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Abstract

In this paper we consider a particular graph-optimization problem. Given an

edge-colored graph and a set of constraints on the sequence of the colors, one

is to find the longest path whose colored edges obey the constraints on the se-

quence of the colors. In the actual formulation, the problem generalizes already

known NP-Complete problems, and, evidently, the alternating path problem in

edge colored graphs. Recent literature has shown several contexts where such

problem may be useful to model interesting applications, and has proposed ex-

act IP models and related algorithms. We extend on these existing models

and extensively test new formulations for the problem, showing how one of the

newly developed model clearly exhibits better performance, allowing to solve at

optimality instances of significant sizes.

Keywords: Edge Colored Graphs, Longest Path, Integer Programming.

1. Introduction

This paper deals with the problem of finding longest paths in edge-colored

graphs with constraints on the color sequence, a generalization of the problem

of finding an alternating path in c-edge-colored graphs, which is, in turn, a
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generalization of the NP-Complete Hamiltonian path problem in non-colored

graphs [11].

Edge-colored graphs play an important role in modelling certain real life

problems, several of them coming from genetic and molecular biology, such as

determining the spatial order of chromosomes [8], constructing physical maps of

DNA sequences (the so-called Double Digest Problem, [15]), and, more recently,

the reconstruction of RNA molecule structure from the correlation signals ob-

tained by Nuclear Magnetic Resonance (NMR). The latter model, originally

studied in [2, 4] for the 2-dimensional case, has been extended to the more

complex case of 3-dimensions in [18] and then in [17], where the problem has

been formalized as Orderly Colored Longest Path Problem (OCLP) and differ-

ent optimization models have been proposed and successfully tested, based on

the search of the longest path on certain expanded graphs.

The use of colors to add another layer of information on graphs has been

formalized long ago, in its two main variants - node colored graphs and edge

colored graphs, and their power in modeling different types of problems has

been extensively discussed (among others, in [6, 7, 10, 12, 13]; more specifically,

the complexity of finding special paths in edge-colored graphs is discussed in

[3]; such problem, as shown later, is deeply connected with the models proposed

in this paper, while in [1] the variants generated by graphs with fixed degree

is discussed. Additional results for edge-colored paths on multigraph is also

discussed in [1]. An overview of the potential role of colored path problems

in applications is given in [16], where, besides extending the capabilities of

the models presented in [17], different potential applications are listed, ranging

from path optimization on grids (city block models, memory arrays, circuit

design), pick-up and delivery problems, communication on networks and secure

transmission, to the knight’s tour problem.

To be noted is also the similarity of OCLP with the Shortest Path Tour

Problem (SPTP) [9], where the latter can be equivalently formulated using

packing constraints in place of the covering ones of the former. Such difference,

albeit it may seem small, induces relevant modelling and solution issues.
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The main contribution of this paper is to extend the set of optimization

models already discussed in the literature for the OCLP problem, investigating

alternative approaches and testing their performances on a large and diverse

body of test problems, accurately generated to evaluate the performances of

the models in different scenarios. The optimization problem indeed can be

tackled from different angles and its solution may leverage, among others, on

background from network flows, job scheduling, polyhedral methods. We can

then conclude that one of the proposed models shows dominating performances

and can thus be considered, at present, as the reference for solving OCLPs.

The paper is organized as follows.

Section 2 provides a formal definition of the OCLP problem that generalizes

the definitions given in the previous literature. In this extension, each edge

may have more than one color. Such simple modification allows to significantly

extend the range of application of this model at a contained computational cost

- as it will be shown later.

In Sections 3, 4, and 5 three alternative formulations and the related so-

lution algorithms are presented. The first, referred to as Expanded Flow For-

mulation, is the most flexible and performing one among those discussed in

[16, 17]; the second one, the Scheduling Based Formulation, is inspired to well-

established approaches in the scheduling literature; the third, referred to as

Compact Flow Formulation, has been specifically designed for OCLP, and is the

one that presents the more interesting performances, as reported in Section 6.

All three formulations pay specific attention to the efficiency of the model and

to the opportunity offered by state-of-the-art MIP solvers to exploit polyhedral

approaches with valid cuts or lazy constraints.

Once again, despite the availability of extraordinarily powerful and mature

softwares, the role of a well designed - or possibly lucky - formulation is not

negligible in the solution of large and complex optimization problems, reminding

us how mathematical optimization modelling may still be an art.

General conclusions are drawn in Section 7.
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Figure 1: (a) A undirected and colored graph G and its color pattern. (b) An orderly colored

path. (c) An infeasible path. (d) A longest orderly colored path of G.

2. Definitions and Notation

Let G(V,E,C) be an undirected and colored graph, where V = {v1, . . . , vn}

is the set of nodes, E = {e1, . . . , em} is the set of edges and C is the set of colors

associated to the edges of G, with |C| ≥ 2. The color pattern O ≤ c1, c2, ..., ck >

is a fixed sequence of the C colors. In Figure 1(a) is shown an undirected and

colored graph G and its color pattern O =< c1, c2, c3 >. A simple path in G is a

path that does not contain repeated vertices. An orderly colored path in G is a

simple path in which the colors of its consecutive edges coincide with the color

pattern O. In Figure 1(b) is depicted an orderly colored path in G while the path

in Figure 1(c) does not respect the color pattern. The Orderly Colored Longest

Path (OCLP) problem consists of finding in G the longest orderly colored path

starting from a source node s. In Figure 1(d) is shown the optimal solution for

the OCLP in G.

In this paper we face a more general version of the OCLP problem in which

neither the starting node nor the starting color are fixed a priori. In addition,

we will allow a color to have more predecessors in the color pattern. According

to this more general version of the problem, the path p =< 5, 7, 6, 3, 2 > is an
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orderly colored path of G (Figure 1a). The new version of the problem is harder

to solve with respect to the original one but it is more suitable for real world

applications.

Let ρ : O → O+ and η : O → O+ be two functions that, given an input

color c, return the set of colors that immediately precede and succeed c in O,

respectively. For instance, according to the color pattern in Figure 1, we have

that ρ(blue) = red and η(blue) = black. Similarly, let us define the function ` :

E+ → O+ that, given an input set of edges, returns the set of colors associated

to these edges.

The set of nodes adjacent to a node u, through an edge of color c, is denoted

by Vc(u). Formally Vc(u) = {v ∈ V : (u, v) ∈ E, `(u, v) = c}. Let Vc = {u ∈

V : Vc(u) 6= ∅} be the set of nodes having at least one outgoing edges of color c.

Finally, given a set of nodes S ⊆ V we define E(S) = {(u, v) ∈ E : u ∈ S, v ∈ S}

and Ec(S) = {(u, v) ∈ E : u ∈ S, v ∈ S, `(u, v) = c}.

Since we use directed graphs in some formulations, we introduce some nota-

tions even for this type of graphs. Given a directed colored graph and a node u

of this graph, we denote by δ+(u) = {(u, v) ∈ E} and δ−(u) = {(w, u) ∈ E} the

set of edges outgoing from and ingoing in u, respectively. Moreover, let δ+
c (u) =

{(u, v) ∈ δ+(u) : `(u, v) = c} and δ−c (u) = {(w, u) ∈ δ−(i) : `(w, u) = c} be the

subset of edges, having color c, outgoing from and ingoing in u.

3. Expanded Flow Formulation

Here we briefly describe the rationale behind a formulation for OCLP already

presented in [16, 17]. For more details, interested readers may refer to the

mentioned references, where the original version of the formulation is referred

to as LPcCP, Longest path in the cyclic c-connected graph problem. We recall

that such formulation has proven to be the most effective among those based

on flows in previous studies and is then here taken as reference.

Figure 2 provides a visual glance of the formulation, by depicting the trans-

formation that undergo the simple OCLP problem represented in Figure 1(a).
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Figure 2: Transformation of the OCLP in Figure 1(a). Each vertex is duplicated in a colored

copy; arcs between the copy of the same node represent allowed color transitions. Each colored

arc connects the copy of the same color of its head and tail.

We assume that the original colored graph is undirected, but the transformation

would be equivalent for directed graphs. Each original vertex is duplicated into

as many colored copies as colors; among the colored copy of the same vertex,

the allowed color transitions are expressed by directed arcs (dashed in grey in

Figure 2). Then, the original colored edges (here, undirected) are represented

in the expanded graph by a pair of direct colored arcs that connects the copy of

the same color of its head and tail. For better readability, we represent the arcs

that connect the same two nodes with different sense with a single edge with an

arrow symbol in both extremes. E.g., the blue edge (2, 5) is translated into the

two blue arcs that connect the blue copy of node 2 with the blue copy of node

5, and vice versa.

The described scheme differs for the source vertex, when present, that does

not get duplicated by colors, but is connected to the properly colored copy of

the nodes connected by the arcs in its star; and for the insertion of a sink node

t, that is connected to all the nodes in the graph with incoming arcs to properly

reproduce the flow mode (such arcs are not reported in the figure to improve

its readability).

The basic idea is that when the flow leaving s and bound to t enters a set

of colored nodes associated with an original vertex, it can use only one arc in

that set and then has to exit. It is easy to see that such a flow would obey any

set of color transition rules that do not form cycles among the c colors. Such
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trick is not sufficient, though, to guarantee a correct formulation for OCLP:

the complete graph can contain cycles and the search for the longest path may

get trapped into augmenting ones. For this reason, the formulation needs to be

completed with cycle elimination constraints, typically in exponential number.

The full optimization model, resulting in a maximum flow formulation with

additional packing and cycle elimination constraints, is named Expanded Flow

Formulation (EFF), and is given below. As customary, we indicate with δ+(v)

(resp. δ−(v)) the set of arcs entering (resp. exiting) node v, and δ(v) = δ+(v)∪

δ−(v).

• original graph Go = (Vo, Eo), with |Vo| = n;

• set V =
⋃n
i=1 Vi, where Vi contains a set of colored nodes associated to

vertex i in Vo;

• source node s, sink node t;

• set E = δ(s)∪ δ(t)∪E∗ ∪E1 ∪ ...∪En, where E∗ is composed of the arcs

replicated from the edges of the original graph, and Ei is composed of the

arcs connecting the nodes in Vi, i ∈ {1, ...n};

• graph G = (V, E);

• Γ, the set of cycles of G;

• xe, binary variable equal to 1 if arc e ∈ E is in the optimal path, and 0

otherwise;

• pe, value of arc e ∈ E (typically, pe = 1, e ∈ E∗, and 0 otherwise).

(EFF) max
∑
e∈E

pexe (1)

subject to:
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∑
e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 0 ∀v ∈ V (2)

∑
e∈δ+(s)

xe = 1 (3)

∑
e∈δ−(t)

xe = 1 (4)

∑
e∈Ev

xe ≤ 1 ∀v ∈ V (5)

∑
e∈δ(v)∩E∗

xe ≤ 1 ∀v ∈ V (6)

∑
e∈C

xe ≤ |C| − 1 ∀C ∈ Γ (7)

xe ∈ {0, 1}, ∀e ∈ E (8)

Above, Constraint (2) imposes the balance of the flow in all nodes of G,

saved for s and t whose role of source and sink is established by Constraint (3)

and (4); Constraint (5) requires that at most one arc is used within each set

Ei, so to guarantee that the color sequence constraints are respected; then we

require, with Constraint (6), that once the flow reaches any copy of the colored

node in set Vi, it does not exit from the very same node to another set Vi,

but rather proceeds to only another color-compatible copy within Vi. Finally,

Constraint (7) represents the elimination of the cycles from the solution. As

said, the enumeration of the cycles in Γ is unpractical. As explained in [17], such

constraints are relaxed and a linear cycle separation oracle is used to separate

cycles as they appear in the optimal solution of the relaxed problems, in a

Branch & Cut scheme.

We finally note that, for the sake of simplicity, the formulation above has

been described for the particular case of a problem where the source node is

given, i.e., the flow must start from a given node. Nevertheless, the more general

setting can be obtained with the insertion of a fictitious source node connected

with outgoing arcs to all nodes in the graph, symmetrically to what is done for

the sink node in Figure 2.
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4. Scheduling Based Formulation

In this section, we introduce a formulation for the OCLP motivated by

scheduling problems referred, in the following, as Scheduling Based Formula-

tion (SBF). As in SBF the length of a longest simple path in G is equals to |V |

then |V | is also the number of positions to be occupied in the path. The idea is

to assign as many nodes of V as possible to the positions of this longest path by

respecting the color pattern. If not all the nodes can be assigned, then we com-

plete the construction of the path by using sink nodes that are different from

the set of proper nodes V . In this way our model always returns a path with

length |V | but the proper nodes in it give us the real solution. For instance, the

graph in Figure 1(a) contains 7 nodes and the optimal orderly colored path of

this graph is < s, 2, 5, 7, 6, 3 > (Figure 3(a)). Our model builds such an optimal

solution by assigning to the nodes < s, 2, 5, 7, 6, 3 > the positions 1, 2, 3, 4, 5, 6,

respectively, and it completes the path by assigning a sink node to the position

7 (Figure 3(b)). Moreover, it assigns the positions 1 and 4 to the color red, the

positions 2 and 5 to the color blue and the position 3 to the color black while

no color is assigned to position 6.

The decision variables are the following:

• xu,k binary variable equal to 1 if node u ∈ V is scheduled at position k,

and 0 otherwise;

• yk binary variable equal to 1 if a sink node is scheduled at position k, and

0 otherwise;

• zc,k binary variable equal to 1 if color c is scheduled at position k, and 0

otherwise; Note that zc,|V | = 0 ,∀c ∈ C.

A complete mathematical programming formulation is presented below:

(SBF) min

|V |∑
k=1

yk (9)
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Figure 3: (a) The optimal orderly colored path of graph depicted in Figure 1(a). (b) The

positions assigned by SBF to the nodes and to the colors according to this orderly colored

path.

subject to:

|V |∑
k=1

xu,k ≤ 1 u ∈ V (10)

yk +
∑
u∈V

xu,k = 1 k = 1, . . . , |V | (11)

yk − yk+1 ≤ 0 k = 1, . . . , |V | − 1 (12)

xu,k + zc,k −
∑

v∈Vc(u)

xv,k+1 ≤ 1 u ∈ V, c ∈ C, k = 1, . . . , |V | − 1 (13)

zc,k + yk +
∑

u∈V \Vc

xu,k ≤ 1 c ∈ C, k = 1, . . . , |V | (14)

yk+1 +
∑
c∈C

zc,k = 1 k = 1, . . . , |V | − 1 (15)

zc,k+1 −
∑

c′∈ρ(c)

zc′,k ≤ 0 c ∈ C, k = 1, . . . , |V | − 2 (16)

xu,k ∈ {0, 1} u ∈ V, k = 1, . . . , |V | (17)

yk ∈ {0, 1} k = 1, . . . , |V | (18)

zc,k ∈ {0, 1} c ∈ C, k = 1, . . . , |V | − 1 (19)

The objective function (9) minimizes the number of sink nodes inside the

orderly colored path that is equivalent to maximizing the number of proper
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nodes into the path. Constraint (10) makes sure that every node u is allocated to

at most one position. Constraint (11) ensures that at every position is assigned

either a sink node or a proper node. Constraint (12) imposes that if a sink

node is assigned to a position k then in every follow-up position k′ > k only

sink nodes can be assigned. Constraint (13) states that if a node u is assigned

position k and a color c is assigned the same position, then in position k + 1

there must be a node v immediately adjacent to u through an edge (u, v) of

color c. As a special case, when |Vc(u)| = 0, Constraint (13) also ensures that if

u is assigned to position k, then color c cannot be assigned to the same position.

Constraint (14) states that at every position k we can at most assign a color c

or a sink node or a node u that does not have an edge with color c. Together

with Constraint (11), Constraint (14) also ensures that if a color c is assigned

at a position k then a node u, with Vc(u) 6= ∅, must be assigned at position k.

Constraint (15) imposes that at every position k either a color is assigned or

the next node must be a sink node. Finally, Constraint (16) ensures that path

respects the required color pattern.

4.1. Observations and tightening constraints

In this section, we introduce new constraints for the SBF by lifting some of

the original constraints.

• If for a particular color c, two nodes u and v′ are connected to same set,

Vc(u), of adjacent nodes then since only one node can take a particular

position, the Constraint (13) can be lifted by adding xv′,k in the lhs. This

can be generalized by adding in the lhs of constraint (13) the variables

xv′,k associated to all the nodes v′ ∈ V such that Vc(v
′) = Vc(u). As an

example, consider the graph in Figure 4(a). Here, both nodes 2 and 4 have

same node 3 connected by the color black. Hence, if we assign position k

to either node 2 or 4 and color ‘black’ at that position then at position

k + 1 we must assign node 3.

The final enhanced version of the constraints is the following:

11



O: color pattern
c1
c2
c3

3

7

6

5

s

2

4

(a)

3

7

6

5

s

2

4

(b)

Figure 4: (a) An example undirected and colored graph G and its color pattern. (b) An

optimal orderly colored path of G.

xu,k +
∑
v′∈V

Vc(v
′)=Vc(u)

xv′,k + zc,k −
∑

v∈Vc(u)

xv,k+1 ≤ 1 u ∈ V, c ∈ C, k = 1, . . . , |V | − 1

(20)

• Let us consider a node v such that Vc(v) 6= ∅ and v /∈
⋃
c′∈ρ(c) Vc′ . In

other words, v is a node with at least one edge with color c but v has no

edges that have a color that is a predecessor of c in color patterns. Let us

denote by ∆c the set of nodes that satisfy this condition, under which it

is possible to add the nodes v ∈ ∆c to the lhs of Constraint (14) thereby

tightening it. As it is always possible to have a node in position 1 that

may not have an edge with color in ρ(c), this enhancement is only valid

for k > 1. Combining this with Constraint (11), the enhanced constraint

essentially says that if a color c is assigned a position k > 1 then to create

a feasible path at position k we must assign a node that has an edge of

color c and also an edge with color in ρ(c). As an example, consider again

the graph in Figure 4(a). Here for color black, nodes 4 and 7 have an

edge with this color but no edge with preceding color blue. Hence, if we

don’t assign sink node and assign color black at any position k > 1 then

node 6 cannot be assigned position k (as it has no edge with color black)
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and nodes 4 and 7 may also not be assigned this position, as they do not

have an edge of preceding color blue. In other words, if nodes 4, 6 or 7

are assigned position k > 1 then color black cannot be assigned the same

position.

Formally, the constraint can be written as follows:

zc,k + yk +
∑

u∈V \Vc

xu,k +
∑
v∈∆c

xv,k ≤ 1 c ∈ C, k = 2, . . . , |V | (21)

• Let v be a node having an edge with color c and no edges that have a color

from η(c). This implies that if we assign to the position k the color c and

to the position k + 1 the node v then after v there must be a sink node.

Following the example from the graph in Figure 4(a), node 3 has no edge

with color red, which is the successor to color black. Hence, if node 2 is

assigned position k with color black at position k. Then, either node 3 or

sink node is assigned position k + 1. In either case, at position k + 2 we

must assign a sink node as node 3 has no edge with color red.

If Γc is the set of nodes that satisfy the previous conditions, the following

new constraint holds:

zc,k +
∑
v∈Γc

xv,k+1 ≤ 1 + yk+2 c ∈ C, k = 1, . . . , |V | − 2 (22)

Above constraint can be further lifted as follows:

zc,k +
∑
v∈Γc

xv,k+1 + 2yk+1 ≤ 1 + yk+2 c ∈ C, k = 1, . . . , |V | − 2 (23)

• As x variables are integers due to equality constraint (11), the integrality

restriction on the y variables can be relaxed.
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• From the above point, since y can only take a value of 0 or 1, it can be also

deduced that due to equality constraint (15),
∑
c∈C

zc,k will be only 0 or 1.

Let us suppose we relax the integrality constraints on the z variables and

consider the case when zc,k is fractional for more than one color, say c1

and c2. As a node can be assigned only one position, Constraints (11) and

(14) together force the assignment in position k of a node u that has edges

with both colors c1 and c2. The Constraint (13) will then have to assign a

node v that has edges with u of different color c1 and c2, which contradicts

the fact that every pair of nodes is connected by a unique color. If only one

of zc,k is fractional then since
∑
c∈C

zc,k is only 0 or 1 it will automatically

take only integer values of either 0 or 1. From this discussion it can be

concluded that the integrality conditions on the z variables can also be

relaxed.

To our surprise, in early computational experiments, the performance of

CPLEX was worst when y and z variables were made continuous. Even

though SBF with continuous variables has much fewer integer variables to

branch on, we feel that when these variables are left as integers, CPLEX

or Gurobi can add some special cuts which can assist in improving the

performance. So, in our final experiments, we left these variables as inte-

gers.

5. Compact Flow Formulation

In this section we introduce a formulation for the OCLP that works on a

new graph G′ derived from the original graph G. More in detail, starting from

the graph G, we build a new directed graph G′ = (V ′, E′, C ′). V ′ contains all

vertices of V , as well as a dummy source s. E′ contains all the edges of E and

the arcs {(s, v) : v ∈ V }; these additional arcs have a new color ĉ such that

ĉ ∈ ρ(c) ∀c ∈ C. Finally, C ′ = C ∪ {ĉ}. Our model will look for the longest

orderly colored path of G′ starting from s. The introduction of a dummy source

node allows us to build orderly colored paths of G that start from any node
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and any color. We refer to this formulation as the Compact Flow Formulation

(CFF).

We use the binary variables yuv equal to 1 if arc (u, v) belongs to the solution

and 0 otherwise. The mathematical model is the following:

(CFF) max
∑

(u,v)∈E′
yuv (24)

subject to:

∑
(w,u)∈δ−(u)

ywu ≤ 1 u ∈ V (25)

∑
(0,v)∈δ+c1 (s)

ysv = 1 (26)

∑
(u,v)∈δ+c (u)

yuv ≤
∑

(w,u)∈δ−
ρ(c)

(u)

ywu u ∈ V, c ∈ `(δ+(u)) (27)

∑
(u,v)∈E(S)

yuv ≤ |S| − 1 S ⊆ V ′, |S| ≥ 3 (28)

The objective function (24) maximizes the number of arcs selected. Con-

straint (25) ensures that each node can have at most one ingoing arc while

Constraint (26) imposes that one edge outgoing from s must be selected. Con-

straint (27) states that any arc outgoing from u and with color c can be selected

only if at least one arc ingoing in u with a color in ρ(c) is selected. Moreover,

these constraints, together with the Constraint (25), ensure that there can be at

most one arc outgoing from any node. Finally, subtours are eliminated through

Constraint (28).

5.1. Valid Inequalities

In this section, we introduce two types of valid inequalities for the OCLP

that speed up the convergence of the model. The first set of inequalities is

derived from the following remarks.
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Remark 1. A trivial upper bound of the length of any simple path in G is

|V | − 1 (Hamiltonian path).

Remark 2. In any orderly colored path of G the number of arcs with the same

color is upper bounded by
⌈
|V |−1
|O|

⌉
.

Proof. From Remark 1 the maximum number of edges composing any orderly

colored path p of G is |V |−1. Moreover, in order to respect the color pattern O,

if the color c ∈ O occurs in the position i of p, its next occurrence in p will be in

the position i+ |O| and so on. Therefore, the maximum number of occurrences

of any color c ∈ O is
⌈
|V |−1
|O|

⌉
. �

From Remarks 2, we derive the following set of valid inequalities:

∑
(u,v)∈Ec(V )

yuv ≤
⌈
|V | − 1

|O|

⌉
c ∈ C (29)

Since the number of these inequalities is equal to |C|, no separation pro-

cedures are applied but they are directly introduced into the CFF model as a

priori cuts.

Remark 3. Since |O| ≥ 2 then two adjacent arcs have always different color in

any orderly colored path.

From Remark 3 we deduce that given a subset S ⊆ V , the maximum number

of arcs with the same color in this subset is
⌊
|S|
2

⌋
. Therefore, the following are

valid inequalities:

∑
(i,j)∈Ec(S)

yij ≤
⌊
|S|
2

⌋
S ⊆ V, |S| ≥ 3, c ∈ O (30)

In Figure 5 is shown (a part of) the relaxed solution of CFF model computed

by CPLEX on the root node. All the edges in this figure have the same color

and the number on each arc represents the value of its variable. Now, let us
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Figure 5: A part of a relaxed solution on the root node on which the valid inequalities (30)

are violated.

consider the triangle composed of nodes 17, 18 and 19. Notice that the subtour

elimination constraints are not invoked on this triangle because the sum of

variable values is around 1.40 and then lower than 2. However, from Remark 3

we know that is possible to select at most one of arcs of this triangle and then, by

introducing the inequalities y17,18 + y18,17 + y17,19 + y19,17 + y18,19 + y19,18 ≤ 1,

we cut away this solution. A similar reasoning holds for the other triangle

composed of nodes 6, 8 and 9.

When |S| is odd, the inequalities (30) are the well-known odd-set inequali-

ties. These inequalities can be separated in exact way by using the algorithm

proposed in [14]. However, since the separation procedure should be carried out

for each color c ∈ C, it becomes too much expensive to use the exact separa-

tion. For this reason, we use a faster approach by separating the inequalities

(30) through the Drop heuristic proposed in [5] for the Heaviest K-Subgraph

problem.

6. Computational tests

In this section we present the results of the computational tests we made to

evaluate the performance of the three models. All the mathematical formula-

tions were coded in C++ and solved using the IBM ILOG CPLEX 12.6.1 solver.

17



All tests were performed in the single thread mode on a machine with an Intel

Xeon E5 processor running at 2.3 GHz and 128 GB of RAM.

The computational tests are carried out on instances with a number of nodes

ranging from 25 to 100, a density ranging from 0.2 to 0.4 and a number of

colors equal to 3, 6, 9 and 12. For each combination of parameters, five different

instances were generated that together represent a scenario. Thus, in total

we had 240 individual instances, grouped in 48 scenarios, which form the Set1

dataset. The name of the instance shows its characteristics and has the following

format: n c density trans seed. The transition parameter (trans) can assume

two values: 0 or 1. When trans = 0 the color pattern states that each color can

be followed by a single other color. All the instances of Set1 have this parameter

equal to zero. In addition, we generated a second set of instances, named Set2,

in which the parameter trans is equal to 1. This means that a color c ∈ C

can be preceded by one or more colors in an orderly colored path. Due to this

characteristic, the instances of Set2 have more feasible solutions to evaluate and

then they result harder to solve. To allow the creation of different transitions

among the colors, the instances of Set2 have at least six colors. Therefore, this

dataset has 180 individual instances grouped in 36 scenarios.

The first comparison of the three models is carried out on the Set1. Table 1

reports the results of this comparison. We fixed a maximum running time equal

to 1 hour for each instance. When a certified optimal solution is not found within

this threshold, the best solution found is returned and used for the comparisons.

Moreover, the solution values that are not proven optimal are marked with a

”*” symbol in the table.

The table is organized as follows. Each line in the table represents a scenario

composed of five instances with the same characteristics, and the results shown

in each line are the average values of these five instances. The first column shows

the name of the scenario while the next three columns report the characteristics

of the instances: the number of nodes (n), the number of edges (m) and the

number of colors (c). Finally, the last six columns report the solution value

(Obj) and the computational time (Time), in seconds, of CFF, EFF and SBF
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CFF EFF SBF

Scenario n m c Obj Time Obj Time Obj Time

25 3 20 0 1 25 57 3 15.0 0.02 15.0 0.23 15.0 4.98

25 3 30 0 21 25 80 3 22.0 0.09 22.0 1.38 22.0 9.63

25 3 40 0 41 25 103 3 23.0 0.64 23.0 8.25 23.0 141.79

25 6 20 0 61 25 58 6 5.0 0.02 5.0 0.28 5.0 0.65

25 6 30 0 81 25 85 6 9.0 0.05 9.0 0.63 9.0 0.26

25 6 40 0 101 25 102 6 13.0 0.43 13.0 1.34 13.0 12.39

25 9 20 0 181 25 57 9 5.0 0.01 5.0 0.37 5.0 0.14

25 9 30 0 201 25 81 9 7.0 0.06 7.0 1.15 7.0 0.88

25 9 40 0 221 25 99 9 7.0 0.08 7.0 1.57 7.0 0.79

25 12 20 0 301 25 59 12 6.0 0.02 6.0 0.65 6.0 0.09

25 12 30 0 321 25 81 12 9.0 0.03 9.0 1.77 9.0 0.13

25 12 40 0 341 25 100 12 9.0 0.18 9.0 2.09 9.0 0.62

50 3 20 0 421 50 215 3 48.0 11.08 48.0 292.80 46.2* 3612.14

50 3 30 0 441 50 325 3 49.0 1.21 49.0 42.05 49.0 146.28

50 3 40 0 461 50 443 3 49.0 1.07 49.0 2.34 49.0 15.07

50 6 20 0 481 50 216 6 27.0 2.69 27.0 402.69 27.0 699.80

50 6 30 0 501 50 335 6 46.0 252.56 41.0* 3601.94 40.6* 3612.18

50 6 40 0 521 50 439 6 49.0 382.49 46.0* 3601.99 47.2* 3612.17

50 9 20 0 601 50 219 9 14.0 1.21 14.0 259.94 14.0 13.40

50 9 30 0 621 50 337 9 34.0 20.77 34.0* 3385.21 34.0* 3612.21

50 9 40 0 641 50 431 9 44.0 416.09 37.0* 3602.03 42.4* 3612.21

50 12 20 0 721 50 221 12 7.0 0.36 7.0 27.56 7.0 25.85

50 12 30 0 741 50 339 12 24.0 5.71 24.0 244.55 24.0 1113.15

50 12 40 0 761 50 450 12 37.0 39.43 35.4* 3602.05 36.6* 3612.25

75 3 20 0 841 75 515 3 74.0 6.24 74.0 89.35 71.4* 3612.22

75 3 30 0 861 75 764 3 74.0 7.17 74.0 29.40 74.0 435.76

75 3 40 0 881 75 1006 3 74.0 0.35 74.0 4.67 74.0 150.88

75 6 20 0 901 75 506 6 68.0* 3610.43 62.0* 3601.97 51.2* 3612.24

75 6 30 0 921 75 753 6 74.0 36.76 60.6* 3602.02 62.2* 3612.26

75 6 40 0 941 75 1004 6 74.0 36.10 71.2* 3601.93 70.8* 3612.27

75 9 20 0 1021 75 516 9 47.0 51.93 30.2* 3602.05 39.8* 3612.64

75 9 30 0 1041 75 757 9 65.0* 3610.66 45.2* 3602.06 48.2* 3612.27

75 9 40 0 1061 75 1009 9 69.0* 3611.20 53.4* 3601.97 58.0* 3612.33

75 12 20 0 1141 75 518 12 27.0 12.42 24.0* 3602.06 26.4* 3612.34

75 12 30 0 1161 75 748 12 57.0 1854.74 33.6* 3602.06 46.4* 3612.35

75 12 40 0 1181 75 994 12 65.0* 3611.25 29.8* 3602.03 51.0* 3612.39

100 3 20 0 1261 100 943 3 99.0 0.94 99.0 53.29 94.6* 3612.30

100 3 30 0 1281 100 1400 3 99.0 0.96 99.0 14.76 98.2* 2366.49

100 3 40 0 1301 100 1819 3 99.0 2.89 99.0 4.91 99.0 0.34

100 6 20 0 1321 100 960 6 95.0* 3611.16 71.8* 3602.01 68.6* 3612.39

100 6 30 0 1341 100 1394 6 99.0 680.17 83.2* 3602.03 86.2* 3612.40

100 6 40 0 1361 100 1826 6 99.0 37.66 92.4* 3602.01 92.8* 3612.48

100 9 20 0 1441 100 944 9 81.0* 3611.05 63.6* 3602.04 46.6* 3612.43

100 9 30 0 1461 100 1398 9 90.0* 3611.42 73.4* 3602.08 67.4* 3612.51

100 9 40 0 1481 100 1830 9 97.0* 3611.55 59.2* 3602.06 82.0* 3612.66

100 12 20 0 1561 100 945 12 64.0 709.38 34.2* 3602.07 35.2* 3612.53

100 12 30 0 1581 100 1392 12 79.4* 3610.62 45.8* 3602.09 56.0* 3612.71

100 12 40 0 1601 100 1817 12 82.0* 3611.50 60.6* 3602.07 66.8* 3612.77

Table 1: Comparison on the Set1 instances.
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models, respectively. For each row, the best Obj value and the corresponding

computation time are in bold.

All the scenarios with 25 nodes are optimally solved by three models, within

the time limit. The required computational time is lower than 1 seconds, 10

seconds and 150 seconds for CFF, EFF and SBF, respectively.

CFF is the only model able to optimally solve all the scenarios with 50 nodes

and, often, it does so in less than one minute. Instead, on the same scenarios,

EFF and SBF fail to find the optimal solution 5 and 6 times, respectively. These

results show that CFF is more efficient than the other two models, but the per-

formance gap will be more evident in the remaining scenarios. On the scenarios

with 75 nodes, CFF did not find the optimal solution 4 times while EFF and

SBF fail to find the optimal solution 9 and 10 times, respectively. It is worth

noting that both EFF and SBF fail on all the scenarios with at least 6 colors and

the failure of CFF occurs on the same scenarios too. From this observation, we

derive that the complexity of the instances increases as the number of colors in-

crease. Regarding the computational time, all the scenarios optimally solved by

CFF have required less than a minute, except for the instance 75 12 30 0 1161.

In general, CFF is much faster than the other two models.

On the largest scenarios with 100 nodes, the optimal solution is found six

times by CFF, three times by EFF and just one time by SBF. Again, we observe

that the difficulties in obtaining the optimal solution experienced by the models

essentially occur in the scenarios with more than 3 colors. We compute the gap

percentage between the best solution value and the solutions found by three

models by using the formula: 100 × best−Obj
best . Since, on the Set1, the best

solution is always found by CFF then the gap percentage for CFF is always

equal to 0% while it is often greater than 10% for both EFF and SBF. In

particular, ruling out the cases in which the best solution is found, the gap

percentage ranges from 3.78% to 54% for EFF and ranges from 0.81% to 45%

for SBF.

To further investigate how the colors affect the complexity of the scenarios,

we defined new color patterns in which each color can be followed by more than
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CFF EFF SBF

Scenario n m c Obj Time Obj Time Obj Time

25 6 20 1 121 25 58 6 7.0 0.03 7.0 0.82 7.0 6.50

25 6 30 1 141 25 85 6 16.0 0.52 16.0 8.17 16.0 12.31

25 6 40 1 161 25 102 6 17.0 0.64 17.0 15.38 17.0 19.94

25 9 20 1 241 25 57 9 11.0 0.02 11.0 2.15 11.0 3.89

25 9 30 1 261 25 81 9 8.0 0.04 8.0 3.06 8.0 2.65

25 9 40 1 281 25 99 9 11.0 0.32 11.0 10.15 11.0 11.71

25 12 20 1 361 25 59 12 5.0 0.02 5.0 0.91 5.0 0.42

25 12 30 1 381 25 81 12 10.0 0.03 10.0 2.34 10.0 8.47

25 12 40 1 401 25 100 12 11.0 0.63 11.0 6.48 11.0 1.55

50 6 20 1 541 50 216 6 40.0 31.85 40.0* 3601.95 33.4* 3612.19

50 6 30 1 561 50 335 6 49.0 1143.41 48.2* 3568.54 41.0* 3612.17

50 6 40 1 581 50 439 6 49.0 0.51 48.2* 3534.30 47.2* 3612.19

50 9 20 1 661 50 219 9 20.0 4.32 19.0* 3602.05 20.0 517.73

50 9 30 1 681 50 337 9 43.0 578.07 39.4* 3601.85 36.0* 3612.18

50 9 40 1 701 50 431 9 44.8* 3610.16 40.0* 3601.48 38.0* 3612.22

50 12 20 1 781 50 221 12 9.0 0.49 9.0 345.83 9.0 11.37

50 12 30 1 801 50 339 12 34.0 37.77 28.0* 3602.03 34.0* 3612.23

50 12 40 1 821 50 450 12 42.0 2616.34 37.0* 3602.02 38.6* 3612.20

75 6 20 1 961 75 506 6 73.0* 3611.28 68.6* 3601.90 50.2* 3612.27

75 6 30 1 981 75 753 6 74.0 2432.78 72.6* 3575.86 61.6* 3612.27

75 6 40 1 1001 75 1004 6 74.0 137.42 73.8* 3449.69 72.8* 3612.28

75 9 20 1 1081 75 516 9 58.0* 3609.43 58.2* 3601.98 40.8* 3612.31

75 9 30 1 1101 75 757 9 64.0* 3610.26 62.6* 3602.05 51.4* 3612.32

75 9 40 1 1121 75 1009 9 68.0* 3611.21 66.6* 3601.83 60.4* 3612.33

75 12 20 1 1201 75 518 12 42.0 209.27 37.4* 3602.06 29.0* 3612.33

75 12 30 1 1221 75 748 12 59.0* 3610.91 42.0* 3602.07 37.8* 3612.40

75 12 40 1 1241 75 994 12 68.0* 3610.68 46.4* 3602.07 48.0* 3612.40

100 6 20 1 1381 100 960 6 98.0* 3611.17 89.8* 3601.93 71.6* 3612.38

100 6 30 1 1401 100 1394 6 98.0* 3611.87 95.0* 3602.00 85.8* 3612.44

100 6 40 1 1421 100 1826 6 99.0 90.75 97.2* 3602.04 93.6* 3612.54

100 9 20 1 1501 100 944 9 81.0* 3611.15 74.8* 3602.00 53.8* 3612.45

100 9 30 1 1521 100 1398 9 93.0* 3611.21 83.4* 3602.03 72.2* 3612.50

100 9 40 1 1541 100 1830 9 97.0* 3611.43 85.6* 3602.04 84.0* 3612.58

100 12 20 1 1621 100 945 12 67.0* 3610.25 47.8* 3602.04 32.0* 3612.57

100 12 30 1 1641 100 1392 12 86.0* 3610.96 71.2* 3602.03 55.0* 3612.67

100 12 40 1 1661 100 1817 12 95.0* 3611.28 70.6* 3602.05 67.0* 3612.78

Table 2: Comparison on the Set2 instances.

one color. The instances of Set2 contain scenarios with this type of patterns.

Table 2 reports the results of the three models on Set2.

All the scenarios with 25 nodes are optimally solved by the three models
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Figure 6: Performance comparison among CFF, EFF and SBF on the Set1 instances (a) and

Set2 instances (b).

in less than 20 seconds. However, the situation changes when considering the

scenarios with 50 nodes, where the performance of EFF and SBF are poorer

than those of CFF.

Only three scenarios with 75 nodes are optimally solved by CFF, while no

scenario is solved at optimality by EFF and SBF. By comparing these results

with the ones of Table 1, it is evident that the instances of Set2 are harder to

solve for all the models. To any extent, CFF seems to perform indeed better:

on the scenarios with 12 colors, the gap value among CFF and EFF ranges from

11% to 32% while the gap value among CFF and SBF ranges from 29% to 35%.

Finally, only one scenario with 100 nodes is optimally solved by CFF, while

none by the other two models. The gap among the solution values is drastically

increased on these instances. Indeed, on the scenarios with 12 colors, the gap

value among CFF and EFF ranges from 17% to 28% and the gap value among

CFF and SBF ranges from 29% to 52%.

Finally, in Figure 6 we represent the results from Table 1 and Table 2 in

a way that better highlights the performance of the models. The horizontal

axis represents the CPU time in seconds and the vertical axis represents the

percentage of scenarios optimally solved within the time limit. This means that

the faster the growth, the better the performance of the model. The blue curve

is associated to CFF, the red curve to EFF and the black curve to SBF.
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Figure 7: Average solution times with different density-color combinations for Set1 (left) and

Set2 (right) instances. Average running times are limited to instances with 25 nodes.

75% of the scenarios are optimally solved by CFF in less than 800 seconds.

Much lower is the percentage of solved scenarios of EFF and SBF. In particular,

EFF optimally solves around 52% of scenarios in less than 500 seconds while

SBF optimally solves around 43% in less than 1200 seconds. It is worth noting

that, within 600 seconds, the percentage of scenarios optimally solved by CFF,

EFF and SBF is 72.92%, 52.08% and 39.58%, respectively.

The results depicted in Figure 6(b) show that the effectiveness of the models

drastically decreases on the Set2. One again, CFF is the best model but, on

this set of instances, the percentage of scenarios optimally solved by it, within

the time limit, decreases from approx. 80% to 45%. Even worse is the situation

for the other two models with a percentage equal to 23% for SBF and to 21%

to EFF.

We additionally analyze the interactions between the number of colors and

the density of the matrix on the solution time. The analysis, limited to problems

with 25 nodes - all easy solvable - and distinguished for problems in Set1 and

problems in Set2, is summarized in Figure 7, where the average solution time

is reported for the different combinations of the number of colors (on the rows)
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and graph densities (on the columns). The 3 left (right) tables are associated

with the results of the 3 algorithms on the Set1 (Set2) instances. The col-

orscale associated with the magnitude of the cells clearly indicated the marked

effect of density on solution times, and moreover how, when density is high, a

smaller number of colors results in longer solution times (this behaviour emerges

particularly for the Set2 instances).

7. Conclusions

In this work we consider the Orderly Colored Longest Path Problem, a spe-

cial case of the longest path on edge-colored graphs, recently considered to model

several real life problems. We evolved the mathematical models already pre-

sented in the literature and compared the best optimization algorithm available

with two new mathematical models, SBF and CFF, that provide improvements

on the state of the art.

The performance of these models is enhanced by introducing a priori cuts,

valid inequalities and strengthen versions of the basic constraints. The compu-

tational results are carried out on several scenarios and show that one of the

three newly developed models outperforms the others both in terms of com-

putational time and quality of the solutions, and could thus be considered the

reference for the optimal solution of Orderly Colored Longest Path Problems.

With respect to future research directions, we intend to further improve

the performance of CFF model by studying new valid inequalities that can

improve the LP relaxation. Moreover, since we observed a drastic reduction of

the performance of models on the Set2 instances, due to the presence of different

transitions among the colors, a future direction of work is the identification of

specific properties or reduction algorithms that can curb the computing time of

our models in instances characterized by non-circular transitions among colors.
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