
On the Complexity of Rainbow Spanning Forest Problem

Francesco Carrabsa, Carmine Cerronec,∗, Raffaele Cerullia, Selene Silvestrib

aDepartment of Mathematics, University of Salerno Via Giovanni Paolo II n. 132, 84084, Fisciano (SA), Italy.
bDepartment of Computer Science, University of Salerno, Via Giovanni Paolo II n. 132, 84084, Fisciano (SA), Italy.

cDepartment of Biosciences and Territory, University of Molise, C.da Fonte Lappone, 86090 Pesche (IS), Italy.

Abstract

Given a graph G = (V,E, L) and a coloring function ` : E → L, that assigns a color to each

edge of G from a finite color set L, the Rainbow Spanning Forest Problem (RSFP) consists

of finding a rainbow spanning forest of G such that the number of components is minimum.

A spanning forest is rainbow if all its components (trees) are rainbow. A component whose

edges have all different colors is called rainbow component. The RSFP on general graphs

is known to be NP-complete. In this paper we use the 3-SAT Problem to prove that the

RSFP is NP-complete on trees and we prove that the problem is solvable in polynomial

time on paths, cycles and if the optimal solution value is equal to 1. Moreover, we provide

an approximation algorithm for the RSFP on trees and we show that it approximates the

optimal solution within 2.

Keywords: Graph theory, edge-colored graph, rainbow components, approximation

algorithm.

1. Introduction

Given an undirected and edge-colored (labeled) graph G, the Rainbow Spanning Forest

Problem (RSFP) consists of finding a rainbow spanning forest of G having the minimum

number of trees. A spanning forest is rainbow if all its trees are rainbow. A tree is rainbow

if and only if its edges have different colors. The RSFP belongs to a recently studied

class of problems, defined on edge-colored graphs, and is known to be NP-complete [19] on

general graphs. A MIP formulation and a metaheuristic approach are proposed in [4]. The

edge-colored graphs may be used to model many real-world situations in which we want

∗Corresponding author
Email addresses: fcarrabs@unisa.it (Francesco Carrabs), carmine.cerrone@unimol.it (Carmine

Cerrone), raffaele@unisa.it (Raffaele Cerulli), selene.silvestri@gmail.com (Selene Silvestri)

Preprint submitted to Elsevier January 12, 2017

https://doi.org/10.1007/s11590-017-1161-6

to distinguish between different types of connections. For example, in telecommunication

networks there can be different types of communications media (such as optical fiber, coaxial

cable, telephone line), different companies to which the connections belong, or different

transmission frequencies. It is then clear that we may be interested in optimizing this factor

when we are considering the edges to be included in the solution of the problem that we

are going to solve. The RSFP generalizes a well-known problem in the context of edge-

colored graphs, that is, the problem of finding the Spanning Tree of the graph that uses

the minimum number of colors (labels) (Minimum Labeling Spanning Tree, or MLST). The

MLST was introduced by Chang and Shing-Jiuan [12]. They proved it to be NP-complete

and provided an heuristic, the Maximum Vertex Coverage Algorithm (MVCA), as well as

an exact algorithm A∗. Brualdi et al. [2] give conditions on color distributions of the

complete bipartite graph which guarantee the existence of rainbow subgraph, while Suzuki

[21] gives a necessary and sufficient condition for the existence of a rainbow spanning tree

in a graph. Other addressed problems in the same field include the Minimum Labeling

Steiner Problem [11], [14], [15], the Minimum Labeling Spanning Tree Problem [18], [9], the

Minimum Labeling Generalized Forest [3], the Colorful Traveling Salesman Problem [16],

[22], the Generalized Minimum Label Spanning Tree Problem [13], the Label-Constrained

Minimum Spanning Tree Problem [23], the Labeled Maximum Matching Problem [7], the

Maximum Labeled Clique Problem [6], and The Rainbow Cycle Cover Problem [20].

In this paper we prove that the RSFP is NP-complete on trees and we prove that it is

easy to solve on paths, cycles and when the optimal solution value is equal to one, namely

when there exists a rainbow spanning tree in G.

The sequel of the paper is organized as follows. In Section 2 we formally define the

problem and introduce definitions and basic notations. Sections 3 provides the proof of

NP-completeness of the problem on trees. In Section 4 we present three polynomial cases

for the RSFP. Finally, in Section 5 an approximation algorithm, approximating the optimal

solution within 2, is introduced and concluding remarks are given in Section 6.

2. Definitions and Notation

Let G = (V,E, L) be a connected and undirected graph, where V is the set of n vertices,

E is the set of m edges and L a set of l colors. In addition, let ` : E → L be a coloring

function that assigns a color to each edge of G from the color set L and let ¯̀(E ′) = ∪e∈E′`(e),
E ′ ⊆ E. A spanning forest of G is an acyclic subgraph of G containing all vertices of G

and in which any connected component is a tree. A tree of the forest whose edges have all

2

different colors is called rainbow tree. A rainbow spanning forest (rsf) of G is a spanning

forest of the graph such that all trees are rainbow. The Rainbow Spanning Forest Problem

(RSFP) consists of finding a rsf with the least number of rainbow trees. We denote by

F (G) = (V,EF , LF) any rsf of G and by TF (G) = {T1, . . . Tz(F (G))} the set of rainbow trees

of F (G). When no confusion arises, we simply denote them by F and TF , respectively.

Moreover, let z(F (G)) = |V | − |EF (G)| be the number of trees in F (G). According to the

definition of rsf, if Ti = (VTi , ETi , LTi) is a tree of F (G), then |ETi | = |LTi | = |VTi | − 1. The

RSFP consists of finding the rainbow spanning forest F ∗(G) with the minimum number z∗

of rainbow components.

3. RSFP Complexity on Trees

In this section we prove that the RSFP is NP-complete even if the graph is acyclic. To

the best of our knowledge, no proof for the NP-completeness of the RSFP on trees has ever

been put forward.

Theorem 1. The RSFP on edge-colored trees is NP-Complete.

Proof. We prove the theorem by reduction from the 3-SAT Problem. Let φ be our formula
for 3-SAT, written in a conjunctive normal form, containing d literals U = {u1, . . . , ud} and
b clauses C = {c1, . . . , cb}. The decisional version of 3-SAT consists in verifying whether
there exists an assignment of values to U that makes every clause true. We now define,
from the generic instance of 3-SAT, an acyclic graph T = (V,E, L), with a coloring function
of the edges (see the example in Figure 1). At the beginning let the set of the vertices be
V = {r}, where r is the root of the graph T , and let E be the empty set. To each ch ∈ C we
associate a vertex vch and define the edge (r, vch) ∈ E of color ch. Moreover, for each ch ∈ C
we define three vertices h1,ui , h2,uj and h3,uk , where ui, uj and uk are the literals of clause
ch, and three edges (vch , h1,ui), (vch , h2,uj), (vch , h3,uk) to which we associate the same color h.
Note that the edge (vch , hi,ut) is associated with the ith literal of the clause ch. Furthermore
for all hi,ut , we build in the graph T a path Phi,ut , whose first vertex is hi,ut , as follows:

• Phi,ut has length |Nt| if the clause ch contains ut

• Phi,ut has length |Yt| if the clause ch contains ¬ut,

where, for each ut ∈ U , if ut is in the position p̄ of a clause c̄, then the pair (p̄, c̄) belongs to
Yt. Otherwise, if ¬ut is in the position p̄ of a clause c̄, then the pair (p̄, c̄) belongs to Nt. For
instance, in Figure 1, for literal u1 we have Y1 = {(1, 1), (1, 2)} and N1 = {(1, 3)}. More in
detail, for each ut ∈ U and for each ((y1, y2), (n1, n2)), i.e. (y1, y2) ∈ Yt and (n1, n2) ∈ Nt, we
add an edge e to the path Py2y1,ut

and an edge f to the path Pn2
n1,ut

. To e and f we assign

a color a, different from all the colors used until now. Since |Y1| = 2 and |N1| = 1, we have

3

(u1∨u2∨¬u3)∧(u1∨¬u2∨u4)∧(¬u1∨u3∨¬u4)

(a)

(b)

c1
c2 c3

1

1

1 2
2

2
3

3

3

4 4

5

5

6 6

7
7

8 8

r

vc1 vc2

vc3

w1 w2w3

w4

w5 w6

w7

w8

w9 w10

11,u1
12,u2

13,u3
23,u4

22,u2

21,u1
31,u1

32,u3

33,u4

Figure 1: (a) A generic instance of the 3-SAT Problem, and, (b) the corresponding instance of the Bounded
Rainbow Spanning Forest Problem in Acyclic Edge-Colored Graphs.

two pairs associated to u1: ((1, 1), (1, 3)) and ((1, 2), (1, 3)). For ((1, 1), (1, 3)), in Figure 1,
we have (11,u1 , w1) and (31,u1 , w2) in P11,u1

and P31,u1
, respectively, having color 4. Moreover,

for ((1, 2), (1, 3)) we have (21,u1 , w3) and (w2, w4) in P21,u1
and P31,u1

, respectively, having
color 5. Note that since in a same clause cannot be present a literal ut and its negated ¬ut,
each path Phi,ut is always rainbow. Therefore the set of vertices, edges and colors of the tree
T are the following:

• V = {r} ∪ {vch , h1,ui , h2,uj , h3,uk : h = 1, . . . , b} ∪ {wi : i = 1, . . . , 2q̄},

• E = {(r, vch), (vch , h1,ui), (vch , h2,uj), (vch , h3,uk) : h = 1, . . . , b} ∪ {ei : i = 1, . . . , 2q̄},

• L = {ch, h : h = 1, . . . , b} ∪ {i : i = 1, . . . , q̄},

where q̄ =
∑d

t=1 |Yt| × |Nt|. This construction can be accomplished in polynomial time.
We want to show that there is an assignment of values to U that makes every clause true

4

if and only if exists a spanning forest of T using 2b+ 1 rainbow components.
Note that, in order to preserve the rainbow property, at most one of the three edges
(vch , h1,ui), (vch , h2,uj), (vch , h3,uk), associated with each clause ch, for all h ∈ {1, . . . , b},
can appear in a rainbow spanning forest (the three edges are incident to the same vertex vch
and have the same color h). Consider now an assignment of values to U which makes every
clause true. We can define a rainbow spanning forest with 2b + 1 components by selecting
the edges {(r, vch) : h ∈ {1, . . . , b}}, whose colors are all different. Furthermore, for each
clause ch, among (vch , h1,ui), (vch , h2,uj), (vch , h3,uk), we select the edge associated with the
literal having value true in ch. If more than one literal is true, we arbitrarily select only one
of the corresponding edges. Moreover, we select all the edges of the rainbow path Phi,ut , for
all hi,ut . Note that two edges belonging to the rainbow paths have the same color if and
only if they are associated with pairs of literals (L1, L2) such that if L1 = ut, then L2 = ¬ut,
which surely cannot be simultaneously true. Therefore, at least one of the two edges linking
these paths to the vertices associated to the clauses containing the literals, does not belong
to the rainbow spanning forest. This ensures that the two edges belong to different rainbow
components. In total, we do not select 2b edges and therefore we obtain a rainbow spanning
forest with 2b+ 1 components.
Conversely, suppose that there exists a spanning forest with 2b + 1 rainbow components.
As previously observed, edges (vch , h1,ui), (vch , h2,uj), and (vch , h3,uk), h ∈ {1, . . . , b}, have
the same color and are incident to the same vertex vch , therefore at most one of them can
appear in the rainbow spanning forest. Moreover, since we have supposed that exists a
spanning forest with 2b + 1 rainbow components, we are sure that exactly one of them has
to appear in the rainbow spanning forest, otherwise it would be impossible to have the 2b+1
components. This ensures that the root node has to be connected to every clause in a single
component. Note that to accomplish an objective of less 2b+ 1 components is not possible.
Indeed, every time that an edge is removed from T the number of component increases by
one and, as previously shown, to preserve the rainbow property, at least 2b edges have to
be removed. The edges (vch , h1,ui), (vch , h2,uj), and (vch , h3,uk), h ∈ {1, . . . , b} that appear in
the rainbow spanning forest with 2b + 1 components represent an assignment of values to
U , which makes every clause true. 2

4. Polynomial Cases for the RSFP

In this section we prove that the RSFP is polynomially solvable on paths, cycles and

when z = 1, namely when there exists into the graph a rainbow spanning tree.

Lemma 1. Let P = (V,E, L) be a edge-colored path. The RSFP on P can be solved in
linear time.

Proof. Let e1, . . . , em be the sequence of the edges in P . Starting from e1 the algorithm
(summarized in Algorithm 1) visits G according to the previous sequence. As soon as it
meets an edge ek such that `(ek) ∈ ¯̀({e1, . . . , ek−1}), the algorithm removes ek (Algorithm
1 line 5). Let eh be the last edge removed. Until there are edges to visit (Algorithm 1 line

5

1), starting from eh+1 the algorithm visits the remaining sequence of the path and as soon
as it meets an edge eh+k such that `(eh+k) ∈ ¯̀({eh+1, . . . , eh+k−1}), the algorithm removes
eh+k and updates eh. The solution value will be equal to one plus the number of the edges
removed. The algorithm runs in O(n).
Suppose our algorithm does not find an optimal solution, i.e. a spanning forest with the
minimum number of rainbow components. Let α + β be the best solution value provided
by our algorithm, with β > 0. Moreover, let S = (V,ES) be an optimal solution, let α be
the corresponding optimal solution value and let ē1, . . . , ēα−1 be the edges that have been
removed, i.e. the edges belonging to E \ ES. For the sake of simplicity, if i < j, ēi appears
in e1, . . . , em before ēj.
Note that since as soon as our algorithm meets an edge ek such that `(ek) ∈ ¯̀({e1, . . . , ek−1})
it removes ek, this implies that e1, . . . , ek−1 is a rainbow subsequence. Therefore, it is
easy to see that ē1 appears in e1, . . . , em before ek or it is ek. Let t be the number of
edges in ē2, . . . , ēα−1 that appear in e1, . . . , em before ek. If t = 0, S ′ = (V,ES′) with
ES′ = ES \ {ek} ∪ {ē1} is a feasible solution having α rainbow components, otherwise
S ′ = (V,ES′) with ES′ = ES \ {ek} ∪ {ē1, . . . , ē1+t} is a feasible solution having α′ = α − t
rainbow components. By iterating this procedure we prove that S can be easily transformed
into a solution S ′, having at most α rainbow components, that our algorithm would provide,
but this is absurd because we have assumed β > 0. 2

Algorithm 1: pathAlgorithm(P)

Input: edge-colored path P = (V,E, L) with E = {e1, . . . , em}, ES = E, h = 0, k = 2
Output: a rsf S = (V,ES, LS) of P and the last edge ek removed

1 while k ≤ m do
2 if `(ek) /∈ ¯̀({eh+1, . . . , ek−1}) then
3 k = k + 1

4 else
5 ES = ES \ ek, h = k and k = k + 2

6 LS = ¯̀(ES), ek = eh

Corollary 1. Let G = (V,E, L) be a edge-colored cycle. The RSFP on G can be solved in
polynomial time.

Proof. Note that if E contains exactly two edges having the same color, it is sufficient
to remove one of these two edges to obtain an optimal rainbow forest having optimal value
equal to one. Otherwise, for e ∈ E, the algorithm removes edge e, obtaining a path Pe, and
invokes pathAlgorithm(Pe). Let se be the optimal solution value on Pe. It is easy to see that
the optimal solution value for G is equal to min{s1, . . . , sm}. The algorithm runs in O(n2).

2

6

Now we want to prove that the RSFP can be solved in polynomial time when z = 1.

Obviously, it is not possible to obtain this goal by enumerating all the spanning trees of

G. This is because the algorithms to enumerate all the spanning tree of G are pseudo-

polynomial [17].

Given a spanning tree T of G, it is a maximum tree of G if and only if |LT | is maximum.

The following theorem holds:

Theorem 2. [1] The problem of finding a maximum tree T in G is solvable in polynomial
time.

The algorithm of Broersma and Li [1] computes the maximum tree of G in O(n2m) and

the following theorem shows how to use this algorithm to individuate a rainbow spanning

tree in G with the same running time.

Theorem 3. RSFP is solvable in polynomial time if in G there exists a rainbow spanning
tree.

Proof. Given a graph G, let T ′ be the maximum tree of G computed by algorithm of
Broersma and Li. It is easy to see that if |LT ′ | = n− 1 than T ′ is a rainbow spanning tree
of G. 2

5. Approximability for the RSPF on Trees

In this section we provide an approximation algorithm for the RSFP on trees and we

prove that it approximates the optimal solution within 2, i.e. it finds a rsf with at most

2 times the minimum number of rainbow components. Before describing the algorithm,

we need to introduce some notations. Given an edge-colored tree T = (V,E, L), let B =

{b ∈ V : |δ(b)| ≥ 3}, where δ(b) = {(v, u) ∈ E : b = v or b = u}. Moreover, let Pv,w =

(VPv,w , EPv,w , LPv,w) be a path in T from v to w. For any vertex b ∈ B, we call leaf path from

b to w a path Pb,w such that (VPb,w
\ {b}) ⊂ (V \B) and |δ(w)| = 1 and we call internal path

from b to w a path Pb,w such that b, w ∈ B, (VPb,w
\ {b, w}) ⊂ (V \ B). Let α(b) = {Pb,w :

Pb,w is a leaf path from b to w} and let β(b) = {Pb,w : Pb,w is an internal path from b to w}.
Note that for any b ∈ B, |δ(b)| = |α(b)|+ |β(b)|. We can write the set B as

B = BL ∪BI (1)

where BL = {b ∈ B : |β(b)| ≤ 1} and BI = {b ∈ B : |β(b)| > 1}. For instance, in

Figure 2, B = {v1, v5, v6}, more in detail BL = {v5, v6} and BI = {v1}. Moreover, α(v1) =

7

{Pv1,v13 , Pv1,v16}, α(v5) = {Pv5,v14 , Pv5,v15 , Pv5,v19 , Pv5,v20}, α(v6) = {Pv6,v17 , Pv6,v7}, β(v1) =

{Pv1,v5 , Pv1,v6}, β(v5) = {Pv5,v1}, β(v6) = {Pv6,v1}.
The approximation algorithm, that is summarized in Algorithm 5, takes in input an edge-

Figure 2: Edge-colored tree: example.

colored tree T = (V,E, L) and an initial feasible solution S = (VS, ES, LS) with no edges,

i.e. a spanning forest in which each vertex is a component, and therefore ES = LS = ∅.
The algorithm has two main functions: clear and reduce. The function clear, thanks to

pathAlgorithm modifies the tree T and updates the feasible solution S. In particular, while

there exists a leaf path P̄b,w, with b ∈ B, such that P̄b,w is not rainbow (Algorithm 2 line

1), the function clear invokes pathAlgorithm(P̄w,b), i.e. on the path from w to b (Algorithm

2 line 2), and obtains on it an optimal solution (VW , EW , LW). The function pathAlgorithm

returns also the last edge f that it removes from P̄w,b (Algorithm 1 line 6). According to

(VW , EW , LW) and f , it updates the sets E and ES (Algorithm 2 lines 3 and 4). The function

clear returns a new tree T such that, for any b ∈ B and for any Pb,w ∈ α(b), Pb,w is rainbow.

After applying the function clear(T, S) on the graph in Figure 2, we obtain the new tree in

Algorithm 2: clear(T, S)

Output: (T, S)

1 while exists a leaf path P̄b,w in T , with b ∈ B, such that P̄b,w is not rainbow do
2 ((VW , EW , LW), f) = pathAlgorithm(P̄w,b)
3 E = E \ ({e ∈ EP̄w,b

: e appears in P̄w,b before f} ∪ f)

4 ES = ES ∪ {e ∈ EW : e appears in P̄w,b before f}

Figure 3 and a current feasible solution S having ES = {(v3, v8), (v8, v12), (v12, v16), (v9, v13)}.
8

Figure 3: Edge-colored tree: clear(T, S)

The function reduce is invoked only after the function clear, i.e. only on trees such that, for

any b ∈ B and for any Pb,w ∈ α(b), Pb,w is rainbow. This function, given b ∈ B, verifies for

each pair Pb,i, Pb,j ∈ α(b) if the two paths have at least a color in common (Algorithm 3 line

1). If ¯̀(Pb,i)∩ ¯̀(Pb,j) 6= ∅, the function reduce adds the edges e ∈ (EPb,i
∪EPb,j

)\{(b, ī), (b, j̄)}

Algorithm 3: reduce(T, S, b)

Output: (T, S)

1 ∀Pb,i, Pb,j ∈ α(b) if ¯̀(Pb,i) ∩ ¯̀(Pb,j) 6= ∅ then
2 (b, ī) = EPb,i

∩ δ(b) and (b, j̄) = EPb,j
∩ δ(b)

3 ES = ES ∪ ((EPb,i
∪ EPb,j

) \ {(b, ī), (b, j̄)})
4 E = E \ (EPb,i

∪ EPb,j
)

5 merge(α(b))

to the set ES, where (b, ī) and (b, j̄) (Algorithm 3 line 2) are the edges incident to b in Pb,i

and Pb,j, respectively, and deletes both the paths from the graph T (Algorithm 3 lines 3 and

4). Note that, by adding these edges to ES, we are creating two new rainbow components.

In the example in Figure 3, for b = v5, ¯̀(EPv5,v19
) ∩ ¯̀(EPv5,v15

) 6= ∅, therefore, the function

reduce deletes both the paths and updates ES by adding {(v18, v19), (v11, v15)}. In this

example there are no other paths such that ¯̀(Pb,i) ∩ ¯̀(Pb,j) 6= ∅. When there are no more

paths Pb,i, Pb,j ∈ α(b) such that ¯̀(Pb,i) ∩ ¯̀(Pb,j) 6= ∅, the function merge(α(b)), summarized

in Algorithm 4, merges all the rainbow paths Pb,i ∈ α(b) and creates a new path P̄b,u. More

in detail, suppose Pb,i1 , . . . , Pb,is are the s leaf rainbow paths from b that have to be merged.

The function merge creates the path P̄b,u by disconnecting Pb,ij from b and connecting it to

Pb,ij−1
, for j = 2, . . . , s (Algorithm 4 line 3). Note that the order in which we consider the s

9

Algorithm 4: merge(α(b))

Input: α(b) = {Pb,i1 , . . . , Pb,is}, P̄b,u = Pb,i1 , u = i1 and j = 2
Output: P̄b,u

1 while j ≤ s do
2 (b, j̄) = EPb,ij

∩ δ(b)
3 EP̄b,u

= EP̄b,u
∪ {EPb,ij

\ (b, j̄)} ∪ (u, j̄)

4 u = ij, j = j + 1

paths is irrelevant. In the example in Figure 3, the algorithm merges Pv5,v14 and Pv5,v20 . The

tree obtained is shown in Figure 4. The function merge, although modifying the structure

Figure 4: Edge-colored tree: reduce(T, S)

of the tree T , does not affect the solution. In Algorithm 5 line 1, the algorithm invokes the

function clear that returns a new tree T , for any b ∈ B and for any Pb,w ∈ α(b), Pb,w is

rainbow and updates the current feasible solution S. While there exists b ∈ B such that

|β(b)| ≤ 1 (Algorithm 5 line 2), the algorithm invokes the function reduce(T, S, b) (Algorithm

5 line 3). In the tree T , obtained by applying the function reduce, vertex b /∈ B. On this new

tree T the algorithm applies again the function clear (Algorithm 5 line 4). The algorithm

stops when no b ∈ B exists such that |β(b)| ≤ 1. The solution S provided is a rsf.

Before showing that the algorithm approximates the optimal solution within 2, we need some

notations. Given an edge-colored tree T = (E, V, L), let e, f ∈ E such that `(e) = `(f). We

denote P e,f = (VP e,f , EP e,f , LP e,f) the path connecting e and f in T . Such path exists and it

10

Algorithm 5: approximation algorithm for the RSFP on trees

Input: edge-colored tree T = (V,E, L) and initial feasible solution S = (V, ∅, ∅)
Output: a rainbow spanning forest S = (V,ES, LS) of T

1 (T, S) = clear(T, S)
2 while ∃b ∈ B such that |β(b)| ≤ 1 do
3 (T, S) = reduce(T, S, b)
4 (T, S) = clear(T, S)

is unique since T is a tree. It is easy to see that at least one edge of the path P e,f including

e and f , i.e. at least one edge g ∈ EP e,f , cannot belong to any rsf.

Theorem 4. The approximation algorithm for the RSFP on trees finds a rsf with at most
2 times the number of rainbow components on any rsf.

Proof. Before proceeding with the proof, we need the following remark.

Remark 1. Given an edge-colored tree T = (E, V, L), let P ei,fi, i = 1, . . . , k, with `(ei) =
`(fi), be k paths linking ei, fi. If EP eh,fh ∩ EP ej ,fj = ∅, h 6= j, then k + 1 is a lower bound
on the number of components in the optimal rsf of T .

Proof. P ei,fi , i = 1, . . . , k, are edge disjoint, therefore to preserve the rainbow property of
any feasible solution we have to remove at least k edges from T , i.e. one edge from each
path. By removing k edges from a tree, we obtain a forest having k + 1 components.

Our approximation algorithm identifies only disjoint paths. We need to distinguish two
cases:

• paths identified in the function clear ;

• paths identified in the function reduce.

In the function clear, as soon as it meets an edge ek such that `(ek) ∈ ¯̀{eh+1, . . . , ek−1}, with
h ≤ k−2, pathAlgorithm removes ek. It is easy to see that the sequence eh+1, . . . , ek contains
a path P e,f with f = ek, such that `(e) = `(f). Let q be the number of paths P e,f , with
`(e) = `(f) identified in the function clear. Note that these paths are edge disjoint and for
each P e,f the function pathAlgorithm removes one edge. Moreover, note that in the function
reduce, given b ∈ B, if Pb,i, Pb,j ∈ α(b) have at least a color in common, there exist two edges
e ∈ EPb,i

and f ∈ EPb,j
such that `(e) = `(f). The union of the two paths Pb,i, Pb,j contains

the path P e,f , therefore by deleting the two edges belonging to EPb,i
∪EPb,j

and incident to
b, the algorithm is removing two edges from the path P e,f . Note that, if Pb,i, Pb,j ∈ α(b)
have more than one color in common, we consider only one P e,f , with `(e) = `(f), per pair.
Let p be the number of paths P e,f , with `(e) = `(f), identified. It is easy to see that, thanks
to the previous assumption, these paths are edge disjoints. In total the algorithm identifies

11

k = p+ q edge disjoint paths.
Accordingly, the number of components of the rainbow spanning forest that the approxi-
mation algorithm identifies is z = 1 + q + 2p ≤ 1 + 2q + 2p = 1 + 2k < 2(k + 1). Due to
Remark 1, k+1 is a lower bound on the minimum number of rainbow components, therefore
k + 1 ≤ z∗ ≤ z < 2(k + 1), and hence z < 2z∗, where z∗ represents the optimal solution
value.

6. Conclusion

In this paper we proved that RSFP is NP-complete on trees too. Moreover, we have

provided some polynomial cases for the problem and we introduced a 2-approximate algo-

rithm. A possible direction for future works is to develop new approaches based on Carousel

Schema [8] or metaheuristics like a Tabu Search [5, 10].

References

[1] H. Broersma and X. Li. Spanning trees with many or few colors in edge-colored graphs. Graph Theory,

17:259–269, 1997.

[2] R. A. Brualdi and S. Hollingsworth. Multicolored forests in complete bipartite graphs. Discrete Math-

ematics, 240:239–245, 2001.

[3] R.D. Carr, S. Doddi, G. Konjedov, and M. Marathe. On the red-blue set cover problem. In 11th

ACN-SIAM Symposium on Discrete Algorithms, pages 345–353, 2000.

[4] F. Carrabs, C. Cerrone, R. Cerull, and S. Silvestri. The rainbow spanning forest problem. University

of Salerno (submitted for publication).

[5] F. Carrabs, C. Cerrone, and R. Cerulli. A tabu search approach for the circle packing problem. In 2014

17th International Conference on Network-Based Information Systems, pages 165–171. IEEE, 2014.

[6] F. Carrabs, R. Cerulli, and P. Dell’Olmo. A mathematical programming approach for the maximum

labeled clique problem. Procedia-Social and Behavioral Sciences, 108:69–78, 2014.

[7] F. Carrabs, R. Cerulli, and M. Gentili. The labeled maximum matching problem. Computers &

Operations Research, 36:1859–1871, 2009.

[8] C. Cerrone, R. Cerull, and B. Golden. Carousel greedy: a generalized greedy algorithm with applications

in optimization. University of Maryland (submitted for publication).

[9] C. Cerrone, R. Cerulli, and M. Gaudioso. Omega one multi ethnic genetic approach. Optimization

Letters, 10(2):309–324, 2016.

[10] C. Cerrone, R. Cerulli, and M. Gentili. Vehicle-id sensor location for route flow recognition: Models

and algorithms. European Journal of Operational Research, 247(2):618–629, 2015.

[11] R. Cerulli, A. Fink, M. Gentili, and S. Voß. Extensions of the minimum labelling spanning tree problem.

Journal of Telecommunications and Information Technology, 4:39–45, 2006.

[12] R.S. Chang and S.J. Leu. The minimum labeling spanning trees. Information Processing Letters,

63:277–282, 1997.

12

[13] Y. Chen, N. Cornick, A. O. Hall, R. Shajpal, J. Silberholz, I. Yahav, and B. Golden. Comparison of

heuristics for solving the gmlst problem. In Telecommunications Modeling, Policy, and Technology,

pages 191–217. Springer, 2008.

[14] S. Consoli, K. Darby-Dowman, N. Mladenović, and J. A. Moreno-Pérez. Variable neighbourhood search

for the minimum labelling steiner tree problem. Annals of Operations Research, 172:71–96, 2009.

[15] S. Consoli, J. A. Moreno-Pérez, K. Darby-Dowman, and N. Mladenović. Discrete particle swarm

optimization for the minimum labelling steiner tree problem. Natural Computing, 9:29–46, 2010.

[16] N. Jozefowiez, G. Laporte, and F. Semet. A branch-and-cut algorithm for the minimum labeling

hamiltonian cycle problem and two variants. Computers & Operations Research, 38:1534–1542, 2011.

[17] S. Kapoor and H. Ramesh. Algorithms for enumerating all spanning trees of undirected and weighted

graphs. SIAM J. Comput., 24(2),, 24(2):247–265, 1995.

[18] S. Krumke and H. Wirth. On the minimum label spanning tree problem. Information Processing

Letters, 66(2):81–85, 1998.

[19] X. Li and X.Y. Zhang. On the minimum monochromatic or multicolored subgraph partition problems.

Theoretical Computer Science, 385:1–10, 2007.

[20] S. Silvestri, G. Laporte, and R. Cerulli. The rainbow cycle cover problem. Networks, 68:260–270, 2016.

[21] K Suzuki. A necessary and sufficient condition for the existence of a heterochromatic spanning tree in

a graph. Graphs and Combinatorics, 22:261–269, 2006.

[22] Y. Xiong, B. Golden, and E. Wasil. The colorful traveling salesman problem. In Extending the Horizons:

Advances in Computing, Optimization, and Decision Technologies, pages 115–123. Springer, 2007.

[23] Y. Xiongm, B. Golden, E. Wasil, and S. Chen. The label-constrained minimum spanning tree problem.

In Telecommunications Modeling, Policy, and Technology, pages 39–58. Springer, 2008.

13

	Introduction
	Definitions and Notation
	RSFP Complexity on Trees
	Polynomial Cases for the RSFP
	Approximability for the RSPF on Trees
	Conclusion

