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Abstract We aim to maximize the operational time of a network of sensors, whose
task is to monitor a predefined set of target locations. The classical approach pro-
posed in the literature consists in individuating subsets of sensors (covers) that can
individually monitor the targets, and in assigning appropriate activation times to
each cover. Indeed, since sensors may belong to multiple covers, it is important to
make sure that their overall battery capacities are not violated. We consider addi-
tional constraints that prohibit certain sensors to appear in the same cover, since
they would interfere with each other. We propose a Column Generation approach,
in which the separation problem is solved either exactly or heuristically by means
of a recently introduced technique to enhance basic greedy algorithms, known as
Carousel Greedy. Our experiments show the effectiveness of this approach.

1 Introduction

The Maximum Lifetime Problem (MLP) and its variants have been the focus of
many studies in the last years. Given a geographical region in which some impor-
tant target locations (or simply targets) have been individuated, the aim is to use
a network of sensors for as long as possible to keep these locations under obser-
vation. A key concept is the one of cover; with this term, we refer to a subset of
sensors that is independently able to monitor all targets. A common approach for
facing MLP problems is the following: find a collection of covers, and activate them
one at a time. By activating a cover, we mean that all of its sensors are switched to
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their sensing mode, while all other sensors are kept in an idle, energy-saving state.
Clearly, if a sensor belongs to more than a cover, the overall activation times of these
covers cannot exceed the maximum activation time imposed by the sensor battery.

Among the first works dealing with the MLP problem, we recall [3]. In this work,
it is first shown that allowing non-disjoint covers can bring noticeable improvements
in terms of network lifetime. The authors also demonstrate that the problem is NP-
complete, and present LP-based and greedy heuristics. A resolution approach to
solve MLP based on Column Generation was presented in [15]. Several MLP vari-
ants have been proposed and studied. In some works, sensors are allowed to enlarge
their sensing radii at the expense of additional energy consumption ([13],[14],[19]).
Other lines of research consider the case in which it is allowed to leave some targets
uncovered ([8],[16],[20]), sensors belong to different types ([2],[5]), or connectivity
issues are taken into account ([1],[10],[18],[6],[9]). In the context of MLP prob-
lem variants, fewer research efforts have considered interference issues. Concurrent
transmission of sensors that are too close may cause data collision, which in turn is
responsible for data loss and additional energy expense; see for instance [17]. In [7],
the authors present the Maximum Lifetime Problem with Interference Constraints
(MLIC). In this problem, a collection of pairs of conflicting sensors are consid-
ered. For each of these pairs, at most one sensor can belong to any given cover.
The authors present a Column Generation algorithm, whose separation problem is
solved either exactly or heuristically by means of a greedy heuristic. In this work, we
modify the algorithm presented in [7] by facing the heuristic resolution of the sep-
aration problem through Carousel Greedy, a novel paradigm for enhancing greedy
heuristics, originally proposed in [12]. As will be shown in our computational tests,
improving this component of the Column Generation scheme brings noticeable im-
provements in the efficiency of the whole algorithm. The next sections of the paper
illustrate the general Column Generation approach for MLIC (Section 2), the pro-
posed Carousel Greedy procedure for the separation problem (Section 3), the results
of our computational tests (Section 4) and our final remarks (Section 5).

2 Column Generation approach

Let S = {s1, . . . ,sm} be the set of the sensors, and T = {t1, . . . , tm} be the target
points. A cover Ck for the MLIC problem is a subset of S, such that each target
t j ∈ T is within the sensing area of at least one sensor si ∈ Ck (it is monitored,
or covered by it), and such that every couple of sensors (si,s j) ∈ Ck×Ck is not a
conflicting pair.

The overall number of covers can be exponential in size. Hence, in [7] a Column
Generation (ColGen) approach was proposed in order to implicitly discard most of
them.

Let C = {C1, . . . ,Cz} be a set composed by some feasible covers for MLIC. In
[7], the master problem of the ColGen approach for the MLIC problem is formulated
as follows:
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[MP]max ∑
Ck∈C

wk (1)

∑
Ck∈C :si∈Ck

wk ≤ τi ∀si ∈ S (2)

wk ≥ 0 ∀Ck ∈ C (3)

Variables wk represent for how long each cover Ck ∈ C is kept in active state in
the solution, while parameter τi ∀si ∈ S represents the maximum amount of acti-
vation time available for the sensor, given its battery capacity. The column of each
variable wk in the coefficient matrix contains a 1 in the i-th position if si ∈ Ck, 0
otherwise. It is then clear that the optimal [MP] solution represents the maximum
lifetime that can be obtained by considering the subset of covers contained in C ,
while respecting the battery duration constraints. In order to evaluate whether this is
also the optimal solution for the whole problem, we need to solve a separation prob-
lem to identify the nonbasic variable with minimum reduced cost. The separation
problem formulation, also presented in [7], is the following:

[SP]min ∑
si∈S

πiyi (4)

∑
si∈S:δi j=1

yi ≥ 1 ∀t j ∈ T (5)

yi + y j ≤ 1 ∀(si,s j) ∈ S×S : γi j = 1, i < j (6)
yi ∈ {0,1} ∀si ∈ S (7)

The separation problem needs to build the column associated to a cover, hence
each variable yi ∀si ∈ S will be equal to 1 if the sensor is chosen to belong to it, and
0 otherwise. Parameters πi, weighting the yi variables in the objective function, rep-
resent the dual prices associated to the sensors after solving [MP]. Each parameter
δi j is equal to 1 is sensor si ∈ S can monitor target t j ∈ T and 0 otherwise. Finally,
each parameter γi j ∀(i, j) ∈ S×S is equal to 1 if (si,s j) is a conflicting pair and 0
otherwise. Hence constraints (5) and (6) make sure that the chosen sensors define
a cover, while the objective function minimizes its reduced cost. In particular, if
∑si∈C πi− 1 ≥ 0 for the newly built cover C, then the solution found by [MP] was
optimal for the MLIC problem; otherwise, C could potentially be used to find a bet-
ter solution (it is defined to be an attractive cover). Hence, C is added to the set C
and the ColGen algorithm iterates.

The main drawback of this approach is that the separation problem is NP-Hard
itself. Hence, in [7], a greedy heuristic for the separation problem is presented. In
this work we enhance this heuristic by trasforming it into a Carousel Greedy, which
is presented in next section.
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3 Carousel Greedy approach for the separation problem

The Carousel Greedy is a generalized method to enhance greedy algorithms, orig-
inally proposed in [12]. The aim is to obtain a procedure which is almost as fast
and simple as the greedy procedure on which it is based, while achieving accuracy
levels similar to those of a metaheuristic. The authors show the effectiveness of
their proposal for several classical combinatorial optimization problems. The main
observation underlying Carousel Greedy is that during the execution of a construc-
tive heuristic, the later decisions are likely to be more informed and valid than the
earlier ones. Indeed, wrong decisions taken in the first stages may be the cause of
poor overall performances. Given this observation, a Carousel Greedy procedure
increases the solution space visited by a basic greedy, operating in three main steps:

• In the first step a partial (unfeasible) solution is built. The first step ends when
the partial solution size reaches a given percentage of the size of a complete
(feasible) solution.

• In the second step, the partial solution is modified by iteratively removing from it
the oldest choices and making new ones. The second step ends after a pre-defined
number of iterations.

• In the final step, the partial solution is completed to produce a feasible solution.

Our proposed Carousel-SP algorithm enhances Greedy-SP, a constructive heuris-
tic presented in [7] to solve the MLIC separation problem. Carousel-SP works as
follows:

• The first step starts from an empty set C, and iteratively adds sensors to it. The
sensors are chosen from a set of candidates Sc, initialized with S. At each itera-
tion, the algorithm uses a greedy criterion to select the next sensor to be added to
C. In more detail, it selects the sensor si ∈ Sc that minimizes the quantity ωi =

πi
|Ti| ,

where πi is the dual price of the sensor and |Ti| the amount of additional targets
that would be monitored by C by adding si to it. The greedy criterion is designed
to favor sensors with low dual prices that cover many targets. After adding si
to C, the elements of Sc that would form a conflicting pair with si (as well as
si itself) are removed from Sc. Indeed, adding one of these sensors to C would
violate constraints (6). The first step ends as soon as the number of uncovered
targets is equal to or lower than β |T |, with β ∈ [0,1]. If Sc becomes empty first,
Carousel-SP ends in failure.

• In each iteration of the second step, the sensor in C corresponding to the oldest
choice is removed from it, and is replaced with a new one. After the removal
of a sensor si from C, the set Sc is updated to contain si itself and any sensor
that was removed because it was in conflict with si. Since some new targets may
become uncovered after the si removal, the ωi values are updated as well. Each
new sensor added to C is selected according to the same greedy criterion used
for the first step. Eventually, after one or more iterations of the second step, C
may become a feasible solution (that is, a cover); if this is the case, the feasible
solution with the lowest objective function value (∑si∈C πi) is stored as incumbent
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solution C′. Furthermore, after having found a cover, two sensors instead than
one are removed from C in the following iteration, to avoid cycling on the same
solution. The second step is iterated αh times, with α ≥ 1 and h = |C| at the end
of the first step. After the last iteration, if an incumbent solution C′ exists, it is
returned and Carousel-SP ends its execution.

• The third step operates similarly to the first one, with two differences; it starts
from the C set returned by the second step, and it iterates until all targets are
covered. As soon as C becomes a feasible solution, it is returned, and Carousel-
SP ends. If Sc becomes empty first, Carousel-SP ends in failure.

We now discuss how Carousel-SP is integrated within the ColGen framework.
In each iteration, after solving [MP], we attempt to solve the separation problem
heuristically using Carousel-SP. If it returns an attractive cover C, it is added to
C and the current ColGen iteration ends. Otherwise, if Carousel-SP fails during
the first or the third step or if returns an unattractive cover, we need to solve the
separation problem exactly using [SP]. Again, if an attractive cover is found, it is
added to C and a new ColGen iteration begins. Otherwise, the optimality for the
MLIC problem of the last solution found by [MP] has been proven.

4 Computational Results

In this section we compare our approach (CG+C), that embeds Carousel-SP, with the
ColGen algorithm (CG+G) proposed in [7], which uses Greedy-SP. Both CG+G and
CG+C were coded in C++. All tests were run on a Linux machine with an Intel Xeon
E5-2650 CPU running at 2.30GHz and 128 GB of RAM. For both the approaches,
the Concert library of IBM ILOG CPLEX 12.6.1 was used to solve the mathematical
formulations. Tests were run in single thread mode, with a time limit of 1 hour for
each test. We considered the same set of instances used in [7], with a number of
sensors varying in the set {300, 400, 500, 750, 1000, 1250}, and either 15 or 30
targets. All sensors have the a battery duration normalized to 1 time unit. Sensors
and targets are disposed in a square area with size 500×500. Each sensor has a
sensing (RS) and a conflict (RC) range. RS is equal to either 100 or 125; targets with
an euclidean distance within this value from a sensor are covered by it. RC is equal
to 175; two sensors within this distance from each other form a conflicting pair.
There are 4 different instances for each combination of parameters, for a total of 96
instances. Note that the computational test carried out in [7] also considered the case
RC = 125. However, the authors have shown that these instances are usually very
easily solved; in particular, for RS = 125, the number of separation problems solved
to optimality is often equal to 1. In this context, it is pointless to apply Carousel-SP,
since it is more expensive than Greedy-SP and there are not margins to speed up
the convergence of the ColGen algorithm. Therefore, we report in the following the
computational results only for RC = 175. Regarding the Carousel-SP parameters,
after a preliminary test phase values α = 3 and β = 0.2 were chosen.
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CG+G CG+C
|S| |T | LF Time SubInv LF Time SubInv Gap(%)

R
S=

10
0

300 15 13.75 4.57 75.50 13.75 4.66 74.25
300 30 9.16 9.35 72.25 9.16 10.10 74.25
400 15 18.25 12.11 84.75 18.25 12.71 89.25
400 30 14.25 34.84 127.25 14.25 33.32 123.50 4.36%
500 15 25.50 42.36 177.75 25.50 39.20 164.25 7.46%
500 30 19.00 118.05 204.25 19.00 121.56 200.75 -2.97%

R
S=

12
5

300 15 23.25 3.89 54.00 23.25 3.29 39.25
300 30 18.25 7.17 83.25 18.25 7.25 76.25
400 15 32.50 5.59 32.75 32.50 6.83 29.50 -22.18%
400 30 26.75 30.48 150.50 26.75 28.95 138.75 5.02%
500 15 41.25 35.52 122.00 41.25 29.23 87.50 17.71%
500 30 38.00 85.67 228.25 38.00 88.24 226.25 -3.00%

Table 1 Computational results on the small instances with RC=175.

The results of the comparison between the two algorithms on the smaller in-
stances (|S| ≤ 500) are reported in Table 1, containing 12 rows split in 2 groups
of 6 rows each, associated to RS = 100 and RS = 125, respectively. The first two
columns show the number of sensors (|S|) and targets (|T |) in the scenarios. The
next 6 columns report, for each algorithm, the lifetime rounded to 2 decimal dig-
its (LF), the computational time in seconds (Time) and the number of separation
problems solved to optimality (SubInv), respectively. Each entry in these columns
is an average value for the 4 instances of a given scenario. Finally, the last col-
umn shows the percentage gap (Gap) between the computational times, evaluated
as Time(CG+G)−Time(CG+C)

Time(CG+G) . When the gap is lower than 1 second, we consider it neg-
ligible and therefore we do not report its percentage value. All the small scenarios
are solved to optimality by both algorithms, and hence we only focus on perfor-
mances. On 5 scenarios, the time gap is negligible. On the remaining scenarios,
CG+C is faster than CG+G 4 times, with a percentage gap that ranges from 4.36%
to 17.71%, and is slower 3 times, with a percentage gap ranging from 2.97% to
22.18%. Regardless of percentage gaps, the performances of the two algorithms are
very close for all these scenarios, since the time gap is always lower than 7 seconds.

The results obtained on the larger scenarios are more interesting. These results
are reported in Table 2. As expected, the computational times of CG+C and CG+G
are higher than the ones required to solve small scenarios, and there is a scenario
(marked with a “*” symbol) that is not solved within the time limit by CG+G (|S|=
1250, |T | = 15 and RS = 100). The scenario is, instead, solved to optimality by
CG+C in around half an hour. CG+C results only once slower than CG+G, on the
scenario with |S| = 1000, |T | = 30 and RS = 125, with a percentage gap equal to
0.51%, corresponding to about 7 seconds. On all the remaining scenarios CG+C is
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CG+G CG+C
|S| |T | LF Time SubInv LF Time SubInv Gap(%)

R
S=

10
0

750 15 68.50 671.88 454.50 68.50 582.77 426.25 13.26%
750 30 43.00 719.42 421.25 43.00 696.33 419.50 3.21%

1000 15 60.25 962.01 257.25 60.25 487.45 120.00 49.33%
1000 30 49.00 1704.59 499.50 49.00 1610.24 481.25 5.54%
1250 15 85.91∗ 2274.69 453.50 86.75 2014.62 425.25 11.43%
1250 30 52.75 2365.43 406.50 52.75 2145.40 389.75 9.30%

R
S=

12
5

750 15 72.25 117.82 79.00 72.25 98.99 55.75 15.98%
750 30 55.50 419.09 237.75 55.50 391.86 232.25 6.50%

1000 15 96.75 796.88 239.75 96.75 660.31 181.25 17.14%
1000 30 79.00 1360.21 406.50 79.00 1367.19 403.50 -0.51%
1250 15 127.75 843.91 147.50 127.75 562.74 95.25 33.32%
1250 30 68.25 2035.12 357.00 68.25 1707.32 321.75 16.11%

Table 2 Computational results on the large instances with RC=175.

faster than CG+G, with a percentage gap that ranges from 3.21% to 49.33% and a
time gap up to about 500 seconds. In particular, for 7 out of 12 scenarios, CG+C
results at least 10% faster than CG+G. It can be noted that the computational time is
heavily affected by theSubInv value. For instance, on the scenario with |S|= 1000,
|T |= 15 and RS = 100, the SubInv value and the computational time for CG+G are
about twice greater than the values for CG+C. Similar observations can be done for
the other scenarios. By providing better columns to the master problem, Carousel-
SP reduces the SubInv value and speeds up the convergence of the ColGen approach.

5 Conclusions

We proposed a column generation algorithm to solve the Maximum Lifetime Prob-
lem with Interference Constraints. We improve a previous algorithm by introducing
a new method to solve heuristically the separation problem, based on the Carousel
Greedy paradigm. Computational tests show the effectiveness of our proposal, in
particular for larger test instances. Further research will be focused on improving the
Carousel Greedy procedure through hybridization with metaheuristic approaches,
such as Tabu Search and Genetic ([4], [11]).
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