
The Rainbow Spanning Forest Problem

Francesco Carrabsa, Carmine Cerronec,∗, Raffaele Cerullia, Selene Silvestrib

aDepartment of Mathematics, University of Salerno Via Giovanni Paolo II n. 132, 84084, Fisciano (SA), Italy.
bDepartment of Computer Science, University of Salerno, Via Giovanni Paolo II n. 132, 84084, Fisciano (SA), Italy.

cDepartment of Biosciences and Territory, University of Molise, C.da Fonte Lappone, 86090 Pesche (IS), Italy.

Abstract

Given an undirected and edge colored graph G, a rainbow component of G is a subgraph of

G having all the edges with different colors. The Rainbow Spanning Forest Problem consists

of finding a spanning forest of G with the minimum number of rainbow components. The

problem is known to be NP-hard on general graphs and on trees. In this paper we present

an integer linear mathematical formulation and a greedy algorithm to solve it. To further

improve the results we applied a multi-start scheme to the greedy algorithm. Computational

results are reported on randomly generated instances.

Keywords: Graph theory, edge-colored graph, rainbow components, multi-start scheme,

heterochromatic components.

1. Introduction and Problem Description

Let G = (V,E, L) be a connected and undirected graph, where V is the set of n vertices,

E is the set of m edges and L is a set of l colors. In addition, let ` : E → L be a coloring

function that assigns to each edge e ∈ E a color `(e) from the set L. A rainbow spanning

forest of G is a spanning forest F = (VF , EF , LF) of the graph G, with VF = V , EF ⊆ E and

LF ⊆ L, such that all components are rainbow. A component of the forest is a connected

acyclic graph, therefore a rainbow component of F is a tree T = (VT , ET , LT), where VT ⊆ V

and ET ⊆ EF , in which all edges have different colors, i.e. |LT | = |`(ET)| = |ET |. Note

that if F has c̄ rainbow components T1, . . . , Tc̄, then VF = V = ∪c̄i=1VTi , EF = ∪c̄i=1ETi and

LF = ∪c̄i=1LTi . The Rainbow Spanning Forest Problem (RSFP) consists of finding a rainbow

spanning forest with the least number of rainbow trees.

∗Corresponding author
Email addresses: fcarrabs@unisa.it (Francesco Carrabs), carmine.cerrone@unimol.it (Carmine

Cerrone), raffaele@unisa.it (Raffaele Cerulli), selene.silvestri@gmail.com (Selene Silvestri)

2

1

4

3 1

1
1

2

2

3

v1 v2

v3

v5

v4

v6

4

1

2

2
v1 v2

v3

v5

v4

v6

(a)

2

1

1

v1 v2

v3

v5

v4

v6

(b) (c)

Figure 1: (a) The colored graph G. (b) A rainbow spanning forest composed by three rainbow trees. (c) A
rainbow spanning forest composed by only two rainbow trees. This is the optimal solution for the RSFP on
G.

For instance, given the colored graph G, depicted in Figure 1(a), a feasible solution for

the RSFP is shown in Figure 1(b). This is a rainbow spanning forest which value is equal to

three because it is composed by three rainbow trees. Notice that in this solution the color

1 is used in two rainbow trees. Finally, the optimal solution for the RSFP on G is shown in

Figure 1(c).

Li and Zhang [23] proved that the RSFP is NP-hard on general graphs. Akbari and al.

[1] gave necessary and sufficient condition for the existence of a heterochromatic spanning

tree in an edge-colored connected graph. Carrabs et al. [6] proved that the problem is

NP-hard on trees and that it is polynomially solvable if the optimal solution value is equal

to one. More recently Carraher et al. [9] give conditions to calculate a lower bound on the

number of edge-disjoint spanning trees rainbow shown in a graph.

The RSFP belongs to a recently studied class of problems, defined on edge-colored graphs.

Such a type of graphs may be used to model many real-world situations in which we need

to distinguish between different types of connections. For example, in telecommunication

networks colors can represent different types of communications media (such as optical

fiber, coaxial cable, telephone line), different companies to which the connections belong,

or different transmission frequencies.The RSFP generalizes a well-known problem in the

context of edge-colored graphs, that is, the Minimum Labeling Spanning Tree Problem

(MLSTP). The MLSTP was introduced by Chang and Shing-Jiuan [15], who proved it to be

NP-hard and provided an heuristic, the Maximum Vertex Coverage Algorithm (MVCA), as

well as an exact A* algorithm. Brualdi et al. [3] give conditions on color distributions of the

complete bipartite graph which guarantee the existence of rainbow subgraph, while Suzuki

2

[25] gives a necessary and sufficient condition for the existence of a rainbow spanning tree in

a graph. Many other colored problems have been studied in the literature, like the Minimum

Labeling Steiner Problem [17], [18], the Minimum Labeling Spanning Tree Problem [10], [11],

[14], [22], the Minimum Labeling Generalized Forest [4], the Colorful Traveling Salesman

Problem [13], [21], [28], the Generalized Minimum Label Spanning Tree Problem [16], the

Label-Constrained Minimum Spanning Tree Problem [29], the Labeled Maximum Matching

Problem [8], the Maximum Labeled Clique Problem [7], the Orderly Colored Longest Path

Problem [26], the Optimal Pathway Reconstruction on 3D NMR maps [27], the Proper–Path

Colorings Problem [2] and the Rainbow Cycle Cover Problem [24].

In this paper we propose an integer mathematical formulation and a greedy algorithm. In

order to identify the local optimal choice, the greedy algorithm solves a matching problems

on bipartite graphs. The bipartite graphs are built at each iteration taking into account the

current solution. Moreover, to further improve the results we embed the greedy algorithm

in a multi-start scheme.

The remainder of the paper is organized as follows. Section 2 contains the integer linear

mathematical formulation. The greedy algorithm and the related multi-start scheme applied

to the greedy algorithm to improve its results are presented in Section 3. Computational

results and concluding remarks are presented in Section 4 and 5, respectively.

2. RSFP: An Integer Linear Mathematical Formulation

In this section we provide an integer linear mathematical formulation for the RSFP. Let

αc be a set of binary variables, for c = 1, . . . , c̄, associated with each component c of a

rainbow spanning forest, whose value is equal to 1 if and only if c contains at least one

vertex. Let ycv be a set of binary variables such that ycv is equal to 1 if and only if vertex

v belongs to component c, and let xce be a set of binary variables equal to 1 if and only if

edge e belongs to component c. Note that the number of variables depends on the number

of possible components, so it is useful to have a good upper bound to the optimal value. If

we do not know an upper bound we set c̄ = n− 1, that is equal to the maximum number of

rainbow components that we can identify. In order to introduce constraints that can help

prevent equivalent solutions, we define an index set Iq = {1, . . . , q}, for an integer q, and

the vertex set V = In. The formulation (ILP) is then as follows:

minimize z =
c̄∑
c=1

αc (1)

3

subject to ∑
v∈V

ycv ≤ (l + 1)αc c = 1, . . . , c̄ (2)

αc ≤
∑
v∈V

ycv c = 1, . . . , c̄ (3)

c̄∑
c=1

ycv = 1 v ∈ V (4)

xce ≤ ycv v ∈ V, e ∈ δ(v) (5)∑
e∈Ek

xce ≤ αc c = 1, . . . , c̄, k ∈ L (6)

c̄∑
c=1

∑
e∈E(S)

xce ≤ |S| − 1, S ⊆ V, |S| ≥ 2 (7)

∑
e∈E

xce =
∑
v∈V

ycv − αc c = 1, . . . , c̄ (8)

αc+1 ≤ αc c = 1, . . . , c̄− 1 (9)

y1
1 = 1 (10)

ycv ≤
∑
w<v

yc−1
w v ∈ V \ {1}, c = 3, . . . , c̄ (11)

αc ∈ {0, 1} c = 1, . . . , c̄ (12)

ycv ∈ {0, 1} v ∈ V, c = 1, . . . , c̄ (13)

xce ∈ {0, 1} e ∈ E, c = 1, . . . , c̄, (14)

where δ(v) denotes the set of edges incident to v in G and Ek = {e ∈ E : `(e) = k}.
The objective function (1) requires the minimization of the number of rainbow components.

Constraints (2) and (3) are logical constraints linking the binary variables αc with the

binary variables ycv. Note that the maximum number of vertices that can belong to the

same component is l + 1, since l is the number of different colors of the graph. Constraints

(4) ensure that each vertex belongs to exactly one component. Constraints (5) impose that

if a vertex is not in the component c, the edge incident on such vertex cannot belong to

that tree. Constraints (6) impose that a component cannot contain two edges having the

same color, ensuring the rainbow property. Constraints (7) are the subtour elimination

constraints, introduced by Dantzig et al. [19], adapted to our variables. Constraints (8)

impose that each component is a tree. They guarantee solutions with not more than one

4

tree associated to each variable αc. Constraints (9), (10) and (11) help break symmetries.

Constraints (9) mean that there will never be a variable αc+1 equal to one if αc is equal

to zero, for any c. The constraints (10) and (11) are the symmetry breaking constraints

introduced by Fischetti et al. [20] in the context of the Vehicle Routing Problem. Vertex v

can belong to a component of index c if and only if at least one vertex w with a lower index

belongs to the component of index c − 1. For the resolution of the model we also use the

following constraints:

ycv ≤ αc v ∈ V, c = 1, . . . , c̄ (15)∑
e∈δk(v)

xce ≤ ycv v ∈ V, c = 1, . . . , c̄, k ∈ L (16)

c̄∑
c=1

{
xce +

∑
f∈{δk(u)∪δk(v)}

xcf

}
≤ 2 e = (v, u) ∈ E, k ∈ L \ {`(e)} (17)

proposed by Silvestri et al. [24] to solve the Rainbow Cycle Cover Problem, and which are

valid for the RSFP. Constraints (15) state that if a vertex belongs to a component, then the

variable representing that component must be used. The valid inequalities (16) impose that

if vertex v belongs to a tree c, then at most one edge having color k and incident to v can

be selected. Constraints (17) impose that if edge e = (v, u) is selected, then at most one

edge having color k 6= `(e) and belonging to the set {δk(v) ∪ δk(u)} can be selected.

3. The Greedy Algorithm

In this section we propose a greedy algorithm for the Rainbow Spanning Forest Problem.

Moreover, to further improve the results we embed it in a multi-start scheme. As described

below, the greedy algorithm uses three different selection criteria in order to perform at each

iteration the most promising choice. Given a rainbow spanning forest F = (V,EF , LF), we

denote by ÊF the set of feasible edges in E \ EF , that is the set of edges whose endpoints

belong to different components of F and such that an edge and the two components to which

the endpoints belong to, do not have colors in common. Formally, ÊF = {(u, v) ∈ E \ EF :

u ∈ Ti, v ∈ Tj, i 6= j, {`(Ti) ∩ `(Tj)} = ∅, {`(u, v)} ∩ {(`(Ti) ∪ `(Tj))} = ∅, where Ti and Tj

are two generic components of F .

The greedy algorithm starts with the trivial feasible solution F0 = (V,EF0 , LF0), with EF0 =

LF0 = ∅, in which each vertex is an acyclic and rainbow component. At iteration k the

algorithm selects a feasible edge (u, v) ∈ ÊFk
, with u ∈ Ti and v ∈ Tj, and builds the new

5

rainbow spanning forest Fk+1 by adding the edge (u, v) in Fk, that is Ek+1 = Ek ∪ {(u, v)}
and Lk+1 = Lk ∪ {`(u, v)}. It is easy to see that the solution Fk+1 contains a new larger

tree, with respect to Fk, obtained by joining Ti and Tj through (u, v). For this reason, at

each iteration the number of trees in the rainbow spanning forest decreases by one, while the

number of edges increases by one. The set of feasible edges ÊFk+1
is obtained by removing

from ÊFk
all edges that are no longer feasible due to the insertion of (u, v). The algorithm

stops when there are no more feasible edges. Procedure 1 shows the pseudocode of the

greedy algorithm.

Algorithm 1: Greedy Algorithm

Input: graph G = (V,E, L).
Output: a rainbow spanning forest F of G.

1 Set the number of components z equal to n and k = 0

2 Fk trivial starting solution, ÊFk
= E

3 while ÊFk
is not empty do

4 update the weights of feasible edges e ∈ ÊFk

5 select feasible edge (u, v) ∈ ÊFk
with the min weight

6 Fk+1 ← Fk ∪ {(u, v)}
7 update the set of feasible edges ÊFk+1

8 update the number of components z = z − 1
9 k = k + 1

10 return Fk.

A key point of the greedy algorithm is the selection of the feasible edge at each iteration.

To this end, we define the function w : ÊFk
→ R that associates a weight to the feasible

edges in ÊFk
(line 4). The weight w(u, v) represents an estimate of the number of potential

improvements that we lose by adding edge (u, v) at iteration k. For this reason, the algorithm

always selects the edge of lowest weight (line 5). The details regarding the computation of

the weights are given below.

Suppose that the graph depicted in Figure 2 is the rainbow spanning forest Fk built by the

greedy algorithm at iteration k. The dashed edges are the feasible edges connecting the four

rainbow trees T1, T2, T3, T4. Let δk(Ti) be the sets of feasible edges incident to the vertices

belonging to Ti. Moreover, let Nk(Ti) be the set of trees that can be connected to Ti in Fk

through at least one feasible edge. Formally, δk(Ti) = {(u, v) ∈ ÊFk
: u ∈ VTi or v ∈ VTi}

and Nk(Ti) = {Tj ∈ TFk
: ∃ (u, v) ∈ ÊFk

, u ∈ Ti, v ∈ Tj}. For instance, in Figure 2 we have

δk(T1) = {(v1, v5), (v2, v4), (v2, v8), (v3, v8), (v3, v11)} and Nk(T1) = {T2, T3, T4}. The first

6

Figure 2: A feasible rainbow spanning forest composed by components T1, T2, T3, T4. The edges inside a
component are depicted as solid lines while the edges among the components are shown as dashed lines.
These last ones are the feasible edges candidated to be inserted in the incumbent solution. The numbers
associated to the edges represent their colors.

information that we want to compute, for each tree Ti, is the “potential” number of trees in

TFk
that can be joined to Ti through feasible edges. We call this number the joining number

and we denote it by MTi . It is easy to see that |Nk(Ti)| is a trivial upper bound to the value

of MTi . We compute MTi by solving the maximum matching problem on a bipartite graph

Bi in which we define the two sets of vertices V 1
Bi

and V 2
Bi

as follows:

• for each l ∈ `(δk(Ti)) we define vertex l i.e. l ∈ V 1
Bi

;

• for each Tj ∈ Nk(Ti) we define vertex Tj i.e. Tj ∈ V 2
Bi

.

Moreover, for each feasible edge (u, v) ∈ δk(Ti), with v ∈ Tj, a corresponding edge in Bi

between vertices `(u, v) and Tj is introduced. Figure 3(a) depicts the bipartite graph B1

associated to the tree T1 of the Figure 2. Since `(δk(T1)) = {6, 8} and Nk(Ti) = {T2, T3, T4}
then the set of vertices V 1

B1
contains only two vertices, V 1

B1
= {6, 8}, while the second set is

composed of three vertices, V 2
B1

= {T2, T3, T4}. Regarding the edges in Bi, since the edges

7

(a) (b)

Figure 3: Feasible solution Fk+1 obtained by adding edge (v3, v8).

with color 6 in δk(T1) connect T1 to T2 and to T4 then in the bipartite graph we connect

node 6 with the vertices T2 and T4, and so on. The maximum matching of B1 is equal to two

(edges in bold) and then MT1 = 2 that is tighter than |Nk(T1)| = 3. This means that T1 can

be joined with, at most, two trees in TFk
. The edges of the maximum matching “suggest”

which are the feasible edges to select. For instance, edge (8, T4) of the maximum matching

corresponds to the feasible edge (v3, v8) in ÊFk
and by joining the trees T1 and T4 through

(v3, v8), we obtain a larger tree, denoted by T1,4(v3, v8), and the new solution Fk+1 shown in

Figure 3(b). From now on, given a feasible edge (u, v), with u ∈ Ti and v ∈ Tj, we denote

by Ti,j(u, v) the tree obtained by joining Ti and Tj through edge (u, v). Note that in Fk+1

it is possible to join the new tree T1,4(v3, v8) with T2, through (v2, v4), performing, in this

way, the two joinings estimated by MT1 . However, the number of joinings carried out does

not always coincide with MTi because the choice of the feasible edge to select affects the

final result, and when there are more maximum matchings in Bi there are also more choices

available. For instance, Figure 4(a) shows another maximum matching of B1. By joining

T1 and T3 in Fk through the feasible edge (v3, v11), as shown in Figure 4(b), we obtain the

8

tree T1,3(v3, v11) with δk+1(T1,3(v3, v11)) = ∅. In this case we carried out a single joining

compared to the two estimated joinings.

(a) (b)

Figure 4: Feasible solution Fk+1 obtained by adding edge (v3, v11).

The previous example shows that it is necessary to select the feasible edges in an ac-

curate way. For this reason, we propose to first join the trees with lowest joining number

(first criterion). Indeed, there is a high probability that these trees will remain isolated

components if they are not joined as soon as possible because a low value of joining number

means less joining opportunities. For instance, in the solution Fk, depicted in Figure 2,

MT1 = MT2 = MT3 = 2 and MT4 = 1, hence T4 is the tree on which carry out the joining

operation with one of its neighbor, T1 in this case. Since this joining operation can be car-

ried out through edges (v2, v8) or (v3, v8), then we add a second criterion to select the most

promising edge. For each edge (u, v) ∈ δk(T4), the greedy algorithm computes the joining

number of the new tree T1,4(u, v), obtained by joining T1 and T4 through (u, v), and it selects

the edge (u, v) which value MT1,4(u,v) is the maximum one (referred to as second criterion).

As previously shown, by selecting edge (v3, v8) we obtain the new solution reported in Fig-

ure 3 with MT1,4(v3,v8) = 1. Since also MT1,4(v2,v8) = 1 then we provide a third selection

criterion consisting of choosing the edge which color is less frequent in the current solution

9

(referred to as third criterion). In our example, `(v3, v8) = 8 and there are no edges in EFk

with color 8 while the color 6 of edge (v2, v8) belongs to `(EFk
) due to edge (v10, v11). For

this reason, the greedy algorithm selects edge (v3, v8) and, thanks to this choice, it finds the

optimal solution.

Summarizing, to each feasible edge (u, v) of Êk, with u ∈ Ti and v ∈ Tj, we associate a

weight according to the following formula:

w(u, v) = n×min(MTi ,MTj)−MTi,j(u,v) +
|EFk

(`(u, v))|
z

, (18)

where EFk
(c) = {e ∈ EFk

: `(e) = c}. This formula is a linear combination of three terms:

min(MTi ,MTj), MTi,j(u,v) and
|EFk

(`(u,v))|
z

. Obviously, lower is the weight of an edge higher

is its probability to be selected. For this reason, the three terms of the linear combination

are multiplied for appropriate coefficients (n, −1 and 1, respectively) to reflect this idea.

More in details, the term min(MTi ,MTj) is used to measure the joining number of Ti and

Tj. Lower is the joining number lower should be the weight of the edge. The first term

represents our primary selection criterion and then it has the priority with respect to the

other two terms. For this reason, the first term is multiplied by n, in the linear combination.

The second term MTi,j(u,v) is taken into account when the first term value is the same for the

two edges. Since higher is the value of the second term lower should be the weight of the

edge, its value is subtracted in the linear combination. Finally, the last term represents the

average number of the color l(u, v) in Fk and its value is relevant in the formula only when

two edges has the same value for the first and second terms. Accordingly, the weights for

the feasible edges of the solution in Figure 2 are the following:

w(v1, v5) = 10×min(2, 2)− 1 + 0 = 19

w(v2, v4) = 10×min(2, 2)− 1 +
1

4
= 19.25

w(v2, v8) = 10×min(2, 1)− 1 +
1

4
= 9.25

w(v3, v8) = 10×min(2, 1)− 1 + 0 = 9

w(v3, v11) = 10×min(2, 2)− 0 + 0 = 20

w(v6, v10) = 10×min(2, 2)− 0 +
1

4
= 20.25

w(v6, v11) = 10×min(2, 2)− 0 +
1

4
= 20.25

10

3.1. The multi-start scheme

The greedy algorithm starts from the trivial solution F0 and, at each step k, adds a

new edge from the set of feasible edges ÊFk
, until ÊFk

is not empty. The selection of edges

is carried out according to their weights, that are dynamically updated according to the

choices performed in the previous steps. This means that a bad choice carried out in the

first steps can heavily affect the quality of the final solution produced. We face this problem

by embedding the greedy algorithm in a multi-start scheme which, by performing a deeper

exploration of the solution space, finds better solutions. More specifically, the multi-start

algorithm invokes the greedy algorithm several times with different starting feasible solutions

in which a first edge is fixed. This first edge is chosen from a set of edges Ẽ that the multi-

start algorithm builds at the beginning of the computation. The key point is how the set

Ẽ is built because i) the effectiveness of the multi-start algorithm depends on the edges in

this set, and ii) the performance of the multi-start algorithm depends on the cardinality of

Ẽ, since the greedy algorithm is invoked |Ẽ| times. To build Ẽ, the multi-start algorithm

first computes the weight of all edges, according to equation (18), and then, for each vertex

v ∈ V , it inserts in Ẽ the edge of δ(v) with the lowest weight. If this edge already belongs

to Ẽ it is ignored and a new vertex is selected. This construction ensures that the greedy

algorithm will build each solution starting from a different vertex. The selection of the most

promising edge for each vertex rather than the most promising at all, i.e. the edges with

n lowest weights, allows a better exploration of the solution space. Since the cardinality of

Ẽ affects the performance of the multi-start algorithm, we have to control the growth of

this cardinality as the instances size increases. This choice, on the one hand, preserves the

performance of the algorithm even on the larger instances and, on the other hand, reduces

the quality of solutions found on these instances. For this reason, we bound the cardinality

of Ẽ as follows:

|Ẽ| ≤ min

{
10 +

⌊
500√
n

⌋
, n

}
. (19)

With this formula we ensure that the multi-start algorithm invokes the greedy algorithm

at least ten times (being n ≥ 20 in our instances) and no more that n times. Moreover, the

value
⌊

500√
n

⌋
guarantees that |Ẽ| decreases as the size of the instances increases. Finally, the

multi-start algorithm invokes |Ẽ| times the greedy algorithm and returns the best solution

among the |Ẽ| solutions identified.

11

4. Computational results

In this section we present computational results obtained by solving the ILP, the greedy

algorithm and the multi-start method. The greedy algorithm and the multi-start scheme

were coded in Java and computational experiments were performed on a 64-bit GNU/Linux

operating system, 96 GB of RAM and one processor Intel Xeon X5675 running at 3.07 GHz.

The mathematical model ILP was coded in C and solved using IBM ILOG CPLEX 12.5 on

the same machine. We applied the Students t-test on the Tables 1 and 2 obtaining an error

lower then the 1%. This result certify the statistical significance of the results obtained. To

the best of our knowledge, there are no available benchmark instances for the RSFP and

we therefore used randomly generated instances. Some instances considered in the current

study were introduced by Silvestri et al. [24] for the Rainbow Cycle Cover Problem. Here

we create additional instances according to the procedure used in [24], and described next.

Each instance is characterized by the number of vertices n (size), the number of edges m

and the number of colors l. Given the number of vertices n, the number of edges is set to

m = dn(n−1)
2
× d+ ne, with d ∈ {0.1, 0.2, 0.3}, and the number of colors is set to d1

2
log(m)e,

dlog(m)e and d2 log(m)e. Note that the number of colors is always less than n, therefore

the optimal solution cannot be a tree and hence the instances are not polynomially solvable.

The total number of different scenarios is nine for each size. Each scenario is composed by

five different instances having the same number of vertices, edges and colors but the seed,

used to initialize the pseudorandom number generator, is different. The results reported

in each line of the tables are the average values computed over these five instances. The

combination of all these parameters allows us to verify how the effectiveness and performance

of our algorithms are affected by the number of vertices, the density of the graph and the

number of colors. The scenarios are divided into two groups: the small scenarios, where the

value of n ranges from 20 to 50 with a step equal to 10, and the large scenarios, where the

value of n ranges from 100 to 400 with a step equal to 100.

Note that the density of the generated instances is low (up to 0.3) in order to obtain

meaningful results. It is easy to see that for larger density values the value of the optimal

solution almost always coincides with the trivial lower bound LB = d n
l+1
e. To explain this

we need to introduce the definition of rainbow star.

Definition 1. Given an edge-colored tree T = (VT , ET , LT) with |VT | = k+1, T is a rainbow
star if and only if

• each edge has a different color, i.e. |LT | = |ET | = k;

12

• k vertices are leaves, i.e. k vertices have degree equal to one in T , and one vertex has
degree k.

Note that, for any vertex v ∈ V , as the density increases the probability that δ(v)

contains a rainbow star increases. Therefore, for larger density, the probability of obtaining

a trivial optimal solution with d n
l+1
e rainbow stars is larger.

Table 1 reports the results of the mathematical model (ILP), of the Greedy (GA) and

of the multi-start (MS) algorithms, on small scenarios. The first four columns report the

characteristics of each scenario: scenario ID, the number of vertices (n), the number of

edges (m), the number of colors (l), respectively. The columns ILP, GA and MS are divided

into two subcolumns (Value and Seconds) reporting the solution value and the computing

time in seconds, respectively. We have imposed a time limit of 10, 800 seconds. Whenever

α instances of a scenario were not solved to optimality by ILP, within the time limit, we

report (α) close to the solution value, therefore the value reported is an upper bound on the

optimal solution value. In this cases we say that a ILP failure occurs and we refer to the

solutions with the symbol (α) as the best bound solutions. The last column (GAP) reports

the gaps between the solution computed by ILP and the solutions found by GA and by MS,

respectively. We mark in bold the gaps equal to zero to highlights the scenarios where the

algorithms find an optimal solution.

The results of Table 1 show that ILP finds an optimal solution on 29 out of 36 scenarios

and that the hardest scenarios to solve are those with lowest density (d = 0.1). Indeed,

five of the seven ILP failures occur on scenarios with density 0.1 (ID n◦ 20, 21, 28, 29 and

30). The remaining two failures occur on scenarios with density 0.2 (ID n◦ 13 and 32).

Finally, on the scenarios with density 0.3 ILP always finds the optimal solution and the

CPU time is always lower than six minutes. These results highlight the good performances

of our mathematical model, that almost always finds the optimal solution for the instances

with a density greater than or equal to 0.2. The worst results are obtained on the scenarios

with density 0.1 which from now on we denote as critical scenarios. This is probably due to

the low number of optimal solutions available. Indeed, as the density decreases, the number

of equivalent feasible solutions decreases. Therefore there may be a really small number of

optimal solutions, and then it results harder to find one of them.

It is interesting to observe that for the greedy and the multi-start algorithms the critical

scenarios are also the hardest to solve. Indeed, the highest gap values occur on these scenarios

and on the critical scenario n◦ 28, the peak (the maximum gap value) of GA and MS occurs.

This peak is equal to 3.4 for GA and 2.0 for MS.

13

ID n m l ILP GA MS GAP

Value Seconds Value Seconds Value Seconds GA MS

1 20 39 3 6.6 2.94 8.0 0.01 7.0 0.10 1.4 0.4
2 6 4.2 3.74 5.0 0.02 4.8 0.10 0.8 0.6
3 11 2.2 1.10 3.0 0.02 2.8 0.13 0.8 0.6
4 20 58 3 5.6 3.90 6.4 0.02 6.4 0.13 0.8 0.8
5 6 3.2 2.14 4.4 0.03 3.6 0.15 1.2 0.4
6 12 2.0 1.21 2.2 0.04 2.0 0.05 0.2 0.0
7 20 77 4 4.0 2.30 4.8 0.03 4.4 0.11 0.8 0.4
8 7 3.0 1.63 3.2 0.05 3.0 0.07 0.2 0.0
9 13 2.0 1.63 2.0 0.06 2.0 0.06 0.0 0.0

10 30 74 4 8.4 129.42 8.8 0.03 8.8 0.20 0.4 0.4
11 7 5.0 204.63 6.2 0.03 5.4 0.25 1.2 0.4
12 13 3.0 8.02 3.6 0.06 3.4 0.16 0.6 0.4
13 30 117 4 6.8(1) 2199.73 8.4 0.04 7.4 0.33 1.6 0.6
14 7 4.2 16.72 4.8 0.07 4.4 0.27 0.6 0.2
15 14 2.6 51.51 3.2 0.09 3.0 0.49 0.6 0.4
16 30 161 4 6.4 36.88 8.0 0.07 6.4 0.32 1.6 0.0
17 8 4.0 17.27 4.6 0.09 4.0 0.12 0.6 0.0
18 15 2.0 18.84 3.0 0.12 2.2 0.39 1.0 0.2

19 40 118 4 10.2 2283.43 12.6 0.03 12.0 0.29 2.4 1.8
20 7 6.4(2) 4711.31 8.2 0.06 7.4 0.41 1.8 1.0
21 14 3.4(2) 4348.36 5.0 0.08 4.0 0.51 1.6 0.6
22 40 196 4 8.8 2336.74 11.0 0.08 9.8 0.48 2.2 1.0
23 8 5.0 121.37 6.2 0.10 5.2 0.43 1.2 0.2
24 16 3.0 82.75 3.8 0.14 3.2 0.33 0.8 0.2
25 40 274 5 7.0 89.99 7.8 0.11 7.0 0.22 0.8 0.0
26 9 4.0 86.37 5.0 0.14 5.0 1.00 1.0 1.0
27 17 3.0 139.92 3.2 0.18 3.0 0.21 0.2 0.0

28 50 173 4 12.6(4) 8994.51 16.0 0.06 14.6 0.35 3.4 2.0
29 8 9.0(4) 10652.42 10.4 0.08 9.2 0.46 1.4 0.2
30 15 4.8(3) 6536.58 5.4 0.12 5.4 0.54 0.6 0.6
31 50 295 5 9.0 618.57 11.0 0.10 9.8 0.55 2.0 0.8
32 9 5.2(1) 2318.95 6.6 0.14 6.0 0.84 1.4 0.8
33 17 3.0 1009.18 4.4 0.17 4.0 1.11 1.4 1.0
34 50 418 5 9.0 294.84 9.4 0.14 9.0 0.59 0.4 0.0
35 9 5.0 295.96 6.0 0.20 6.0 1.19 1.0 1.0
36 18 3.0 337.71 4.0 0.28 3.2 0.67 1.0 0.2

Table 1: Test results of ILP model, GA and MS algorithms on the small scenarios.

14

Regarding the effectiveness of the two algorithms, as expected the results of MS are much

better than those of GA. MS finds the optimal solution on eight out of 29 scenarios where

the optimal solution is known while GA finds the optimal solution only one time (n◦ 9).

Moreover, the gap value of MS is lower than or equal to one on 34 out of 36 scenarios while

for GA this condition holds only 21 times.

From the gap values it is evident that the density of the graph is the main parameter

affecting the effectiveness of GA and MS. In order to analyze the trend of these two algo-

rithms on the scenarios with the same density but with an increasing number of vertices, we

introduce another measure, the AvgGap. This measure represents the average gap values

computed on the scenarios with the same number of vertices and edges. For instance, for

n = 20 and m = 39, the AvgGap of MS is equal to (0.4 + 0.6 + 0.6)/3 = 0.53.

In Figure 5 the AvgGap of GA (in red) and MS (in blue) are plotted for the small

scenarios with d = 0.1, d = 0.2 and d = 0.3, respectively. Here on the x -axis and y-axis the

number of vertices and the AvgGap are reported, respectively.

The chart in Figure 5 shows that the two algorithms have a similar growth but the

AvgGaps of MS are nearly half of the AvgGaps of GA. Again, the highest values for the

AvgGap are obtained when d = 0.1 (Figure 5(a)). Despite that, the AvgGap of GA is always

lower than two while the AvgGap of MS is always lower than 1.2. On the scenarios with

d = 0.2 (Figure 5(b)) the growth is more regular for both algorithms, even if it is slower

for MS. Indeed, the AvgGap of MS ranges from 0.40 for n = 20 to 0.87 for n = 50 while

the AvgGap of GA ranges from 0.73 for n = 20 to 1.60 for n = 50. It is interesting to

observe that even on these small scenarios the AvgGap between the two algorithms can be

significantly different. For instance, for n = 40 the AvgGap of GA is three times greater

than the AvgGap of MS. Finally, for d = 0.3 (Figure 5(c)) the results of both algorithms

improve, with a maximum AvgGap equal to 1.07 for GA and 0.40 for MS. Even in this case,

the AvgGap of MS is always half of AvgGap of GA and, on the scenarios with n = 30, the

difference grows up to one. By observing the three charts of Figure 5 it is evident that our

algorithms are more effective when the density grows.

Regarding the performance, both the algorithms are very fast with a negligible running

time, rarely greater than one second.

Table 2 shows the results obtained by GA and MS algorithms on the large scenarios.

Since the solutions of the ILP are not available for these scenarios, we compare the solution

values produced by GA and MS and we compute the GAP on these values.

Despite the negligible computational times on the small scenarios, here the performance

15

ID n m l GA MS GAP

Value Seconds Value Seconds

37 100 595 5 26.6 0.18 24.8 0.73 1.8
38 10 12.8 0.25 11.8 1.15 1.0
39 19 8.2 0.33 7.2 1.45 1.0
40 100 1090 6 17.0 0.39 15.6 1.52 1.4
41 11 10.6 0.54 10.2 2.00 0.4
42 21 7.2 0.57 6.2 2.64 1.0
43 100 1585 6 15.8 0.71 15.2 1.27 0.6
44 11 10.0 0.92 9.2 2.11 0.8
45 22 6.0 0.96 5.6 4.50 0.4

46 200 2190 6 46.0 0.77 43.6 3.47 2.4
47 12 20.0 1.09 18.6 5.05 1.4
48 23 13.8 1.39 13.2 7.62 0.6
49 200 4180 7 30.0 2.46 27.0 12.63 3.0
50 13 17.6 2.17 16.6 16.96 1.0
51 25 11.8 2.57 10.4 23.29 1.4
52 200 6170 7 26.2 2.77 26.2 25.26 0.0
53 13 16.0 3.71 15.2 25.50 0.8
54 26 9.4 4.50 9.0 45.37 0.4

55 300 4785 7 58.2 1.72 54.8 12.32 3.4
56 13 27.8 2.23 26.4 19.26 1.4
57 25 19.6 2.97 18.0 28.99 1.6
58 300 9270 7 47.0 4.81 41.8 50.44 5.2
59 14 22.2 7.14 22.0 82.13 0.2
60 27 15.0 8.98 14.2 96.14 0.8
61 300 13755 7 39.4 11.58 39.2 125.62 0.2
62 14 21.4 18.83 21.0 203.72 0.4
63 28 12.4 18.63 11.8 177.91 0.6

64 400 8380 7 86.0 4.37 79.2 43.33 6.8
65 14 33.0 6.51 31.8 69.59 1.2
66 27 25.0 8.78 22.8 97.05 2.2
67 400 16360 7 82.0 16.29 60.6 176.52 21.4
68 14 29.0 25.31 28.4 279.07 0.6
69 28 18.4 27.01 17.0 306.68 1.4
70 400 24340 8 46.6 43.30 45.2 247.19 1.4
71 15 26.4 77.16 26.0 857.59 0.4
72 30 15.2 61.59 14.4 718.85 0.8

Table 2: Test results of GA and MS on the large scenarios.

16

(a) (b)

(c)

Figure 5: The AvgGap of GA and MS algorithms on the larger scenarios.

of the two algorithms are much different. In particular, GA is one order of magnitude faster

than MS, often its running time is lower than one minute and, in the worst case (n◦ 71) it

requires 77 seconds. More computational time is required by MS that in the worst case (n◦

71) spends 857 seconds (n◦ 71). Anyway, most of the scenarios are solved by MS in less than

five minutes. It is clear that the significant performance difference on the large scenarios is

due to the fact that MS invokes several times the GA algorithm. The trend of the running

times for both algorithms shows that the performance are mainly affected by the density of

the scenarios, as the computation time increases with density.

As expected, MS algorithm is slower than GA but it is more effective as shown by values

of GAP column. On all the scenarios, the solutions found by MS are always better than the

17

solutions found by GA. More in details, on 20 out of 36 scenarios, the GAP value is greater

than or equal to one and in six cases this GAP is greater than two. We observe also a GAP

equal to 21.4 on the scenario n◦ 67 where the solution of GA is very poor.

It is interesting to observe that the lowest GAP values occur on the scenarios with d = 0.3

on which the two algorithms require more computational time. Our conjecture is that, since

these scenarios contains more edges, there are more local minimums with a good solution

value. As a consequence, when GA is trapped into a local minimum the value found is good

and the GAP from MS low. Instead, the situation changes on the scenarios with fewer edges

(d = 0.1 and d = 0.2) where the number of good local minimums is lower. In this case, there

are more chances that GA is trapped into a poor local minimum producing a solution value

far from the solution value of MS.

5. Conclusion

In this paper we propose a mathematical formulation and a greedy algorithm for the

Rainbow Spanning Forest Problem. Moreover we embedded the greedy algorithm in a

multi-start schema to improve the quality of the solutions found. The computational results

show that the proposed formulation solves, within the time limit, the 80% of the instances

with at most 50 nodes. We observed that the running time of the model decreases as the

density increases. Indeed, all the scenarios with density equal to 0.3 are solved in less than

340 seconds while on the scenarios with density 0.1 the time limit is reaches more times.

Regarding the MS algorithm, it results very effective, on the small instances, with a gap from

the best known solution that is greater than 1% only two times. The negligible running time

of MS, on these instances, make it particularly suitable to be embedded in exact approaches

where, often, is required to quickly found good solutions. On the large scenarios the MS is

slower than GA but its solutions are much better. This justify the idea to use a multi-start

approach. A possible direction for future works could be to apply a Carousel Schema [10] to

our GA or to replace the MS with more sophisticated metaheuristics like a Tabu Search [5],

[12].

Compliance with Ethical Standards:

Conflict of Interest: The first author declares that he has no conflict of interest. The

second author declares that he has no conflict of interest. The third author declares that he

has no conflict of interest. The fourth author declares that he has no conflict of interest.

Ethical approval: This article does not contain any studies with human participants or

18

animals performed by any of the authors.

References

[1] S. Akbari and A. Alipour. Multicolored trees in complete graphs. Journal of Graph Theory, 54(3):221–

232, 2007.

[2] Eric Andrews, Chira Lumduanhom, Elliot Laforge, and Ping Zhang. On proper-path colorings in

graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 97:189–207, 2016.

[3] R. A. Brualdi and S. Hollingsworth. Multicolored forests in complete bipartite graphs. Discrete Math-

ematics, 240:239–245, 2001.

[4] R.D. Carr, S. Doddi, G. Konjedov, and M. Marathe. On the red-blue set cover problem. In 11th

ACN-SIAM Symposium on Discrete Algorithms, pages 345–353, 2000.

[5] F. Carrabs, C. Cerrone, and R. Cerulli. A tabu search approach for the circle packing problem. In 2014

17th International Conference on Network-Based Information Systems, pages 165–171. IEEE, 2014.

[6] F. Carrabs, C. Cerrone, R. Cerulli, and S. Silvestri. On the complexity of rainbow spanning forest

problem. Technical Report 14922, Department od Mathematics, University of Salerno, March 2016.

[7] F. Carrabs, R. Cerulli, and P. Dell’Olmo. A mathematical programming approach for the maximum

labeled clique problem. Procedia-Social and Behavioral Sciences, 108:69–78, 2014.

[8] F. Carrabs, R. Cerulli, and M. Gentili. The labeled maximum matching problem. Computers &

Operations Research, 36:1859–1871, 2009.

[9] J. M. Carraher, S. G. Hartke, and P. Horn. Edge-disjoint rainbow spanning trees in complete graphs.

European Journal of Combinatorics, 57:71–84, 2016.

[10] C. Cerrone, R. Cerull, and B. Golden. Carousel greedy: a generalized greedy algorithm with applications

in optimization. University of Maryland (submitted for publication).

[11] C. Cerrone, R. Cerulli, and M. Gaudioso. Omega one multi ethnic genetic approach. Optimization

Letters, 10(2):309–324, 2016.

[12] C Cerrone, R Cerulli, and M Gentili. Vehicle-id sensor location for route flow recognition: Models and

algorithms. European Journal of Operational Research, 247(2):618–629, 2015.

[13] R. Cerulli, P. Dell’Olmo, M. Gentili, and A. Raiconi. Heuristic approaches for the minimum labelling

hamiltonian cycle problem. Electronic notes in discrete mathematics, 25:131–138, 2006.

[14] R. Cerulli, A. Fink, M. Gentili, and S. Voß. Metaheuristics comparison for the minimum labelling

spanning tree problem. In The Next Wave in Computing, Optimization, and Decision Technologies,

pages 93–106. Springer, 2005.

[15] R.S. Chang and S.J. Leu. The minimum labeling spanning trees. Information Processing Letters,

63:277–282, 1997.

[16] Y. Chen, N. Cornick, A. O. Hall, R. Shajpal, J. Silberholz, I. Yahav, and B. Golden. Comparison of

heuristics for solving the gmlst problem. In Telecommunications Modeling, Policy, and Technology,

pages 191–217. Springer, 2008.

[17] S. Consoli, K. Darby-Dowman, N. Mladenović, and J. A. Moreno-Pérez. Variable neighbourhood search

for the minimum labelling steiner tree problem. Annals of Operations Research, 172:71–96, 2009.

[18] S. Consoli, J. A. Moreno-Pérez, K. Darby-Dowman, and N. Mladenović. Discrete particle swarm

optimization for the minimum labelling steiner tree problem. Natural Computing, 9:29–46, 2010.

19

[19] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large-scale traveling-salesman problem.

Journal of the Operations Research Society of America, 2:393–410, 1954.

[20] M. Fischetti, J. J. Salazar González, and P. Toth. Experiments with a multi-commodity formulation

for the symmetric capacitated vehicle routing problem. In Proceedings of the 3rd Meeting of the EURO

Working Group on Transportation, pages 169–173, 1995.

[21] N. Jozefowiez, G. Laporte, and F. Semet. A branch-and-cut algorithm for the minimum labeling

hamiltonian cycle problem and two variants. Computers & Operations Research, 38:1534–1542, 2011.

[22] S. Krumke and H. Wirth. On the minimum label spanning tree problem. Information Processing

Letters, 66(2):81–85, 1998.

[23] X. Li and X.Y. Zhang. On the minimum monochromatic or multicolored subgraph partition problems.

Theoretical Computer Science, 385:1–10, 2007.

[24] S. Silvestri, G. Laporte, and R. Cerulli. The rainbow cycle cover problem. Networks, 2016.

[25] K Suzuki. A necessary and sufficient condition for the existence of a heterochromatic spanning tree in

a graph. Graphs and Combinatorics, 22:261–269, 2006.

[26] M. Szachniuk, M. De Cola, G. Felici, and J. B lażewicz. The orderly colored longest path problem–a

survey of applications and new algorithms. RAIRO-Operations Research, 48(1):25–51, 2014.

[27] M. Szachniuk, M. De Cola, G Felici, D De Werra, and J. B lażewicz. Optimal pathway reconstruction

on 3d nmr maps. Discrete Applied Mathematics, 182:134–149, 2015.

[28] Y. Xiong, B. Golden, and E. Wasil. The colorful traveling salesman problem. In Extending the Horizons:

Advances in Computing, Optimization, and Decision Technologies, pages 115–123. Springer, 2007.

[29] Y. Xiongm, B. Golden, E. Wasil, and S. Chen. The label-constrained minimum spanning tree problem.

In Telecommunications Modeling, Policy, and Technology, pages 39–58. Springer, 2008.

20

	Introduction and Problem Description
	RSFP: An Integer Linear Mathematical Formulation
	The Greedy Algorithm
	The multi-start scheme

	Computational results
	Conclusion

