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Abstract

This paper addresses a variant of the minimum spanning tree prob-
lem in which, given a list of conflicting edges, the primary goal is to
find a spanning tree with the minimum number of conflicting edge
pairs and the secondary goal is to minimize the weight of spanning
trees without conflicts. The problem is NP-hard and it finds appli-
cations in the design of offshore wind farm networks. We propose a
multi ethnic genetic algorithm for the problem in which the fitness
function is designed to simultaneously manage the two goals of the
problem. Moreover, we introduce three local search procedures to
improve the solutions inside the population during the computation.
Computational results performed on benchmark instances reveal that
our algorithm outperforms the other heuristic approach, proposed in
the literature, for this problem.
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1 Introduction

The Minimum Spanning Tree Problem with Conflicting Edge Pairs (MSTC)
is a NP-Hard variant of the classical Minimum Spanning Tree problem. Given
an undirected and edge weighted graph G(V,E, P ), where P is a set of con-
flicting edge pairs, MSTC problem consists in finding a minimum spanning
tree of G without edges in conflict. The problem was introduced by Dar-
mann et al. [7], [8]. In these works, the authors proved that MSTC problem
is NP-Hard and that it is polynomially solvable when all the pairs in P are
disjointed. Another polynomial case for MSTC problem occurs when the
pairs in P satisfy the transitive property ([20]) that is: if {e1, e2} ∈ P and
{e2, e3} ∈ P then even {e1, e3} is in P .

MSTC problem belongs to the class of NP-Hard variants of the spanning
tree problem. Among the others, we find in this class the degree-dependent
spanning tree [5], the generalized spanning tree [9] and the spanning tree
with minimum branch vertices [2], the bounded degree spanning tree [6].

In the literature, there are several optimization problems with conflict
constraints such as the knapsack problem with conflict constraints [15], the
maximum flow problems with disjunctive constraints [16], the bin packing
problem with conflicts [17] and the minimum cost perfect matching with
conflict pair constraints [14].

MSTC problem arises in some real world applications like the design
of an offshore wind farm network. The design of such systems is based
on the connection layout of wind turbines installed, realized through cables
characterized by a certain capacity and a certain cost. Given the capacity
of each cable, the system design begins by performing a clustering of the
turbines that can be connected to a single cable. Defined a cluster of turbines,
the next step consists in connecting them in the cheapest way (thus creating
a spanning tree of minimum cost). The additional request is to carry out
this connection by avoiding overlapped cables ([12]). By considering two
overlapped cables as a conflicting pair, the problem just described coincides
with the MSTC. Another application of MSTC concerns the resolution of
quadratic bottleneck spanning problem (QBSTP) which is defined as follows.
Given a graph G=(V,E), to each couple of edges (e1, e2) ∈ E×E is associated
a weight we1,e2 . QBSTP consists in finding a spanning tree T of G such that
max{we1,e2 : e1, e2 ∈ T} is as small as possible. In [20] the authors show
how to use the MSTC to improve the heuristics for the QBSTP. In [11]
the authors apply the MSTC on road map where some types of movements

2



are forbidden. For instances, in some point of the map can be forbidden
to turn left or right and this constraint can be simulated by using conflict
edges. Finally, another application of MSTC arises in the installation of an
oil pipeline system connecting various countries [7].

Regarding the MSTC resolution, in [20] the authors proposed several
heuristic approaches and two exact algorithms based on Lagrangian relax-
ation. When a conflict free solution is not found, these heuristics return the
number of conflict pairs present in the solutions. In [18] a branch and cut
approach were proposed. This algorithm was based on the concept of conflict
graph Ĝ(E,C) in which each edge of the original graph G is mapped in a
node of Ĝ and there is an edge between two vertices in Ĝ if and only the
corresponding edges in G are in conflict. Moreover, the authors introduced
a preprocessing phase that results very effective on some sets of instances.
Finally, very recently, another branch-and-cut algorithm for MSTC was in-
troduced in [3]. Thanks to a new set of valid inequalities, based on combined
properties belonging to any feasible solution, this last algorithm outperforms
the ones proposed in [18].

It is worth noting that, by definition, the MSTC problem is infeasible on
a graph G when there are not spanning trees without conflicts in G. Rather
than marking an instance as infeasible, we prefer to solve a variant of MSTC
problem in which the primary goal is to minimize the number of conflict
edge pairs in the spanning tree T and, the secondary goal is to minimize the
weight of T , if T has no conflicts. This new variant is named Minimum Con-
flict Weighted Spanning Tree problem (MCWST). It is easy to see that, if
exists, the optimal solution of MSTC problem coincides with the optimal so-
lution of MCWST. This means that by solving MCWST we solve the MSTC
problem too. In this work, we propose a multi ethnic genetic algorithm for
MCWST problem. In particular, we define a fitness function which is able
to manage the two goals of the problem at the same time. Moreover, during
the computation, we apply three local search procedures to improve the so-
lutions within the population. Finally, we compare the multi-ethnic genetic
algorithm with the heuristics proposed in [20] on their benchmark instances.

The rest of the paper is organized as follows. The problem is formally de-
fined in Section 2. The genetic algorithm and the local search procedures are
described in Section 3 and Section 4, respectively. The multi ethnic genetic
framework is described in Section 5. Finally, the computational results are
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presented in Section 6 and some concluding remarks are given in Section 7.

2 Notations and problem definition

Let G(V,E, P ) be an undirected edge weighted graph, where V is the set of
vertices, E the set of edges and P ⊆ E × E is the set of conflict edge pairs.
Formally:

P = {{ei, ej} : ei ∈ E, ej ∈ E, ei and ej are in conflict}

Since the couples in P are not ordered, {ei, ej} and {ej, ei} are the same
couple. We denote by n and m the cardinality of V and E, respectively, and
by wek the non negative weight of the edge ek.

Moreover, ∀ek ∈ E let P(ek, E) = {{ek, ej} ∈ P : ej ∈ E} be the set
of conflict edge pairs containing the edge ek and ∀E ′ ⊆ E let ζ(E ′) =⋃

ek∈E′ P(ek, E
′) be the set of conflict edge pairs induced by edges in E ′.

A spanning tree T (VT , ET ) of G is a connected subgraph of G such that
VT = V , ET ⊆ E and |ET | = n − 1. The weight of T is denoted by W (T )
and it is given by the sum of edges weights in ET while ζ(ET ) represents the
set of conflict edge pairs present in T and |ζ(ET )| the number of conflicts in
T . When |ζ(ET )| = 0, we say that T is conflict free.

Given the graph G depicted in Figure 1(a), two spanning trees T1 and T2
of G are shown in Figure 1(b) and 1(c) with W (T1) = 23 and W (T2) = 20. A
minimum spanning tree (MST) of G is any spanning tree of G with minimum
weight.

The minimum spanning tree problem with conflict constraints (MSTC)
consists in finding a minimum spanning tree T of G without conflicting edge
pairs, that is ∀{ei, ej} ∈ P at most one between ei and ej belongs to ET .
Obviously MSTC problem is infeasible on the graphs where there are not
conflict free spanning trees. For instance, let us consider again graph G
in Figure 1(a) and let P = {{(1, 2), (2, 6)}, {(1, 2), (5, 6)}}. Since it is not
possible to build a conflict free spanning tree of G, with the given set P ,
MSTC is infeasible on G.

In this paper we face a variant of the MSTC, proposed by Zhang et
al. [20], and named Minimum Conflict Weighted Spanning Tree problem
(MCWST). In this variant the primary goal consists in finding an MST of
G having the minimum number of conflicts and, if this last number is equal
to zero, the secondary goal consists in finding a conflict free spanning tree
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Figure 1: (a) A generic graph G. (b) A spanning tree T1 of G with W (T1) =
23. (c) A spanning tree T2 of G with W (T2) = 20

of G with minimum weight. For instance, the trees T1 and T2, depicted
in Figure 1, are two optimal solutions for the MCWST, with |ζ(ET1)| =
|ζ(ET2)| = 1, when P = {{(1, 2), (2, 6)}, {(1, 2), (5, 6)}}. Since these optimal
solutions are not conflict free, their weight is neglected. On the contrary, if
P = {{(1, 2), (2, 6)}}, both T1 and T2 are conflict free but T2 is better than
T1 because W (T2) < W (T1) (secondary goal).

From the definitions of MSTC and MCWST, it is easy to see that:

• T ∗ is an optimal solution of MSTC =⇒ T ∗ is an optimal solution for
MCWST;

• T ∗ is an optimal solution of MCWST and |ζ(ET ∗)| = 0 =⇒ T ∗ is an
optimal solution for MSTC.

According to the previous observations, by addressing the MCWST prob-
lem, we solve even the MSTC problem while, for the instances on which
MSTC problem is infeasible, we try to return a spanning tree with the min-
imum number of conflicts.

3 The Genetic Algorithm

In this section, we introduce our genetic algorithm (GA) we have designed
to solve the MCWST. In Section 5, we describe how GA is embedded within
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a multi ethnic genetic framework to better explore the solution space and to
improve its results.

Genetic algorithms, proposed for the first time by J. Holland in 1975 in
his book Adaptation in Natural and Artificial Systems [10], are a family of
metaheuristics based on the theory of Darwinian natural selection that reg-
ulates the biological evolution. While this theory works on a population of
individuals, a genetic algorithm operates on a population of feasible solu-
tions, called chromosomes, each of them composed of genes. The inefficiency
of enumerating all feasible solutions recommends fixing in advance the size
of solutions space, the initial population, on which the algorithm will act.
The quality of each chromosome is evaluated by the fitness function that
corresponds to the objective function or to a function strictly related to the
objective function. The aim of the genetic algorithm is to find solutions as
close as possible to the optimal one, by combining the chromosomes; this
operation is, usually, carried out by crossover operator, which generates new
chromosomes (children) by exchanging the genetic material (genes) of their
parents. Finally, the mutation operator is applied to the obtained chromo-
somes. This operator randomly changes one or more genes in each child; it
is fundamental to assure the diversity of the children from the parents.

One of the main features of the MSTC is to make it difficult to identify
conflict-free trees, whatever is their cost, especially when the number of con-
flicts in the instance increases. Given this difficulty, we decided to tackle the
problem through a genetic algorithm for two main reasons. The first is that
this type of algorithm, when appropriately designed, assure a good explo-
ration of the solutions space by increasing our chances to find conflict-free
trees. The second reason concerns the cost of the improvement heuristics.
Indeed, these heuristics can be time consuming and then they can be apply-
ing only on a restricted set of solutions rather than on all the solutions met
during the execution of the algorithm. The genetic algorithm provides this
set of solutions, that is the final population, containing the solutions survived
to the evolutionary process. The results reported in Table 5 show that the
application, bounded to the final population only, of these heuristics does
not significantly penalize the performance of our algorithm and, on the other
side, significantly improves the quality of the final solution.

The main elements of our genetic algorithm are described in the next
subsections.
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Figure 2: (a) A graph G. (b) A spanning tree T1 of G. (c) The chromosome
representing T1.

3.1 Chromosome definition and fitness function

The encoding of a feasible solution is the first step of any evolutive algorithm.
In GA each chromosome T represents a spanning tree of G and it is encoded
by using an array with |V | − 1 positions (genes) each one containing an edge
of E (see Figure 2). In the rest of this paper, we will use the terms spanning
tree or chromosome interchangeably.

The quality of each chromosome T is evaluated by a fitness function
f . Since the MCWST problem presents two different goals, we designed a
fitness function that is able to manage both these goals simultaneously but
respecting their priority. More in details, since the primary goal of MCWST
is to minimize the number of conflicts, the lower the number of conflicts into
the chromosome is, the better its fitness value is. Moreover, given two or
more conflict free chromosomes, the secondary goal states that the one with
the lowest weight must have a better fitness value. The fitness function that
satisfies the previous conditions is defined as follows:

f(T ) =

{
|ζ(ET )| if |ζ(ET )| > 0

W (T )−W (Tmax) otherwise
(1)

where W (Tmax) is an upper bound to the weight of any spanning tree of
G. According to Equation (1), the lower the value of the fitness function,
the better the quality of the chromosome.

Note that the fitness value of any chromosome with conflicts is greater
than zero while the fitness value of any conflict free chromosome is negative
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because W (Tmax) > W (T ). As a consequence, any conflict free chromosome
is always better than any chromosome with at least one conflict (primary
goal). Moreover, the lower W (T ) is, the lower its fitness value (secondary
goal) will be.

For instance, let us consider again the graph G in Figure 1(a) with
P={{(1,2),(2,6)}}. An upper bound W (Tmax) can be easily computed by
adding the five highest edge weight of G obtaining W (Tmax) = 28. Accord-
ing to the Equation (1), f(T1) = W (T1) −W (Tmax) = 23 − 28 = −5 while
f(T2) = W (T2) −W (Tmax) = 20 − 28 = −8 and therefore T2 is better than
T1, as expected.

3.2 Initial population

The initial population is composed of SizePop different chromosomes ran-
domly generated. More in details, a random weight is assigned to each edge
of G and then a minimum spanning tree of G is computed by using Prim’s
algorithm. If the chromosome obtained is already inside the population then
it is rejected because no duplications are allowed. The procedure iterates
until either SizePop different chromosomes are found or the threshold maxD
is reached, where maxD denotes the maximum number of duplicate chromo-
somes that can be found before stopping the procedure. When this threshold
is reached, SizePop is updated to the number of different chromosomes found
so far.

The use of the MaxD threshold is necessary because it may happen that
either there are no SizePop different spanning trees inG or it is very expensive
to identify such trees through a random procedure.

3.3 Creation of new chromosomes

Selection procedure. The selection procedure has the aim to ease the repro-
duction of individuals with better fitness and, at the same time, the aim to
preserve the diversity of the population. In our implementation, the selec-
tion of the parents is carried out using a binary tournament strategy. This
strategy consists in selecting randomly two chromosomes from the popula-
tion. The one with the best fitness value is chosen as first parent Tp1. The
same procedure is used to select the second parent Tp2 assuring that Tp2 is
different from Tp1.
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Figure 3: (a) Two spanning trees of G. (b) The subgraph G′ generated by
crossover. (c) The new child chromosome Tc.

Crossover. The crossover operator is used to generate offspring by recom-
bining the genes of selected parents in order to preserve the characteristics
of their genetic heritage. The idea behind our crossover is to build a new
spanning tree, by using the edges of parents, in which the number of conflicts
is lower than the number of conflicts of parents. To this end, the crossover
generates the subgraph G′(V ′, E ′) of G induced by edges of both parents,
i.e. E ′ = ETp1

∪ ETp2
. Then, the operator associates to each edge ei ∈ E ′

a weight equal to the number of conflicts in which ei is involved with the
other edges in E ′, i.e. w(ei) = |P(ei, E

′)|. Finally, the crossover computes a
minimum spanning tree Tc of G′ as new child chromosome.

For instance, let us consider the graph G in Figure 2(a) and its two span-
ning trees, T3 and T4, depicted in Figure 3(a). Moreover, let us suppose that
P = {{(1, 2), (2, 3)}, {(1, 2), (2, 6)}}. From T3 and T4 the crossover builds the
subgraph G′ induced by ET3∪ET4 (Figure 3(b)) and it associates to each edge
ei ∈ E ′ the weight |P(ei, E

′)|. Finally, the crossover computes a minimum
spanning tree of G′ obtaining the tree Tc shown in Figure 3(c).

Mutation. In order to assure that the child chromosome Tc is different
from parents, the mutation operator is applied to it. This operator randomly
selects one edge in E \ETc and introduces this edge in Tc generating a cycle.
To obtain a new tree, one of the edges in this cycle is randomly selected and
removed. In this way, it is assured a differentiation between the child chro-
mosome and the parents, reflecting the natural evolutionary process in which
each genetic algorithm is inspired. This operation is carried out a number
of times equal to 5% of |V |. However, if during the computation a conflict
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free chromosome is found, the mutation immediately stops and returns this
chromosome.

Insertion and Stopping Criteria. If the child chromosome obtained after
the mutation operator is already inside the population then it is rejected.
Otherwise, the child chromosome will replace one of the SizePop/2 worst
chromosomes in the population, selected in a random way. As a consequence,
the size of the population never changes and the best chromosome found,
during the computation, never leaves the population. The genetic algorithm
stops when a fixed number (maxIt) of iterations is reached.

4 Improvement procedures

In order to improve the best solution found by GA, we use three local search
procedures named: Conflicts Reduction Local Search (CR), Weight Reduc-
tion Local Search (WR) and Neighborhood Weight Reduction Local Search
(NWR). These procedures are invoked on all the chromosomes of the final
population. Their aim is either to reduce the conflicts in the chromosomes
or to reduce the weight of the conflict free chromosomes. In the following
subsections the three procedures are described in details.

4.1 Conflicts Reduction Local Search

The CR procedure is designed to reduce the number of conflicts in the chro-
mosomes and then it is invoked only on the chromosomes with at least one
conflict. Given a chromosome T , the first step of the procedure is to identify
the edge ek ∈ ET having the maximum number of conflicts with the other
edges of ET , i.e. ek = argmax

ei∈ET

|P(ei, ET )|.
The procedure removes ek from ET generating a forest composed of two

subtrees T1 and T2. To obtain a new chromosome T ′, CR connects T1 and
T2 by using the edge er ∈ E \ ET where er = argmin

ei∈E\ET

|P(ei, ET \ {ek})|. If

|ζ(ET ′)| < |ζ(ET )| the procedure restart from T ′ otherwise it stops. The new
chromosome obtained by CR, if any, replaces T in the population.
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4.2 Weight Reduction Local Search

The WR procedure is applied only on the conflict free chromosomes and it
tries to minimize their weights without adding conflicts. Given a chromosome
T , with |ζ(ET )| = 0, the procedure starts sorting, in ascending order, the
edges in E \ET according to their weights. Let L be the list of these sorted
edges. At each iteration, the procedure selects from L the next edge ek and if
|P(ek, ET )| ≤ 1, it introduces ek in ET thus generating a cycle in T . In order
to obtain a new chromosome it is necessary to break this cycle by removing
one of its edges. There are two cases to consider here:

• |P(ek, ET )| = 0
Let ej be the edge of the cycle with the maximum weight. Then ej is
removed from ET ∪{ek} yielding a new conflict free chromosome T ′. If
W (T ′) < W (T ) then T ← T ′, L ← {ej} ∪ L \ {ek} and WR restarts
from the beginning of L. Otherwise the procedure selects the next edge
of L.

• |P(ek, ET )| = 1
Let ej be the edge in conflict with ek in ET ∪{ek}. If ej does not belong
to the cycle then ek is removed from the cycle, because no conflicts are
allowed in this phase, and the procedure selects the next edge in L.
On the contrary, if ej belongs to the cycle then it is removed yielding
a new conflict free chromosome T ′. If W (T ′) < W (T ) then T ← T ′,
L← {ej}∪L\{ek} and WR restarts from the beginning of L. Otherwise
the procedure selects the next edge of L.

WR stops when no improvements can be obtained or all the edges in L
have been selected.

4.3 Neighborhood Weight Reduction Local Search

The NWR is another procedure used to reduce the weight of conflict free
chromosome. Given a conflict free chromosome T , the procedure gener-
ates a neighborhood of T as follows. For each edge ek ∈ E \ ET such that
|P(ek, ET )| = 0 or |P(ek, ET )| = 1, NWR inserts ek in ET yielding a cycle.
Now, if |P(ek, ET )| = 0 then the procedure breaks the cycle by removing the
edge ej with maximum weight and it produces a new conflict free chromo-
some Tek . Otherwise, if |P(ek, ET )| = 1, there is an edge ej ∈ ET in conflict
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with ek. If ej belongs to the cycle then NWR removes ej and it produces
a new conflict free chromosome Tek otherwise no new chromosomes can be
obtained in this iteration with the edge ek. Then ek is rejected and a new
iteration is carried out with the next edge of E \ET . After the selection of all

the edges in E \ET , the neighborhood of T is given by: N (T ) =
⋃

ek∈E\ET

Tek .

After the generation of N (T ), NWR selects the chromosome T ′ ∈ N (T ) with
the minimum weight. If W (T ′) < W (T ) then T ← T ′ and NWR generates
the neighborhood of this new chromosome. Otherwise, the procedure stops.

4.4 Local search procedures framework

The three local search procedures described above are applied on the chro-
mosomes of the final population according to the rules shown in the diagram
in Figure 4. More in details, let T ∗ be the best chromosome found by GA
and let T be any chromosome of the final population. The following two
cases are considered:

• |ζ(ET )| = 0
In this case both the procedures, WR and NWR, are invoked on T
yielding two new chromosomes T1 and T2, respectively. If the lowest
fitness between f(T1) and f(T2) is better than f(T ∗) then T ∗ is updated
accordingly.

• |ζ(ET )| > 0
In this case the CR procedure is invoked on T yielding a new chromo-
some T ′. If |ζ(ET ′)| > 0 but f(T ′) < f(T ∗) then we update T ∗ with T ′

and we proceed with the next chromosome into the population. Oth-
erwise, if |ζ(ET ′)| = 0 the same steps of the previous case are carried
out.

5 Multi Ethnic Genetic Approach

The multi ethnic genetic algorithm (Mega) is a technique developed for the
genetic algorithms which is aimed at reducing the probability of remaining
trapped at a local minimum [4]. The main idea behind the algorithm is to
split a starting population in k different sub-populations that, independently,
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evolve in k different environments. The resulting subpopulations are then
recombined and the process is iterated, if necessary. Actually, the idea of
allowing the simultaneously evolve of k different populations was already
adopted in parallel genetic algorithms as the Island Model (see [13, 19]).
However, in Mega each population is characterized by its own fitness function
that is appropriately selected to diversify the evolution and to carry out a
better exploration of the solution space (for more details see [4]).

In the following, we denote by GA(·) the application of our genetic algo-
rithm with the fitness function ·. Figure 5 displays the framework of Mega.

Mega starts from a single population Pt at time t = 0 and it evolves this
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Figure 5: Multi ethnic genetic framework

population by using GA with the fitness function f (equation 1). After this
evolutionary step, the obtained evolved population P̂t is split into k = 3 dif-
ferent sub-populations Pt,1, Pt,2 and Pt,3. Differentiation of the environments
is induced by slightly changing the fitness function for each sub-population.
From f we retrieve three new fitness functions: f1, f2 and f3. Each one of
these functions randomly selects the 20% of edges in ET ∗ and it applies a
penalization on them. More in details, f1 penalizes the selected edges of ET ∗

by doubling their number of conflicts while f2 penalizes them by doubling
their weight. Finally, f3 uses the two previous penalizations by doubling
both the number of conflicts and the weight of selected edges.

Each of the sub-populations Pt,1, Pt,2 and Pt,3, in turn, evolves according
to GA and to a fitness function fi, with i = 1, ..., 3. The three resulting
populations P̂t,1, P̂t,2 and P̂t,3 are merged into a unique population Pt+1.
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Finally, this population is evolved by using GA with f . The best chromosome
T ∗ met during the computation is returned.

After a tuning phase, we set the parameters SizePop to 99 and maxD to
100. We use a variable value for maxIt according to the population on which
GA is invoked. In particular, maxIt is equal to 2000 when GA is invoked
on Pt and 1000 when it is invoked on Pt+1. Regarding the sub-populations,
maxIt is equal to 100 because the size of this population is smaller than the
size of Pt and because this value assures us an appropriate diversification of
the evolutionary process.

6 Computational Results

In this section we present the computational results of the tests we made in
order to evaluate the performance and effectiveness of Mega. The algorithm
was coded in C++ on an OSX platform (Imac mid 2011), running on an
Intel Core i7-2600 3.4 GHz processor with 8 GB of RAM.

Mega was tested on the benchmark instances presented in [20] and was
compared with the tabu search (TS) algorithm proposed in the same paper.
These benchmark instances were generated by using a different value for
nodes, edges and number of conflicts and they are classified into two types:
type 1 and type 2. By construction, there exists at least one conflict free
solution for all type 2 instances while type 1 instances may not have conflict
free solutions. In order to have a fair comparative study, the CPU time
reported in [20] have been scaled according to the Whetstone benchmarks [1].

We now present the results of our tests. The first experiment we carried
out is aimed at verifying the stability of Mega by running the algorithm five
times on each instance and by comparing the best and average values found.
Results are shown in Table 1 that is organized as follows.

The first block of rows is related to instances of Type 1 (instances 1-23)
while the second block is related to instances of type 2 (instances 24-50).
The first four columns report data on the instances: the identifier (id), the
number of nodes (n), the number of edges (m) and the cardinality of P
(p). The following two columns, AvgWeight and AvgConf, show the average
weight and the average number of conflicts computed on the five runs while
the next two columns report the weight (Weight) and the number of conflict
(Conf ) of the best solution found on the five runs. We remind that the best
solution is the one with the minimum number of conflicts and, if this solution
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id n m p AvgWeight AvgConf Weight Conf Gap

T
yp

e
1

1 50 200 199 708 0.0 708 0.0 0.00%
2 50 200 398 770 0.0 770 0.0 0.00%
3 50 200 597 917 0.0 917 0.0 0.00%
4 50 200 995 1365.4 0.0 1336 0.0 0.00%
5 100 300 448 4099.2 0.0 4088 0.0 0.00%
6 100 300 897 - 0.6 6095 0.0 100.00%
7 100 500 1247 4291.2 0.0 4275 0.0 0.00%
8 100 500 2495 6325 0.0 6199 0.0 0.00%
9 100 500 3741 7788 0.0 7665 0.0 0.00%

10 100 300 1344 - 10.4 - 10.0 3.85%
11 100 500 6237 - 9.4 - 8.0 14.89%
12 100 500 12474 - 37.8 - 35.0 7.41%
13 200 600 1797 - 2.2 15029 0.0 100.00%
14 200 600 3594 - 60.0 - 57.0 5.00%
15 200 600 5391 - 143.2 - 142.0 0.84%
16 200 800 3196 22350.8 0.0 22110 0.0 0.00%
17 200 800 6392 - 27.6 - 23.0 16.67%
18 200 800 9588 - 88.6 - 87.0 1.81%
19 200 800 15980 - 177.2 - 172.0 2.93%
20 300 800 3196 - 55.0 - 52.0 5.45%
21 300 1000 4995 - 23.4 - 21.0 10.26%
22 300 1000 9990 - 180.6 - 176.0 2.55%
23 300 1000 14985 - 330.2 - 329.0 0.36%

T
yp

e
2

24 50 200 3903 1636 0.0 1636 0.0 0.00%
25 50 200 4877 2043 0.0 2043 0.0 0.00%
26 50 200 5864 2338 0.0 2338 0.0 0.00%
27 100 300 8609 7434 0.0 7434 0.0 0.00%
28 100 300 10686 7968 0.0 7968 0.0 0.00%
29 100 300 12761 8166 0.0 8166 0.0 0.00%
30 100 500 24740 12652 0.0 12652 0.0 0.00%
31 100 500 30886 11232 0.0 11232 0.0 0.00%
32 100 500 36827 11481 0.0 11481 0.0 0.00%
33 200 400 13660 17728 0.0 17728 0.0 0.00%
34 200 400 17089 18617 0.0 18617 0.0 0.00%
35 200 400 20470 19140 0.0 19140 0.0 0.00%
36 200 600 34504 20716 0.0 20716 0.0 0.00%
37 200 600 42860 18025 0.0 18025 0.0 0.00%
38 200 600 50984 20864 0.0 20864 0.0 0.00%
39 200 800 62625 39895 0.0 39895 0.0 0.00%
40 200 800 78387 37671 0.0 37671 0.0 0.00%
41 200 800 93978 38798 0.0 38798 0.0 0.00%
42 300 600 31000 43721 0.0 43721 0.0 0.00%
43 300 600 38216 44267 0.0 44267 0.0 0.00%
44 300 600 45310 43071 0.0 43071 0.0 0.00%
45 300 800 59600 43125 0.0 43125 0.0 0.00%
46 300 800 74500 42292 0.0 42292 0.0 0.00%
47 300 800 89300 44114 0.0 44114 0.0 0.00%
48 300 1000 96590 71562 0.0 71562 0.0 0.00%
49 300 1000 120500 76345 0.0 76345 0.0 0.00%
50 300 1000 144090 78880 0.0 78880 0.0 0.00%

Table 1: Best and average values found by Mega on the type 1 and type 2
instances.

has zero conflicts, with the minimum weight of the tree. Note that, for the
solutions with conflicts, we do not report the weight because its value loses
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meaning in these cases. Finally, the last column Gap shows the percentage
gap between AvgConf and Conf. This gap is computed with the following
formula: 100× AvgConf−Conf

AvgConf
.

Let us start the comparison on the instance of type 1. The primary goal
is to minimize the number of conflicts. From this point of view, AvgConf
and Conf are both equal to zero on the instances 1-9, except 6, and instance
16. Conf is equal to 0 even on the instances 6 and 13 while AvgConf is equal
to 0.6 and 2.2 on them. This is an acceptable difference. Unfortunately, the
gap values on these last two instances lose meaning because, for any value
greater than zero of AvgConf, this gap is always equal to 100%. On the
remaining 12 instances, Gap is greater than 5% only 5 times. Regarding the
weight values, AvgWeight and Weight have the same value in the first three
instances. The maximum gap value is equal to 2.15% and it occurs in the
instance 4. In all other cases, the percentage gap is lower than 2%.

On all the instances of type 2, the best and average solutions coincide and
these solutions are all conflict free. These results show that type 2 instances
are much easier to solve than type 1 instances. A conclusion already reported
in [20].

Summarizing, from the results of Table 1 we retrieve that on 30 out of
50 instances the best and the average solutions of Mega coincide in terms of
both number of conflicts and weight values. On the remaining 20 instances,
the gap on the number of conflicts is only five times greater than 5%, ruling
out the “special cases” of instances 6 and 13 where the value is 100% because
Conf is equal to zero. Finally, in the few instances where the weight value is
different, this gap is very low. According to these results, we can conclude
that Mega has a good stability level.

In the next three tables, we compare the results of Mega with the tabu
search TS proposed in [20]. Following [20], Table 2 contains the subset of type
1 instances on which the TS found a conflict free solution. Unfortunately,
for instance 6, only the CPU time but not the weight is reported.

The first four columns show the characteristics of the instance as already
mentioned for Table 1. The column Opt/Best reports the optimal solution
value found by mathematical model described in [20] and implemented in
CPLEX. A time limit of 5000 seconds is fixed and whenever CPLEX reaches
this limit, the solution value is reported with the symbol “*”. This means
that CPLEX did not certify the optimality of the solution and the value
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ID n m p Opt/Best TS Mega GapOpt GapTS
Weight Time Weight Time

1 50 200 199 708 711 1.17 708 0.71 0.00% 0.42%
2 50 200 398 770 785 1.13 770 0.68 0.00% 1.91%
3 50 200 597 917 1086 0.98 917 0.63 0.00% 15.56%
4 50 200 995 1324 1629 1.16 1336 0.66 0.91% 17.99%
5 100 300 448 4041 4207 6.33 4088 2.39 1.16% 2.83%
6 100 300 897 6523* - 5.99 6095 1.81 6.56% -
7 100 500 1247 4275 4539 17.71 4275 5.18 0.00% 5.82%
8 100 500 2495 6653* 6812 17.09 6199 5.12 6.82% 9.00%
9 100 500 3741 - 8787 14.94 7665 3.72 - 12.77%

Table 2: Type 1 Problems-Feasible.

reported is an upper bound of the optimal solution. Moreover, if CPLEX
does not find a feasible solution, within the time limit, the symbol “-” is
shown. The next four columns report the weight (Weight) of the tree and
the CPU time (Time), in seconds, of TS and Mega, respectively. Since both
the algorithms always find conflict free solutions on this set of instances, we
do not report a column with the number of conflicts. The last two columns
show the percentage gap between the weight of Mega and the optimal so-
lution (GapOpt) and between the weight of Mega and TS (GapTS ). These

percentage gaps are computed with the formulas: 100× Opt−Mega(Weight)
Opt

and

100× TS(Weight)−Mega(Weight)
TS(Weight)

, respectively.
By comparing the solutions of Mega with the optimal ones, we can see

that our algorithm optimally solves the instances 1, 2, 3 and 7 while GapOpt
is equal to 0.91% and 1.16%, on the instances 4 and 5, respectively. On the
instances 6 and 8, the solution values of Mega are significantly lower than
the upper bounds found by CPLEX. Finally, on the instance 9, Mega finds a
feasible solution in 4 seconds while CPLEX did not in 5000 seconds. These
results prove the effectiveness of Mega because, often, it finds the optimal
solution or a solution very close to the optimal one.

The results of Table 2 show that Mega overcomes TS in terms of com-
putational time and solution quality. Indeed, the solutions found by Mega
are always better than the solutions found by TS with a percentage gap that
ranges from 0.42% (instance 1) to 17.99% (instance 4). In particular, on 5
out of 8 instances GapTS is greater than 5.8%. Finally, TS never finds an
optimal solution while Mega does it four times. The computational time
spent on these instances is low for both algorithms but Mega is always faster
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id n m p TS Mega Gap
Conf Time Conf Time

10 100 300 1344 13 6.77 10 2.69 23.08%
11 100 500 6237 11 15.17 8 4.98 27.27%
12 100 500 12474 41 14.64 35 6.68 14.63%

13 200 600 1797 2 72.48 0 12.23 100.00%
14 200 600 3594 67 70.24 57 21.71 14.93%
15 200 600 5391 149 80.12 142 29.43 4.70%
16 200 800 3196 2 105.21 0 23.42 100.00%
17 200 800 6392 39 98.01 23 28.20 41.03%
18 200 800 9588 95 97.10 87 35.32 8.42%
19 200 800 15980 178 104.93 172 44.48 3.37%

20 300 800 3196 63 239.63 52 62.68 17.46%
21 300 1000 4995 38 303.04 21 83.68 44.74%
22 300 1000 9990 207 345.25 176 117.58 14.98%
23 300 1000 14985 351 381.28 329 134.42 6.27%

Avg 89.7 138.1 79.4 43.4

Table 3: Type 1 Problems-Feasible Unknown.

than TS.
Table 3 shows the results of GA and TS on the remaining type 1 in-

stances on which TS never finds conflict free solutions. The first four columns
show the characteristics of the instance. The next four columns report the
number of conflicts (Conf ) and the CPU time (Time) of TS and Mega, re-
spectively. The column Gap shows the percentage gap between the Conf
values of two algorithms. This percentage gap is computed with the formula
100× TS(Conf)−Mega(Conf)

TS(Conf)
.

We remind that for the type 1 instances it is not guaranteed the presence
of a conflict free spanning tree. However, Mega certified the presence of a
conflict free solution on two of these instances (13 and 16) while TS finds
solutions with two conflicts on these instances. Behind these two cases, it is
evident that Mega is more effective than TS because it always finds better
solutions. Ruling out the instances 13 and 16, on the remaining 12 instances
the Gap value ranges from 3.37% to the 44.74% and this gap is 8 times
greater than 14%.

Regarding the performance, Mega is always faster than TS. More in de-
tails, Mega solves all the instances up to 200 nodes in less than a minute
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id n m p Opt TS Mega Gap
T

yp
e

2

24 50 200 3903 1636 1.32 0.46 65.15%
25 50 200 4877 2043 1.93 0.47 75.69%
26 50 200 5864 2338 1.56 0.51 67.36%

27 100 300 8609 7434 8.03 1.88 76.58%
28 100 300 10686 7968 7.47 1.68 77.51%
29 100 300 12761 8166 7.88 1.72 78.18%
30 100 500 24740 12652 19.29 3.30 82.90%
31 100 500 30886 11232 16.77 3.48 79.24%
32 100 500 36827 11481 15.16 3.51 76.85%

33 200 400 13660 17728 30.27 7.25 76.05%
34 200 400 17089 18617 38.63 7.49 80.61%
35 200 400 20470 19140 26.64 7.40 72.22%
36 200 600 34504 20716 82.49 11.17 86.46%
37 200 600 42860 18025 96.16 11.35 88.20%
38 200 600 50984 20864 122.67 12.38 89.91%
39 200 800 62625 39895 117.33 16.35 86.07%
40 200 800 78387 37671 106.52 15.70 85.26%
41 200 800 93978 38798 105.42 16.02 84.80%

42 300 600 31000 43721 112.03 18.61 83.39%
43 300 600 38216 44267 153.88 21.28 86.17%
44 300 600 45310 43071 98.99 24.32 75.43%
45 300 800 59600 43125 214.50 31.86 85.15%
46 300 800 74500 42292 191.63 34.31 82.10%
47 300 800 89300 44114 245.12 34.25 86.03%
48 300 1000 96590 71562 301.27 39.81 86.79%
49 300 1000 120500 76345 287.49 31.60 89.01%
50 300 1000 144090 78880 325.16 36.11 88.89%

Avg 101.32 14.60

Table 4: CPU Time of TS and Mega on the Type 2 instances.

while, in the same time, TS solves only the first three instances. The maxi-
mum time spent by Mega is 135 seconds on the instance 23 while TS requires
381 seconds on the same instance. According to the average values reported
on the last line of the table, we can state that Mega is three times faster than
TS and the solutions provided by Mega are 11.5% better than the solutions
of TS.

The last comparison is carried out on the type 2 instances and the results
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Figure 6: Performance comparison of TS vs Mega from the results of Table 4.

are shown in Table 4. On these instances both the algorithms always find
the optimal solution. All these optimal solutions are conflict free and their
weight is reported into the column Opt. For this reason, we compare only
the CPU times in this table. The first four columns are the same as the
previous table. The next three columns report the optimal weight (Opt) and
the CPU time of TS and Mega, respectively. Finally, the column Gap shows
the percentage gap values of the CPU times.

It is evident from the values of column Mega that type 2 instances are
easier to solve than type 1 instances because all these instances are optimally
solved in less than 37 seconds. Once again, Mega results are always generated
faster than these generated by TS with a percentage gap that is always greater
than 65%. In particular, this gap grows as the size of instance grows. Indeed,
on the instances with 200 or more nodes Gap is almost always greater than
80%. The average values reported on the last line of the table show the
relevant difference between the two algorithms from the performance point
of view.

In Figure 6 we represent the results of Table 4 in a way that better
highlights the performance of two algorithms. The horizontal axis represents
the CPU time in seconds and the vertical axis represents the percentage
of instances solved within a fixed CPU time. This means that the faster
the curve grows, the better the performance of the algorithm is. The blue
curve is associated with Mega and the red curve with TS. It is evident from
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this figure that the blue curve grows much faster than the red curve. Indeed,
Mega reaches the 100% of instances solved in around 36 seconds. In the same
time (36 seconds) TS solves around 45% of the instances while it requires
326 seconds to reach the 100% of solved instances.

Finally, in order to highlight the impact of improvement procedures on
the performance and effectiveness of Mega, we implemented a version of
Mega without these procedures and we named it NoImpr. Table 5 contains
the results of the comparison between Mega and NoImpr. The first block of
rows is related to instances of Type 1 (instances 1-23) while the second block
is related to instances of type 2 (instances 24-50). The first four columns
report data on the instances. The following six columns report the aver-
age weight (AvgWeight), the average number of conflicts (AvgConf ) and the
average computational time (AvgTime) of Mega and NoImpr, respectively.
Regarding the effectiveness of these two algorithms, it is obvious that the
solutions of Mega are always better than or equal to the solution of NoImpr.
However, if we focus the attention on the instances where both the algo-
rithms find conflict free solutions (id 1-5,7,8,24-32,40,44), we discover that
the percentage gap of the solution values is lower than 2%. This means that
the improvement procedures do not produce a significant improvement on
these instances. The real contribution carried out by improvement proce-
dures concerns the capacity of significantly reducing the number of conflicts
present in a solution. Indeed, Mega finds a solution conflict free 36 times
while NoImpr finds only 16 conflict free solutions. In particular, for all the
27 type 2 instances NoImpr provides a conflict free solution while NoImpr
does that only 11 times. By comparing the values of AvgConf columns it is
easy to see that effectiveness of the improvement procedures regarding the
reduction of the conflicts. In particular, on the instances where both the
algorithms do not find a conflict free solution (id 6,12-17,19-25), the percent-
age gap between the number of conflicts ranges from 6.88% (23) to the 70%
(6 and 13). The only drawback derived from the application of improvement
procedures is the increment of the computational time. It is evident from
the column AvgTime that NoImpr is significantly faster than Megaİndeed,
in the worst case, NoImpr requires 21 seconds (21) while Mega requires 141
seconds (23). However, since the time requires by Mega is always lower than
two and half minutes we are satisfied by its performance and, in particular,
by the quality of the solutions that this additional time provides us with
respect to NoImpr.
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MEGA NoImpr
id n m p AvgWeight AvgConf AvgTime AvgWeight AvgConf AvgTime

T
yp

e
1

1 50 200 199 708 0.0 0.7 708 0.0 0.5
2 50 200 398 770 0.0 0.7 770 0.0 0.5
3 50 200 597 917 0.0 0.6 917 0.0 0.5
4 50 200 995 1365.4 0.0 0.6 1388 0.0 0.5
5 100 300 448 4099.2 0.0 2.4 4116.8 0.0 1.5
6 100 300 897 - 0.6 1.9 - 2.0 1.3
7 100 500 1247 4291.2 0.0 5.3 4329.8 0.0 2.6
8 100 500 2495 6325 0.0 5.0 6427.2 0.0 2.2
9 100 500 3741 7788 0.0 3.2 - 2.2 2.0

10 100 300 1344 - 10.4 2.9 - 13.2 1.2
11 100 500 6237 - 9.4 5.0 - 15.2 1.8
12 100 500 12474 - 37.8 6.9 - 42.2 1.6
13 200 600 1797 - 2.2 12.6 - 7.4 7.3
14 200 600 3594 - 60.0 24.0 - 73.2 5.5
15 200 600 5391 - 143.2 31.6 - 157.6 4.7
16 200 800 3196 22350.8 0.0 22.2 - 0.4 9.9
17 200 800 6392 - 27.6 28.4 - 38.4 7.5
18 200 800 9588 - 88.6 38.3 - 104.6 6.0
19 200 800 15980 - 177.2 48.0 - 194.4 5.3
20 300 800 3196 - 55.0 62.8 - 66.8 16.8
21 300 1000 4995 - 23.4 79.3 - 39.2 21.0
22 300 1000 9990 - 180.6 119.1 - 200.6 15.8
23 300 1000 14985 - 330.2 141.3 - 354.6 13.8

T
yp

e
2

24 50 200 3903 1636 0.0 0.5 1636 0.0 0.4
25 50 200 4877 2043 0.0 0.5 2043 0.0 0.4
26 50 200 5864 2338 0.0 0.6 2338 0.0 0.4
27 100 300 8609 7434 0.0 1.9 7479 0.0 1.2
28 100 300 10686 7968 0.0 1.8 8016.4 0.0 1.1
29 100 300 12761 8166 0.0 1.9 8181.4 0.0 1.1
30 100 500 24740 12652 0.0 3.4 12793.2 0.0 1.8
31 100 500 30886 11232 0.0 3.6 11281.2 0.0 1.9
32 100 500 36827 11481 0.0 3.6 11580.6 0.0 1.9
33 200 400 13660 17728 0.0 7.7 - 0.8 4.1
34 200 400 17089 18617 0.0 7.7 - 0.4 4.2
35 200 400 20470 19140 0.0 7.6 - 2.0 4.3
36 200 600 34504 20716 0.0 11.6 - 2.6 5.5
37 200 600 42860 18025 0.0 12.0 - 13.2 5.8
38 200 600 50984 20864 0.0 12.5 - 5.4 6.1
39 200 800 62625 39895 0.0 16.7 - 2.4 6.9
40 200 800 78387 37671 0.0 15.9 38307.8 0.0 7.1
41 200 800 93978 38798 0.0 17.3 - 4.0 7.6
42 300 600 31000 43721 0.0 19.2 - 13.0 12.5
43 300 600 38216 44267 0.0 22.3 - 0.8 13.2
44 300 600 45310 43071 0.0 24.6 43434.4 0.0 14.2
45 300 800 59600 43125 0.0 32.7 - 2.4 15.7
46 300 800 74500 42292 0.0 35.6 - 15.6 16.4
47 300 800 89300 44114 0.0 35.4 - 30.2 17.1
48 300 1000 96590 71562 0.0 41.5 - 8.4 17.9
49 300 1000 120500 76345 0.0 33.4 - 16.4 18.9
50 300 1000 144090 78880 0.0 36.9 - 17.6 20.8

Table 5: Comparison between Mega and NoImpr.
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7 Conclusions

In this paper, we studied the minimum conflict weighted spanning tree prob-
lem, and we developed a genetic algorithm to solve it and three local search
procedures to improve the quality of the solution found. To obtain a better
exploration of the solution space, we embedded the genetic algorithm in a
multi ethnic genetic framework.

The computational results show that Mega often finds the optimal so-
lution or a solution close to the optimal one. Moreover, it found two new
conflict free solutions with respect to the best known solutions in the lit-
erature. Finally, Mega significantly outperforms the tabu search heuristic,
proposed in the literature, both in terms of computational time and quality
of the solutions found.
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