
RAIRO Operations Research
Will be set by the publisher

A REDUCTION HEURISTIC FOR THE ALL-COLORS SHORTEST

PATH PROBLEM

Francesco Carrabs1, Raffaele Cerulli1 and Andrea Raiconi1

Abstract. The All-Colors Shortest Path is a recently introduced NP-Hard optimization
problem, in which a color is assigned to each vertex of an edge weighted graph, and
the aim is to find the shortest path spanning all colors. The solution path can be not
simple, that is it is possible to visit multiple times the same vertices if it is a convenient
choice. The starting vertex can be constrained (ACSP) or not (ACSP-UE). We propose
a reduction heuristic based on the transformation of any ACSP-UE instance into an
Equality Generalized Traveling Salesman Problem one. Computational results show the
algorithm to outperform the best previously known one.

Keywords: All-Colors Shortest Path Problem, Equality Generalized Traveling Salesman
Problem, E-GTSP, Heuristic

Introduction

The All-Colors Shortest Path (ACSP) is a recently introduced combinatorial optimization prob-
lem. Given an undirected and edge-weighted graph, a logical attribute (defined color) is assigned
to each of its vertices. The aim is to find a minimum-weight path, starting from a predefined source
vertex, that spans at least a vertex for each color. Note that such a path could be non-simple,
given that depending on the structure of the input graph, it may contain multiple occurrences of
the same vertex. Multiple vertices for some colors may also be traversed.

The use of colors to add another layer of information on graphs has been formalized long ago, in
its two main variants - vertex colored graphs and edge colored graphs, and their power in modeling
different types of problems has been extensively discussed. In particular, the problem of finding
special paths in edge colored graphs is discussed in [3], [4], [6].

The problem has several applications (see for instance [2], [5], [7]). In particular, it is suited to
model path planning for routes on network topologies (such as urban roads) in which crossing the
same location multiple times may be convenient or even necessary. We can consider, for instance,
a problem related to the distribution or collection of items. In this scenario, vertices corresponding

...

1 Department of Mathematics, University of Salerno. Email: {fcarrabs,raffaele,araiconi}@unisa.it

© EDP Sciences 2001

2 TITLE WILL BE SET BY THE PUBLISHER

to the same color represent a natural way to model alternative stores or deposits where each class
of items can be picked up or delivered. Alternatively, colors may represent alternative candidate
locations in which such facilities may be constructed. In an outdoor exploration scenario, a mobile
unit may have to collect samples or readings related to various terrain types, or other environmental
conditions that can be found in sub-regions of a geographical area of interest. In this case, sub-
regions with the same features would be marked by the same color. Finally, we note that in [1] the
problem was linked to the modeling of optimal routes of a mobile beacon used to aid trilateration
in a wireless sensor network offering a localization service.

ACSP was first proposed in [5]. In this work, the problem was proven to be NP-Hard and
not approximable within a constant factor unless P = NP . Furthermore, the authors proposed
an ILP formulation and six heuristics. In more detail, they presented three metaheuristics, using
the Simulated Annealing, Ant Colony Optimization and Genetic paradigms respectively, and three
iterative rounding heuristics based on the LP relaxation of the proposed formulation. In [2] the
authors analyzed ACSP in the case in which the input graph is a tree. They proved that the
problem remains difficult, and presented specialized heuristics.

In [7] the authors introduced a variant of ACSP named, All-Colors Shortest Path with Un-
constrained Endpoints (ACSP-UE), in which the source vertex is unspecified, meaning that both
endpoints may correspond to any vertex of the graph. The authors proposed a mathematical for-
mulation and a Variable Neighborhood Search (VNS) metaheuristic, adaptable to solve both ACSP
and ACSP-UE with simple modifications. The VNS algorithm was experimentally proven to out-
perform all algorithms proposed in [5] on their proposed dataset for ACSP. Furthermore, a new,
larger dataset was created to test the performances of the VNS algorithm for ACSP-UE. A key
concept underlying this algorithm is the one of high-level solution representation, which is resumed
in Section 1. Furthermore, the authors provided a polynomial-time transformation from each of
the two problems to the other, such that the optimal solution for ACSP (resp. ACSP-UE) can be
trivially obtained from an optimal solution for ACSP-UE (resp. ACSP) on an appropriately built
graph.

In this work, we prove that any ACSP-UE instance can be transformed, again in polynomial
time, into a symmetric Equality Generalized Traveling Salesman Problem (E-GTSP, see [9]) one.
The transformation takes advantage of the high-level solution concept. In particular, we show that
from any feasible (resp. optimal) E-GTSP solution for the transformed problem we can easily derive
a feasible (resp. optimal) ACSP-UE solution for the original one, with identical cost. Note that,
while we focus on the ACSP-UE problem, the transformation from ACSP to ACSP-UE proposed
in [7] also suggests a possible transformation from ACSP to E-GTSP.

The E-GTSP problem is a variant of the well-known symmetric Traveling Salesman Problem
(TSP), in which vertices are partitioned into clusters, and the tour corresponding to any feasible
solution has to include exactly one vertex for each cluster. In the symmetric Generalized Traveling
Salesman Problem (GTSP) variant, the solution may possibly contain multiple vertices for each
cluster. In the paper, we will always refer to the symmetric versions of these problems unless
differently specified.

Both GTSP and E-GTSP are NP-Hard, since they contain TSP in the special case in which all
clusters are singletons. Furthermore, the two problems are equivalent when the edge costs of the
input graph satisfy the triangle inequality; indeed, in this case the optimal GTSP solution always
contains exactly one vertex for each cluster (see [10]).

TITLE WILL BE SET BY THE PUBLISHER 3

E-GTSP and GTSP have been both widely studied in the literature; see for instance [8], [9], [10],
[14], [15], [17], [18], [19]. A heuristic method with remarkable performances for E-GTSP, called
GLKH, was proposed in [13].

In this paper we propose a general resolution framework for ACSP-UE that involves the trans-
formation of the input instance into an E-GTSP one and the resolution of the resulting problem
with an appropriate algorithm. In particular, we show that when GLKH is used for this step, an
effective heuristic for ACSP-UE can be obtained. Indeed, computational results show that this
approach outperforms the VNS algorithm proposed in [7] in terms of both computational time and
solution quality.

The rest of the work is organized as follows. A formal definition of ACSP-UE is provided in
Section 1, along with a description of the concept of high-level solution and some related prop-
erties. The transformation from ACSP-UE to E-GTSP is described in Section 2. The proposed
algorithm, based on this transformation, is discussed in Section 3. Section 4 resumes the results of
our computational experiments, while final remarks are contained in Section 5.

1. Problem definition and properties

ACSP-UE is defined on connected, undirected, edge-weighted and vertex-colored graphs. Let
G = (V,E,C) be such a graph. Each vertex belonging to V = {v1, . . . , vn} is assigned to a color
belonging to C = {c1, . . . , ck} (k ≤ n), while a positive weight ω(ei) ∈ R+ is associated to every
edge ei belonging to E = {e1, . . . , em}.

The ACSP-UE objective is to find a path p = [vp1 , . . . , v
p
h] in G (that is, {vpi , v

p
i+1} ∈ E ∀i ∈

{1, . . . , h− 1}), such that the sum of the weights of its edges is minimized, and at least a vertex is
traversed for each color of C.

As mentioned in the Introduction, feasible solutions for ACSP-UE do not contain a predefined
number of vertices and edges, since they can correspond to non-simple paths with possibly multiple
vertices for each color. However, a compact, fixed-length representation for any ACSP-UE solution
was introduced in [7]. In more detail, given the solution p = [vp1 , . . . , v

p
h], we define its high-level

representation to be the sequence of k = |C| vertices p̂ =< vp̂1 , . . . , v
p̂
k >, corresponding to the first

occurrence of each color in p, in the same order in which they are encountered in the path. Note
that p̂ may be interpreted as a simple path defined on a complete graph with set of vertices V . We
associate to p̂ the same weight of the original solution p it refers to, and to each of its edges the
sum of the weights of the edges that it replaces in p.

An example graph G with 6 vertices and 5 colors is shown in Figure 1(a), where weights and colors
are reported next to the related edges and vertices, respectively. A feasible ACSP-UE solution is, for
instance, p = [v3, v4, v1, v2, v5, v2, v6], with cost 9. The path p is shown in Figure 1(b), where edges
belonging to the solution are shown as directed arcs to illustrate the visiting order of the vertices.
The related high-level representation is p̂ =< v3, v4, v1, v5, v6 >. The solution transformation in its
high-level representation is shown in Figure 1(c).

Finally, we present two properties proven in [7] regarding optimal solutions and their high-level
representation:

Proposition 1. Let p = [vp1 , . . . , v
p
h] be an optimal ACSP-UE solution, and let p̂ =< vp̂1 , . . . , v

p̂
k > be

its high-level representation. The two paths share the same endpoints; that is, vp1 = vp̂1 and vph = vp̂k.

4 TITLE WILL BE SET BY THE PUBLISHER

(a) Example graph G (b) ACSP-UE Solution

(c) High-level representation

Figure 1. ACSP-UE instance and feasible solution

Proposition 2. Let p = [vp1 , . . . , v
p
h] be an optimal ACSP-UE solution, and let p̂ =< vp̂1 , . . . , v

p̂
k >

be its high-level representation. Any two consecutive vertices vp̂i and vp̂i+1 in p̂ are connected in p
by their shortest path computed on the input graph G.

2. Transformation from ACSP-UE to E-GTSP

In this section we prove that it is possible to transform, in polynomial time, the ACSP-UE
problem into the E-GTSP one. Moreover, we will describe a general approach to derive ACSP-UE
solutions from E-GTSP ones that takes advantage of this transformation, as well as the heuristic
for E-GTSP that we embedded in this algorithm.

We first report here the formal definition of E-GTSP. Let G′ = (V ′, E′) be a complete and
edge weighted graph in which the vertices are partitioned in mutually exclusive clusters. E-GTSP
consists of finding a minimum-cost tour that starts and ends into a depot, and visits exactly one
vertex for each cluster.

TITLE WILL BE SET BY THE PUBLISHER 5

We note that, like high-level solutions for ACSP-UE, E-GTSP ones have fixed length, containing
exactly one vertex for each cluster. This observation, along with the properties of optimal ACSP-
UE solutions reported in Propositions 1 and 2, is the main intuition underlying the proposed
transformation.

Let G = (V,E,C) be an input graph for the ACSP-UE problem (k = |C|). We build a complete,
undirected graph G′ = (V ′, E′) with nonnegative edge weights, whose vertices are partitioned in
k + 1 clusters, as follows:

• V ′ contains V plus one additional vertex, the depot v0. Formally V ′ = V ∪ {v0}.
• The depot is directly connected to all the other vertices in V with edges whose cost is equal

to zero.
• For each couple of vertices vi ∈ V, vj ∈ V , the weight of {vi, vj} in G′ is equal to the weight

of their shortest path in G.
• Each vertex in G′ is clustered according to its color in G. That is, if vi ∈ V is assigned to

the j-th color in G (j = 1, . . . , k), then vi belongs to the j-th cluster in G′.
• The new vertex v0 is the only element of the (k + 1)-th cluster.

It is straightforward to see that the construction of G′ can be carried out in polynomial time.
Moreover, it is worth noting that the size of G′ is not significantly larger than the one of the original
graph G, since it is a complete graph that contains just one additional vertex (the depot v0). These
properties are essential in order to obtain a competitive ACSP-UE algorithm based on the proposed
transformation.

Another interesting property of G′ is that, given that edge weights are obtained through shortest
paths among the vertices of G, the triangle inequality always holds.

In the following, given a graph G1 and a feasible ACSP-UE solution x on it, we use the notation
ωA
x,G1

to represent its cost. Similarly, if y is an E-GTSP solution on a graph G2, its cost will be

represented with the notation ωE
y,G2

. We want to demonstrate the following result:

Theorem 1. There exists a high-level ACSP-UE solution p̂ in G with ωA
p̂,G ≤ r if and only if there

exists a feasible E-GTSP solution t in G′ with ωE
t,G′ ≤ r.

Proof. =⇒ Let p̂ =< vp̂1 , . . . , v
p̂
k > be the high-level representation of a feasible ACSP-UE solution

in G, with ωA
p̂,G ≤ r. Now, let us build the tour t = [v0, v

p̂
1 , . . . , v

p̂
k, v0] in G′. Since t visits exactly

one vertex for each cluster, it is a feasible E-GTSP solution. By construction, the edges {v0, vp̂1}
and {vp̂k , v0} have weight zero. Furthermore, the weight of each edge {vp̂i , v

p̂
i+1} in t is lower than

or equal to the weight of the corresponding edge in p̂, since weights in G′ correspond to shortest
path costs in G. It follows that ωE

t,G′ ≤ ωA
p̂,G ≤ r.

⇐= Let t = [v0, v
t
1, . . . , v

t
k, v0] be a feasible E-GTSP solution in G′ with ωE

t,G′ ≤ r. We build from
t a feasible ACSP-UE solution p in G as follows:

(1) Let vt1 be the first endpoint of p;
(2) For i = 1, . . . , k − 1, append to p the shortest path between vti and vti+1 in G.

It is easy to note that p spans all colors of C, and that it is therefore a feasible solution. Furthermore,
by construction, the weight of each shortest path appended to p in Step 2 has the same weight of
the edge between the same vertices in t. From p we derive the corresponding high-level solution p̂
and we have that ωA

p̂,G = ωE
t,G′ ≤ r.

�

6 TITLE WILL BE SET BY THE PUBLISHER

(a) E-GTSP solution in G′

(b) ACSP-UE solution in G

Figure 2. Obtaining an ACSP-UE solution from an E-GTSP one

We illustrate the transformation with an example. Let G′ be a complete graph with 7 vertices
and 6 clusters, computed as described starting from the graph G shown in Figure 1(a). Furthermore,
let p̂1 be the high-level representation of the feasible ACSP-UE solution in G shown in Figure 1(c).
The tour t = [v0, v3, v4, v1, v5, v6, v0] is the E-GTSP solution in G′ built from p̂1 using the method
described in the proof of Theorem 1, =⇒ implication. This solution is shown in Figure 2(a), where

dashed circles represent clusters. We note that, in this case, ωE
t,G′ = 7 < ωA

p̂1,G
= 9. From t, we can

build a new feasible ACSP-UE solution in G using the method described in the proof of Theorem
1, ⇐= implication. The new solution is p2 = [v3, v1, v4, v1, v2, v5, v2, v6] and its corresponding
high-level solution is p̂2 =< v3, v1, v4, v5, v6 >. We show p2 and p̂2 in Figure 2(b). As expected,
ωA
p̂2,G

= ωE
t,G′ = 7. In particular, in the case of this instance, p2 and t are the optimal solutions for

ACSP-UE in G and E-GTSP in G′, respectively.

3. A new algorithm for ACSP-UE

According to Theorem 1 and its proof, it is possible to solve any ACSP-UE problem instance by
solving an appropriately defined E-GTSP one. This constitutes a promising line of research, given

TITLE WILL BE SET BY THE PUBLISHER 7

the extensive amount of effective exact and heuristic algorithms available in the literature for this
well-known problem. In more detail, a general resolution approach for ACSP-UE can be obtained
as follows:

(1) Build the new graph G′ from G as described in Section 2;
(2) Find a feasible E-GTSP solution t in G′, by applying an appropriate algorithm;
(3) Obtain a feasible ACSP-UE solution in G from t, as described in the proof of Theorem 1,

⇐= implication.

For the second step of the algorithm, we opted for the recent heuristic proposed by Helsgaun
([13]), named GLKH. The idea behind this heuristic is to transform the E-GTSP input instance
into an asymmetric TSP one, which is then solved using the Lin-Kernighan-Helsgaun (LKH) TSP
solver ([11], [12]). LKH is an implementation and improvement of the Lin-Kernighan local search
algorithm ([16]), based on variable k-opt neighborhoods, a generalization of 2-opt. GLKH has been
proven to have impressive performances on E-GTSP benchmark instances1. The pseudocode of the
resulting algorithm, that we call A-GLKH (short for ACSP-UE Algorithm embedding GLKH), is
provided in Algorithm 1.

Algorithm 1: A-GLKH

Input: Graph G = (V,E,C);
Output: A feasible ACSP-UE solution in G

1 G′ ← buildNewGraph(G); // build G′ as described in Section 2

2 t← GLKH (G′); // solve E-GTSP on G′

3 p← buildPath (G,t); // build p from t as described in Section 2

4 return p

Note that we can transform A-GLKH in an exact approach for ACSP-UE, by simply replacing
the GLKH heuristic in step 2 with an exact algorithm for E-GTSP. It can also be noted that, since
the triangle inequality always holds for G′, and exact algorithm for GTSP can alternatively be used
in this case.

4. Computational tests

In this section we compare our A-GLKH algorithm with the VNS algorithm proposed in [7]
since, to the best of our knowledge, it is the best performing ACSP-UE algorithm proposed in
the literature. A-GLKH is coded in C++, although the GLKH component is written in C. To
better evaluate the performances of the heuristics, we also report results obtained by solving, using
CPLEX 12.10, the ILP formulation proposed in [7]. In order to obtain as many optimal solutions
as possible, we run CPLEX in multithread mode and with a time limit of 3 hours. All tests were
performed on a machine with an Intel Core i7 processor running at 3.4 GHz and 8 GB of RAM.

We carried out comparisons on the whole dataset proposed in [7]. In these instances, the
number of vertices n belongs to the set {25, 50, 75, 100, 150}. A density parameter d, ranging
in the set {0.2, 0.3, 0.4, 0.5}, is considered. For a given choice of n and d, the resulting num-

ber of edges m is equal to n(n−1)
2 × d. Furthermore, the number of colors k belongs to the set

{d0.1ne, d0.2ne, d0.3ne, d0.4ne}. For each combination of parameters, 5 different random instances

1for details, see http://webhotel4.ruc.dk/~keld/research/GLKH/

http://webhotel4.ruc.dk/~keld/research/GLKH/

8 TITLE WILL BE SET BY THE PUBLISHER

Instances VNS A-GLKH
n m k Opt Obj Time Gap Obj Time Gap

25 60 5 51.4 51.4 0.00 0.00% 51.4 0.47 0.00%
25 90 5 37.6 37.6 0.00 0.00% 37.6 0.37 0.00%
25 120 5 38.4 38.4 0.00 0.00% 38.4 0.50 0.00%
25 150 5 33.2 35.0 0.00 5.42% 33.2 0.45 0.00%
25 60 8 81.0 81.0 0.01 0.00% 81.0 0.78 0.00%
25 90 8 88.4 88.4 0.01 0.00% 88.4 0.99 0.00%
25 120 8 80.0 80.8 0.01 1.00% 80.0 0.92 0.00%
25 150 8 79.2 79.4 0.01 0.25% 79.2 0.97 0.00%
25 60 10 141.8 141.8 0.01 0.00% 141.8 0.80 0.00%
25 90 10 123.2 123.2 0.01 0.00% 123.2 1.19 0.00%
25 120 10 103.2 103.6 0.01 0.39% 103.2 1.22 0.00%
25 150 10 87.8 87.8 0.01 0.00% 87.8 1.72 0.00%
50 245 5 30.6 30.6 0.01 0.00% 30.6 0.70 0.00%
50 367 5 24.8 24.8 0.01 0.00% 24.8 0.65 0.00%
50 490 5 25.8 25.8 0.01 0.00% 25.8 0.77 0.00%
50 612 5 22.6 22.6 0.01 0.00% 22.6 0.85 0.00%
50 245 10 85.2 85.2 0.05 0.00% 85.2 2.23 0.00%
50 367 10 70.2 70.2 0.05 0.00% 70.2 2.11 0.00%
50 490 10 69.2 69.2 0.05 0.00% 69.2 2.42 0.00%
50 612 10 63.8 63.8 0.05 0.00% 63.8 2.85 0.00%
50 245 15 153 153.0 0.12 0.00% 153.0 3.61 0.00%
50 367 15 125.8 125.8 0.13 0.00% 125.8 4.29 0.00%
50 490 15 125.4 126.2 0.12 0.64% 125.4 4.17 0.00%
50 612 15 104.8 105.8 0.10 0.95% 104.8 4.23 0.00%
50 245 20 211.8 214.8 0.21 1.42% 211.8 4.81 0.00%
50 367 20 191.2 191.8 0.22 0.31% 191.2 5.05 0.00%
50 490 20 154.2 154.8 0.21 0.39% 154.2 5.10 0.00%
50 612 20 159.6 159.6 0.21 0.00% 159.6 5.84 0.00%
75 555 8 51.4 51.4 0.07 0.00% 51.4 2.21 0.00%
75 832 8 46.0 46.4 0.07 0.87% 46.0 2.25 0.00%
75 1110 8 36.8 36.8 0.07 0.00% 36.8 2.27 0.00%
75 1387 8 36.8 36.8 0.06 0.00% 36.8 2.38 0.00%
75 555 15 111.4 112.0 0.24 0.54% 111.4 5.02 0.00%
75 832 15 103.2 103.4 0.27 0.19% 103.2 5.31 0.00%
75 1110 15 89.8 89.8 0.26 0.00% 89.8 6.46 0.00%
75 1387 15 83.0 83.6 0.24 0.72% 83.0 6.57 0.00%
75 555 23 203.0 205.8 0.70 1.38% 203.0 8.00 0.00%
75 832 23 173.2 175.0 0.62 1.04% 173.2 7.30 0.00%
75 1110 23 153.4 157.4 0.64 2.61% 153.4 11.26 0.00%
75 1387 23 139.6 139.6 0.66 0.00% 139.6 8.66 0.00%
75 555 30 289.8 294.2 1.57 1.52% 289.8 9.46 0.00%
75 832 30 228.0 230.0 1.41 0.88% 228.0 11.03 0.00%
75 1110 30 208.0 208.4 1.37 0.19% 208.0 12.08 0.00%
75 1387 30 198.0 200.2 1.23 1.11% 198.0 10.12 0.00%

Table 1. Computational results on the small instances (1).

were generated. The simplest case n = 25, k = d0.1ne = 3 was discarded. Hence, the dataset
considered in [7] is composed of 76 scenarios (parameter choices), and 380 individual instances.

Moreover, for this work we considered a new dataset of larger instances, generated by choosing
n in the set {200, 300, 400}, and using the same values for the other parameters. This new dataset
is therefore composed of 48 scenarios and 240 instances. In the following, we refer to the original
instances (with n ≤ 150) as small, and to the new ones as large.

TITLE WILL BE SET BY THE PUBLISHER 9

Instances VNS A-GLKH
n m k Opt Obj Time Gap Obj Time Gap

100 990 10 59.4 60.0 0.20 1.01% 59.4 3.89 0.00%
100 1485 10 46.8 46.8 0.19 0.00% 46.8 4.36 0.00%
100 1980 10 42.4 42.4 0.20 0.00% 42.4 4.22 0.00%
100 2475 10 42.4 43.2 0.19 1.89% 42.4 5.06 0.00%
100 990 20 138.4 139.8 0.85 1.01% 138.4 9.10 0.00%
100 1485 20 111.0 112.0 0.81 0.90% 111.2 10.19 0.18%
100 1980 20 110.6 110.6 0.82 0.00% 110.6 11.19 0.00%
100 2475 20 96.8 97.6 0.78 0.83% 96.8 13.28 0.00%
100 990 30 236.8 238.8 2.56 0.84% 237.6 11.95 0.34%
100 1485 30 202.8 205.4 2.32 1.28% 202.8 12.70 0.00%
100 1980 30 174.4 177.0 2.25 1.49% 174.4 14.05 0.00%
100 2475 30 163.8 165.2 2.08 0.85% 163.8 14.90 0.00%
100 990 40 324.4 332.0 5.97 2.34% 324.8 12.06 0.12%
100 1485 40 287.6 290.2 5.34 0.90% 287.8 17.44 0.07%
100 1980 40 229.8 231.6 4.55 0.78% 229.8 14.56 0.00%
100 2475 40 228.4 231.6 4.95 1.40% 228.6 21.87 0.09%
150 2235 15 77.0 77.8 1.11 1.04% 77.0 10.82 0.00%
150 3352 15 66.6 67.0 1.06 0.60% 66.6 13.60 0.00%
150 4470 15 60.2 60.4 1.05 0.33% 60.2 13.25 0.00%
150 5587 15 56.8 56.8 1.04 0.00% 56.8 16.25 0.00%
150 2235 30 180.0 180.6 5.33 0.33% 180.0 19.92 0.00%
150 3352 30 145.6 146.2 5.03 0.41% 146.0 18.12 0.27%
150 4470 30 134.8 136.4 5.02 1.19% 135.0 26.69 0.15%
150 5587 30 130.0 130.4 4.55 0.31% 130.2 24.92 0.15%
150 2235 45 307.2 315.4 17.23 2.67% 308.0 28.61 0.26%
150 3352 45 248.4 254.6 15.53 2.50% 249.4 26.73 0.40%
150 4470 45 222.0 225.8 14.16 1.71% 222.4 32.72 0.18%
150 5587 45 200.8 203.2 15.04 1.20% 201.2 32.99 0.20%
150 2235 60 424.6 433.4 45.87 2.07% 425.0 32.93 0.09%
150 3352 60 344.4 352.0 38.81 2.21% 344.8 36.91 0.12%
150 4470 60 303.4 308.6 39.19 1.71% 303.8 39.40 0.13%
150 5587 60 288.6 298.4 37.93 3.40% 289.6 41.79 0.35%

Table 2. Computational results on the small instances (2).

Tables 1 and 2 contain the results of the comparison between VNS and A-GLKH on the small
instances. All values reported in the tables are averages computed on the 5 instances corresponding
to the same scenario. Under the Instances heading, we report the instances characteristics (number
of vertices n, number of edges m and number of colors k). The next column (Opt) reports the
optimal solution values, provided by CPLEX. Indeed, all small instances were solved to optimality.

The following three columns report, for VNS, the solution value (Obj), the computational time
(Time) and the percentage gaps (Gap) between the objective function values returned by the

algorithm and the Opt values. These gaps are computed by using the formula 100× Obj(V NS)−Opt
Opt .

The final three columns report analogous data for A-GLKH.
Looking at the gap values, it can be noticed that both algorithms are very effective, since they

find solutions that are either optimal or close to the optimal ones. VNS finds the optimal solutions
only for 28 out of 76 scenarios. For 52 scenarios the gap is within 1%, while it is greater than 2%
for 8 out of 76 scenarios, with a peak equal to 5.42% (n = 25, m = 150, k = 5). Much better
results are obtained by A-GLKH that finds the optimal solutions for 60 out of 76 scenarios. On the

10 TITLE WILL BE SET BY THE PUBLISHER

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 5 10 15 20 25 30

%
 In

st
an

ce
s

 S
ol

ve
d

CPU Time (in seconds)

VNS

GTSP

Figure 3. Performance comparison between VNS and A-GLKH on the small instances.

remaining 16 cases, its gap is always lower than 0.5%. These results prove A-GLKH to generally
outperform VNS in terms of solution quality.

Regarding the computational times of the two algorithms, we note that VNS is always faster
than A-GLKH, except for the instances with n = 150 and k = 60, where the performances of the
algorithms are almost identical. However, both algorithms are very fast, always running within 45
seconds.

It is worth noting that the CPU time of both algorithms increases as the number of colors
increases. For instance, on the scenarios with 150 vertices we can see that increasing the number
of colors from 15 to 60 raises the VNS computational times from ∼1 second to ∼40 seconds, and
the A-GLKH ones from ∼10 to ∼40 seconds. As also noted in [7], this is an expected behavior for
VNS, since its 2-opt and relocate neighborhoods have a size that depends on high-level solutions
length, which in turn is equal to k. With respect to A-GLKH, an increase in the number of colors
corresponds to an increase in the number of clusters in the related transformed E-GTSP instance.
As will be discussed in the comments related to large instances, when the size of the problem grows
the performances of VNS get much more affected by the value of k in comparison with A-GLKH.

To conclude the comments on the small scenarios, in Figure 3 we give a representation of the
algorithms capability to find optimal solutions. The horizontal axis represents CPU time in seconds,
while the vertical axis represents the overall percentage of optimally solved instances. The blue curve
is associated to VNS, while the red one is associated to A-GLKH. We note that, overall, around 40%
of the instances are solved to optimality by VNS within 3 seconds, but no other instance is solved
to optimality by this algorithm. On the other hand, A-GLKH reaches the same threshold (i.e. 40%
of optimally solved instances) in 5 seconds, but it manages to solve to optimality almost 80% of
the instances in around 20 seconds. This comparison further highlights the higher effectiveness of
A-GLKH, which provided optimal solutions for around double the instances with respect to VNS.

TITLE WILL BE SET BY THE PUBLISHER 11

The results of the comparison on large instances are reported in Table 3.
For these instances, CPLEX is able to provide optimal solutions only in some cases, mainly

corresponding to instances with 200 vertices. For n = 200 and n = 300, whenever an instance is
not solved to optimality, the best solution found (upper bound) is used to compute the average.
These CPLEX solution values are reported under the Opt/UB heading; scenarios not solved to
optimality are marked with the “*” symbol. The values under the Gap headings for the two

heuristics, for these instances, are computed using the formula 100× Obj(heu)−Opt/UB
Opt/UB , where heu is

VNS or A-GLKH. For n = 400, the CPLEX upper bounds are not reported, being very far from the
optimal solutions and therefore not meaningful. For these instances, gaps are evaluated according

the formula 100× Obj(heu)−Obj(minV alue)
Obj(minV alue) , where minValue is the minimum among solution values

of VNS and A-GLKH. All other table headings have the same meaning discussed for Tables 1 and
2.

Only 5 instances with 200 vertices, corresponding to 4 scenarios, are not optimally solved by
CPLEX within the time limit. We note that A-GLKH finds optimal solutions for all 4 scenarios
with k = 20. In all other cases, except one (in which it is equal to 1.06%) the gap is below 1%.
In one case (n = 200, m = 9950, k = 40) the A-GLKH solution is better than the upper bound
provided by CPLEX. On the other hand, VNS finds the optimal solutions for 2 scenarios, and has
gaps above 1% in 13 out of 16 cases. For 3 scenarios, the gap is greater than 3%, with a peak of
3.61%.

For n = 300, no scenarios are solved to optimality by the solver. We still report the obtained
upper bounds as a reference for the quality of the two heuristics. In particular, A-GLKH finds a
solution that is better than the upper bound in 12 scenarios, and in the remaining 4 scenarios the
gap is below 1.7%. Conversely, VNS finds solutions below the upper bounds in 6 cases. The gap is
above 2% in 6 of the remaining 10 cases, with a peak of 4.54%.

Finally, looking at n = 400, we note that A-GLKH finds better solutions than VNS for 10 out
of 16 scenarios, and worse solutions in the remaining 6. In these 6 cases, the maximum A-GLKH
gap is equal to 2.06%, while the gap for VNS grows up to 3.88%. Overall, looking at Table 3, we
observe that A-GLKH finds better solutions than VNS for 38 out of 48 scenarios, and solutions of
the same quality in 2 scenarios.

The results further highlight the higher effectiveness of A-GLKH. Furthermore, in terms of
computational efficiency, the two algorithms behave very differently, in particular when the number
of colors increases. For instance, when n = 400, m = 15960 and k is equal to 40, 80, 120 or 160
the VNS computational times are equal to around 90, 627, 2990 or 10718 seconds, respectively. On
the instances with the highest number of vertices and colors, that is n = 400, k = 160, the VNS
computational times are consistently high, being between around 9221 and 10718 seconds. Similar
patterns can be seen for the other values of n, where the instances corresponding to the highest k
values require the longest computational times. Overall, the results point out that VNS is unfit to
solve large instances with a significant number of colors.

On the other hand, A-GLKH appears to be much more scalable, running within 240 seconds in
45 out of 48 scenarios, and in around 400 seconds in the worst case. Overall, the number of colors is
again the factor that most influences the performances of the algorithm, but computational times
increase at a much slower pace with respect to VNS. Figure 4 highlights this comparison, by showing
how average computational times are affected by the k values for the instances with n = 400. It is
worth noting that, when k = 160, A-GLKH is an order of magnitude faster than VNS.

12 TITLE WILL BE SET BY THE PUBLISHER

Instances VNS A-GLKH
n m k Opt/UB Obj Time Gap Obj Time Gap

200 3980 20 87.0 88.2 3.36 1.38% 87.0 17.60 0.00%
200 5970 20 81.6 81.6 3.43 0.00% 81.6 23.78 0.00%
200 7960 20 76.0 76.0 3.38 0.00% 76.0 24.24 0.00%
200 9950 20 68.6 69.6 3.27 1.46% 68.6 25.20 0.00%
200 3980 40 218.4 224.8 19.61 2.93% 219.4 36.09 0.46%
200 5970 40 189.0 193.4 18.67 2.33% 190.6 39.51 0.85%
200 7960 40 170.6* 173.6 16.83 1.76% 172.4 43.65 1.06%
200 9950 40 156.2* 157.6 16.23 0.90% 155.8 43.32 -0.26%
200 3980 60 338.2 348.6 67.10 3.08% 340.6 53.09 0.71%
200 5970 60 296.4 305.8 65.07 3.17% 298.0 57.08 0.54%
200 7960 60 257.2* 263.6 58.82 2.49% 258.4 62.19 0.47%
200 9950 60 235.6 241.0 54.44 2.29% 237.4 51.62 0.76%
200 3980 80 465.6 482.4 200.86 3.61% 467.0 105.51 0.30%
200 5970 80 395.0 406.4 179.89 2.89% 396.4 89.44 0.35%
200 7960 80 360.8 370.0 169.05 2.55% 362.2 77.46 0.39%
200 9950 80 332.8* 341.0 165.13 2.46% 335.4 106.25 0.78%
300 8970 30 122.4* 123.2 22.72 0.65% 122.0 42.46 -0.33%
300 13455 30 108.4* 104.0 22.59 -4.06% 105.4 45.03 -2.77%
300 17940 30 116* 99.2 20.97 -14.48% 98.6 53.49 -15.00%
300 22425 30 107* 89.0 21.47 -16.82% 88.6 59.05 -17.20%
300 8970 60 279.4* 286.4 149.29 2.51% 281.0 80.94 0.57%
300 13455 60 240.6* 241.8 137.04 0.50% 239.0 76.51 -0.67%
300 17940 60 214.2* 209.8 139.50 -2.05% 210.8 93.37 -1.59%
300 22425 60 207.8* 198.0 126.27 -4.72% 195.2 94.01 -6.06%
300 8970 90 431* 450.2 616.66 4.45% 438.2 163.52 1.67%
300 13455 90 359.2* 375.4 550.64 4.51% 361.6 131.00 0.67%
300 17940 90 341.8* 342.8 538.44 0.29% 336.2 157.57 -1.64%
300 22425 90 334.2* 329.6 487.06 -1.38% 325.6 141.71 -2.57%
300 8970 120 599.4* 626.6 1996.07 4.54% 604.4 221.99 0.83%
300 13455 120 504.8* 522.2 1856.80 3.45% 504.4 239.56 -0.08%
300 17940 120 463.4* 478.0 1769.19 3.15% 461.2 238.25 -0.47%
300 22425 120 437.4* 446.0 1744.56 1.97% 434.8 235.27 -0.59%
400 15960 40 145.0 90.00 0.00% 146.4 73.54 0.97%
400 23940 40 124.0 85.15 0.49% 123.4 80.85 0.00%
400 31920 40 120.0 81.19 0.00% 120.6 85.28 0.50%
400 39900 40 112.2 78.03 0.72% 111.4 86.89 0.00%
400 15960 80 323.6 627.08 0.00% 326.2 128.10 0.80%
400 23940 80 279.0 583.05 0.00% 284.0 131.99 1.79%
400 31920 80 261.6 567.92 0.00% 267.0 130.33 2.06%
400 39900 80 248.4 515.75 0.00% 251.8 129.87 1.37%
400 15960 120 550.8 2989.98 3.22% 533.6 248.00 0.00%
400 23940 120 460.6 2805.81 1.59% 453.4 223.67 0.00%
400 31920 120 408.4 2612.49 2.30% 399.2 208.50 0.00%
400 39900 120 378.0 2674.47 1.78% 371.4 231.02 0.00%
400 15960 160 770.2 10717.60 3.41% 744.8 373.86 0.00%
400 23940 160 621.2 9928.98 3.88% 598.0 375.08 0.00%
400 31920 160 564.4 9537.74 2.99% 548.0 359.97 0.00%
400 39900 160 523.6 9221.54 2.99% 508.4 400.17 0.00%

Table 3. Computational results on the large instances.

5. Conclusion

In this work we proposed a method to transform any ACSP-UE instance into an E-GTSP one,
and proved its correctness. Based on this transformation, we proposed a general resolution scheme
for ACSP-UE which involves the resolution of the resulting E-GTSP instance. We showed that
when the latter is solved through the GLKH algorithm, we obtain a fast and effective heuristic that

TITLE WILL BE SET BY THE PUBLISHER 13

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

40 80 120 160

CP
U

 T
im

e
(in

 se
co

nd
s)

Number of colors

A-GLKH

VNS

Figure 4. Computational times of VNS and A-GLKH on instances with n = 400
when the number of colors varies.

outperforms the best one currently known in the literature. The proposed framework would also
allow to obtain optimal solutions, by replacing GLKH with any exact algorithm for either E-GTSP
or GTSP.

References

[1] H. Akcan and C. Evrendilek. Complexity of energy efficient localization with the aid of a mobile beacon. IEEE

Communications Letters, 22(2):392–395, 2018.
[2] M. B. Akçay, H. Akcan, and C. Evrendilek. All colors shortest path problem on trees. Journal of Heuristics,

24(4):617–644, 2018.
[3] A. Benkouar, Y. Manoussakis, V. Paschos, and R. Saad. On the complexity of finding alternating hamiltonian

and eulerian cycles in edge-coloured graphs. In Lecture Notes Computer Science, volume 557, pages 190–198,

1991.
[4] A. Benkouar, Y. Manoussakis, V.Th. Paschos, and R. Saad. Hamiltonian problems in edge-colored complete

graphs and eulerian cycles in edge-colored graphs: Some complexity results. RAIRO Recherche Operationnelle,

30(4):417–438, 1996.
[5] Y. Can Bilge, D. Çagatay, B. Genç, M. Sari, H. Akcan, and C. Evrendilek. All colors shortest path problem.

arXiv:1507.06865.

[6] F. Carrabs, R. Cerulli, G. Felici, and G. Singh. Exact approaches for the orderly colored longest path problem:
Performance comparison. Computers and Operations Research, 101:275–284, 2019.

[7] F. Carrabs, R. Cerulli, R. Pentangelo, and A. Raiconi. A two-level metaheuristic for the all-colors shortest path

problem. Computational Optimization and Applications, 71(2):525–551, 2018.

[8] V. Dimitrijević and Z. Šarić. An efficient transformation of the generalized traveling salesman problem into the

traveling salesman problem on digraphs. Information Sciences, 102(1-4):105–110, 1997.

14 TITLE WILL BE SET BY THE PUBLISHER

[9] M. Fischetti, J. J. Salazar González, and P. Toth. The symmetric generalized traveling salesman polytope.
Networks, 26(2):113–123, 1995.

[10] M. Fischetti, J. J. Salazar González, and P. Toth. A branch-and-cut algorithm for the symmetric generalized

traveling salesman problem. Operations Research, 45(3):378–394, 1997.
[11] K. Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman heuristic. European Journal

of Operational Research, 126(1):106–130, 2000.
[12] K. Helsgaun. General k-opt submoves for the Lin–Kernighan TSP heuristic. Mathematical Programming Com-

putation, 1(2-3):119–163, 2009.

[13] K. Helsgaun. Solving the equality generalized traveling salesman problem using the Lin–Kernighan–Helsgaun
algorithm. Mathematical Programming Computation, 7(3):269–287, 2015.

[14] I. Kara, H. Guden, and O.N. Koc. New formulations for the generalized traveling salesman problem. In Pro-

ceedings of the 6th International Conference on Applied Mathematics, Simulation, Modelling (ASM ’12), pages
60–65, 2012.

[15] G. Laporte and Y. Nobert. Generalized traveling salesman through n sets of nodes: An integer programming

approach. INFOR, 21(1):61–75, 1983.
[16] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman problem. Operations

Research, 21(2):498–516, 1973.

[17] X.H. Shi, Y.C.Liang, H.P.Lee, C.Lu, and Q.X.Wang. Particle swarm optimization-based algorithms for TSP
and generalized TSP. Information Processing Letters, 103(5):169–176, 2007.

[18] J. Silberholz and B. Golden. The generalized traveling salesman problem: A new genetic algorithm approach. In

E.K. Baker, A. Joseph, A. Mehrotra, and M.A. Trick, editors, Extending the Horizons: Advances in Computing,
Optimization, and Decision Technologies. Operations Research/Computer Science Interfaces Series, volume 37,

pages 165–181, 2007.
[19] L. V. Snyder and M. S. Daskin. A random-key genetic algorithm for the generalized traveling salesman problem.

European Journal of Operational Research, 174(1):38–53, 2006.

	Introduction
	1. Problem definition and properties
	2. Transformation from ACSP-UE to E-GTSP
	3. A new algorithm for ACSP-UE
	4. Computational tests
	5. Conclusion
	References

