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Abstract. In this work, we consider a scenario in which we have to
monitor some locations of interest in a geographical area by means of a
wireless sensor network. Our aim is to keep the network operational for
as long as possible, while preventing certain sensors from being active
simultaneously, since they would interfere with one another causing data
loss, need for retransmissions and overall affecting the throughput and
efficiency of the network. We propose an exact approach based on column
generation, as well as a heuristic algorithm to solve its separation prob-
lem. Computational tests prove our approach to be effective, and that
the introduction of our heuristic in the Column Generation framework
allows significant gains in terms of required computational effort.
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1 Introduction

Wireless Sensor Networks (WSNs) represent nowadays an ubiquitous technol-
ogy. The rapid advancements in the technologies involved in the production of
cost-effective embedded hardware greatly contributed to this trend, enabling the
development of new related concepts such as the Internet of Things [1] and flying
drones [9], and also raising concerns about the security of wireless communica-
tions ([15],[16],[17]). Among their many applications, monitoring and surveil-
lance are very relevant in several contexts, with applications varying from nat-
ural disasters forecasting to personal safety and city management ([5],[18],[20]).
One may consider, for instance, monitoring of environmental parameters such
as temperature, sound, soil movements or pollution levels, or surveillance and
motion detection in urban, military or domestic environments.

One of the main drawbacks is represented by the batteries installed in the
individual sensor devices, which due to cost and size reasons have often a limited
capacity. Hence, finding means to efficiently coordinate their activity to prolong
the amount of time over which the network can remain operational is a crucial
issue. To this end, many scientific efforts have been focused on proposing solu-
tions for the Maximum Network Lifetime Problem (MLP) and variants. The aim
of the problem is to individuate multiple and possibly overlapping sensor subsets
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(covers) that can individually provide coverage for all the considered points of
interest (targets), as well as an appropriate amount of activation time for each
of them. Since each cover is able to provide the necessary coverage, all sensors
that do not belong to it can be kept in a battery-preserving idle state while it is
active. If a sensor belongs to more than one cover, the sum of their chosen ac-
tivation times should not exceed the battery lifetime of the sensor. Under these
assumptions, a continuous monitoring of the region of interest can be performed
by activating covers one by one, and the overall network lifetime is given by the
sum of the individual activation times. MLP was proven to be NP-Complete
in [7], in which the authors also show that considering overlapping covers can
greatly improve the optimal solution with respect to disjoint ones.

The main issue to be faced to solve a Maximum Network Lifetime problem
is given by the number covers, which can be exponential with respect to the
size of the considered instance (theoretically, any subset of the set of sensors
may be a cover). The Column Generation (CG) technique has proved to be an
effective tool to tackle this issue. This technique decomposes the problem in two
components, a so-called master problem that only considers a subset of covers
and assigns appropriate lifetime durations to each of them, and a separation
problem whose aim is to produce new promising covers to be used by the master
problem. A CG approach for the classical version of the problem was proposed
by [21]. Since the separation problem is a hard problem itself, the author also
proposed a heuristic algorithm to face it.

As mentioned, several variants of the problem have been proposed as well,
to adapt it to different application contexts. For instance, there are works that
consider cases in which not all targets must be continuously covered, but rather
a given percentage of them ([12],[23],[30]), sensors that can adjust their radii to
find optimal trade-offs between coverage and energy consumption ([8],[19],[22],
[28]), heterogeneous networks with multiple sensor types ([3],[10]), and works
considering connectivity issues in order to transmit the collected information to
a central processing unit ([2],[6],[14],[24],[27],[31],[11],[13]).

Another relevant issue in the WSNs literature is related to interferences
among the sensors of the network. The sudden increase in the number of con-
nected devices has raised concern on this topic, due for instance to the coexis-
tence of different wireless technologies operating in the same frequency band [4].
Even within sensors of the same type, concurrent transmission of sensors that
are close enough to interfere may limit the network throughput and cause addi-
tional energy expense due to collisions, which cause data loss and hence require
retransmissions [26]. Some works attempt to produce a connected topology that
minimizes the interferences ([25],[26],[29]).

In this work we address the problem of maximizing the network lifetime on
a wireless sensor network with interference constraints. In this variant of the
problem, we are given a collection of pairs of conflicting sensors. Two sensors
are said to be conflicting if each of them should be in idle mode while the other
is in sensing mode, since they would generate interference if used together. It
follows that by allowing covers to contain at most a sensor for each conflicting
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pair, we are able to find the maximum network lifetime that can be obtained
without interferences.

To solve the problem, we propose a Column Generation exact approach. An
appropriately designed heuristic algorithm to speed up the separation problem
resolution is also proposed.

It should be noted that our definition of conflicting sensors is perfectly fit to
model the case in which sensors interfere with each other because they are too
close; in this case, there will be a conflicting pair for each couple of sensors that
are contained in each other’s sensing or transmission range (in the following,
this conflict-defining range will be called conflict range) . This will also be our
assumption in the computational tests carried out for this work. However, it
is also general enough to be adaptable to other interference definitions, or any
other cases in which specific sensor subsets should not be used together.

The rest of the work is organized as follows. In Section 2 we formally define
the problem. Section 3 describes in detail the proposed algorithm. Section 4
summarizes the results of our computational tests. Finally, Section 5 contains
some final remarks.

2 Problem definition

Let W = {S, T, τ, δ, γ} be a wireless sensor network, where:

– S = {s1, . . . sn} is the set of sensors (let |S| = n);
– T = {t1, . . . tm} is the set of targets (let |T | = m);
– τ : S → R+ is a function assigning to each sensor the maximum amount of

time for which it can be kept in active (sensing) mode before exhausting its
battery. In the following, we will use the notation τi to refer to τ(si);

– δ : S × T → {0, 1} is a function such that δ(si, tj) is equal to 1 if sensor
tj is located within the sensing range of sensor si and can therefore be
monitored by it (in which case we say that si covers tj), and 0 otherwise. In
the following, we will use the notation δij to refer to δ(si, tj);

– γ : S × S → {0, 1} is a function such that γ(si, sj) is equal to 1 if sensors
si and sj are in conflict, and therefore at most one of them can be active
in any given time instant, and 0 otherwise. In the following, we will use the
notation γij to refer to γ(si, sj). By definition, γij = γji ∀(si, sj) ∈ S × S.

A cover C ⊆ S is a subset of sensors satisfying the following two properties:

1.
∑
si∈C δij ≥ 1 ∀tj ∈ T . That is, each target of the network can be monitored

by at least a sensor belonging to the cover;
2. γij = 0 ∀(si, sj) ∈ C ×C. That is, the cover contains at most one sensor for

each conflicting pair.

It follows that, by activating all sensors in C while keeping those in S \ C
in idle mode, the whole set of targets can be monitored without generating
interference.
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The Maximum Lifetime problem with Interferences Constraints (MLIC) re-
quires to find a collection of pairs (C1, w1), . . . , (Cz, wz), where each Ck is a cover
and the related wk ≥ 0 is a value representing the activation time assigned to
it, such that:

1.
∑
Ck:si∈Ck

wk ≤ τi ∀si ∈ S. That is, each sensor is not scheduled to be active
for an amount of time that exceeds its battery capacity;

2.
∑z
k=1 wk (that is, the overall network lifetime) is maximized.

Assuming to be able to identify and enumerate all covers C1, . . . , C`, the
problem is described by the following linear programming mathematical model:

[P]max
∑̀
k=1

wk (1)∑
Ck:si∈Ck

wk ≤ τi ∀si ∈ S (2)

wk ≥ 0 ∀k = 1, . . . , ` (3)

The model contains one constraint (row) for each sensor of the network, and
one variable (column) for each cover; each variable wk has coefficient 1 in the
ith constraint if si ∈ Ck, and is not in the constraint otherwise.

It is easy to see that the objective function (1) and constraints (2) corre-
spond to the lifetime maximization and to the enforcement of battery capacity
constraints, respectively.

However, as mentioned in Section 1, the number of covers (and hence, the
number of variables) is potentially exponential, therefore using an optimization
software such as IBM ILOG CPLEX to find the optimal solution of this model
is not generally possible in practice. For this reason, we developed the Column
Generation approach presented in next section.

3 Column Generation approach

Our CG approach starts by finding an optimal solution for a variant of the [P]
formulation that only considers a subset of all covers, called the master problem
or [MP] from now on. Ideally, in order to understand if this solution is optimal
for the original problem as well, one should compute all reduced costs for the
variables that were not taken into account by [MP].

In order to avoid to explicitly consider all these variables, we instead define
and solve another problem (called separation problem) whose aim is to build the
column (representing, in our case, a cover) of the variable with minimum reduced
cost. If this reduced cost is negative, the related variable is then introduced into
[MP], since it may improve the current solution (we define such a variable and
the related cover to be attractive), and [MP] is solved again. This procedure
is iterated until the optimal solution for the separation problem corresponds to
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Algorithm 1: GreedySP

Input: Wireless network, dual prices vector π;
Output: Attractive cover C or failure;

1 C ← ∅;
2 Sc ← S;
3 Tu ← T ;
4 ωc ← updateWeights(Sc);
5 while |Tu| > 0 do
6 if Sc == ∅ then
7 return failure;

8 s← ChooseBest(Sc, ωc);
9 C ← C ∪ {s};

10 Tu ← RemoveCovered(s);
11 Sc ← RemoveConflicts(s);
12 Sc ← RemoveUseless(Tu);
13 ωc ← updateWeights(Sc);

14 if Attractive(C) then
15 return C;

16 else
17 return failure;

a cover with a nonnegative reduced cost. Indeed, in this case, the last optimal
solution found for [MP] is also optimal for the original problem [P].

Let πi, ∀si ∈ S, be the dual prices of the sensors associated to the optimal
solution of an instance of [MP]. The separation problem requires to find the
cover Ck that minimizes the quantity

∑
si∈Ck

πi− ck =
∑
si∈Ck

πi− 1, since the
coefficient ck of each variable wk in the objective function (1) of [P] is 1. Being
a set cover problem, the separation problem is NP-Hard. Moreover, it can be
noted that any attractive cover (not necessarily the optimal one) can improve
the current solution. For these reasons, we propose a greedy heuristic (called
GreedySP) to solve this problem, which is described in Section 3.1.

However, whenever GreedySP fails (meaning that it either does not find a
cover, or does not find an attractive one) there is no guarantee that the optimality
condition has been reached. Therefore, we also propose an integer programming
formulation called [SP] to solve the separation problem to optimality. In more
detail, after solving [MP], in each CG iteration the procedure first solves the
separation problem heuristically using our greedy algorithm. If it succeeds in
finding an attractive cover, the cover is added to the set considered by [MP], and
the current CG iteration ends. Otherwise, [SP] is used to solve the separation
problem to optimality. The [SP] model is presented in Section 3.2.

As will be shown in Section 4, our algorithm is an effective method to solve
the MLIC problem. On the one hand, it allows to solve the problem optimally;
on the other hand, the introduction of GreedySP allows to significantly reduce
the required computational effort.
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3.1 Heuristic for the separation problem

The pseudocode for GreedySP is reported in Algorithm 1. The algorithm takes
as input the wireless sensor network and the dual prices vector π. In the first
step, the algorithm initializes the sets C, Sc, Tu and the vector ωc. The C set
represents the cover that GreedySP is attempting to build, and therefore it is
initialized with the empty set. The Sc set contains the candidate sensors, that
is, sensors that do not belong to C but are not in conflict with any element of
C, and is initialized with the S set. The Tu set contains the uncovered targets,
meaning that they are not within the sensing range of any sensor in C; therefore,
when C is empty, Tu is equal to T . The updateWeights function attributes a
weight to each element of Sc. The weights are computed as follows:

ωc(si) =
πi∑

tj∈Tu
δij

∀si ∈ Sc (4)

The weighting function balances the dual price of each candidate sensor and
the number of uncovered targets that are covered by it. Since we are interested
in minimizing the sum of the dual prices belonging to the cover, and selecting
sensors that cover many targets may lead to needing less of them in C, it follows
that the smaller is ωc(si), the better is the sensor evaluation. Note that the
weight is undefined if si does not cover any target in Tu; we assume this to never
be the case in the initialization phase, since it would mean that the sensor is
useless (no target in T is within its sensing range) and therefore it should be
removed in preprocessing.

The while loop adds new sensors to C one by one, and iterates until there
are no uncovered targets, meaning that C is indeed a cover. Inside the loop,
we first check whether Sc is empty, in which case C cannot be completed and
the algorithm ends, reporting a failure. If Sc is not empty, the ChooseBest
function selects its minimum-weight element s and removes it from Sc. The new
sensor is added to C, and all targets that are covered by it are removed by Tu.
The RemoveConflicts and RemoveUseless functions update Sc by removing
all sensors that cannot be chosen in future iterations since they are either in
conflict with the new sensor, or do not cover uncovered targets any more. Finally,
since the Tu set was updated, the ωc weights are recomputed for the remaining
elements of Sc.

At the end of the while loop, as mentioned, the set C constitutes a cover.
However, in order to understand if it is an attractive one, we check whether∑
si∈C πi < 1. If C is attractive, it is retuned by GreedySP and the current CG

iteration ends, otherwise the heuristic reports a failure.

3.2 Integer Programming Formulation for the separation problem

The following formulation describes the separation problem:
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[SP]min
∑
si∈S

πiyi (5)

∑
si∈S:δij=1

yi ≥ 1 ∀tj ∈ T (6)

yi + yj ≤ 1 ∀(si, sj) ∈ S × S : γij = 1, i < j (7)

yi ∈ {0, 1} ∀si ∈ S (8)

For each sensor si ∈ S, the binary variable yi will be equal to 1 if the sensor is
chosen to be part of the cover, 0 otherwise. The objective function (5) minimizes
the sum of the dual prices of the chosen sensors. Constraints (6) impose for each
target tj the selection of at least a sensor among those that can cover it, while
constraints (7) make sure that at most a sensor is selected for each conflicting
pair.

As mentioned, [SP] is used within the CG framework to solve the subproblem
to optimality whenever GreedySP fails. If the objective function value is greater
than or equal to 1, the optimality condition has been reached and CG ends,
otherwise the cover found by the model is attractive and CG must be iterated
again.

3.3 Initializing the CG method

We need a procedure to build the set of covers considered by [MP] in the first
iteration of the CG method. In our algorithm, we initialize this set with a single
cover, produced by a variant of GreedySP. Since in this case we do not have
dual prices associated to the sensors, the weights in this variant are computed
as follows:

ωc(si) =

∑
sk∈S γki∑
tj∈Tu

δij
∀si ∈ Sc (9)

That is, in this case the weighting function balances the number of conflicts of
the sensor in the network and the number of uncovered targets that are covered
by it. Note that, since we do not have dual prices, the concept of attractive cover
is not defined for this initialization step, therefore if GreedySP produces a cover,
it is always returned and used to initialize [MP]. If GreedySP fails to build a
cover, we use the [SP] formulation with random dual price values to initialize
[MP].

4 Computational Results

In this section, in order to evaluate the effectiveness of our CG approach that
uses GreedySP (called CG+GSP from now on), we compare it with a version that
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always solves the separation problem exactly by means of the [SP] formulation.
In the following, we will refer to this second version with the name SimpleCG.

Our algorithms were coded in C++, and the tests were executed on a Linux
platform with an Intel Xeon E5-2650 CPU running at 2.30GHz and 128 GB
of RAM. The mathematical formulations embedded in the CG framework were
solved using the Concert library of IBM ILOG CPLEX 12.6.1. All tests were run
in single thread mode, and we fixed a time limit equal to 1 hour for each test.
When a certified optimal solution is not found within this amount of time, the
best solution found is returned and used for our comparisons. In these cases, a
“*” symbol is added near the related values in Tables 1 and 2.

We considered two different groups of instances. The first group was proposed
in [14] for a different variant of the maximum lifetime problem. In this work,
the authors proposed instances with a number of sensors varying in the set
{100, 200, 300, 400, 500}, and 15 or 30 targets. However, here we only considered
instances with a number of sensors greater than or equal to 300, as the smaller
ones resulted to be too easily solvable for the MLIC problem. All sensors have
the same battery duration, normalized to 1 time unit. Sensors and targets are
disposed in a square area with size 500×500. The sensing range (RS) is equal to
either 100 or 125, meaning that any sensor with an euclidean distance within this
value from a given sensor is considered to be covered by it. Additionally, for these
instances we consider a conflict range (RC) equal to either 125 or 175, meaning
that two sensors that are within this distance from each other form a conflicting
pair. There are 4 different instances for each combination of parameters, leading
to 96 instances.

In order to test our approach on more challenging instances, we propose a
second group, generated similarly to the ones in [14]. The new set of instances
have a number of sensors equal to either 750, 1000, or 1250, while all other
parameters are the same as the previous group. Hence, the second group is
composed of 96 instances as well.

The results of the comparison on the first group are reported in Table 1. The
table contains 12 rows divided in two groups of six rows each, associated to the
sensing ranges RS = 100 and RS = 125, respectively. The first two columns
show the number of sensors (|S|) and targets (|T |) in the scenarios. The next 10
columns are divided in two groups associated to the conflict ranges RC = 125
and RC = 175, respectively. Under these columns, we report in each entry an
average value related to a scenario composed of four instances with the same
characteristics. In more detail, we report for each algorithm the lifetime (LF )
rounded to the second decimal digit, the computational time (Time) in seconds
and the percentage gap between these computational times (Gap), evaluated as
Time(SimpleCG)−Time(CG+GSP )

Time(SimpleCG) . When the time gap between the two algorithms

is lower then 5 seconds, we do not report its percentage value, since we consider
it negligible.

On the scenarios with RS = 100 and RC = 125, CG+GSP is always faster
than SimpleCG with a gap value that ranges from about 43% to 92%. However,
both algorithms are very effective on these scenarios, since they are solved to
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RC=125 RC=175
CG+GSP SimpleCG CG+GSP SimpleCG

|S| |T | LF Time LF Time Gap LF Time LF Time Gap
R

S
=

1
0
0

300 15 16.25 0.98 16.25 4.05 13.75 4.57 13.75 6.56
300 30 13.25 1.38 13.25 4.58 9.16 9.35 9.16 9.93
400 15 20.75 0.73 20.75 9.44 92.27% 18.25 12.11 18.25 19.58 38.15%
400 30 19.00 5.41 19.00 13.35 59.48% 14.25 34.84 14.25 36.19
500 15 28.75 4.72 28.75 26.54 82.22% 25.50 42.36 25.50 55.12 23.15%
500 30 26.00 20.49 26.00 35.92 42.96% 19.00 118.05 19.00 122.02

R
S

=
1
2
5

300 15 23.25 0.19 23.25 5.36 96.46% 23.25 3.89 23.25 11.40 65.88%
300 30 18.25 0.36 18.25 5.39 93.32% 18.25 7.17 18.25 10.80
400 15 32.50 0.24 32.50 14.97 98.40% 32.50 5.59 32.50 36.80 84.81%
400 30 27.25 0.31 27.25 16.77 98.15% 26.75 30.48 26.75 40.76 25.22%
500 15 41.25 0.55 41.25 38.28 98.56% 41.25 35.52 41.25 90.10 60.58%
500 30 38.00 3.63 38.00 40.78 91.10% 38.00 85.67 38.00 107.35 20.20%

Table 1. Comparison between CG+GSP and SimpleCG on the smaller instances.

optimality in less than a minute. By increasing the conflict range RC to 175, it
can be observed that computational times increase for both algorithms. Indeed,
while all scenarios are still optimally solved by them, the requested computa-
tional time grows up to about two minutes. On these instances, CG+GSP is
again always faster than SimpleCG; however, percentage gaps are smaller, and
we report them in just 2 out of 6 cases, in which this value ranges from 23%
to 38%. This is due to GreedySP becoming less effective, due to the additional
conflicts on these instances.

By considering the instances with sensing range RS = 125, the computa-
tional times increase for SimpleCG and decrease for CG+GSP. Indeed, on the
scenarios with RS = 125 and RC = 125, the gap values are always higher than
90%, proving that GreedySP is highly effective in finding attractive covers in
these denser instances. By increasing the conflict range to 175, we observe a re-
duction of the gap values with respect to the scenarios with RC = 125. However,
they remain generally significant, up to 84.81%, and the difference between the
computational times of the two algorithms is under 5 seconds only in 1 case out
of 6.

These results suggest that the main factor affecting the complexity of the
problem is the size of the conflict range (and hence the number of conflicts),
and that CG+GSP appears to relevantly outperform SimpleCG. However, this
dataset resulted to be too simple to draw definitive conclusions, since all scenarios
were solved within 123 seconds. For these reasons, we generated the second group
of instances with up to 1250 sensors.

The results on these new instances are reported in Table 2. As expected,
the computational times are higher than the ones required to solve previous
instances, and there are scenarios that are not solved within the time limit. In
more detail, on the scenarios with RS = 100 and RC = 125, CG+GSP requires
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RC=125 RC=175
CG+GSP SimpleCG CG+GSP SimpleCG

|S| |T | LF Time LF Time Gap LF Time LF Time Gap
R

S
=

1
0
0

750 15 70.25 37.46 70.25 429.89 91.29% 68.50 671.88 68.50 977.29 31.25%
750 30 43.50 59.64 43.50 208.32 71.37% 43.00 719.42 43.00 729.30 1.35%
1000 15 60.25 2.53 60.25 814.45 99.69% 60.25 962.01 60.25 1773.15 45.75%
1000 30 52.50 26.90 52.50 668.10 95.97% 49.00 1704.59 49.00 1757.12 2.99%
1250 15 89.75 15.95 89.75 1935.21 99.18% 85.91∗ 2274.69 79.84∗ 3400.97 33.12%
1250 30 57.00 342.85 57.00 1307.43 73.78% 52.75 2365.43 52.75 2500.29 5.39%

R
S

=
1
2
5

750 15 72.25 1.51 72.25 279.57 99.46% 72.25 117.82 72.25 701.84 83.21%
750 30 56.50 2.53 56.50 257.09 99.02% 55.50 419.09 55.50 660.50 36.55%
1000 15 96.75 3.85 96.75 940.66 99.59% 96.75 796.88 96.75 2338.06 65.92%
1000 30 79.25 4.21 79.25 733.95 99.43% 79.00 1360.21 79.00 1958.42 30.55%
1250 15 127.75 8.88 127.75 2393.13 99.63% 127.75 843.91 95.45∗ 3523.17 76.05%
1250 30 68.25 4.99 68.25 1378.17 99.64% 68.25 2035.12 68.25 2569.43 20.79%

Table 2. Comparison between CG+GSP and SimpleCG on the larger instances

up to 342 seconds to solve the problem, while SimpleCG requires 1307 seconds
in the worst case. Percentage gaps range from 71% to over 99%. By increasing
the conflict range to 175, similarly to the results of Table 1, the gap values
decrease and range from 1.35% to 45.75%. In the scenario with 1250 sensors
and 15 targets, both algorithms fail to find all optimal solutions within the
time limit. In more detail, this happens for a single instance of the scenario for
CG+GSP and for 3 out of 4 instances for SimpleCG. As a consequence, the
average solution found by CG+GSP (85.91) is significantly better than the one
of SimpleCG (79.84).

On the scenarios with RS = 125 and RC = 125 the percentage gaps are
always higher than 99%. Indeed, CG+GSP is able to solve these scenarios within
10 seconds, while SimpleCG requires from 257 to 2393 seconds. Overall, for both
the groups of instances, the combination of parameters RS = 125, RC = 125
appears to be the one where CG+GSP has the largest advantage over SimpleCG,
since the smaller conflict ranges and higher sensing ranges allow GreedySP to
find more attractive covers. On the the scenarios with RS = 125 and RC =
175, percentage gaps range from 20.79% and 83.21%. Again SimpleCG fails to
optimally solve 3 instances in the scenario with 1250 sensors and 15 targets,
while CG+GSP solves to optimality all of them. The average solution returned
by SimpleCG for this scenario is equal to 95.45, while the optimal value provided
by CG+GSP is significantly better, being equal to 127.75.

Overall, the results reported in Table 2 show that CG+GSP is often one
order of magnitude faster than SimpleCG, with percentage time gaps higher
than 65% for 15 out of 24 scenarios. Moreover, CG+GSP is more effective, with
a single failure out of 96 instances, as opposed to the 6 failures of SimpleCG.
Finally, in the single scenario in which both algorithms failed, CG+GSP returned
a significantly better solution.
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Fig. 1. Computational time for CG+GSP and SimpleCG, on instances with |S| ≤ 500
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Fig. 2. Computational time for CG+GSP and SimpleCG, on instances with |S| ≥ 750
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Figures 1 and 2 give a graphical representation of the computational time
required by the two algorithms. Again, it can be noticed that the continuous line
(representing CG+GSP) is always below the dotted line (SimpleCG), and that
the gaps are particularly significant in the scenarios with RC=125.

5 Conclusions

In this work we addressed a novel variant of the maximum lifetime problem, that
takes into account the interference issue. We proposed a column generation-based
exact resolution approach, and developed an appropriately designed greedy heuris-
tic to speed up the resolution of the separation problem. Computational results
show that our approach is significantly better than a straightforward column
generation implementation that does not take advantage of the heuristic, result-
ing faster on all the performed tests, often by a significant margin, and finding
a larger number of optimal solutions.
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