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Introduction

Wireless Sensor Networks (WSNs) have been applied to several different real-
world contexts in the last years. Indeed, technology advancements in fields such as
micro-electro-mechanical systems (MEMS) and wireless communications allowed
them do be adaptable to diverse scenarios, including environmental and traffic
monitoring, healthcare applications, and recent trends such as Internet of Things
among others (refer for instance to [2, 4, 6, 31]). Regardless of the considered
application, a WSN is usually made of a large amount of devices, called sensors,
employed to perform together a monitoring activity. The portion of the space
under observation that can be monitored by a given sensor is defined as its sensing
range, or RS .

A major issue in WSNs is related to the limited amount of activation time
that is typically guaranteed by batteries to individual sensing devices. Optimizing
the energy consumption of a WSN by appropriately coordinating the use of the
sensors that compose it has therefore become an important research field in the
last years. In particular, a problem that has been widely studied is related to
prolonging for as much as possible the amount of time over which a WSN can
monitor a set of interesting target locations located within a geographical area.
The problem is usually known as Maximum Network Lifetime Problem (MLP),
and several variants of it have been proposed as well, in order to model and take
into account characteristics deriving from different real-world applications.

Usually, the solution approaches proposed in the literature for MLP and its
variants focus on individuating multiple, not necessarily disjoint sets of sensors
(covers) which are individually able to monitor the target points. An appropriate
activation time has also to be chosen for each cover. Then, the covers can be
activated one by one, that is, its sensors can be kept in active state while all
the others are turned off, and the network lifetime is given by the sum of all the
activation times. It follows that in order to achieve a feasible solution, the sum of
the activation times of the covers containing any given sensor has to be bounded by
its battery duration. As proven in [9], considering non-disjoint covers can indeed
allow to achieve a higher network lifetime. The authors also proved MLP to be
NP-Complete, and present an approximation algorithm.

In the last few years, solution approaches based on column generation have
been proposed for MLP and variants. These approaches decompose the problem
in two parts, namely a subproblem aimed at identifying useful covers and a master
problem which assigns activation times to them. Such an approach has been
proposed for the classic version of the problem in [23]. Since the subproblem
is NP-Hard, the author proposes both an exact ILP formulation and a simple
constructive heuristic to solve it, leading to an exact and a heuristic algorithm,
respectively. A mixed exact approach combining the two subproblem resolution
methods, which makes use of the ILP formulation whenever the heuristic fails,
is also presented. Proposed variants of the problem include cases in which only
a percentage of targets has to be covered at all times [12, 26, 35], heterogeneous
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networks [5, 11], sensors with adjustable sensing ranges [10, 19, 20, 24, 32] or with
angular, orientable sensing ranges, such as video cameras [1, 7, 33], among others.

A significant amount of research has been also spent on WSN problems that
consider connectivity issues [3, 8, 13, 14, 16, 17, 27, 30, 36]. These works take into
account sensor-to-sensor communication, in order to gather the collected informa-
tion and transmit it to a data collecting and processing facility (usually referred to
as base station or sink) through single or multi-hop communication. Therefore an
additional range (the communication range, or RC) is considered for each sensor,
defining which other sensors are close enough to communicate directly with it.

In particular, in [30] the authors propose the Connected Maximum Network
Lifetime Problem (CMLP). Consider a communication link existing between each
couple of sensors (or a sensor and the base station) if they are within each other’s
communication range. In CMLP, in addition to the covering request, a path of
communication links involving active sensors must exist between each sensor of the
cover and the base station. The authors propose two heuristics for its resolution.
The first one is a greedy constructive algorithm, while the second one is a GRASP
metaheuristic that iteratively uses a randomized version of the greedy approach
to produce a different starting solution, which is then improved through a local
search step. The GRASP algorithm is also used by the authors to speed up the
convergence of an exact column generation approach; this objective is fulfilled by
using the set of covers corresponding to the best solution to initialize the master
problem.

In [17], the authors extend the problem to consider the case in which only a
subset of the targets may require coverage at all times (α-CMLP), enabling to
decide trade-offs between achievable network lifetime and required quality of ser-
vice. Conceptually similarly to the algorithms presented in [23] for the classical
MLP, the authors propose two metaheuristics to solve the column generation sub-
problem (a GRASP and a VNS) and use them to develop three heuristics (named
CG-GRASP, CG-VNS and CG-MULTI) and an exact approach (CG-EXACT).
While CG-GRASP and CG-VNS use the related metaheuristic to solve the sub-
problem, CG-MULTI combines both of them, invoking in each iteration GRASP
first, and VNS then if GRASP fails. Finally, the CG-EXACT algorithm provides
exact solutions by solving an exact ILP formulation to optimality whenever both
heuristics fail. The authors proved experimentally that their algorithms perform
better than the ones proposed in [30].

In this work we also focus on the α-CMLP problem, presenting a heuristic and
an exact approach based on the column generation technique. In our algorithms,
new ideas for the resolution of the subproblem are proposed. In more detail,
in order to solve the subproblem heuristically, we propose a highly efficient, ap-
propriately designed genetic algorithm which embeds a Steiner Tree heuristic to
satisfy the connectivity requirement. Regarding the exact subproblem resolution,
we propose a new ILP formulation and a modification to the resolution scheme,
that interrupts the ILP resolution as soon as a feasible profitable cover is found.
These new ideas lead to algorithms that are proven experimentally to have very
competitive performances.
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The rest of the work has the following structure. A formal definition of the
problem is provided in Section 1. The column generation scheme and our proposed
ILP subproblem formulation are described in Section 2. Our genetic algorithm and
its integration within the column generation framework are presented in Section
3. Computational results are described in Section 4, followed by conclusions and
future research perspectives in Section 5.

1. Problems Definition and Mathematical Formulation

Let T = {t1, . . . , tn} be the set of target points of interest, and let S =
{s0, s1, . . . , sm} be the set of the sensors that compose the network, as well as
the base station s0. Each sensor is assumed to have a given sensing range as well
as a communication range, defining which targets can be monitored by the sensor
and which elements of S can directly communicate with it, respectively. Since
the base station does not have covering purposes, it is assumed to only have a
communication range.

Each sensor belonging to S \{s0} is powered by a battery, which allows it to be
in the operational state only for a limited amount of time. No battery concerns
are assumed with respect to the base station, since it is supposed to be operational
for the whole monitoring process.

For any given target tk ∈ T and sensor si ∈ S \ {s0}, let δki be a binary
parameter which assumes value 1 if tk is located within the sensing range of si, 0
otherwise. By extension, given a subset S′ ⊆ S \ {s0}, let ∆kS′ be equal to 1 if
δki = 1 for at least one sensor si ∈ S′, and 0 otherwise. If δki = 1 or ∆kS′ = 1,
target tk is said to be covered by si or S′, respectively. Furthermore, for any two
elements si, sj of S, let us define a binary parameter φij which is equal to 1 if they
are close enough to be within each other’s communication range, and 0 otherwise.
Note that by definition φij = φji. Now, consider an undirected graph G = (S,E),
such that there exists the communication link (si, sj) ∈ E if and only if φij = 1;
let us call G the connectivity graph of the network.

Figure 1 illustrates the concepts introduced so far, by showing a simple WSN
and its connectivity graph. The network contains the base station s0, a set of
6 sensors, namely {s1, s2, s3, s4, s5, s6} and 5 targets, {t1, t2, t3, t4, t5}. Sensing
and communication ranges are represented with continuous and dashed circles,
respectively. We may note that, for instance, sensor s4 covers t4 and can com-
municate with s1, s5 and s6, thus the connectivity graph includes (s4, s1), (s4, s5)
and (s4, s6).

Given a value α ∈ (0, 1], we define C ⊆ S to be a feasible cover (or sim-
ply a cover) for the network if the following three conditions hold: (i) s0 ∈ C;
(ii) the sensors in C can provide coverage for at least Tα = α × n targets,
that is,

∑
tk∈T ∆kC ≥ Tα; (iii) given the connectivity graph G, its subgraph

G′ = (C,E(C)) induced by C is connected. Any spanning tree of this subgraph,
rooted at s0, is called communication tree and defines, for each sensor si in C, a
path of communication links between si and s0 in G′. Each sensor activated in the
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Figure 1. A simple WSN and its connectivity graph

Figure 2. A feasible cover and its communication tree

cover is either used to sense information, as a relay to transmit it to s0, or for both
roles together. Figure 2 shows a feasible cover for the network in Figure 1 and the
induced connectivity subgraph, which also corresponds to its only communication
tree. Note that since all targets are covered, it is a feasible cover for any considered
value of α. It can be observed that if s4 is removed, the remaining elements would
not constitute a feasible cover since Condition (iii) would be violated, meaning
that the sensor is needed in the cover for relay purposes. If Tα ≤ 3, by removing
s2 a different feasible cover would be obtained instead. A cover that does not
contain another cover as a proper subset is defined as simple.

The α-Connected Maximum Lifetime Problem (α-CMLP) consists in finding a
collection of pairs (Cp, wp) where each Cp ⊆ S is a feasible cover and each wp ≥ 0
is an amount of time for which Cp is activated, such that each individual sensor is
in the active state for an amount of time that does not exceed its battery lifetime,
and the sum of the activation times is maximized.
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Let C1, . . . , CM be the collection of all feasible covers. The following linear
model represents α-CMLP:

[P] max
∑

Cp∈{C1,...,CM}

wp (1)

s.t.∑
Cp∈{C1,...,CM}

aipwp ≤ bi ∀si ∈ S \ {s0} (2)

wp ≥ 0 ∀p = 1, . . . ,M (3)

In constraints (2), for each sensor si ∈ S \{s0} and each cover Cp the parameter
aip is equal to 1 if si is part of Cp, and 0 otherwise, while bi is a value representing
the battery life of the sensor si. Therefore the constraints (2) enforce the respect
of the battery life limitations, while the objective function (1) maximizes the sum
of the activation times and thus the network lifetime.

In practice, solving formulation [P] directly is not possible due to the difficulty
of explicitly enumerating all feasible covers, whose number grows exponentially
with the number of sensors. For this reason, better strategies to focus on useful
covers, while implicitly discarding all the others, are required in order to be able
to solve the problem. To this end, in this work we propose a column generation
scheme, embedding an efficient and effective genetic algorithm.

The features of our algorithm are presented in Sections 2 and 3.

2. Column Generation for α-CMLP

Consider a linear programming formulation with a large number of variables.
The column generation (CG) framework operates by dividing the problem in two
steps, which are iteratively executed until a proven optimal solution is found. In
the first step, the algorithm considers a variant of the original LP formulation
(called restricted master problem) which is limited to only a subset of its original
variables (columns), and solves it. Then, a CG algorithm considers an auxiliary
problem (the separation problem, or subproblem) aimed at building a new attrac-
tive column, that is, a column that may improve the current (incumbent) solution
if introduced in the restricted master problem. Hence, we define a column to
be attractive it the related variable is currently nonbasic and has a negative re-
duced cost. If such a column can be found, the algorithm iterates by adding it
to the previous set and solving the restricted master problem again; otherwise,
the separation problem certifies that the incumbent solution is optimal for the
original problem as well. In the case of [P], each column represents a feasible
cover, therefore we will also refer by extension to attractive covers. In more detail,
let πi, ∀si ∈ S \ {s0}, be the dual prices associated with each constraint in the
master problem (that is, to each sensor); a given cover Cp will be attractive if
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si∈Cp\{s0} πi − cp < 0, where cp is the cost coefficient of wp in the objective

function of [P]. Note that the cp coefficients are all equal to 1; hence, in our sub-
problem, we chose to find the cover Cp that minimizes

∑
si∈Cp\{s0} πi. If such a

quantity is greater or equal than 1, all the nonbasic columns which have not been
generated so far can be implicitly discarded, and thus the incumbent solution is
certified to be optimal; otherwise, the new column is introduced in the restricted
master problem and the procedure iterates, as previously described. For further
insights on the use of Column Generation for linear and integer programming, the
reader can refer to [22].

Let Gd = (S,Ed) be the directed version of the connectivity graph G = (S,E),
where Ed contains both (si, sj) and (sj , si) for each communication link (si, sj) ∈
E. We consider the following formulation for the subproblem:

[SP] min
∑

si∈S\{s0}

πiyi (4)

s.t.∑
(s0,si)∈Ed

f0i =
∑

si∈S\{s0}

yi (5)

∑
(si,sj)∈Ed

fij −
∑

(sj ,si)∈Ed

fji = yj ∀sj ∈ S \ {s0} (6)

yi ≤
∑

(sj ,si)∈E

fji ≤ (|S| − 1)yi ∀si ∈ S \ {s0} (7)

∑
si∈S\{s0}

δkiyi ≥ zk ∀tk ∈ T (8)

∑
tk∈T

zk ≥ Tα (9)

fij ∈ Z+ ∪ {0} ∀(si, sj) ∈ Ed (10)

yi ∈ {0, 1} ∀si ∈ S \ {s0} (11)

zk ∈ {0, 1} ∀tk ∈ T (12)

The model uses flow constraints to make sure that the subgraph induced by the
produced cover contains at least a communication tree rooted at the base station,
and therefore that is is connected. Indeed, each edge (si, sj) ∈ Ed traversed
by positive flow fij in the solution belongs to the communication tree. Binary
variables yi, ∀si ∈ S \ {s0}, and zk, ∀tk ∈ T , state whether each sensor si belongs
to the cover and whether each target tk is covered by it, respectively.

The objective function (4) aims at finding the nonbasic cover with minimum
reduced cost, as discussed. Constraint (5) imposes the amount of flow produced
by the base station to be equal to the number of activated sensors. Constraints
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(6) are flow conservation constraints stating that, for each sensor sj ∈ S \{s0}, the
difference between ingoing and outgoing flow is equal to 1 if the sensors belongs
the new cover, and 0 otherwise. Constraints (7) impose all sensors with ingoing
positive flow to be activated in the cover. Finally, constraints (8) bind the yi and
the zk variables, while constraints (9) ensure that the new cover provides coverage
for the requested number of targets.

In [17], the authors proposed a similar model for the subproblem, using an
additional set of binary variables to select arcs belonging to the communication
tree; we were able to avoid using these variables by introducing constraints (7).

The main disadvantage of such column generation approaches is that the sub-
problem is NP-Hard (see [17]) and therefore, as the size of the problem grows,
[SP] becomes harder to solve, and the number of iterations required for the col-
umn generation procedure to converge is expected to increase as well. It can be
noted, however, that the exact subproblem solution is only needed to certify opti-
mality in the final iteration while, in general, any new attractive column could be
used to proceed to the next column generation iteration. For this reason, as will
be discussed in the next section, we designed a genetic algorithm (GA) to quickly
produce attractive columns. Furthermore, even when GA fails, we interrupt the
exact resolution of the [SP] ILP formulation as soon as an attractive cover is
found. These features allowed us to develop an effective CG approach, as will be
shown in Section 4.

3. A Genetic Algorithm to Address the Subproblem

As previously mentioned, we designed an effective genetic algorithm that we
embedded in the column generation framework in order to improve its perfor-
mances. In this section, we first give a general overview of the algorithm, and then
describe all of its different features in detail.

3.1. GA overall structure

Our genetic algorithm (GA) is used in the column generation scheme to solve
the subproblem heuristically. As for the mathematical formulation, it is used to
build feasible covers and uses the dual prices coming from the latest restricted
master problem iteration to weight each sensor.

The GA is used to develop both a heuristic and an exact approach, that we call
HCG and ECG, respectively. In HCG, the genetic algorithm is used to entirely
substitute [SP] in the column generation scheme, and the procedure stops as soon
as the GA fails to find an attractive cover. This kind of approach can not certify
that the global optimal solution has been reached; however, such a procedure
can still prove to be a very effective heuristic, as will be shown in Section 4.
Furthermore, we developed ECG by solving [SP] every time that the heuristic
for the subproblem fails, in order to either find a new attractive cover which was
not found by the GA, or finally certify optimality for the incumbent solution.
However, as mentioned in Section 1, in this case the subproblem formulation is
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Figure 3. Classical CG scheme (a). HCG scheme (b). ECG
scheme (c).

not necessarily solved to optimality, since we stop as soon as [SP] finds a column
with an objective function which is less than 1. In both HCG and ECG, after each
GA iteration we add all the attractive covers contained in its final population, in
order to further accelerate the algorithms convergence. The flowcharts in Figures
3(b) and 3(c) illustrate how the GA procedure is integrated within HCG and ECG,
respectively.

Genetic algorithms are population-based metaheuristics that, as other methods
belonging to the class of evolutionary algorithms, use techniques that draw inspira-
tion from biological evolution concepts, including natural selection, reproduction
and mutation. Given a starting population of individuals representing problem
solutions, usually defined as chromosomes, a GA typically produces new solutions
by combining information belonging to two or more parent chromosomes, an op-
eration known as the crossover operator. Newly generated chromosomes are also
often randomly perturbed by means of a mutation operator in order to diversify
the population. Chromosomes are evaluated and ranked using a fitness function,
usually connected to the objective function of the considered optimization prob-
lem. The overall aim of GAs is to emulate the process of natural selection by
iteratively producing better fit individuals, that inherit favorable characteristics
from their parents. For an extensive introduction to genetic algorithms, the reader
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Algorithm 1: GA pseudocode

Input: WSN = (S, T ), α ∈ (0, 1], G = (S,E), DP ;
Output: Set of feasible covers;

1 P ← initP (WSN,G,α,DP );

2 BestF it← bestF itness(P,DP );

3 criteria← setCriteria(MaxIT,MaxDUP );

4 SPL← evaluateShortestPaths(G,DP );

5 while check(criteria) do
6 (ζp1, ζp2)← tournament(P,DP );

7 ζ ← crossover(ζp1, ζp2);

8 ζ ← mutation(ζ);

9 ζ ← coverFeasibilityOperator(ζ,WSN,α);

10 ζ ← connectFeasibilityOperator(ζ,G, SPL,DP );

11 ζ ← redundancyRemovalOperator(ζ,WSN,G);

12 if ζ /∈ P then
13 P ← insert(ζ);

14 if fitness(ζ,DP ) ≥ BestF it then
15 update(criteria);

16 else
17 BestF it← fitness(ζ,DP );

18 else
19 update(criteria);

20 Chromos← chromosomes with fitness < 1;

21 return Chromos;

may refer to [21].

The pseudocode of our GA is reported in Algorithm 1. The input data consist
of the wireless sensor network WSN = (S, T ), its connectivity graph G = (S,E),
the α value and the dual prices vector DP obtained from the last iteration of
the restricted master problem. GA starts by building a population P of chromo-
somes, representing feasible covers; each chromosome has the structure described
in Section 3.2, and the first population is built as reported in Section 3.7. It also
initializes the stopping criteria used by the GA, which will be later described. The
final step of the initialization phase involves the evaluation of the shortest paths
between each couple of elements of the set S in the connectivity graph G, using
a weighting function for the edges of E which depends on the dual prices vector
DP . The Floyd-Warshall algorithm (see [29]) is used for this computation. The
shortest paths are used by an operator named connect feasibility ; the details on
this operator, as well as on the considered weighting function, are given in Section
3.5.
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After the initialization phase, the procedure builds iteratively new chromo-
somes, one by one. In more detail, in each iteration two parent chromosomes
are chosen and combined through the crossover operator (see Section 3.3); the
obtained child ζ is then mutated (Section 3.4). Since these operations do not
guarantee the feasibility of ζ, both in terms of coverage and connectivity, two op-
erators are applied in order to eventually transform it into a chromosome which
represents a feasible cover (Section 3.5). The final modifications applied to ζ are
made by an operator that checks if some of its sensors can be switched off while
preserving feasibility (Section 3.6). The resulting chromosome is introduced in the
population, unless an identical one already belongs to it. If the chromosome is
added to the population, it replaces an older one which is chosen randomly among
the |P |/2 chromosomes with worst fitness function. It follows that the population
size never changes during the algorithm execution.

The GA ends its execution as soon as one of two stopping criteria is reached,
which make use of two parameters, called MaxIT and MaxDUP respectively.
The MaxIT parameter refers to a maximum number of iterations without im-
provements with respect to the best fitness value in P , while MaxDUP is a maxi-
mum number of consecutive generated chromosomes which have a duplicate in the
population.

In the last step, GA returns all the chromosomes in P that correspond to
attractive covers.

3.2. Chromosome Representation and Fitness Function

Each chromosome ζ in our GA algorithm is internally represented as a binary
vector of length |S|. The element in the i-th position of the vector, with i ∈
{0, 1 . . . ,m}, is called the i-th gene of ζ and is denoted by ζ[i]. The gene ζ[i] is
associated to si ∈ S, and it is equal to 1 if and only if si is activated in ζ. In
this case, we say that ζ contains si. By extension, chromosomes corresponding
to feasible covers are defined to be feasible as well. Obviously, since each feasible
cover has to contain the base station s0, ζ[0] must be equal to 1 in each feasible
chromosome ζ. It is also easy to see that, ruling out the ζ[0] gene, a feasible
chromosome is a column of [P]. The operators of our GA make sure that only
feasible chromosomes are introduced in the population.

The fitness function is equivalent to the objective function (4) of the [SP]
formulation, and is easily computed as the dot product of the chromosome and
the dual prices vector DP (we assume the dual price of s0 to be equal to 0).
It follows that any feasible chromosome with a fitness value lower than 1 is an
attractive column for the restricted master problem.

3.3. Crossover operator

The aim of the crossover operator is to create new individuals from chromo-
somes in the current population (their parents), which hopefully inherit their good
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features, eventually leading to better solutions. The selection of the parents is car-
ried out by using a binary tournament strategy. That is, the crossover randomly
selects two chromosomes of P , and the one with the best fitness is designated
as first parent ζp1. The same procedure is used to select the second parent ζp2,
making sure that ζp1 is different from ζp2.

After the parents selection, the crossover operator generates the child ζ by
performing a bitwise logical AND operation on the parents, that is, for any given
position i ∈ {0, 1, . . . ,m}, ζ[i] = 1 if and only if ζp1[i] = 1 and ζp2[i] = 1. It is easy
to see that since both parent chromosomes are feasible, the child always contains
the base station, i.e. ζ[0] = 1. This choice will not be modified by the subsequently
applied operators. It is also easy to understand that the ζ chromosome at this
stage is not necessarily feasible.

3.4. Mutation operator

Mutation operators are commonly applied after the crossover phase as a mean
to add diversification to the population by applying some random perturbations
to the newly generated chromosomes.

Our mutation operator randomly selects a gene of the child ζ whose value is
identical in the parents, if it exists, and changes its value (ζ[0] is excluded from
the random selection). In this way, at least one gene will differ between the child
and its parents. In the unlikely case in which the parents share no common genes
except the one corresponding to s0, the child will contain no sensors, and will be
entirely built by the operators described in Sections 3.5 and 3.6.

3.5. Feasibility Fixing Operators

The child chromosome ζ derived by the crossover and the mutation procedures
is not guaranteed to be feasible. Indeed, neither the coverage of Tα targets nor
the connectivity of the induced subgraph are guaranteed. For this reason, we
introduce two feasibility fixing operators whose aim is to make ζ feasible.

The two operators are applied in sequence. The first one, cover feasibility,
starts by checking which targets are covered by the currently activated sensors. If
they are fewer than Tα, it randomly selects a currently uncovered target tk and a
sensor si among the ones that can cover tk. Then, the operator activates si in ζ
and updates the set of targets covered by the chromosome. The procedure iterates
by selecting and activating new sensors, until at least Tα targets are covered.

The chromosome ζ returned by the cover feasibility operator may still be un-
feasible, since the activated sensors cover the required number of targets, but its
induced subgraph G′ in G may be disconnected. For this reason, we introduce a
second feasibility fixing operator, named connect feasibility, whose aim is to ac-
tivate new sensors in ζ to connect G′. To this end, we formulate this issue as
a Steiner Tree. Given an undirected and edge weighted graph G = (V,E), and
given a subset of vertices V ′ ⊆ V , the Steiner Tree problem consists in finding
a minimum cost subtree of G which covers all the vertices in V ′. The tree may
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include elements of V \ V ′. The vertices in V ′ are named terminals, while those
in V \ V ′ are the steiner vertices.

In our case, we mark the base station and the sensors activated in ζ as terminals,
and all other sensors as steiner. Furthermore, with the aim of facilitating the
selection of sensors with low dual price values, we define a function which assigns
to each edge of E a weight equal to the sum of the dual prices of its endpoints
(recall that s0 is assumed to have a dual price equal to 0). By solving the Steiner
tree problem, we intend to identify some additional steiner sensors that, once
added to ζ, guarantee its induced subgraph to contain at least a tree and therefore
to be connected.

The Steiner Tree problem is well-known to be NP-hard [28] therefore it is not
reasonable to optimally solve it every time that a chromosome is built. Several
heuristics have been proposed in the literature to solve the Steiner Tree problem.
A survey on these heuristics can be found in [25]. In this work, we use a fast and
effective construction heuristic that the authors call CHINS (Cheapest Insertion),
originally proposed in [34], that works as follows:

CHINS Heuristic
Input: Weighted graph G, terminals list;
Output: Steiner Tree T ;

(1) Initialize the solution T with a single arbitrary terminal i;
(2) Repeat:

(a) Find the shortest path P in G between any terminal j not in
T and any vertex in T ;

(b) Add all edges and vertices of P to T ;
(3) Until T contains all terminals.

An improvement of CHINS called CHINS-Q iterates the procedure |V ′| times,
selecting every time a different terminal for the starting choice i, and finally re-
turning the best encountered solution.

Our connect feasibility operator implements CHINS-Q. For each element si con-
tained in ζ, an iteration is performed. In each iteration, we first build a vector ζ ′

with ζ ′[i] = 1 and all other genes equal to 0. Then, among all the shortest paths
between an sj contained in ζ that is not is ζ ′ and an sp in ζ ′, the procedure indi-
viduates the one with lowest weight and activates in ζ ′ all the elements belonging
to this shortest path. This operation is repeated until ζ ′ contains all the elements
of ζ and thus it is a feasible chromosome.

Finally, the best solution found is returned.

3.6. Redundancy Removal Operator

The ζ chromosome resulting from the feasibility operators is guaranteed to be
feasible. However, since such operators may cause the cover to be non-simple, we
use a final operator to try to deactivate some of its sensors without compromising
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feasibility. In more detail, the operator first considers the tree individuated by
the connect feasibility operator. Then, it builds a list of all the leaves of the tree
whose deactivation would not compromise the coverage of Tα targets (eventually
excluding s0). If the list is not empty, one of its sensors is randomly chosen and
deactivated. The list is then updated, and the procedure iterates until no more
sensors can be deactivated.

3.7. Building the Starting Population and CG initialization

Each individual belonging to the starting population P is built by applying
the two feasibility fixing and the redundancy removal operators on a chromosome
which initially only contains the base station s0. Each chromosome built by apply-
ing these steps is added to the population unless an identical one already belongs to
it. The procedure iterates until either a predefined number SizeP of chromosomes
has been built, or a threshold maxInitDUP , representing a maximum number of
consecutive duplicate chromosomes, is reached. In the latter case, SizeP is up-
dated to the resulting value of |P |. As previously mentioned, the population size
remains constant throughout the GA execution.

At the beginning of both our heuristic and exact approaches, in order to ini-
tialize the restricted master problem with a set of feasible columns, we use a
preliminary run of our GA, using random values for the dual prices. The whole
set of SizeP chromosomes belonging to the final population is used to produce the
starting set of columns.

4. Computational Results

This section presents the results of our extensive computational test phase on
benchmark instances proposed in [17]. These instances have a number of sensors
|S \ {s0}| varying in the set {100, 200, 300, 400, 500} and a number of targets |T |
equal to either 15 or 30. Different coverage levels are considered, represented by
the α value which varies in the set {0.7, 0.85, 1}. The communication range RC
is fixed and equal to 125 for all nodes in S, while the sensing range value RS
varies in the set {100, 125}. A sensor si can cover a target tj if their euclidean
distance is not greater than RS , and there exists a communication link between
two sensors si and sj if their euclidean distance is not greater than RC . Further-
more, all sensors have the same battery life, normalized to 1 time unit. For each
combination of parameters four different instances were generated, that together
represent a scenario. Therefore, there are in total 240 test instances, that compose
60 scenarios.

4.1. Testing environment and parameters settings

Our algorithms have been coded in C++, and the tests were performed using
a machine running under the OSX Lion operating system, with an Intel Core i5
2.5 GHz processor and 4GB of RAM (single thread mode). Our approaches make
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use of the IBM ILOG CPLEX 12.6.1 solver and the Concert Technology Library
to solve the mathematical formulations.

After a parameter tuning phase, we determined the values of the parameters
used by our GA algorithm for all the tests. The population size SizeP was cho-
sen to be equal to 100 chromosomes. We recall that this parameter also controls
the maximum number of new columns which is returned to the restricted master
problem after each GA iteration, since each attractive cover found in the final pop-
ulation is used to produce one of them. The maxInitDUP threshold used during
the initialization (Section 3.7) was chosen to be equal to 100, while the chosen
values for the two parameters MaxIT and MaxDUP , regulating the termination
criteria (Section 3.1) are 2000 and 100, respectively. Similarly to [17], a 3600 sec-
onds time limit is considered for each test, and the best solution found is reported
whenever the time limit is reached. All results are rounded to two decimal places.

4.2. Impact of the premature subproblem interruptions

As introduced in Section 2, in this work we modified the column generation
scheme by interrupting the [SP] resolution as soon as an attractive cover is found.
This operation is carried out by invoking an appropriate CPLEX callback.

In order to evaluate the impact of the premature subproblem interruption, we
performed a preliminary test phase, in which we compared the traditional column
generation approach (i.e. the one represented in Figure 3(a)) with and without
the callback invocation during the [SP] resolution. Note that these approaches do
not make use of the genetic algorithm. In the following, the two procedures are
referred to as CG-Call and CG-Std, respectively. To guarantee a fair comparison,
both algorithms were initialized with the same restricted set of columns. The
results of this comparison are presented in Table 1.

We performed these tests on the instances with at most 200 sensors, since CG-
Std often reaches the time limit on larger instances. Results for instances with
RS = 100 are shown in the top half, while those with RS = 125 are reported
in the bottom half. Each line in the table represents a scenario composed of
four instances with the same characteristics, and the results reported in each line
report the average values on these four instances. The |S \ {s0}|, |T | and α
columns report the instances characteristics. The LT column reports the lifetime
values expressed in time units found within the time limit, the column Time shows
the computational time in seconds and the #Opt column reports the number of
optimal solutions found for each scenario. The last column, under the % Gap
heading, reports the percentage gap between lifetimes. In more detail, let LT (Alg)
be the average lifetime value reported by a given Alg procedure on a considered
scenario. The LT gaps are computed as

100× LT (CG-Call)− LT (CG-Std)

LT (CG-Std)

When the LT gap is positive, it means that CG-Call found a better solution than
CG-Std on the considered scenario, and the value is marked in bold into the table.
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CG-Std CG-Call %GAP
|S \ {s0}| |T | α LT Time #Opt LT Time #Opt LT

R
S

=
10

0

100 15 0.70 6.81 929.37 3 6.88 43.94 4 1.03
0.85 6.43 1868.93 2 6.64 385.85 4 3.27
1.00 4.00 1.79 4 4.00 1.92 4 0.00

100 30 0.70 6.94 1207.31 3 7.00 107.10 4 0.86
0.85 6.13 2007.75 2 6.57 1830.36 2 7.18
1.00 3.99 904.07 3 4.00 8.17 4 0.25

200 15 0.70 15.44 1123.95 3 15.99 929.94 3 3.56
0.85 14.42 2442.94 2 15.28 1137.25 3 5.96
1.00 10.25 95.54 4 10.25 29.37 4 0.00

200 30 0.70 15.37 1187.56 3 15.77 1002.00 3 2.60
0.85 13.39 2727.10 1 14.65 2111.24 2 9.41
1.00 8.75 73.95 4 8.75 30.81 4 0.00

R
S

=
12

5

100 15 0.70 7.00 21.64 4 7.00 5.61 4 0.00
0.85 6.78 1838.72 2 6.88 65.46 4 1.47
1.00 4.75 577.59 4 4.75 13.70 4 0.00

100 30 0.70 7.00 12.54 4 7.00 13.66 4 0.00
0.85 6.69 1832.81 2 6.79 862.44 4 1.49
1.00 4.47 1798.70 2 4.75 40.84 4 6.26

200 15 0.70 16.17 972.32 3 16.25 309.44 4 0.49
0.85 15.36 1037.80 3 15.75 509.25 4 2.54
1.00 12.57 1797.85 2 13.00 335.90 4 3.42

200 30 0.70 16.25 964.08 4 16.25 413.68 4 0.00
0.85 14.77 2192.41 2 15.54 1192.11 3 5.21
1.00 11.23 930.28 3 11.75 678.70 4 4.63

Table 1. Comparison between the CG-Std and CG-Call approaches.

Results in Table 1 show that CG-Call is faster than CG-Std in 22 out of 24
scenarios, with the difference being less than 2 seconds in the 2 remaining scenarios.
Indeed, in many cases, the computational time of CG-Call is less than half the
computational time of CG-Std, and in 6 cases CG-Call is one order of magnitude
faster. Finally, CG-Call does not find certified optimal solutions for 8 out of 96
instances, as opposed to CG-Std that does not find 27 of them.

Regarding the effectiveness of the two approaches, CG-Call finds better solu-
tions than CG-Std in 17 out of 24 scenarios, with an LT gap that grows up to
9.41%. On the remaining 7 scenarios, the solutions are the same.

Due to these results, in all the remaining experiments we always used the pre-
mature interruption technique.

4.3. Exact Algorithms Comparison

Tables 2 and 3 contain the comparisons between our exact algorithm ECG
and the CG-EXACT algorithm, introduced in [17], for the cases RS = 100 and
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RS = 125, respectively. As for the previous table, each entry is an average over the
4 instances of the related scenario, and all column headings have the same meaning.
In addition to lifetime values, we also compute gaps for the computational times
of the two methods. Let Time(Alg) be the average computational time spent by
a procedure Alg to solve a given scenario; the Time gaps are computed as

100× Time(CG-EXACT)− Time(ECG)

Time(CG-EXACT)

Again, the cases in which ECG performs better than CG-EXACT are highlighted
in bold. The final row (#Opt Found) reports the overall number of optimal solu-
tions found by each approach.

The results of Table 2 show that ECG is more effective than CG-EXACT, as
well as significantly more efficient. Indeed, for 11 scenarios the average solution
found by ECG is better than the one found by CG-EXACT, with a solution gap
that ranges from 0.46% to 10.36%, while on the remaining scenarios the solution is
the same. Moreover, ECG solves to optimality 2 instances more than CG-EXACT.
Regarding the computational time performances, ECG is always faster than CG-
EXACT and, in the 19 scenarios in which both algorithms find all the optimal
solutions (i.e. #Opt=4), the performance gap ranges from 32.30% to 98.80%. In
6 scenarios, ECG is an order of magnitude faster than CG-EXACT.

The results reported in Table 3 show that similar behaviors can be observed for
the case RS = 125. Indeed, for 11 scenarios the average solution found by ECG is
better than the one found by CG-EXACT, with a solution gap that ranges from
0.99% to 9.40%. Moreover, ECG optimally solves all the scenarios with up to 300
sensors and, in general, it finds 108 out of 120 optimal solutions, as opposed to
the 102 found by CG-EXACT. Again, ECG is always faster than CG-EXACT,
and in the 19 scenarios where both procedures find all the optimal solutions, the
performance gap ranges from 49.16% to 99.40%. In 8 scenarios, ECG is an order
of magnitude faster than CG-EXACT.

It has to be pointed out that the tests in [17] were run on a machine equipped
with an Intel Core i5 1.6 GHz processor with 2GB of RAM (their algorithms were
coded in C++, similarly to ours). While the test environment differences do not
allow a completely accurate comparison, we believe that the remarkable perfor-
mance gaps provide solid evidence about the competitiveness of our approach. In
our opinion, this is due to the effectiveness and efficiency of our GA algorithm.
Jointly with the premature [SP] interruptions, it is able to produce quickly most
of the needed covers, avoiding whenever possible the expensive exact resolution
of the subproblem. Further evidence about the good performances of the GA is
provided in section 4.4, in which we present the results of our HCG heuristic.

With respect to the considered set of instances, we can note that, for most
scenarios and both algorithms, the instances with α = 1 are the easiest to solve.
It is easy to understand why requiring full coverage of the set of targets is a
simplifying factor; indeed, it can reduce significantly the number of existing feasible
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RS = 100

ECG CG-EXACT % GAP
|S \ {s0}| |T | α LT Time #Opt LT Time #Opt LT Time

100 15 0.70 6.88 1.17 4 6.88 8.78 4 0.00 86.67
0.85 6.64 623.86 4 6.64 921.47 4 0.00 32.30
1.00 4.00 0.78 4 4.00 1.80 4 0.00 56.67

100 30 0.70 7.00 1.77 4 7.00 6.54 4 0.00 72.94
0.85 6.60 1805.78 2 6.57 1922.59 2 0.46 6.08
1.00 4.00 1.67 4 4.00 4.06 4 0.00 58.87

200 15 0.70 16.25 5.00 4 16.25 414.98 4 0.00 98.80
0.85 15.51 905.52 3 15.42 941.60 3 0.58 3.83
1.00 10.25 3.08 4 10.25 12.69 4 0.00 75.73

200 30 0.70 16.25 4.95 4 16.25 128.92 4 0.00 96.16
0.85 15.42 909.91 3 15.35 1514.62 3 0.46 39.92
1.00 8.75 3.33 4 8.75 19.80 4 0.00 83.18

300 15 0.70 18.25 7.80 4 18.25 34.72 4 0.00 77.53
0.85 18.25 8.66 4 18.25 91.10 4 0.00 90.49
1.00 15.00 7.65 4 15.00 86.26 4 0.00 91.13

300 30 0.70 18.25 8.51 4 18.25 47.93 4 0.00 82.24
0.85 18.25 10.39 4 18.25 104.34 4 0.00 90.04
1.00 13.25 7.64 4 13.25 48.34 4 0.00 84.20

400 15 0.70 31.90 910.45 3 30.68 999.22 3 3.98 8.88
0.85 29.64 917.58 3 28.66 1151.16 3 3.42 20.29
1.00 18.25 10.99 4 18.25 95.70 4 0.00 88.52

400 30 0.70 30.74 924.52 3 29.55 1007.00 3 4.03 8.19
0.85 27.99 953.23 3 26.90 1907.09 2 4.05 50.02
1.00 18.00 18.09 4 18.00 125.38 4 0.00 85.57

500 15 0.70 48.67 1827.31 2 45.04 2554.30 2 8.06 28.46
0.85 43.26 2713.20 1 39.20 2742.29 1 10.36 1.06
1.00 29.00 30.68 4 29.00 335.83 4 0.00 90.86

500 30 0.70 48.39 1834.39 2 44.83 2748.99 1 7.94 33.27
0.85 41.04 2721.35 1 37.24 2768.34 1 10.20 1.70
1.00 26.25 32.69 4 26.25 308.25 4 0.00 89.39

#Opt Found 102 100

Table 2. Comparison between ECG and CG-EXACT algorithms
on instances with RS = 100

covers, and eliminates the need to chose which targets should be covered (all zk
variables are forced to 1 by formulation [SP]).

Counter-intuitively, the instances with α = 0.7 generally required less time to
be solved than those with α = 0.85, while theoretically allowing more feasible
covers to exist. We believe that, in this case, the dominating factor responsible for
the complexity of these instances is the need, for α = 0.85, to cover more targets
with respect to α = 0.7. This leads to generally larger connected covers (and
therefore to a greater number of choices to be made) whenever the subproblem



TITLE WILL BE SET BY THE PUBLISHER 19

RS = 125

ECG CG-EXACT % GAP
|S \ {s0}| |T | α LT Time #Opt LT Time #Opt LT Time

100 15 0.70 7.00 0.91 4 7.00 1.79 4 0.00 49.16
0.85 6.88 1.27 4 6.88 8.37 4 0.00 84.83
1.00 4.75 0.95 4 4.75 3.62 4 0.00 73.76

100 30 0.70 7.00 1.02 4 7.00 3.05 4 0.00 66.56
0.85 6.79 1.98 4 6.79 327.39 4 0.00 99.40
1.00 4.75 1.45 4 4.75 91.41 4 0.00 98.41

200 15 0.70 16.25 3.59 4 16.25 19.56 4 0.00 81.65
0.85 15.75 3.71 4 15.75 31.46 4 0.00 88.21
1.00 13.00 3.96 4 13.00 46.56 4 0.00 91.49

200 30 0.70 16.25 3.15 4 16.25 19.34 4 0.00 83.71
0.85 16.25 36.44 4 16.09 925.98 3 0.99 96.06
1.00 11.75 4.38 4 11.75 96.81 4 0.00 95.48

300 15 0.70 18.25 8.80 4 18.25 27.97 4 0.00 68.54
0.85 18.25 7.32 4 18.25 40.07 4 0.00 81.73
1.00 16.75 6.19 4 16.75 52.10 4 0.00 88.12

300 30 0.70 18.25 7.51 4 18.25 29.23 4 0.00 74.31
0.85 18.25 8.57 4 18.25 50.03 4 0.00 82.87
1.00 16.00 8.64 4 16.00 82.83 4 0.00 89.57

400 15 0.70 34.27 911.88 3 33.36 991.85 3 2.73 8.06
0.85 32.23 913.99 3 31.06 998.19 3 3.77 8.44
1.00 24.88 16.79 4 24.88 298.96 4 0.00 94.38

400 30 0.70 33.60 914.87 3 32.08 956.19 3 4.74 4.32
0.85 30.32 921.68 3 29.08 1021.31 3 4.26 9.76
1.00 22.38 28.44 4 22.38 245.22 4 0.00 88.40

500 15 0.70 54.62 1819.65 2 50.51 1957.14 2 8.14 7.03
0.85 48.99 1824.38 2 45.58 2624.69 2 7.48 30.49
1.00 37.75 51.36 4 36.82 1937.38 2 2.53 97.35

500 30 0.70 54.85 1818.40 2 51.13 1947.69 2 7.28 6.64
0.85 47.12 1856.93 2 43.07 2741.61 1 9.40 32.27
1.00 35.50 87.43 4 34.47 1938.50 2 2.99 95.49

#Opt Found 108 102

Table 3. Comparison between ECG and CG-EXACT algorithms
on instances with RS = 125

has to be solved. In accordance with this intuition, we note that both algorithms
find a larger number of optimal solutions in the case RS = 125, in which sensors
are likely to be able to individually cover more targets with respect to the case
RS = 100.
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RS = 100

HCG CG-MULTI % GAP
|S \ {s0}| |T | α LT Time #Opt LT Time #Opt LT Time

100 15 0.70 6.88 0.95 4 6.63 4.08 3 3.77 76.72
0.85 6.64 1.92 4 6.04 10.16 1 9.93 81.10
1.00 4.00 0.97 4 4.00 0.84 4 0.00 -15.48

100 30 0.70 7.00 1.44 4 6.75 4.75 3 3.70 69.68
0.85 6.54 4.31 2 6.49 44.82 2 0.77 90.38
1.00 4.00 1.72 4 4.00 2.75 4 0.00 37.45

200 15 0.70 16.25 4.13 4 15.96 212.26 2 1.82 98.05
0.85 15.46 7.13 3 15.37 253.00 3 0.59 97.18
1.00 10.25 2.56 4 10.25 8.64 4 0.00 70.37

200 30 0.70 16.25 4.20 4 16.00 100.17 3 1.56 95.81
0.85 15.34 15.21 3 14.69 715.21 1 4.42 97.87
1.00 8.75 3.29 4 8.50 3.29 3 2.94 0.00

300 15 0.70 18.25 6.62 4 18.00 9.00 3 1.39 26.44
0.85 18.25 7.58 4 18.00 28.88 3 1.39 73.75
1.00 15.00 6.80 4 15.00 54.26 4 0.00 87.47

300 30 0.70 18.25 6.95 4 17.00 9.26 3 7.35 24.95
0.85 18.25 10.52 4 16.44 39.28 3 11.01 73.22
1.00 13.25 7.73 4 13.25 29.72 4 0.00 73.99

400 15 0.70 31.79 41.90 3 30.56 693.82 3 4.02 93.96
0.85 29.51 44.19 3 28.63 1077.91 3 3.07 95.90
1.00 18.25 9.48 4 18.25 28.67 4 0.00 66.93

400 30 0.70 30.69 80.98 3 29.55 947.06 3 3.86 91.45
0.85 27.80 67.41 3 26.90 1877.53 2 3.35 96.41
1.00 18.00 14.81 4 18.00 46.64 4 0.00 68.25

500 15 0.70 48.25 158.90 2 45.04 2498.70 2 7.13 93.64
0.85 42.91 267.60 1 39.20 2714.57 1 9.46 90.14
1.00 29.00 25.86 4 29.00 227.92 4 0.00 88.65

500 30 0.70 48.00 187.61 2 44.83 2692.89 1 7.07 93.03
0.85 40.63 323.42 1 37.24 2740.50 1 9.10 88.20
1.00 26.25 32.27 4 26.25 198.10 4 0.00 83.71

#Opt Found 102 85

Table 4. Comparison between HCG and CG-MULTI algorithms
on instances with RS = 100

4.4. Heuristic Algorithms Comparison

In Tables 4 and 5, HCG is compared with the overall best-performing heuristic
approach presented in [17], namely CG-MULTI. In order to determine whether
these algorithms found optimal solutions, we compare their solution values with
the known optimal values found by ECG. The #Opt Found values reported in the
last row of Table 4 clearly show that, with 102 optimal solutions found, HCG is
much more effective than CG-MULTI, which only finds 85 optimal solutions for
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RS = 100. This is a very significant result since it shows that, for these scenarios,
HCG was able to find all the optimal solutions certified by ECG, emphasizing the
GA effectiveness. Overall, in 21 out of 30 scenarios the solutions found by HCG
are better than the solutions found by CG-MULTI, with a solution gap that ranges
from 0.59% to 11.01%. Moreover, CG-MULTI never finds better solutions than
HCG. It is interesting to observe that in the scenarios with up to 300 sensors, only
in 3 cases (100 sensors, 30 targets, α = 0.85; 200 sensors, 15 targets, α = 0.85;
200 sensors, 15 targets, α = 0.85) HCG does not find all the optimal solutions.
In more detail, on the 72 instances associated to the above mentioned scenarios,
only 4 instances are not solved to optimality by HCG. On the other hand, on the
same 72 instances, CG-MULTI does not find the optimal solution 19 times and,
in particular, it finds all 4 optimal solutions only in scenarios corresponding to
α = 1, in which, as previously mentioned, a lower number of feasible covers is
likely to exist. These results highlight the higher versatility of our heuristic, which
is often able to find optimal solutions regardless of the considered type of instance.
Regarding the computational time efficiency, CG-MULTI results to be faster than
HCG only once (see the scenario corresponding to 100 sensors, 15 targets, α = 1),
however the time gap is lower than 0.15 seconds and can be considered negligible.
In the other 29 scenarios, HCG is up to 98.05% faster than CG-MULTI (see the
scenario with 200 sensors, 15 target and α = 0.7), in 22 of them the time gap is
greater than 70%, and 12 times HCG is one order of magnitude faster.

The results reported in Table 5 show that both heuristics are more effective
when RS = 125. Indeed, the number of optimal solutions found grows to 107 for
HCG and to 91 for CG-MULTI. In 18 out of 30 scenarios, the solutions found
by HCG are better than the ones found by CG-MULTI, with a solution gap that
ranges from 0.15% to 8.82%. In the remaining scenarios, the two algorithms report
the same solutions.

Looking at the first 18 scenarios, it can be seen that the optimal solution is
not found only for 1 instance out of 72 by HCG, and in 10 cases by CG-MULTI.
The results show a lower influence of the α parameter with respect to the results
reported in Table 4. For these scenarios, HCG results again to be usually faster
than CG-MULTI. Indeed, CG-MULTI is faster in 2 out of 30 scenarios (100 sensors,
15 targets α = 0.7; 100 sensors, 30 targets, α = 0.7), however in these cases the
time gap is lower than 0.3 seconds. In the other 28 scenarios, HCG is up to 97.32%
faster than CG-MULTI (see the scenario with 500 sensors, 15 targets and α = 1),
in 20 of them the time gap is greater than 70%, and 13 times HCG is one order
of magnitude faster.

5. Conclusions

In this work we faced the α-CMLP problem. We developed an exact and a
heuristic algorithm, both based on column generation. The main contribution
of our work is the proposal of new ideas for the resolution of the subproblem.
Namely, we developed an efficient genetic algorithm embedding a Steiner Tree
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RS = 125

HCG CG-MULTI % GAP
|S \ {s0}| |T | α LT Time #Opt LT Time #Opt LT Time

100 15 0.70 7.00 0.89 4 7.00 0.84 4 0.00 -5.95
0.85 6.88 1.04 4 6.88 4.31 4 0.00 75.87
1.00 4.75 0.82 4 4.75 2.07 4 0.00 60.39

100 30 0.70 7.00 0.91 4 6.75 0.68 3 3.70 -33.82
0.85 6.79 1.52 4 6.78 9.56 3 0.15 84.10
1.00 4.75 1.52 4 4.71 4.94 3 0.85 69.23

200 15 0.70 16.25 2.92 4 16.00 8.88 3 1.56 67.12
0.85 15.75 3.46 4 15.00 19.70 2 5.00 82.44
1.00 13.00 3.33 4 12.50 36.06 3 4.00 90.77

200 30 0.70 16.25 3.01 4 16.25 6.61 4 0.00 54.46
0.85 16.25 13.18 3 15.74 210.15 2 3.24 93.73
1.00 11.75 3.85 4 11.75 90.65 4 0.00 95.75

300 15 0.70 18.25 5.89 4 18.25 6.22 4 0.00 5.31
0.85 18.25 5.93 4 18.25 13.22 4 0.00 55.14
1.00 16.75 5.86 4 16.75 23.10 4 0.00 74.63

300 30 0.70 18.25 6.41 4 18.25 6.59 4 0.00 2.73
0.85 18.25 6.83 4 18.25 18.23 4 0.00 62.53
1.00 16.00 7.71 4 15.75 27.25 3 1.59 71.71

400 15 0.70 34.22 32.31 3 32.86 908.98 2 4.14 96.45
0.85 32.20 42.09 3 31.06 939.45 3 3.67 95.52
1.00 24.88 14.09 4 24.88 208.49 4 0.00 93.24

400 30 0.70 33.62 65.79 3 31.76 748.26 2 5.86 91.21
0.85 30.22 67.50 3 29.08 961.71 3 3.92 92.98
1.00 22.38 16.81 4 22.38 149.90 4 0.00 88.79

500 15 0.70 54.35 139.91 2 50.51 1901.83 2 7.60 92.64
0.85 48.89 173.34 2 45.58 2569.32 2 7.26 93.25
1.00 37.75 50.51 4 36.82 1881.92 2 2.53 97.32

500 30 0.70 54.67 197.51 2 50.51 1892.06 2 8.24 89.56
0.85 46.87 225.80 2 43.07 2713.86 1 8.82 91.68
1.00 35.50 86.84 4 34.47 1883.25 2 2.99 95.39

#Opt Found 107 91

Table 5. Comparison between HCG and CG-MULTI algorithms
on instances with RS = 125

heuristic, a new ILP formulation for the subproblem, and a modification to the
column generation scheme that involves the premature interruption of the exact
subproblem resolution as soon as an attractive column is found. The algorithms
developed using these ideas were proven experimentally to outperform previous
approaches presented in the literature for the problem.

Future research efforts will focus on adapting our techniques to other prob-
lems in the same research field, such as the Maximum Lifetime Problem with
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redundant connected coverage for fault-tolerant applications, or inducing bounded-
degree connectivity trees (see [15,18]) to avoid network congestion.
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