
The Set Orienteering Problem

Claudia Archettia,∗, Francesco Carrabsb, Raffaele Cerullib

aDepartment of Economics and Management, University of Brescia, Brescia, Italy
bDepartment of Mathematics, University of Salerno, Fisciano, Italy

Abstract

In this paper we study the Set Orienteering Problem which is a generalization of

the Orienteering Problem where customers are grouped in clusters and a profit

is associated with each cluster. The profit of a cluster is collected only if at least

one customer from the cluster is visited. A single vehicle is available to collect

the profit and the objective is to find the vehicle route that maximizes the profit

collected and such that the route duration does not exceed a given threshold.

We propose a mathematical formulation of the problem and a matheuristic

algorithm. Computational tests are made on instances derived from benchmark

instances for the Generalized Traveling Salesman Problem with up 1084 vertices.

Results show that the matheuristic produces robust and high-quality solutions

in a short computing time.

Keywords: Routing, orienteering problem, matheuristic.

Introduction

Routing problems with profits received significant attention in recent years,

as witnessed by the large literature surveyed in three recent papers, i.e., [3, 7]

for routing problems with profits where the profit is associated with nodes of a

graph, and [2] for problems where the profit is associated with arcs or edges of

a graph. As witnessed by these three surveys, the literature on ‘node’ routing

∗Corresponding author
Email addresses: claudia.archetti@unibs.it (Claudia Archetti), fcarrabs@unisa.it

(Francesco Carrabs), raffaele@unisa.it (Raffaele Cerulli)

1

problems, i.e., the first of the two classes mentioned above, is much wider than

the one on arc routing problems. In particular, among all node routing problems

with profits studied in the literature, the most widely known is undoubtedly the

Orienteering Problem (OP) where a profit is associated with each customer and

the objective is to find a single vehicle tour maximizing the profit collected

from visited customers and such that the duration of the tour does not exceed a

maximum time limit. The profit of each customer can be collected at most once.

The problem was first introduced in [13] and many variants of the problem have

been studied, as described in [3, 7]. One of the most recent variants is the one

presented in [1] where customers are grouped in clusters, a profit is associated

with each cluster and it is collected only if all customers belonging to the cluster

are visited. The authors called this problem the Clustered Orienteering Problem

(COP). They present a mathematical formulation and two solution algorithms.

They also describe practical applications related to the distribution of mass

products where customers are retailers belonging to different supply chains.

In this paper we are interested in a variant of the OP which shows some

analogies with the one studied in [1]. In particular, we study the problem where

customers are grouped in clusters. A profit is associated with each cluster and is

collected only if at least one customer from the cluster is visited. The objective

is to find the vehicle route that maximizes the collected profit and such that

the corresponding duration does not exceed a given threshold. We call this

problem the Set Orienteering Problem (SOP). The SOP finds application in

mass distribution products, as for the COP, where a different distribution plan

is sought. In particular, consider the case where customers belong to different

supply chains and the carrier stipulates contracts with chains. Then, instead

of having to serve all retailers belonging to the chain with which the contract

has been stipulated, as happens in the COP, in the SOP the carrier may choose

to serve only one customer from the chain (and, implicitly, serving the entire

quantity demanded by the chain). This way, the carrier may be able to offer

a better price for the service. The inner distribution among all retailers in the

chain will be then organized internally. Thus, the SOP presents an alternative to

2

the distribution strategy applied in the COP which may be advantageous both

for the carrier and for the chains. Another application arises when customers

are clustered in areas and the service to each area is made by delivering the

entire quantity required by all customers in the area to a single customer, the

one that is visited. This happens also when private customers group together

to reach large quantity orders, and thus hopefully a lower price. Typically, in

this case, the delivery is made to a single location.

The contribution of this paper can be summarized as follows. We introduce

the SOP, present a formal description and a mathematical formulation. We

then propose a matheuristic algorithm for its solution which is tested on in-

stances derived from benchmark instances for the Generalized Traveling Sales-

man Problem (GTSP) with up to 1084 vertices. In particular, we first show

the performance of the algorithm on small instances by comparing the results

obtained from the matheuristic with optimal solutions. In addition, we test the

performance of the matheuristic on large instances for which the optimal solu-

tion is known. We then present an exhaustive study of the contribution of the

MILP embedded in the matheuristic. The results show that the contribution

of the MILP is more evident on large instances. Moreover, even if the MILP

makes the overall algorithm slower, computing times remain reasonable even on

the largest instances.

The paper is organized as follows. A formal description of the problem

together with a mathematical formulation are presented in Section 1. The

matheuristic algorithm is described in Section 2 while computational results

are presented in Section 3. Finally, conclusions are drawn in Section 4.

1. Problem description and formulation

As the SOP is a generalization of the OP, we first provide a formal description

of the OP.

The OP is defined on a complete directed graph G = (V,A) where V =

{0} ∪ C. Vertex 0 represents the depot from which the vehicle starts and ends

3

its tour. C is the set of customers. A profit pi is associated with each customer

i ∈ C and is collected if and only if customer i is visited by the vehicle. Moreover,

a cost cij is associated with each arc (i, j) ∈ A. The objective is to find the

tour that maximizes the collected profit and such that the associated cost (or

duration) does not exceed a maximum value Tmax.

In this paper we study a variant of the OP which we call the Set Orienteering

Problem (SOP). In the SOP, customers in C are grouped in clusters Cg with

g = 1, ..., l such that
⋃l
g=1 Cg = C and Cg ∩ Ch = ∅, ∀Cg, Ch ∈P where P =

{C1, ..., Cl} is the set of clusters. A profit pg is associated with each cluster and

is collected if and only if at least a customer i ∈ Cg is visited in the tour. The

profit of each cluster can be collected at most once. As in the OP, the objective is

to find the tour that maximizes the collected profit and such that the associated

cost does not exceed Tmax. In the following we assume that costs cij satisfy

the triangle inequality. In this case, as shown in [9], an optimal solution always

exists where one vertex per cluster at most is visited. This property is used in

the solution method presented in Section 2.

In order to present a mathematical formulation for the SOP, we need the

following notation. For any subset of vertices S ⊂ V , we define δ+(S) = {(i, j) ∈

A : i ∈ S, j /∈ S} and δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S}. For the ease of

presentation, in the following we will use the notation δ+(i) and δ−(i) when

S = {i}. The decision variables are the following:

• yi = binary variable equal to 1 if vertex i ∈ V is visited by the vehicle,

and 0 otherwise,

• xij = binary variable equal to 1 if arc (i, j) ∈ A is traversed by the vehicle,

and 0 otherwise,

• zg = binary variable equal to 1 if the profit of cluster Cg is collected and

0 otherwise.

The mathematical programming formulation of the SOP is the following:

4

max
∑
j∈P

pgzg (1)

s.t.
∑

(i,j)∈δ+(i)

xij = yi i ∈ V, (2)

∑
(j,i)∈δ−(i)

xji = yi i ∈ V, (3)

∑
(i,j)∈δ+(S)

xij ≥ yh S ⊆ V \ {0}, h ∈ S, (4)

∑
(i,j)∈A

cijxij ≤ Tmax, (5)

zg ≤
∑
i∈Cg

yi Cg ∈ P, (6)

yi ∈ {0, 1} i ∈ V, (7)

zg ∈ {0, 1} Cg ∈ P, (8)

xij ∈ {0, 1} (i, j) ∈ A. (9)

The objective function (1) maximizes the collected profit. Constraints (2)

and (3) ensure that one arc enters and one arc leaves each visited vertex. Sub-

tours are eliminated through (4). Constraint (5) is the maximum duration

constraint on the route while (6) imposes that the profit of cluster Cg is col-

lected only if at least one customer i ∈ Cg is visited in the tour. Finally, (7)-(9)

are variable definitions.

Note that formulation (1)-(9) has an exponential number of subtour elimi-

nation constraints (4). A formulation with a polynomial number of constraints

is obtained by introducing arc flow variables uij , representing the amount of

flow crossing the edge (i, j), and substituting (4) with the following constraints:

∑
j∈V

uji −
∑
j∈V

uij = yi i ∈ V \{0}, (10)

uij ≤ (n− 1)xij (i, j) ∈ A, (11)

y0 = 1 (12)

uij ≥ 0 (i, j) ∈ A, (13)

5

where n = |V |. We note that this formulation of subtour elimination con-

straints has been proposed in [6] for the Traveling Salesman Problem (TSP) and

its performance has been recently assessed in [11].

2. A matheuristic for the SOP

In this section we describe the heuristic algorithm we have designed for the

solution of the SOP. It is a matheuristic algorithm which is composed by the

following two phases:

1. Phase 1: Construction of an initial solution.

2. Phase 2: Tabu search.

It is a matheuristic algorithm as the tabu search makes use of a MILP

formulation when it struggles in finding a new non-tabu feasible solution. In

the following we refer to the algorithm as MASOP - a MAtheuristic for the SOP.

We now describe in details the two phases. We define the following notation.

Given a tour T , we denote as C(T) ⊆ P the set of clusters visited in T , i.e., the

set of clusters for which at least one vertex is visited in T , while p(T) and c(T)

are the profit and the cost associated with T , respectively. T is a feasible tour

if and only if c(T) ≤ Tmax. Moreover, given a vertex i ∈ V \{0}, let C(i) be the

cluster to which i belongs. On the other hand, given a cluster Cg, let V (Cg) be

the set of all vertices belonging to Cg.

2.1. Phase 1: Construction of an initial solution

MASOP constructs an initial feasible solution through a simple greedy algo-

rithm which inserts clusters in the tour as long as this is feasible. In particular,

it starts with a path T visiting vertex 0 only. Let u be the last vertex vis-

ited in T and let Cf be the cluster in P\C(T) with the highest profit, i.e,

Cf = argmaxCg∈P\C(T){pg}. Then, the procedure attaches at the end of T the

vertex v ∈ Cf such that cuv + cv0 is minimum, if c(T) + cuv + cv0 ≤ Tmax. If no

such vertex exists, the procedure considers the cluster with the second highest

6

profit and iterates. If no vertex can be feasibly inserted in T , the procedure

stops and u is linked with 0. This way, T becomes a tour.

Once a feasible solution is constructed as described above, before starting

Phase 2, MASOP applies the following procedure which is aimed at improving

the cost associated with tour T . The idea is to maintain the same set C(T) of

clusters visited, and thus the same associated profit p(T), while reducing cost

c(T). The procedure consists of two steps.

In the first step, the procedure determines, for each cluster of C(T), which

vertex has to be visited in order to obtain the minimum cost tour provided that

the clusters in C(T) are visited according to the sequence defined in T . This

problem can be solved in polynomial time by solving a shortest path problem

as shown in [8, 12, 4]. Note that the problem can be solved as a shortest path

thanks to the fact that the triangle inequality holds, as shown in [8]. Once the

first step is terminated, we apply the second step which aims at optimizing the

sequence of visiting the vertices included in T . In particular, let V (T) be the set

of vertices visited in T . The second step consists in applying the Lin-Kernighan

algorithm [10] for the solution of the Traveling Saleman Problem to the set

V (T). The procedure iterates between the first and the second step as long as

an improvement is found. The sketch of the procedure is shown in Algorithm

1. We call the procedure Tour Improvement.

Algorithm 1 Tour Improvement

1: Input: Tour T .

2: Output: Tour Tbest.

3: Tbest ← T .

4: T ← Solve Shortest Path(T).

5: T ← Solve Lin-Kernighan (V (T)).

6: if (c(Tbest) > c(T))

7: Tbest ← T . Return to 4.

8: else

9: STOP.

10: Return Tbest.

7

2.2. Phase 2: Tabu search

Phase 2 aims at improving the initial solution constructed in Phase 1 through

a tabu search which is composed by the following procedures:

• ExploreNeighborhood(T, TL): this procedure explores the neighborhood

of the solution represented by T on the basis of the tabu list TL and is

explained in Section 2.2.1.

• MIPMove(T): this function explores a different neighborhood which is

based on the solution of a MILP. No tabu list is considered. It is called

when function ExploreNeighborhood(T, TL) does not find any feasible

non-tabu solution. MIPMove(T) is described in Section 2.2.2.

• Shake(T): this is a diversification procedure which destroys the current

solution T by removing a number of clusters visited in T at random. It

is described in Section 2.2.3. It uses two operators: SoftShake(T) and

HardShake(T).

A sketch of the tabu search algorithm is provided in Algorithm 2.

The tabu search is started with the initial feasible solution provided by

Phase 1 (line 1). The main loop of the algorithm is in lines 5–44. The algorithm

continues until a maximum number of iterations without improvement is reached

(line 5). The counter of iterations without improvement is set to 0 any time a

new best solution is found (line 21 and 31) and is decreased by 1 any time the

new solution improves the current one (line 11).

The main loop works as follows. First, the ExploreNeighborhood(T, TL)

procedure is called (line 8). If it succeeds in finding a non-tabu feasible solu-

tion, then the move is implemented (line 13) and the tabu list is updated (line

14). The neighborhood is entirely explored and the best move is implemented.

In addition, every α iterations the Tour Improvement procedure (Algorithm 1)

is applied to the current tour T (line 17). If ExploreNeighborhood(T, TL)

fails in finding a new non-tabu feasible solution, then MIPMove(T) is in-

voked (line 25) only if MIPInvocable = true. MIPInvocable is a binary

8

Algorithm 2 Tabu Search

1: Input: Tour T . \\ Provided by Phase 1

2: Output: Tour Tbest.

3: Tbest ← T .

4: numIterations← 0; MIPInvocable← true.

5: while numIterations ≤ maxIterations do

6: numIterations+ +.

7: ShakeInvocable← true.

8: T ′ ← ExploreNeighborhood(T, TL).

9: if T ′ 6= null then

10: if p(T ′) > p(T) then

11: numIterations−−.

12: end if

13: T ← T ′.

14: Update TL.

15: MIPInvocable← true.

16: if numIterations%α = 0 then

17: T ← Tour Improvement (T).

18: end if

19: if p(T) > p(Tbest) then

20: Tbest ← Tour Improvement (T).

21: numIterations← 0.

22: end if

23: else

24: if (MIPInvocable = true) then

25: T ′ ←MIPMove(T).

26: if p(T ′) > p(T) then

27: T ← T ′.

28: ShakeInvocable← false; MIPInvocable← false.

29: if p(T ′) > p(Tbest) then

30: Tbest ← Tour Improvement (T ′).

31: numIterations← 0.

32: end if

33: end if

34: end if

35: if (ShakeInvocable = true) then

36: MIPInvocable← true.

37: if p(T) ≥ p(Tbest)− β ∗ p(Tbest) then

38: T ← SoftShake(T).

39: else

40: T ← HardShake(T).

41: end if

42: end if

43: end if

44: end while

45: Return Tbest.

9

variable that checks whether the MIPMove(T) procedure has already been

applied to the current tour T (in this case MIPInvocable = false) or not

(MIPInvocable = true). A similar role has variable ShakeInvocable for the

Shake(T) function. If MIPMove(T) improves the current solution, then both

MIPInvocable and ShakeInvocable are set to false as the idea is to first direct

the search to the improvement of the new solution just found (line 28). Finally,

there is the shaking phase which is invoked only if ShakeInvocable = true,

i.e., when ExploreNeighborhood(T, TL) fails in finding a new non-tabu solu-

tion and MIPMove(T) does not improve the current solution. Then, if the

profit of the current tour T is not lower than β times the profit of the best tour,

SoftShake(T) is applied. Otherwise, the algorithm applies HardShake(T)

(line 37).

We now explain the three main procedures ExploreNeighborhood(T, TL),

MIPMove(T) and Shake(T) in detail.

2.2.1. Procedure ExploreNeighborhood(T, TL)

Given the current solution represented by tour T , the neighborhood of T ,

which we call N(T), is defined by the following moves:

• Insert. For all clusters Cg ∈ P\C(T), the operator evaluates the insertion

of Cg in T . The insertion works as follows. Let < v1, . . . , vk > be the

sequence of vertices visited in T , where v1 = vk = 0. Starting from v1 the

operator determines the vertex i ∈ Cg for which cv1i + civ2 is minimum.

The insertion is evaluated for all insertion points, i.e., for all vj with

j = 1, ...k − 1 and the best one is retained only if it leads to a new cost

not greater than Tmax.

• Swap. For each pair of clusters Cg ∈ P \ C(T) and Ch ∈ C(T), the

operator evaluates the exchange of them, i.e., inserting Cg in T and re-

moving Ch. The procedure is done by first evaluating the removal of Ch

and then evaluating the insertion of Cg as done by the operator Insert.

The removal of Ch is done by simply joining the predecessor of the vertex

10

in Ch visited in T with its successor.

An iteration of the tabu search consists in evaluating all the neighbor solu-

tions in N(T). Infeasible solutions are discarded and the best non-tabu solution

is chosen as the new solution, thus becoming the current solution at the next it-

eration. Solutions are evaluated through a hierarchical objective function where

the first objective consists of the profit associated with the solution and the sec-

ond is the associated cost. Thus, the best solution in terms of total profit is

chosen. In case of ties, the solution with the lowest cost is chosen.

The tabu list is defined as follows. When a cluster is removed (inserted)

from the current solution T , then it is tabu to reinsert (remove) it for a number

of iterations equal to

rand(dlλe) (14)

where rand(dlλe) is a function that returns a random integer number in

(0, dlλe], l = |P| and λ is a positive parameter. Moreover, each time a new

best solution is found, procedure Tour Improvement is called to reduce the cost

c(T). Tour Improvement is also called every α iterations of the tabu search and

applied on the current solution, independently of the fact that this is a new best

solution or not.

2.2.2. Procedure MIPMove(T)

MIPMove(T) is called if ExploreNeighborhood(T, TL) fails in finding a

new feasible non-tabu solution. The idea is to apply a move with a broader range

of possible changes to the current solution T and, thus, a higher probability of

finding a new feasible solution. No tabu list is considered. It works as follows.

First, a set of clusters visited in T is removed from T . The number δ of

removed clusters is chosen randomly in [5%|T |; 15%|T |]. This interval gives the

possibility of exploring a larger neighborhood than ExploreNeighborhood(T, TL)

without destroying the current solution T . In order to choose the clusters to be

removed, clusters in T are ordered on the basis of a non-decreasing value of the

ratio

11

pg
rsg

where rsg is the removal saving obtained by removing the vertex v ∈ Cg ∩T

from T (i.e., joining its predecessor with its successor). If rsg = 0 then we fix

it to 1. This last situation occurs when v ∈ Cg is on the segment connecting

its predecessor and its successor in T . The subset composed by the first δ ∗ 1.5

clusters of the ordered list is considered and then δ clusters are chosen randomly

from this subset. This way, a tour T ′ on the remaining clusters is found. By

multiplying the parameter δ by 1.5, we avoid to always select the first δ clusters

from the sorted list and we introduce randomness in this selection.

Then, a MILP is solved to insert non-visited clusters in T ′. Let us define

D = P\C(T ′) as the set of clusters not visited in T ′ and Γ be the set of all

subsets of D composed by one or two clusters. Moreover, let < v1, . . . , vk > be

the sequence of vertices visited in T ′, with v1 = vk = 0. For each set γ ∈ Γ, we

compute the cost of inserting γ between vi and vi+1, i = 1, ..., k − 1, which we

denote ∆γi. Cost ∆γi is computed as follows. In case γ is formed by a single

cluster Cg, then ∆γi corresponds to the length of the shortest path visiting,

in sequence, vi - a vertex in Cg - vi+1. In case γ is formed by two clusters

Cg and Ch, then ∆γi corresponds to the minimum between the length of the

shortest paths vi - a vertex in Cg - a vertex in Ch - vi+1 and vi - a vertex in

Ch - a vertex in Cg - vi+1. Note that we do not consider subsets of clusters

of cardinality greater than 2 as this would be computationally too expensive.

Finally, let aγg = 1 if set γ ∈ Γ contains cluster Cg ∈ D, 0 otherwise. The

following MILP is then solved:

12

max
∑
γ∈Γ

k−1∑
i=1

p(γ)wγi (15)

s.t.
∑
γ∈Γ

k−1∑
i=1

aγgwγi ≤ 1 Cg ∈ D, (16)

∑
γ∈Γ

wγi ≤ 1 i = 1, ..., k − 1, (17)

c(T ′) +
∑
γ∈Γ

k−1∑
i=1

∆γiwγi ≤ Tmax, (18)

wγi ∈ {0, 1} γ ∈ Γ, k = 1, ..., k − 1 (19)

where wγi is a binary variable which takes value 1 if set γ is inserted after

vertex vi, 0 otherwise. The objective function (15) aims at maximizing the

profit of the clusters inserted. Constraints (16) state that each cluster can be

inserted at most once while (17) establish that at most one element from Γ can

be inserted between two consecutive vertices vi and vi+1. Finally, (18) is the

maximum duration constraint.

The solution of (15)–(19) provides a new tour T ′′. If p(T ′′) > p(T), then the

procedure is iterated. A sketch of MIPMove(T) is provided in Algorithm 3.

Algorithm 3 MIPMove(T)

1: Input: Tour T .

2: Output: Tour T ′′.

3: T ′ ← remove δ clusters from T .

4: T ′′ ← solve (15)–(19) on T ′.

5: if p(T ′′) > p(T) then

6: T ← Tour Improvement (T ′′).

7: Return to line 3.

8: end if

9: Return T .

13

2.2.3. Procedure Shake(T)

Shake(T) aims at destroying the current solution and directing the search

to a different part of the solution space. It removes at random a certain

number of clusters from T . The only difference between SoftShake(T) and

HardShake(T) is the number of clusters removed. In particular, in SoftShake(T)

this number is chosen randomly in [5%|T |; 15%|T |] while in HardShake(T) it

is in [30%|T |; 40%|T |].

3. Computational tests

In this section we present the computational results of the tests we made

in order to evaluate the performance of MASOP. The algorithm was coded in

C++ on an OSX platform (Imac late 2012), running on an Intel Core i7 2.8

GHz processor with 16 GB of RAM. The mathematical formulations were solved

using the ILOG Concert Technology library and CPLEX 12.6.

In the following section we describe how we generated the instances for the

SOP while computational results are illustrated in Section 3.2.

3.1. Test instances

As the SOP has not been studied previously in the literature, no benchmark

instances exist. Thus, we generated them by adapting instances for the Gener-

alized Traveling Salesman Problem (GTSP) proposed in [5]. The GTSP is the

problem where customers are divided in cluster and the objective is to find the

shortest cycle visiting at least one customer per cycle. In particular, among all

instances proposed in [5], we select the instances for which the distance is defined

as the Euclidean distance between customers’ coordinates. These instances have

a number of vertices ranging from 52 to 1084 and a number of clusters equal

to ∼ 20% of the number of vertices. They are 51 in total. Concerning the

number of customers, we classify the instances in two groups: small instances

with up to 198 customers and large instances with at least 200 customers. We

adapted these instances to the SOP as follows. We maintain the data related to

14

customers locations. As no depot is defined in the GTSP, we defined the depot

as follows. We took the first node in the node list and set it to be the depot.

Thus, we removed it from the cluster it was inserted into in the GTSP instance

and we inserted it in cluster 0 which contains the depot only. Then, we needed

to generate the profits pg for Cg ∈ P and Tmax. We generated them as follows.

• pg: we used two rules. The first rule sets the profit of each cluster Cg

equal to |Cg|. The second rule sets the profit of a node j equal to 1 +

(7141j+73)mod(100) in order to obtain pseudo-random profits. The profit

of a cluster in then obtained by summing up the profit of all the nodes

belonging to it. The same rules are used in [1] for the clustered OP. In

the following we call g1 the first rule and g2 the second rule.

• Tmax: we set it to ωGTSP ∗ where GTSP ∗ is the cost of the best known

solution value of the GTSP (taken from [5]) and ω has been set to 0.4,

0.6, 0.8.

Thus, in total we had 306 instances which form the Set 1 instances. In

addition, we generated a second set of instances, which we called Set 2, starting

from the same instances and following the same procedure described above.

However, we changed the clusters defined in the GTSP instances as follows.

We maintain the same number of clusters defined in the GTSP instances and

assigned the customers at random to clusters. The value of GTSP ∗ is not

available for these new instances so we kept the one used for instances of Set 1.

3.2. Computational results

We performed preliminary tests, by considering all the instances of Set 1, in

order to fine-tune the parameters used in MASOP. The resulting values are the

following:

• MaxIterations = 500: it corresponds to the maximum number of itera-

tions without improvement. It determines the stopping condition of the

tabu search.

15

• λ = 0.1: it determines the tabu length.

• α = 5: it is related to the frequency of applying the Tour Improvement

procedure.

• β = 8%: it establishes whether SoftShake(T) or HardShake(T) is ap-

plied.

We now present the results of our tests. In the following, all computing

times are expressed in seconds. We made two kind of experiments. The first

one is aimed at verifying the efficacy of MASOP by comparing the value of

the solutions it provides with the optimal solutions obtained i) by solving the

mathematical formulation for the SOP presented in Section 1 and ii) by con-

sidering the special case when ω = 1 for which the value of the optimal solution

corresponds to the sum of the profit of all clusters. Regarding the mathematical

formulation, we used inequalities (10)–(13) to model subtour elimination con-

straints. The formulation was solved through CPLEX 12.6. The maximum CPU

time was set to 9 hours. Only small size instances were tested as no optimal

solutions is obtained for larger ones.

Results are shown in Tables 1 and 2. In Table 1, the first block of rows is

related to instances of Set 1 while the second block is related to instances of Set

2. The table is organized as follows. The first four columns report data on the

instances: the name of the instance, the total number of vertices (n), the value

of ω and the kind of profit. The following two columns refer to the computation

of the optimal solution: value of the optimal solution and the computational

time taken by CPLEX to compute it. Finally, the last three columns are related

to MASOP solutions: solution value, computational time and percentage gap

with respect to the optimal solution. From Table 1 it is possible to notice that

MASOP always finds the optimal solution of Set 1 instances while it fails to

find the optimal solution on three instances of Set 2 with a maximum gap of

8.11%. The computational time spent by MASOP to solve these instances is

always lower than 15 seconds.

16

MIP MASOP

Instance n ω pg Opt Time Sol Time Gap

S
et

1
11berlin52 52 0.4 g1 37 47.07 37 1.75 0.00%

11berlin52 52 0.4 g2 1829 65.96 1829 1.70 0.00%

11berlin52 52 0.6 g1 43 777.88 43 2.40 0.00%

11berlin52 52 0.6 g2 2190 1532.91 2190 2.64 0.00%

11berlin52 52 0.8 g1 47 2648.04 47 7.17 0.00%

11berlin52 52 0.8 g2 2384 3833.50 2384 6.61 0.00%

11eil51 51 0.4 g1 24 39.72 24 1.85 0.00%

11eil51 51 0.4 g2 1279 40.13 1279 1.97 0.00%

11eil51 51 0.6 g1 39 34.64 39 5.13 0.00%

11eil51 51 0.6 g2 1911 204.65 1911 4.74 0.00%

11eil51 51 0.8 g1 43 1586.67 43 2.30 0.00%

11eil51 51 0.8 g2 2114 1520.67 2114 1.93 0.00%

14st70 70 0.4 g1 33 9666.29 33 4.43 0.00%

14st70 70 0.4 g2 1672 4396.77 1672 4.35 0.00%

14st70 70 0.8 g1 65 18227.23 65 8.80 0.00%

14st70 70 0.8 g2 3355 30851.18 3355 7.89 0.00%

16eil76 76 0.4 g1 40 4987.09 40 3.88 0.00%

16eil76 76 0.4 g2 2223 4939.08 2223 4.73 0.00%

16eil76 76 0.6 g1 59 29565.85 59 2.40 0.00%

16eil76 76 0.6 g2 3119 21127.41 3119 6.28 0.00%

S
et

2

11berlin52 RND 52 0.4 g1 50 43.20 50 6.33 0.00%

11berlin52 RND 52 0.4 g2 2584 60.84 2584 6.11 0.00%

11berlin52 RND 52 0.6 g1 51 1.52 51 6.73 0.00%

11berlin52 RND 52 0.6 g2 2608 1.14 2608 6.63 0.00%

11eil51 RND 51 0.4 g1 37 9.12 34 0.82 8.11%

11eil51 RND 51 0.4 g2 1929 7.44 1929 1.30 0.00%

11eil51 RND 51 0.6 g1 50 6.28 50 5.27 0.00%

11eil51 RND 51 0.6 g2 2575 54.73 2575 5.25 0.00%

14st70 RND 70 0.4 g1 56 5316.83 56 5.60 0.00%

16eil76 RND 76 0.4 g1 51 2498.79 51 4.00 0.00%

16eil76 RND 76 0.6 g1 74 993.13 69 0.86 6.76%

16eil76 RND 76 0.6 g2 3728 1737.65 3713 5.76 0.40%

16pr76 RND 76 0.4 g1 70 6536.81 70 3.09 0.00%

16pr76 RND 76 0.4 g2 3550 5806.05 3550 7.39 0.00%

16pr76 RND 76 0.6 g1 74 1370.58 74 12.57 0.00%

20kroE100 RND 100 0.4 g2 4614 7865.33 4614 8.83 0.00%

20rat99 RND 99 0.4 g1 73 3103.25 73 2.34 0.00%

20rat99 RND 99 0.4 g2 3624 4408.47 3624 2.15 0.00%

21lin105 RND 105 0.6 g1 104 2085.34 104 11.11 0.00%

21lin105 RND 105 0.6 g2 5228 2034.79 5228 11.85 0.00%

22pr107 RND 107 0.6 g1 106 1021.05 106 12.53 0.00%

22pr107 RND 107 0.6 g2 5363 2145.44 5363 11.89 0.00%

Table 1: Comparison with optimal solutions on small instances with ω < 1.

17

To further investigate the effectiveness of MASOP on large instances too,

we carried out computational tests on Set 1 instances by using ω = 1, i.e. Tmax

is equal to the cost of the best known GTSP solution. This means that there

is at least a tour that can visit all the clusters without violating the threshold

Tmax and then the optimal profit coincides with the sum of the profits of all the

clusters. In other words, we apply MASOP to solve the GTSP. Obviously we

do not expect to obtain results equal to the specific metaheuristics created “ad

hoc” for this problem but the gap between the optimal solution values and the

ones found by MASOP allow us to have an idea about the effectiveness of our

algorithm even on large instances.

Results are shown in Table 2 where the first block of rows is related to the

small instances while the second block is related to the large instances. The first

two columns report the name of the instance and the total number of vertices.

The next 8 columns are divided in two blocks, related to the profit rules g1

and g2, reporting: the optimal solution value (Opt), the MASOP solution value

(Sol), MASOP computational time (Time) and percentage gap with respect to

the optimal solution (Gap). On small instances with profit g1, the percentage

gap is lower than 3% on 19 out of 27 instances while the peak is equal to 5.1%

and occurs on the instance 20rat99. Anyway, this is the only case for which the

gap is higher than 5% while the average gap is equal to 2.15%. Surprisingly, the

results are much better on the large instances. Indeed, the gap is always lower

than 3% and the peak is equal to 2.23% (45tsp225). It is worth noting that, in

these instances, the gap is lower than 1% on 17 out of 24 times and that the

average gap is 0.81%. In our opinion, this situation occurs because on the large

instances it is more difficult to find an optimal solution for the Generalized TSP

and then the best known solution, provided in literature for these instances,

is not the optimal one. For this reason, the value of Tmax is less restrictive

on the large instances with respect to the small instances. As a consequence,

the operators of MASOP are more effective thanks to the less binding duration

constraint imposed during the construction or the modification of the tour.

We observed a similar behaviour on the instances with profit type g2. In partic-

18

g1 g2

MASOP MASOP

Instance n Opt Sol Time Gap Opt Sol Time Gap

S
m
al
l

11berlin52 52 51 50 8.54 1.96% 2608 2580 8.54 1.07%

11eil51 51 50 48 7.03 4.00% 2575 2426 6.93 5.79%

14st70 70 69 68 8.02 1.45% 3513 3488 8.25 0.71%

16eil76 76 75 74 8.17 1.33% 3800 3780 8.23 0.53%

16pr76 76 75 74 8.57 1.33% 3800 3765 10.58 0.92%

20kroA100 100 99 96 10.53 3.03% 5008 4868 11.48 2.80%

20kroB100 100 99 98 13.40 1.01% 5008 4916 10.73 1.84%

20kroC100 100 99 97 10.80 2.02% 5008 4882 11.23 2.52%

20kroD100 100 99 96 10.30 3.03% 5008 4838 8.86 3.39%

20kroE100 100 99 96 9.14 3.03% 5008 4887 9.95 2.42%

20rat99 99 98 93 7.57 5.10% 5007 4721 8.09 5.71%

20rd100 100 99 97 10.38 2.02% 5008 4929 9.60 1.58%

21eil101 101 100 97 8.81 3.00% 5050 4953 20.10 1.92%

21lin105 105 104 102 8.05 1.92% 5228 5157 8.38 1.36%

22pr107 107 106 101 8.62 4.72% 5363 5109 8.28 4.74%

25pr124 124 123 121 11.30 1.63% 6232 6173 11.92 0.95%

26bier127 127 126 125 15.97 0.79% 6333 6314 16.25 0.30%

26ch130 130 129 127 10.21 1.55% 6503 6412 9.73 1.40%

28pr136 136 135 134 10.24 0.74% 6850 6841 12.24 0.13%

29pr144 144 143 141 17.35 1.40% 7242 7195 22.01 0.65%

30ch150 150 149 144 9.59 3.36% 7533 7315 12.32 2.89%

30kroA150 150 149 145 11.29 2.68% 7533 7361 13.76 2.28%

30kroB150 150 149 148 15.25 0.67% 7533 7445 15.14 1.17%

31pr152 152 151 147 18.22 2.65% 7658 7422 17.77 3.08%

32u159 159 158 157 15.51 0.63% 8037 7991 22.87 0.57%

39rat195 195 194 189 13.04 2.58% 9863 9558 11.02 3.09%

40d198 198 197 196 36.76 0.51% 9997 9934 25.74 0.63%

AVG 11.95 2.15% 12.59 2.02%

L
ar
ge

40kroa200 200 199 198 22.75 0.50% 10058 10010 24.54 0.48%

40krob200 200 199 198 19.86 0.50% 10058 9990 28.58 0.68%

45ts225 225 224 221 34.67 1.34% 11308 11187 26.18 1.07%

45tsp225 225 224 219 16.70 2.23% 11308 11103 16.44 1.81%

46pr226 226 225 224 26.94 0.44% 11375 11368 26.44 0.06%

53gil262 262 261 258 27.20 1.15% 13193 13050 25.92 1.08%

53pr264 264 263 262 34.02 0.38% 13302 13277 36.94 0.19%

56a280 280 279 273 33.52 2.15% 14178 13971 37.03 1.46%

60pr299 299 298 296 31.34 0.67% 15107 15005 36.75 0.68%

64lin318 318 317 315 43.42 0.63% 16037 16013 77.26 0.15%

80rd400 400 399 397 76.68 0.50% 20158 20055 48.06 0.51%

84fl417 417 416 415 103.55 0.24% 21048 21030 114.65 0.09%

88pr439 439 438 437 157.96 0.23% 22177 22110 132.76 0.30%

89pcb442 442 441 440 129.54 0.23% 22323 22300 94.98 0.10%

99d493 493 492 490 120.84 0.41% 24862 24827 153.07 0.14%

115rat575 575 574 562 91.23 2.09% 29033 28497 65.91 1.85%

115u574 574 573 571 204.52 0.35% 28957 28888 212.74 0.24%

131p654 654 653 652 356.02 0.15% 32997 32991 360.06 0.02%

132d657 657 656 649 126.14 1.07% 33188 32974 155.92 0.64%

145u724 724 723 716 99.60 0.97% 36532 36288 116.69 0.67%

157rat783 783 782 767 279.23 1.92% 39517 38953 145.54 1.43%

201pr1002 1002 1001 994 304.91 0.70% 50583 50453 992.74 0.26%

212u1060 1060 1059 1057 873.47 0.19% 53548 53450 798.51 0.18%

217vm1084 1084 1083 1078 489.48 0.46% 54712 54642 655.52 0.13%

AVG 154.32 0.81% 182.63 0.59%

Table 2: Comparison with optimal solutions on small and large instances with ω = 1.

19

ular, on the small instances, the percentage gap is lower than 3% on 21 out of

27 instances while the gap is higher than 5% only in two cases with a peak equal

to 5.79% on instance 11eil51. Again, better results are obtained by MASOP on

the large instances where the gap is always lower than 2% and in 18 out of 24

cases it is lower than 1%. The peak is equal to 1.85% and occurs on instance

115rat575 and the average gap is equal to 0.59%.

Regarding the computational time, MASOP solves the small instances in less

than 37 seconds with an average time equal to around 12 seconds for both

profit rules g1 and g2. On large instances, the computational time significantly

increases with an average time equal to 154 seconds for g1 and 182 seconds for

g2. Moreover, we observed a peak equal to 837 and 992 seconds for g1 and g2,

respectively.

According to the results reported in Table 1 and Table 2, we can conclude that

MASOP provides robust and reliable results related to high quality solutions.

Finally, we did not carry out the computational tests with ω = 1 for the Set 2

because MASOP found solutions where all the clusters are visited in 100 out of

102 instances with ω = 0.8.

Next we move to larger instances, with ω < 1, for which no optimal solution

is available. The aim of this second set of experiments is to show the effective-

ness of the different procedures embedded in MASOP. In particular, we aim at

showing the effectiveness of the tabu search in improving the initial solution

and, more specifically, the effectiveness of Procedure MIPMove(T). In order

to do that, we run two versions of MASOP: the complete version as described

in Section 2 and a version where Procedure MIPMove(T) is removed. We call

this second version HSOP for Heuristic for the SOP. In fact, this algorithm is

no more a matheuristic algorithm and is a standard heuristic.

Results are shown in Table 3. The table is divided in two blocks of rows

related to instances of Set 1 and 2. We report average results on the instances

clustered according to their number of customers, the value of ω and the rule

used to generate profits. We report average results over instances belonging

to the same cluster. The first three columns of the table report: the class of

20

HSOP MASOP

Size pg ω TS TB TB vs TS #best profit Gap% #best profit Gap%

S
e
t

1

S
m

a
ll

g1

0.4 35.78 53.33 32.91% 27/27 53.33 0.00% 27/27 53.33 0.00%

0.6 45.21 80.70 43.98% 25/27 80.62 0.10% 27/27 80.70 0.00%

0.8 53.96 99.55 45.80% 26/27 99.55 0.00% 26/27 99.51 0.04%

avg 40.89% 26/27 0.03% 26.6/27 0.01%

g2

0.4 2011.14 2681.66 25.00% 27/27 2681.66 0.00% 26/27 2681.22 0.02%

0.6 2395.74 4059.70 40.99% 27/27 4059.70 0.00% 27/27 4059.70 0.00%

0.8 2911.96 5037.37 42.19% 26/27 5037.37 0.00% 26/27 5034.03 0.07%

avg 36.06% 26.6/27 0.00% 26.3/27 0.03%

avg 38.48% 26.3/27 0.02% 26.5/27 0.02%

L
a
rg

e

g1

0.4 81.58 245.83 66.81% 19/24 245.83 0.00% 21/24 244.66 0.48%

0.6 111.33 361.62 69.21% 13/24 361.33 0.08% 20/24 361.62 0.00%

0.8 126.54 447.66 71.73% 16/24 446.25 0.31% 19/24 447.66 0.00%

avg 69.25% 16/24 0.13% 20/24 0.16%

g2

0.4 4046.12 12482.95 67.59% 15/24 12469.00 0.11% 21/24 12482.95 0.00%

0.6 5365.70 18433.33 70.89% 12/24 18394.29 0.21% 20/24 18433.33 0.00%

0.8 6744.45 22797.41 70.42% 14/24 22797.41 0.00% 17/24 22768.25 0.13%

avg 69.63% 13.6/24 0.11% 19.3/24 0.04%

avg 69.44% 14.8/24 0.12% 19.6/24 0.10%

avg 53.96% 20.5/24 0.07% 23/24 0.06%

S
e
t

2

S
m

a
ll

g1

0.4 56.35 95.59 41.05% 26/27 95.59 0.00% 25/27 95.59 0.00%

0.6 69.46 112.48 38.25% 24/27 112.48 0.00% 25/27 112.18 0.27%

0.8 80.64 115.70 30.30% 27/27 115.70 0.00% 27/27 115.70 0.00%

avg 36.53% 25.6/27 0.00% 25.6/27 0.09%

g2

0.4 2923.74 4825.74 39.41% 23/27 4811.18 0.30% 26/27 4825.74 0.00%

0.6 3625.48 5700.03 36.40% 24/27 5700.03 0.00% 25/27 5699.51 0.01%

0.8 4285.51 5861.51 26.89% 27/27 5861.51 0.00% 27/27 5861.51 0.00%

avg 34.23% 24.6/27 0.10% 26/27 0.00%

avg 35.38% 25.1/27 0.05% 25.8/27 0.05%

L
a
rg

e

g1

0.4 160.91 415.00 61.23% 14/24 415.00 0.00% 20/24 414.70 0.07%

0.6 203.33 481.12 57.74% 19/24 480.70 0.09% 23/24 481.12 0.00%

0.8 236.58 490.79 51.80% 24/24 490.79 0.00% 24/24 490.79 0.00%

avg 56.92% 19/24 0.03% 22.3/24 0.02%

g2

0.4 8466.70 21165.20 60.00% 12/24 21077.83 0.41% 20/24 21165.20 0.00%

0.6 10727.95 24327.12 55.90% 17/24 24301.91 0.10% 19/24 24327.12 0.00%

0.8 12603.08 24814.95 49.21% 24/24 24814.95 0.00% 24/24 24814.95 0.00%

avg 55.04% 17.6/24 0.17% 21/24 0.00%

avg 55.98% 18.3/24 0.10% 21.6/24 0.01%

avg 45.68% 21.7/24 0.08% 23.7/24 0.03%

Table 3: Solution values for MASOP and HSOP

21

instances according to the number of customers, the kind of profits and the

value of ω. Next, we report the average value of the initial solution, the average

value of the best solution found by either MASOP or HSOP and the percentage

improvement of the best solution over the initial solution. The average im-

provement is calculated as zbest−zinit

zbest
where zbest is the value of the best known

solution and zinit is the value of the initial solution. Then, two blocks of three

columns each follow related to MASOP and HSOP. They report, respectively:

the number of times the corresponding algorithm found the best solution over

the total number of instances in the class, the average solution value and the

average gap with respect to the best known solution. The gap with respect to

the best known solution is calculated as zbest−zH
zbest

where zH is the value of the

solution provided by the algorithm considered.

From Table 3 we can see that, focusing on instances of Set 1, the effect of

MIPMove(T) is more evident on large instances than on small ones. In fact,

while MASOP finds the best known value on 118 instances over 144, HSOP

finds it on 89 instances only. The average gap has only a slight increase from

MASOP to HSOP (from 0.10% to 0.12%) due to the fact that, on instances with

profits g1, HSOP behaves better than MASOP. On small instances instead, the

two algorithms have very similar performances, with HSOP performing slightly

better than MASOP. Concerning the comparison with the initial solution, the

improvement produced by either MASOP or HSOP is remarkable, being 53.96%

on average and 69.44% on large instances. Similar considerations can be made

on instances of Set 2. Here, on large instances, MASOP finds the best solution

on 123 instances over 144, while HSOP finds it on 100 instances. However,

the difference in terms of average gap to best known value is larger than for

instances of Set 1, being 0.01% for MASOP and 0.10% for HSOP. Considering

the improvement with respect to the initial solution, we notice that it is lower

than for instances of Set 1 but still 45.98% on average and 55.98% on large

instances.

Finally, in Table 4 we report the computational times of MASOP and HSOP.

The first three columns of the table are the same as in Table 3. The next two

22

columns report the average computational times for the two algorithms.

Looking at Table 4, we can see that instances of Set 2 takes nearly the double

of the time taken by instances of Set 1 for both algorithms. Also, MASOP takes

nearly the triple of the time of HSOP on instances of Set 1 while less than the

double on instances of Set 2. In any case, computing times of MASOP remain

reasonable even for large instances.

4. Conclusions

In this paper we introduces the Set Orienteering Problem (SOP) which is

a variant of the OP where customers are grouped in clusters and a profit is

associated with each cluster. The profit is collected only if at least one ver-

tex belonging to the cluster is visited. The objective is to find the tour that

maximizes the collected profit and such that the corresponding duration does

not exceed a given threshold. We propose a mathematical formulation and

a matheuristic for the SOP. Computational tests on instances with up 1084

vertices show that the matheuristic produces high-quality results in reasonable

computing times.

The SOP finds applications in the distribution of mass products where car-

riers stipulated contracts with customers organized in chains and the contracts

are such that the carrier may choose which of the customer in the chain to

visit in order to satisfy all the customers in the chain. Thus, this is a way to

organize distribution processes which may provide advantages both to carriers,

in terms of lower distribution costs, and for the customers, in terms of lower

tariffs requested by the carriers.

References

[1] E. Angelelli, C. Archetti, M. Vindigni, The clustered orienteering problem,

European Journal of Operational Research 238 (2014) 404–414.

[2] C. Archetti, M. Speranza, Arc routing problems with profits, in: A. Cor-

beràn, G. Laporte (eds.), Arc Routing: Problems, Methods, and Applica-

23

Size pg ω HSOP MASOP

S
e
t

1

S
m

a
ll

g1

0.4 2.76 7.18

0.6 3.57 8.52

0.8 4.21 8.09

avg 3.51 7.93

g2

0.4 2.86 7.39

0.6 3.81 8.72

0.8 4.59 7.96

avg 3.75 8.02

avg 3.63 7.98
L

a
rg

e

g1

0.4 37.57 172.46

0.6 38.65 87.23

0.8 36.06 76.95

avg 37.43 112.21

g2

0.4 32.38 216.72

0.6 33.35 93.88

0.8 48.92 79.26

avg 38.22 129.95

avg 37.82 121.08

avg 20.73 64.53

S
e
t

2

S
m

a
ll

g1

0.4 3.51 6.15

0.6 5.44 10.33

0.8 7.01 13.57

avg 5.32 10.02

g2

0.4 3.33 6.44

0.6 5.42 10.29

0.8 6.91 13.68

avg 5.22 10.14

L
a
rg

e

g1

0.4 123.93 201.70

0.6 115.96 140.16

0.8 200.37 253.95

avg 146.75 198.60

g2

0.4 130.84 271.93

0.6 107.55 191.36

0.8 226.59 287.12

avg 154.99 250.14

avg 150.87 224.37

avg 79.08 121.16

Table 4: Computing times for MASOP and HSOP

24

tions, MOS-SIAM Series on Optimization, SIAM, Philadelphia, 2014, pp.

257–284.

[3] C. Archetti, M. Speranza, D. Vigo, Vehicle routing problems with profits,

in: P. Toth, D. Vigo (eds.), Vehicle Routing: Problems, Methods, and Ap-

plications, Second Edition, MOS-SIAM Series on Optimization 18, SIAM,

Philadelphia, 2014, pp. 273–298.

[4] W. P. Coutinho, R. Q. do Nascimento, A. A. Pessoa, A. Subramanian, A

branch-and-bound algorithm for the close-enough traveling salesman prob-

lem, INFORMS Journal on Computing 28 (4) (2016) 752–765.

[5] M. Fischetti, J. J. Salazar Gonzàlez, P. Toth, A branch-and-cut algorithm

for the symmetric generalized traveling salesman problem, Operations Re-

search 45 (3) (1997) 378–394.

[6] B. Gavish, S. Graves, The travelling salesman problem and related

problems, Working paper gr-078-78, Operations Research Center, Mas-

sachusetts Institute of Technology (1978).

[7] A. Gunawan, H. C. Lau, P. Vansteenwegen, Orienteering problem: A survey

of recent variants, solution approaches and applications, European Journal

of Operational Research 255 (2) (2016) 315 – 332.

[8] B. Hu, G. R. Raidl, Effective neighborhood structures for the generalized

traveling salesman problem, in: J. van Hemert, C. Cotta (eds.), Evolu-

tionary Computation in Combinatorial Optimization: 8th European Con-

ference, EvoCOP 2008, Naples, Italy, March 26-28, 2008. Proceedings,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 36–47.

[9] G. Laporte, Y. Norbert, Generalized traveling salesman problem through

n sets of nodes: An integer programming approach, INFOR 21 (1) (1983)

61–75.

[10] S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling

salesman problem, Operations Research 21 (1973) 498–516.

25

[11] T. Öncan, İ. K. Altınel, G. Laporte, A comparative analysis of several

asymmetric traveling salesman problem formulations, Computers & Oper-

ations Research 36 (2009) 637–654.

[12] P. C. Pop, O. Matei, C. Sabo, A new approach for solving the generalized

traveling salesman problem, in: M. J. Blesa, C. Blum, G. Raidl, A. Roli,

M. Sampels (eds.), Hybrid Metaheuristics: 7th International Workshop,

HM 2010, Vienna, Austria, October 1-2, 2010. Proceedings, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2010, pp. 62–72.

[13] T. Tsiligirides, Heuristic methods applied to orienteering, Journal of the

Operational Research Society 35 (1984) 797–809.

26

	Problem description and formulation
	A matheuristic for the SOP
	Phase 1: Construction of an initial solution
	Phase 2: Tabu search
	Procedure ExploreNeighborhood(T,TL)
	Procedure MIPMove(T)
	Procedure Shake(T)

	Computational tests
	Test instances
	Computational results

	Conclusions

