even for

large instances that involve many items in a warehouse.

4. Genetic algorithm

Genetic algorithms are bioinspired metaheuristic techniques introduced by J. Holland in 1975 in his

book Adaptation in Natural and Artificial Systems. These techniques, based on natural selection and

evolution, reproduce the evolutionary process of the species. The genetic algorithms consider a

population of chromosomes (or individuals) that represent feasible or unfeasible solutions to the

problem. The quality of an individual, namely, how the solution is good for the problem, is measured

by a fitness function created ad hoc for the specific problem. Therefore, a genetic algorithm is an

iterative search procedure whose purpose is optimizing the fitness function. Starting from an initial

population, normally generated randomly, a genetic algorithm produces new generations usually

containing better individuals than the previous ones: the algorithm progresses to the global optimum

of the fitness function.

The great ability of a GA to explore in depth the solutions space and the possibility to effectively

manage the constraints through the setting of few parameters, make the genetic algorithm, among

evolutionary algorithms, potentially suitable for the OICP.

It is necessary to appropriately set the parameters of the genetic algorithm to obtain good solutions.

The possible parameters are known thanks to the many articles and books presented in the literature:

Aytug et al. (2003), Dowsland (1996), Hua and Huang (2006), Li and Gen (1996), Maiti et al. (2006),

Mitchell (1998), and Yokota et al. (1996) are examples of guidelines for GA configuration and

setting.

In the OICP, the variables (individuals of the genetic algorithm) are restricted to integer values.

The logic of our genetic algorithm is explained by the flowchart in Figure 3 and through the pseudo-

code in Figure 4. The algorithm randomly assumes (for the first generation, z = 1) the values of the

first replenishment instant for each item, and in subsequent generations, it researches, through genetic

reproduction, the values of gj,z that lead to the minimization of the maximum peak Smax.

Starting from the first item (j = 1), initial instant of time (t = 0), and first generation (z = 1), the genetic

algorithm randomly assigns the first replenishment instant for the first item (g1,1), and if g1,1 = 0, the

initial quantities I1,0,1	=	Q1; otherwise 𝐼8,:,8 	= 	𝑔8,8 ∙ 𝑑8. The values of I1,0,1 are memorized. The

procedure is repeated for each item j, and then the total storage space required for all items is

calculated according to the equation

	𝑆:,Y = 	 𝑠/ ∙ 𝐼/,:,YO
/98 . (9)

From the following day until the last day of the time horizon T is reached, the algorithm calculates

the present quantities in the warehouse according to the equation

𝐼/,0,Y = 	 𝐼/,078,Y + 𝑄/ − 𝑑/, (10)

in which 𝑄/ = 0 if 𝐼/,078,Y ≥ 𝑑/, while 𝑄/ = 	𝑑/ ∙ 	𝑇𝐵𝑂/ if 𝐼/,078,Y < 	𝑑/. Moreover, the total space St,z

occupied by the items every day is calculated. At the end of this iterative procedure, the algorithm

computes the maximum space occupied by the items during the time horizon T and memorizes this

value, according to the equation

	𝑆%&' = 	𝑚𝑎𝑥0 𝑆0,Y . (11)

The aforementioned procedure is repeated for all generations considering the genetic reproduction

that leads to the best values of the first replenishment instants (tbest,j) and the optimal value of the

maximum space required by the items in the warehouse (Sbest). When the maximum number of

generation Z is reached, the algorithm memorizes and shows the best value of the maximum space

required by items in the warehouse (Sbest) and the corresponding best first replenishment instant for

every item (tbest,j) that led to the value Sbest. Generally, as the algorithm is structured, Sbest coincides

with Smax of the last generation.

Figure 3 – Flowchart of the genetic algorithm

Figure 4 – Pseudo – code of the genetic algorithm

In the following paragraphs, we present the choices made for each parameter of the genetic algorithm.

4.1 Chromosome representation and initial population

In our genetic algorithm, the length of each chromosome (individual) is equal to the number of items

within the warehouse; accordingly, each chromosome has as many genes as the items considered and

each gene j represents the first replenishment instant gj,z of the corresponding item j. Therefore, it is

necessary that the gene is an integer between 0 (if gj,z = 0, it means that the lot will be ordered for the

first time at the initial instant as in the Wilson model) and TBOj -1 for each item. If we consider the

example of three items presented in Section 3, the individual representation of the solution shown in

Figure 2 is the following:

0 6 2

The initial population, namely the first set of solutions, is created randomly, and the population size

is fixed equal to 50 individuals after a tuning phase carried out with a range of individuals between

20 and 200 in several instances and with different number of items. By increasing the population size

over 50 individuals, we observed a negligible improvement of the solutions found with a significant

increase in the computational time.

4.2 Fitness function

The fitness function evaluates the goodness in the individuals of the population. In our problem, the

fitness of each chromosome is equal to the maximum peak obtained according to the value of each

gene. In every generation, the algorithm will choose individuals with the best fitness value for the

following generation that minimizes the space according to equation (1).

4.3 Methods for selecting individuals

The chosen technique used for the selection of parents is the tournament selection, which involves

running several tournaments among individuals chosen at random from the population; then, the

individual with the best fitness value, namely the winner of the tournament, is selected for the

following crossover. The tournament size is set equal to three. The tournament selection is explained

and studied in several previous articles such as Blickle and Thiele (1995), Goldberg and Deb (1991),

Miller and Goldberg (1995), which affirmed that tournament selection is a useful, simple, and robust

selection mechanism commonly used in GAs. Moreover, Goldberg and Deb (1991) showed that

tournament selection has better or equivalent convergence and computational time complexity

properties when compared to any other reproduction operator that exists in the literature. Finally, as

clearly explained by Deb (2000), to manage constraints the tournament selection is combined with a

penalty function, which allows easily selecting only feasible individuals for next generations.

4.4 Operators to vary genetic composition of individuals during the reproduction:

Crossover and mutation

The individuals that survive to the selection step undergo a change through the application of the

crossover and mutation operators with the aim of generating new individuals in the next generation.

In our case, “Laplace crossover” and “power mutation” have been chosen as reproduction operators.

Laplace crossover is a parent centric real coded operator based on Laplace distribution and it was

introduced by Deep and Thakur (2007a), while power mutation is an operator based on power

distribution described by Deep and Thakur (2007b). Deep and Thakur (2007a and 2007b) tested

Laplace crossover and power mutation operators on several algorithms and on 20 benchmark

problems available in global optimization literature showing that the GA using jointly such operators

emerged as the best. Moreover, these operators integrate a truncation procedure for integer restrictions

(Deep et al., 2009), necessary in our GA for getting integer variables. According to Deep et al. (2009),

the crossover rate and the mutation rate are respectively fixed to 0.8 and 0.005.

4.5 Stopping criteria

The established stopping condition is a maximum number of generations. In fact, as indicated in the

detailed review conducted by Aytug et al. (2003) concerning the use of genetic algorithms to solve

production and operations-management problems, the most common criterion used for stopping a

genetic algorithm is a fixed number of generations. After a series of simulations with a large variety

of instances, the number of generations, which more often permits the convergence to the optimal

solution or very close to the optimal solution/upper bound of MIP model, is fixed to 300. In fact, a

number of generations equal to 300 is the right compromise between obtained results and acceptable

run times: when the number of generations increases, the run time consequently increases, while the

result remains almost constant.

5. Validation

With the aim of testing the validity and the effectiveness of the two aforementioned procedures, both

have been applied to the example presented in the literature by Murthy et al. (2003). The data of the

Murthy et al. example (occupied space and TBO for each item), which consider nine items, are shown

below in Table 2.

Item j 1 2 3 4 5 6 7 8 9
𝑠/𝑄/ 100 200 81 144 150 160 90 60 50
𝑇𝐵𝑂/ 4 5 9 12 15 8 6 12 2

Table 2 – Data of Murthy et al.’s example

As previously mentioned, the fixed time horizon is equal to a working year (T = 220 days).

The Wilson model was applied to this example and, as can be seen in the following table, the highest

volume peak without offsetting is equal to 1035 𝑚". It occurs at the beginning of the considered time

period because all the lots Qj are ordered simultaneously at the initial instant of the time horizon (gj

= 0, ∀j). Murthy et al., through their procedure, obtained a maximum volume peak equal to 875 𝑚"

with a reduction of 15.46%. Instead, with the application of the offsetting through the MIP model and

the genetic algorithm, we are able to obtain a maximum peak equal to the optimum value of 760𝑚",

with a percentage reduction of the occupied volume equal to 26.57%.

Without

Offsetting
Murthy et al.

Model
MIP

Model
Genetic

Algorithm
Item gj Ij,0	∙ sj gj Ij,0	∙ sj gj Ij,0 ∙ sj gj Ij,0 ∙ sj
#1 0 100 0 100 3 100 0 100
#2 0 200 4 160 1 80 1 40
#3 0 81 0 81 5 54 1 9
#4 0 144 0 144 1 24 6 72
#5 0 150 0 150 3 40 8 80
#6 0 160 6 120 5 120 2 40
#7 0 90 5 75 4 75 3 45
#8 0 60 4 20 7 40 0 60
#9 0 50 1 25 0 25 1 25

Max peak (𝒎𝟑) 1,035 875 760 760
Peak Day 0 0 38 42

% Reduction - 15.46% 26.57% 26.57%

Table 3 – Application of the two procedures to Murthy et al.’s example

As shown in Table 3, the maximum peak values found by genetic algorithm and MIP model coincide

and this means that the genetic algorithm solves optimality this example. Therefore, in Table 3, the

first replenishment instant for each item (gj) and the corresponding space occupied at the initial instant

for each item (Ij,0 ∙ sj), which leads to the maximum volume peak equal to 760𝑚", are reported.

Figure 5 shows the space requirement without offsetting and with the application of the genetic

algorithm during the considered time horizon T: the black line represents the occupied space with the

application of the classic Wilson model without offsetting; the red line, instead, represents the space

requirement after the application of the genetic algorithm.

Figure 5 – Murthy et al. Case. Comparison between the space requirement with and without offsetting

A reduction of the storage space is possible and a more regular saturation of the warehouse permits a

more correct management of the items and the space.

The next section shows the results obtained with the application of the MIP model and the genetic

algorithm to eight new instances of different dimension, whose data are reported in the appendix.

6. Experimental Tests

The purpose of the computational tests presented in this section is to study the effectiveness and the

performance of our genetic algorithm. Both the genetic algorithm and the MIP model have been

applied to several instances with 10, 20, 30, 40, 50, 80, and 200 items, respectively.

Table 4 reports the range of values in which are included the main characteristics of the considered

items in all cases: the daily demand, the TBOs, and, consequently, the economic order quantity. For

simplification, the specific volume is fixed to 1	𝑚"/𝑢𝑛𝑖𝑡.

Characteristic Measure Unit Range

Daily demand (𝑑/) units/day 1-106

Time between order (TBOj) Days 1-220

Economic order quantity (Qj) Units 74-3748

Table 4 – Characteristics of the items

Table 5 reports the results obtained by the application of the MIP model to the different instances.

It has to be noted that, since the peak value can be a not integer value, the upper bounds reported in

the following table are rounded up to the closest integer value.

 MIP model

Case

study

Upper Bound

(𝑚")

Lower Bound

(𝑚")

Run Time

(sec)

Stop

Motivation
GAP

9 items 760.00 760.00 3.55 Optimal 0.00%

10 items 2,854.00 2,854.00 229.95 Optimal 0.00%

20 items 7,121.00 6,902.06 10,810.01 AbortTimeLim 3.07%

30 items 12,352.00 12,210.00 10,810.03 AbortTimeLim 1.14%

40 items 13,795.00 13,585.30 10,810.03 AbortTimeLim 1.52%

50 items 17,602.00 17,131.80 10,810.04 AbortTimeLim 2.67%

80 items 27,689.00 27,024.60 10,810.08 AbortTimeLim 2.40%

200 items 73,309.00 72,477.70 10,810.18 AbortTimeLim 1.13%

Table 5 – MIP model results

The MIP model was coded in C++ on an OSX platform running on an Intel i5 2.9GHz processor with

16GB of RAM and solved by using the Concert library of IBM ILOG CPLEX 12.5. We fixed a limit

of 3 hours and 8GB of memory for the resolution of each instance. In each row of the table, the upper

and lower bounds computed by the MIP model for that instance, the computational time, the stop

status, and the gap between the upper and lower bound are reported. Obviously, when an optimal

solution is found, the upper and lower bounds coincide and the gap is equal to 0%.

The instances with 9 and 10 items are optimally solved by the MIP model, while it reaches the time

limit on the instances with 20 items, 30 items, 40 items, 50 items, 80 items and 200 items. The gap

values are low and the upper bounds found by the MIP model are close enough to the optimal solution.

Table 6 shows the solution values found by MIP model and genetic algorithm in each case study.

Moreover, the run times of the genetic algorithm and the percent gap between the maximum peaks of

the two procedures are reported.

 MIP model Genetic Algorithm
Case
study

Max Volume Peak
(𝐦𝟑)

Max Volume Peak
(𝐦𝟑)

Run Time
(s) Gap %

9 items 760 760 87 0.000%
10 items 2,854.00 2,881.00 88 0.946%
20 items 7,121.00 7,229.00 110 1.517%
30 items 12,352.00 12,660.00 137 2.494%
40 items 13,795.00 14,147.00 177 2.552%
50 items 17,602.00 18,019.00 206 2.369%
80 items 27,689.00 28,489.00 294 2.889%
200 items 73,309.00 75,682.00 733 3.237%

Table 6 – Comparison between the results of the two procedures

The genetic algorithm is able to obtain the optimum value only for the instance with 9 items, while,

in the other cases, it finds solutions very close to the upper bounds of the MIP model with a percent

error always lower than 3.3%. Regarding performance, the genetic algorithm produces results very

fast, requiring less than 5 minutes to solve all the instances up to 80 items and 12 minutes for the

instance with 200 items. Since the running time is so low, we tested the algorithm even on larger

instances, which involve, respectively, 1,000 and 2,000 items within the boundaries of a company

warehouse. The results of these tests are described in the next section.

6.1 Larger instances (1,000 and 2,000 items)

The genetic algorithm was applied to two more realistic cases of companies managing, respectively,

1,000 and 2,000 items in the warehouse. Table 7 reports the ranges in which the main data of the

instances are included, namely, daily demand, TBOs, specific volume, unit purchasing cost, unit

ordering cost, and unit holding cost for each case.

Characteristic Measure Unit Range 1,000 items Range 2,000 items
Daily demand (𝑑/) units/day 1-108 1-110
Time between order (TBOj) Days 1-202 1-373
Specific volume (sj) 𝑚"/unit 0.002-1 0.002-1
Unit purchasing cost (pj) €/unit 0.1-7 0.1-7
Unit ordering cost (Clj) €/order 50-100 50-100
Unit holding cost (kj) €/(unit∙day) 0.001-0.05 0.001-0.05

Table 7 – Ranges of values for instances

Once the data was collected, the economic order quantity Qj has been calculated and, considering the

classic Wilson model that established the presence of all quantities for the first time at t = 0, it obtains

a maximum volume peak equal to 318,488 𝑚" for the case of 1,000 and 645,813.24 𝑚" for the case

of 2,000 items. Both peaks occur on the initial instant of the first day.

With the application of the proposed genetic algorithm, the maximum volume peak is equal to

175,813 𝑚" for the case of 1,000 items, which occurs on day 217 with a reduction of occupied space

of approximately 44.8%. In the case of 2,000 items, the genetic algorithm obtains a maximum peak

equal to 355,386.67	𝑚", which occurs on the day 46, with a reduction of the occupied space of

approximately 45%.

Figure 6 and Figure 7 show the respective space requirements for the two cases during the considered

time horizon T: the black line represents the occupied space with the application of the classic Wilson

model without offsetting; the red line represents the space requirement after the application of the

genetic algorithm.

Figure 6 – 1,000 item case. Comparison between the space requirement with and without offsetting

Figure 7 – 2,000 item case. Comparison between the space requirement with and without offsetting

In both cases, a huge difference between the two procedures regarding the occupied volume, the

saturation of the warehouse, can be observed. Moreover, with the application of offsetting through

the genetic algorithm, better management of the warehouse is possible, and a major space, usable for

other items or for potential safety stocks, is made available.

Furthermore, in real cases it is fundamental to consider the costs. Table 8 presents the total

purchasing, ordering, and holding costs associated with 1,000 items and 2,000 items and incurred by

the company with both the Wilson model and the genetic algorithm.

 1,000 item instance 2,000 item instance

Characteristic Wilson model Genetic
Algorithm Wilson model Genetic

Algorithm
Purchasing

cost (€)
38,375,050 38,375,050 75,632,639 75,632,639

Ordering cost
(€)

1,373,354 1,336,834 2,766,932 2,693,515

Holding cost
(€)

1,371,553 1,335,040 2,769,247 2,695,727

Extra ordering
cost (€)

- 71,325 - 145,386

Extra holding
cost (€)

- 22,865 - 46,464

Total cost (€) 41,119,957 41,141,114 81,168,818 81,213,731
Max volume

(𝑚")
318,488 175,813 645,813.24 355,386.67

Table 8 – Comparing the costs

As evidenced in Table 8, the purchasing cost remains constant in the two cases because such cost

does not depend on the specific lot, but only on the daily demand, the time horizon, and the unit

purchasing price.

Instead, the ordering and holding costs depend on the specific lot. For this reason, with the application

of the genetic algorithm, it is necessary to consider an extra ordering cost and an extra holding cost

for the hypothesized initial quantities that must satisfy the demand of the first days until the first

replenishment fixed by the genetic algorithm occurs. However, the considered time horizon is always

the same and, for this reason, the ordering and holding costs (associated to the lot Qj) with the genetic

algorithm are inferior to the Wilson model because in the initial days only the initial quantities with

the associated extra ordering and holding costs have to be considered. After the first replenishment

and until the end of the time horizon, the ordering and holding costs are the same associated to the lot

Qj, and so they are calculated in the same way for the two models.

In both cases, the total cost with the application of the genetic algorithm is greater, but the difference,

about 0.8% for both cases, is negligible if compared with the value of the total ordering and holding

cost calculated for each case and with the obtained reduction of the occupied space.

7. Conclusions

The present paper deals with the OICP. A genetic algorithm, whose features have been accurately

chosen for this problem, has been introduced and then validated through comparison with the

solutions computed by an MIP model. The data and results of all instances used for the validation are

reported in order to make possible their reproducibility and future comparisons in the OICP field.

The algorithm has shown good performance also on realistic cases, which involved a large number

of items and without any simplified mathematical assumption. The obtained solutions reveal that a

huge reduction in the space requirement is possible and that a more regular saturation of the

warehouse allows for a better use of space. Therefore, the algorithm is suitable for any type of instance

and it is able to handle real cases in effective way.

Further research could be focused on testing different heuristic techniques, applying them to real

cases, and comparing the results. Another possible next step would concern a model modification by

including in it the space constraint imposed by the finite dimension of the warehouse, as usually

happens in many logistic problems. In this last case, the objective function won’t be the occupied

space minimization but the minimization of the total cost of stock management with the respect of

the new space constraint.

Appendix

#Item Q10
1-10 617 677 81 193 238 341 692 219 524 603

#Item TBO10
1-10 6 20 81 32 30 23 115 17 8 10

#Item Q20
1-10 113 823 741 423 562 442 274 1043 443 803
11-20 612 1343 594 565 406 426 412 508 550 596

#Item TBO20
1-10 23 39 9 11 6 8 14 33 44 38
11-20 10 14 14 14 9 7 9 9 7 7

#Item Q30
1-10 544 326 370 726 547 249 160 1470 1316 607
11-20 618 544 583 972 1145 485 986 200 335 520
21-30 2961 420 178 756 686 410 1086 441 505 189

#Item TBO30
1-10 7 8 10 10 13 83 40 22 14 9
11-20 7 8 10 13 19 6 10 25 19 10
21-30 51 16 15 10 8 7 33 5 12 38

#Item Q40
1-10 261 521 643 408 1169 192 592 696 396 143
11-20 535 514 706 303 692 501 1510 614 330 459
21-30 331 74 108 354 263 422 654 327 548 1378
31-40 862 792 962 197 304 1424 442 636 2023 345

#Item TBO40
1-10 11 5 10 19 32 19 13 10 11 20
11-20 7 9 9 14 10 8 21 11 13 9
21-30 19 74 36 13 10 11 9 8 91 15
31-40 10 24 13 25 10 24 25 6 38 10

#Item Q50
1-10 502 108 652 844 558 428 399 332 520 585
11-20 1647 465 857 865 325 339 741 478 356 891
21-30 1021 150 2424 989 332 501 641 1076 486 273
31-40 127 735 1298 385 762 189 1183 570 382 293
41-50 130 297 850 679 354 162 944 563 438 560

#Item TBO50
1-10 63 27 7 11 8 9 10 7 8 39
11-20 36 13 15 12 11 12 9 9 18 14
21-30 13 21 25 19 14 12 15 11 6 39
31-40 42 7 16 9 9 27 15 6 10 8
41-50 33 15 12 10 44 23 21 24 219 22

#Item Q80
1-10 576 1269 644 560 334 363 376 381 501 298
11-20 525 503 1115 475 612 674 1781 474 775 737
21-30 192 482 524 581 363 97 307 624 407 753
31-40 435 539 329 331 179 469 1200 789 708 263
41-50 466 485 1010 453 484 433 544 956 551 679
51-60 583 914 755 339 648 964 422 461 233 883
61-70 354 778 683 174 429 413 2551 227 1188 1237
71-80 1533 484 566 1604 458 244 465 374 200 786

#Item TBO80
1-10 9 14 8 11 8 16 7 22 20 27
11-20 12 42 31 8 8 7 21 5 30 8
21-30 19 14 7 13 14 49 16 7 10 58
31-40 12 6 10 9 45 6 15 9 13 88
41-50 33 5 11 7 8 6 21 10 6 9
51-60 8 10 31 10 7 37 8 8 16 16
61-70 14 9 11 58 15 14 43 17 33 39
71-80 26 6 13 25 7 22 9 8 20 24

#Item Q200
1-10 518 769 808 450 322 730 725 739 415 603
11-20 508 353 894 266 3140 1348 552 138 415 324
21-30 105 543 388 1068 710 289 579 288 1030 758
31-40 473 238 622 646 732 820 529 449 2923 1106
41-50 461 491 1017 517 599 569 192 371 692 422
51-60 299 1013 1033 1532 1538 501 1519 1704 507 810
61-70 1015 660 326 1143 427 610 559 690 364 295
71-80 191 1095 424 782 315 606 537 520 1511 628
81-90 150 622 644 546 573 775 101 484 414 184
91-100 320 494 361 342 363 558 157 631 634 1120
101-110 2258 466 174 1387 416 496 444 519 395 525
111-120 1375 392 3748 1061 456 549 160 289 519 91
121-130 251 597 236 1895 558 983 544 416 2265 709
131-140 369 746 554 770 315 474 681 729 247 646
141-150 551 598 387 806 701 1472 1287 506 581 827
151-160 831 190 743 151 932 400 515 369 345 351
161-170 405 468 449 417 124 595 707 251 472 1044
171-180 566 661 582 1063 360 840 777 519 718 386
181-190 681 306 646 391 618 679 589 1471 85 562
191-200 534 588 561 1982 647 475 1524 594 355 915

#Item TBO200
1-10 10 17 135 10 7 8 9 18 9 10
11-20 6 10 10 10 34 17 15 23 13 20
21-30 35 9 15 33 15 13 6 17 13 10
31-40 9 22 11 9 8 12 9 9 29 17
41-50 6 5 20 7 12 11 21 13 9 10
51-60 13 18 13 26 17 10 17 34 9 8
61-70 11 9 82 52 5 7 7 33 11 10
71-80 27 17 6 17 8 17 23 20 16 37
81-90 25 16 19 12 15 12 51 9 10 20
91-100 11 7 9 14 11 8 26 10 14 14
101-110 24 11 22 14 35 7 9 7 10 6
111-120 15 12 44 14 16 55 18 11 7 46
121-130 63 10 12 20 7 13 11 13 33 10
131-140 7 9 9 9 45 53 15 9 12 9
141-150 8 6 10 10 9 49 16 8 7 13
151-160 17 38 8 38 18 11 17 17 11 13
161-170 6 7 220 7 41 10 10 13 9 20
171-180 8 8 8 15 8 11 18 10 8 10
181-190 8 7 7 14 13 7 6 16 43 8
191-200 31 7 6 20 9 6 54 13 6 2

References
Aksoy, Y., & Selcuk Erenguc, S. (1988). Multi-item inventory models with co-ordinated

replenishments: a survey. International Journal of Operations & Production Management, 8(1), 63-

73.

Amaya, C. A., Carvajal, J., and Castaño, F. (2013). A heuristic framework based on linear programming

to solve the constrained joint replenishment problem (C-JRP). International Journal of Production

Economics, 144(1), 243-247.

Arkin, E., Joneja, D., and Roundy, R. (1989). Computational complexity of uncapacitated multi-echelon

production planning problems. Operations Research Letters, 8(2), 61-66.

Aytug, H., Khouja, M., and Vergara, F. E. (2003). Use of genetic algorithms to solve production and

operations management problems: a review. International Journal of Production Research, 41(17),

3955-4009.

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G., and Stewart Jr, W. R. (1995). Designing and

reporting on computational experiments with heuristic methods. Journal of heuristics, 1(1), 9-32.

Blickle, T., and Thiele, L. (1995). A comparison of selection schemes used in genetic algorithms.

Boctor, F. F. (2010). Offsetting inventory replenishment cycles to minimize storage space. European

Journal of Operational Research, 203(2), 321-325.

Boctor, F. F., and Bolduc, M. C. (2012). The inventory replenishment planning and staggering problem

revisited. CIRRELT.

Boctor, F. F., and Bolduc, M. C. (2015). Inventory replenishment planning and staggering. IFAC-

PapersOnLine, 48(3), 1416-1421.

Cha, B. C., Moon, I. K., and Park, J. H. (2008). The joint replenishment and delivery scheduling of the

one-warehouse, n-retailer system. Transportation Research Part E: Logistics and Transportation

Review, 44(5), 720-730.

Chiu, C. Y., Lin, Y., Sheu, D. F., & Ho, W. T. (2014). Common replenishment cycle with mixed batch

shipment policy for a single-vendor multi-buyer integrated system. European Journal of Industrial

Engineering, 8(2), 168-192.

Croot, E., and Huang, K. (2013). A class of random algorithms for inventory cycle

offsetting. International Journal of Operational Research, 18(2), 201-217.

Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer methods in

applied mechanics and engineering, 186(2), 311-338.

Deep, K., and Thakur, M. (2007a). A new crossover operator for real coded genetic algorithms. Applied

Mathematics and Computation, 188(1), 895-911.

Deep, K., and Thakur, M. (2007b). A new mutation operator for real coded genetic algorithms. Applied

mathematics and Computation, 193(1), 211-230.

Deep, K., Singh, K. P., Kansal, M. L., and Mohan, C. (2009). A real coded genetic algorithm for solving

integer and mixed integer optimization problems. Applied Mathematics and Computation, 212(2),

505-518.

Dowsland, K. A. (1996). Genetic algorithms-a tool for OR?. Journal of the Operational Research

Society, 550-561.

Franciosi, C., Miranda, S., Iannone, R., and Lambiase, A. (2015). A heuristics with simulative approach

for the determination of the optimal offsetting replenishment cycles to reduce the warehouse space.

The 14th International Conference on Modeling and Applied Simulation, MAS 2015, Bergeggi; Italy;

September, 21-23, 2015, 17-25.

Gallego, G., Shaw, D., and Simchi-Levi, D. (1992). The complexity of the staggering problem, and

other classical inventory problems. Operations Research Letters, 12(1), 47-52.

Goldberg, D. E., and Deb, K. (1991). A comparative analysis of selection schemes used in genetic

algorithms. Foundations of genetic algorithms, 1, 69-93.

Goyal, S. K. (1973). Determination of economic packaging frequency for items jointly

replenished. Management Science, 20(2), 232-235.

Goyal, S. K., and Satir, A. T. (1989). Joint replenishment inventory control: deterministic and stochastic

models. European journal of operational research, 38(1), 2-13.

Hadley, G., and Whitin, T. M. (1963). Analysis of inventory systems. Prentice Hall.

Haksever, C., and Moussourakis, J. (2005). A model for optimizing multi-product inventory systems

with multiple constraints. International Journal of Production Economics, 97(1), 18-30.

Hall, N. G. (1998). A comparison of inventory replenishment heuristics for minimizing maximum

storage. American Journal of Mathematical and Management Sciences, 18(3-4), 245-258.

Haji, R., and Mansuri, M. (1995). Optimum common cycle for scheduling a single-machine

multiproduct system with a budgetary constraint. Production Planning & Control, 6(2), 151-156.

Holland, J. H. (1975). Adaption in natural and artificial systems. Ann Arbor MI: The University of

Michigan Press.

Hoque, M. A. (2006). An optimal solution technique for the joint replenishment problem with storage

and transport capacities and budget constraints. European journal of operational research, 175(2),

1033-1042.

Hua, Z., and Huang, F. (2006). An effective genetic algorithm approach to large scale mixed integer

programming problems. Applied Mathematics and computation, 174(2), 897-909.

Johnson, L. A., and Montgomery, D. C. (1974). Operations research in production planning,

scheduling, and inventory control (Vol. 6). New York, Wiley.

Kaspi, M., and Rosenblatt, M. J. (1983). An improvement of Silver's algorithm for the joint

replenishment problem. AIIE Transactions, 15(3), 264-267.

Kaspi, M., and Rosenblatt, M. J. (1991). On the economic ordering quantity for jointly replenished

items. The International Journal of Production Research, 29(1), 107-114.

Khouja, M., Michalewicz, Z., and Satoskar, S. S. (2000). A comparison between genetic algorithms and

the RAND method for solving the joint replenishment problem. Production Planning &

Control, 11(6), 556-564.

Khouja, M., and Goyal, S. (2008). A review of the joint replenishment problem literature: 1989–

2005. European Journal of Operational Research, 186(1), 1-16.

Lee, F. C., and Yao, M. J. (2003). A global optimum search algorithm for the joint replenishment

problem under power-of-two policy. Computers & Operations Research, 30(9), 1319-1333.

Li, Y. X., and Gen, M. (1996). Nonlinear mixed integer programming problems using genetic algorithm

and penalty function. IEEE International Conference on Systems, Man, and Cybernetics, 4, 2677-

2682.

Maiti, A. K., Bhunia, A. K., and Maiti, M. (2006). An application of real-coded genetic algorithm

(RCGA) for mixed integer non-linear programming in two-storage multi-item inventory model with

discount policy. Applied Mathematics and computation, 183(2), 903-915.

Miller, B. L., and Goldberg, D. E. (1995). Genetic algorithms, tournament selection, and the effects of

noise. Complex Systems, 9(3), 193-212.

Miranda, S., Fera, M., Iannone, R., and Riemma, S. (2015). A multi-item constrained EOQ calculation

algorithm with exit condition: a comparative analysis. IFAC-PapersOnLine, 48(3), 1314-1319.

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

Moon, I. K., and Cha, B. C. (2006). The joint replenishment problem with resource

restriction. European Journal of Operational Research, 173(1), 190-198.

Moon, I. K., Cha, B. C., and Kim, S. K. (2008). Offsetting inventory cycles using mixed integer

programming and genetic algorithm. International Journal of Industrial Engineering: Theory,

Applications and Practice, 15(3), 245-256.

Murthy, N. N., Benton, W. C., and Rubin, P. A. (2003). Offsetting inventory cycles of items sharing

storage. European Journal of Operational Research, 150(2), 304-319.

Russell, R. A., and Urban, T.L. (2016). Offsetting inventory replenishment cycles. European Journal

of Operational Research, 254, 105-112.

Rosenblatt, M. J., and Rothblum, U. G. (1990). On the single resource capacity problem for multi-item

inventory systems. Operations research, 38(4), 686-693.

Silver, E. A. (1976). A simple method of determining order quantities in joint replenishments under

deterministic demand. Management Science, 22(12), 1351-1361.

Teo, C. P., Ou, J., and Tan, K. C. (1998). Multi-item inventory staggering problems: heuristics and

bounds.

Tersine, R. J., and Tersine, R. J. (1976). Materials management and inventory systems. North Holland.

Thomas, L. C., and Hartley, R. (1983). An algorithm for limited capacity inventory problem with

staggering. Journal of the Operational Research Society, 81-85.

Tsai, C. Y., Tsai, C. Y., and Huang, P. W. (2009). An association clustering algorithm for can-order

policies in the joint replenishment problem. International Journal of Production Economics, 117(1),

30-41.

Van Eijs, M. J. G. (1993). A note on the joint replenishment problem under constant demand. Journal

of the Operational Research Society, 185-191.

Viswanathan, S. (1996). A new optimal algorithm for the joint replenishment problem. Journal of the

Operational Research Society, 936-944.

Wang, L., He, J., Wu, D., and Zeng, Y. R. (2012). A novel differential evolution algorithm for joint

replenishment problem under interdependence and its application. International Journal of

Production Economics, 135(1), 190-198.

Wildeman, R. E., Frenk J. B. G., and Dekker, R. (1997). An efficient optimal solution method for the

joint replenishment problem. European Journal of Operational Research, 99(2), 433-444.

Yao, M. J. (2007). Solving the joint replenishment problem with warehouse-space restrictions using a

genetic algorithm. Journal of the Chinese Institute of Industrial Engineers, 24(2), 128-141.

Yao, M. J., and Chu, W. M. (2008). A genetic algorithm for determining optimal replenishment cycles

to minimize maximum warehouse space requirements. Omega, 36(4), 619-631.

Yao, M. J., Chu, W. M., and Lin, Y. F. (2008). Determination of replenishment dates for restricted-

storage, static demand, cyclic replenishment schedule. Computers & Operations Research, 35(10),

3230-3242.

Yokota, T., Gen, M., Li, Y., and Kim, C. E. (1996). A genetic algorithm for interval nonlinear integer

programming problem. Computers & industrial engineering, 31(3), 913-917.

Zoller, K. (1977). Deterministic multi-item inventory systems with limited capacity. Management

Science, 24(4), 451-455.

