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Abstract

This paper addresses the Minimum Spanning Tree Problem with
Conflicting Edge Pairs, a variant of the classical Minimum Spanning
Tree where, given a list of conflicting edges, the goal is to find the
cheapest spanning tree with no edges in conflict. We adopt a La-
grangian relaxation approach together with a dual ascent and a sub-
gradient procedure to find tight lower bounds on the optimal solution.
The algorithm is also equipped with a heuristics approach which pro-
vides an upper bound by removing the conflicts from possible infeasi-
ble solutions met during the calculation of the lower bounds. The com-
putational results, carried out on benchmark instances, show that the

proposed algorithm finds the optimal solutions on several instances.
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Moreover, the lower bounds it provides are much more accurate than
ones provided by other Lagrangian approaches available in the litera-

ture and they are computed is much less time.

Keywords: Lagrangian approach; Conflict Constraints; Conflicting Edges;

Spanning Tree;

1. Introduction

In this paper, we study the Minimum Spanning Tree Problem with Con-
flicting Edge Pairs (MSTC), a NP-Hard variant of the classical Minimum
Spanning Tree problem. Given a graph G and a set of edge pairs in con-
flict, MSTC problem consists of finding the minimum spanning tree of GG
containing no conflicting edges.

The MSTC problem has a number of practical applications. For instance,
it arises in the design of offshore wind farm networks [3]. In this context,
it is often required to build spanning trees to connect a set of turbines.
These connections should be carried out in the cheapest way and by avoiding
the overlap of the cables [18]. By considering two overlapped cables as a
conflicting pair, the problem is just MSTC. Another application concerns
the crossing of road maps where some movements are forbidden [17]. For
instances, in some point of the map can be forbidden to turn left or right and
this constraint can be simulated by using conflict edges. Other applications
concern the resolution of quadratic bottleneck spanning problem [26] and the
installation of an oil pipeline system connecting various countries [8].

In perspective it would be applied to freight transportation network de-
sign, to model situations where single transportation legs, which are under
control of the same shipper, cannot be simultaneously activated due to pos-

sible scarcity of resources.



The problem was introduced by Darmann et al. [8] [9]. In these works,
the authors proved that MSTC is NP-Hard and that in some particular cases
it can be solved in polynomial time. In [25] the authors presented a branch-
and-cut approach based on two sets of valid inequalities. Moreover, they in-
troduced a preprocessing technique to possibly reduce the instance size. Very
recently, a branch-and-cut approach was introduced in [5], based on a new
set of valid inequalities. It outperforms previous branch-and-cut methods.
Several heuristics were introduced in [26], together with two exact algorithms
based on Lagrangian relaxation. Since our approach too is Lagrangian, we
refer to the results of such relaxation to evaluate the quality of the lower
bounds produced by our algorithm. Although the Lagrangian relaxation we
adopt is the same as in [26], we focus here on an ad hoc dual ascent proce-
dure to tackle the Lagrangian dual, instead of a classic subgradient method
as in [26]. Finally, a multi ethnic genetic algorithm proposed in [3] uses a
specific fitness function aimed at minimizing the number of conflicts in case
no zero-conflict solution exists. In addition, three local search procedures
are applied to chromosomes of the population to improve the quality of the
solutions. Since this heuristic performs best among those available in the
literature, we will use it for comparison purposes in the sequel of the paper.

MSTC problem belongs to the class of optimization problems with con-
flict constraints. In the literature there exist several optimization mod-
els dealing with conflicting decisions. We recall here, among the others,
the knapsack problem with conflict constraints [20], the bin packing prob-
lem with conflicts [24], the minimum cost perfect matching with conflict
pair constraints [19] and the maximum flow problems with disjunctive con-
straints [21].

The MSTC can be classified as a special case of the Quadratic Minimum
spanning Tree Problem (QMST) [7, 23]. Since in the QMST there is an

additional cost into the objective function associated to the couple of edges



selected, to obtain a solution for the MSTC the idea is to associate a very
high cost to all the edge pairs in conflict. In this way, by selecting edge
pairs in conflict the objective function is penalized and then the search of
a minimum spanning tree under these conditions should avoid the selection
of edge pairs in conflict. When the solution of QMST does not contains
edge pairs in conflict, a feasible solution for the MSTC is obtained. In [7],
it has been proved that MSTC is NP-hard on fan-stars, fans, wheels and (k,
n)-accordions graphs.

In this paper we propose a dual ascent and a subgradient procedure to
compute lower bounds on the optimal solution of the MSTC problem. More-
over, we use a local search procedure to obtain upper bounds by removing
the conflicts from the infeasible trees produced during the computation of the
lower bounds. We devise an algorithm, based on these procedures, that is
able to relatively quickly compute tight upper and lower bounds. The com-
putational results, carried out on benchmark instances, demonstrate that
our algorithm finds rather often the optimal solution. Moreover, the lower
bounds it provides are better both in terms of quality and computation time
than those obtained by similar Lagrangian approaches proposed in the liter-
ature.

The remainder of this paper is organized as follows. In Section 2 we
introduce terminology and notation used throughout the paper, while in
Section 3 a mathematical formulation for the MSTC is provided. In Section 4
we describe the Lagrangian relaxation and the dual ascent and subgradient
procedures to compute the lower bounds and the local search procedure used
to compute the upper bounds. In Section 5 we present our algorithm for the
MSTC. Computational results as reported in Section 6. Finally, conclusions

are provided in Section 7.



2. Notations and problem definition

Let G = (V, E, P) be an undirected, edge weighted graph, where V' is the set
of n vertices, F is the set of m edges and P C F x FE is the set of conflict
edge pairs. Formally,

P = {{ei,e;} 1 e;,e; € E, e; andej are in conflict}.

For each e¢; € E, we denote by w,, its weight and by x(e;) the set of
edges that are in conflict with it. Moreover, let P(e;, E) = {{e;,¢;} €
P : e; € E} be the set of conflict edge pairs containing the edge e; and
let ((F') = Ue,ecrP(e;, E') be the set of conflict edge pairs induced by
E’' C E. In Figure 1(a) is depicted a weighted graph G(V, E, P) where P =
{{(b,0),(d, f)}, {(b,c), (e, )}, {(b,e),(d,g)}}. In this graph, we have that
¥((b,)) = {(d, f), (e, )} and B((b, ), E) = {{(b,0), (d, )} {(b, ), (e: F)}}-
Moreover, (((b,c), (b,e)) = P.

A spanning tree T(Vy, Er) of G is a connected subgraph of G' such that
Vr =V, Er C E and |Er| = n—1. The weight of T"is denoted by W (T") and
it is given by the sum of edges weights in Ep. A tree T is conflict—free if and
only if |[((Er)| = 0. The MSTC problem consists in finding the minimum
weight conflict—free spanning tree of G .

In Figure 1(b) is shown the minimum spanning tree 7" of G. However,
this tree is not a feasible solution for MSTC because the edges (b,c) and
(d,f) (in red) and the edges (b,e) and (d,g) (in blue) are in conflict. Indeed
C(Er) = {{(b,c),(d, )}, {(be),(d,g)}}. On the contrary, the tree depicted
in Figure 1(c) is feasible for the MSTC because it is conflict—free.

3. The MSTC formulation

We introduce now a formulation for MSTC derived from the traditional Sub-

tour Elimination formulation of the Minimum Spanning Tree problem. The
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Figure 1: (a) A graph G having three conflict edge pairs. (b) The minimum
spanning tree of G. (¢) A feasible solution for the MSTC.
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formulation of MSTC only uses the binary variables x., associated with the

edges of GG, with the following meaning:

1 if edge e is selected,
Te =
0 otherwise.

The mathematical programming formulation of the MSTC is the following

one.

IP  min Z Wee (1)

ecE

subject to:



Y we=|V|-1, (2)

eckE
> oz <8 -1, VS CV,|S| >3, (3)

ecE(S)
Le, + xe]- S 17 v{eiaej} € Pa (4)
z. € {0,1}, Vee E. (5)

The objective function (1) minimizes the weight of the spanning tree.
Constraint (2) imposes the selection of n—1 edges (recall that |V| = n) while
Constraints (3) are the classical subtour elimination constraints. Finally,
Constraints (4) are the conflict constraints; these constraints ensure that two
edges in conflict cannot be simultaneously selected in the solution. Finally,

Constraints (5) are variable restrictions.

4. A Lagrangian approach dual

In tackling MSTC we adopt a Lagrangian-inspired approach which consists
in defining a Lagrangian relaxation of the problem and in solving the related
Lagrangian dual. In addition, we equip our method with a heuristic to be
run at each iteration of the algorithm for Lagrangian dual, with the aim of

calculating possibly improving upper bounds for the problem at hand.

4.1 The Lagrangian relaxation of MSTC

We focus on the (IP) formulation of MSTC presented in previous section and
address its Lagrangian relaxation (see the seminal paper [15] and the survey
13)).

In particular, by relaxing the conflict constraints (4) by means of the

Lagrangian multipliers \;; > 0, {e;,e;} € P (grouped into the vector A of



appropriate dimension), we come out with the relaxed problem LR(\):

LR(\) z(A) = min Z WeTe + Z Aij(Te; + T, — 1) (6)

ecl {eiej}eP

subject to:

er: ‘Vl_la (7>

ecE
> oz <8 -1, VS CV,[S] >3, (8)

e€E(S)
z. € {0,1}, Ve € E. 9)

It can be easily recognized that, apart the constant term (— Z Xij)s
{ei,Ej}GP
problem (6)—(9) is a standard minimum spanning tree one where the weights

of the edges are assigned as follows:

We, if x(e;) =10,
e, (A) = We, + Z Aij otherwise.
ejEx(ei)

Function z(A) provides a lower bound on the optimal value of problem
MSTC and in the following it will be referred to as the Lagrangian function.
Note that, in case the minimum spanning tree 7'(\) computed for any choice
of the multiplier vector \ is conflict—free, the solution of the relaxed problem

is feasible for the original IP and it is e-optimal, for € defined as follows:
e= Y AL — (2e,(N) + 26, (V)
{eiej}eP

where we have grouped into vector z(\) the optimal solution to LR(\). We
remind that a solution is e-optimal when the gap between its value and the

optimal value is lower than or equal to e.
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In order to get the best lower bound, the Lagrangian dual (LD) problem
is defined:

ZLp = rf\lgém()\). (10)

Tackling the Lagrangian dual amounts to solve a maximization problem
where the objective function is concave and piecewise affine, thus nonsmooth
(see [16] for both the theoretical and computational aspects of nonsmooth
optimization). Our approach to deal with problem (10) proceeds along with

the following two guidelines:

e Construct an ad hoc dual ascent procedure, that is generate a sequence
of multipliers vectors {A}, k = 1,2, ..., such that the corresponding

values z(A®)) are monotonically increasing;

e Whenever necessary, switch to a classic subgradient algorithm, where
the multiplier setting {\**1} is obtained from {\*)} on the basis of
any subgradient g*) € 9z(A()

The effectiveness of Lagrangian relaxation method to get a tight lower bound
lies on possible easy calculation of the Lagrangian function z(A*)), which
amounts to have at disposal a fast method to solve LR(A*)). This is, in fact,
our case since it can be solved in polynomial time by, e.g., Kruskal algorithm.

We describe now our approach to multiplier updating in view of tackling

the Lagrangian dual.

4.2 Solving the Lagrangian dual

Infeasibility of T(A®) is the key point to design a strategy for updating the
multiplier vector in view of possible increase of the bound z(A®). It is based
on the idea of updating just one component of the multiplier vector at a
time (see the seminal paper [12] and [14], [4], [2], [6], [11] for applications in

diverse areas).



Assuming, in fact, T(A\*¥)) infeasible, then there exists at least a pair of
edges {e;,e;} € P, such that

Te;(AP) + 2., (AHF) — 1 > 0,

thus with e; € ET()\(k)) and e; € ET()\(M). The idea at basis of the dual
ascent procedure is that an increase of the corresponding multiplier leads to
increase the dual function. In fact, once one of such pair of edges is selected,

the corresponding multiplier is updated as follows
MY =0 4 Ay, (11)

for some A;; > 0. To calculate A;; we consider the list L™ of edges, sorted
in nondecreasing order in Kruskal’s algorithm. By defining s(e;) and s(e;),
the successors of the edges e; and e; in L¥) | respectively, we set

Ajj = min{Wgy(e,) — We,, Ws(e;) — We; } > 0 (12)
Assuming A;; > 0 and implementing the multiplier update (11), it is easy to

verify that

We note in passing that A;; = 0 corresponds, typically, to nonsmoothness of
function z at point A*). Note, in fact, that the Lagrangian dual is a max min
problem, being z a min-type function. Assuming, w.l.o.g., Wye,) = We,,
we have that the current MST problem, which provides the value of z, has
possibly more than one optimal solution and this is a typical case when
nonsmoothness occurs in a max min framework.

In case more than just one pair of conflicting edges are in Erp,x)) (that is

[C(Erpany)| > 1), we update the multiplier of the pair characterized by the

maximum A;;.
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Figure 2: (a) The sorted edge list L. generated on G by Kruskal’s algorithm.
(b) The minimum spanning tree of G found by Kruskal’s algorithm.

Let us consider the graph G depicted in Figure 2(a) (see also Figure 1) and
assume k = 0, A(®) = 0. Then application of Kruskal algorithm to the relaxed
problem (see the sorted edge list L) provides the minimum spanning tree
T(0) shown in Figure 2(b) (note that, since current multipliers are zero, it
coincides with the minimum spanning tree in Figure 1). Note that out of the

three conflicting pair of edges

{(b,0),(d, )}, {(b;¢), (e, )}, {(b,e), (d, 9)},

the two pairs {(b,c), (d, f)} and {(b,e),(d,g)} are in T(0). Applying (12)
we obtain that the corresponding multipliers should increase by 0 and 1,
respectively. As consequence, we select the conflicting pair {(b,e), (d, g)}
and increase by 1 the correspondent multiplier. It is easy to verify that, in
the new multiplier setting AV, it is 2(AM) = 2(A(®) + 1 and dual ascent has
been achieved.

In practical application of our multiplier update rule, formula (11) is
replaced by
A =20 1 A+, (13)

J
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for some typical small § > 0. Motivation is to tie break, thus skipping the
kinks of the Lagrangian function, while trying to expel a conflicting arc from
the tree.

It is worth noting that, apart from the edge pair selection rule previously
described, different heuristics can be devised. In particular, taking into ac-
count that a small value of a multiplier results in weak penalization of the
violation of the corresponding constraint, we have adopted a rule which is
based on a combination of the values of A;; and of the multiplier, trying
to give precedence to the edge pairs characterized by large A;; and small
multiplier. In particular, we select the edge pair where max(A;; — ng’.“)) is
achieved, where v > 0 is a tradeoff parameter.

A major drawback of the dual ascent strategy based on updating one
variable at a time is possible premature stop at a point which is far from
being a maximizer of the Lagrangian function, while no coordinate axis is an
ascent direction. Such a phenomenon is a consequence of nonsmoothness of
function z (see [22], pages 138-139 for an illustrative example).

To overcome this difficulty, we have embedded into our algorithm a switch-
ing step to classic subgradient algorithm whenever the dual ascent procedure
is unable to guarantee an increase in the objective function. We describe

next the subgradient procedure we have embedded into our algorithm.

4.3 Subgradient procedure

A subgradient g(\) of z()\) is an element of the subdifferential dz(\) C RI”!
and can be easily calculated once an optimal solution z(A) to the relaxed

problem is available. The generic component of g(\) is:

9i5(N) = we;(A) +2;(A) =1, (es,¢5) € P, (14)

12



and iteration k of the subgradient method consists in updating the La-
grangian multipliers as follows:

A = max (0, A% + apgy; A\®)),  (ese) € P (15)

i » Mg

where the stepsize oy, is chosen according to the Polyak’s rule [22]:

ZUB — Z(/\k)

ap =288 22
’ [lg(AR)|2

(16)
where zy g is an upper bound on the optimal solution value. A trivial way to
obtain a valid value for zy g is to sum the weight of the n-1 heaviest edges of
G. A more accurate bound is the maximum spanning tree of G, which can
be calculated by multiplying the weights of all edges by -1 and then applying

any minimum spanning tree algorithm.

5. The algorithm

In this section, we describe our algorithm, named HDA (Hybrid Dual As-
cent), based on the dual ascent procedure previously described, with possible
switching to the subgradient method. The method is primarily devoted to
solve the Lagrangian dual, thus to obtain an optimal lower bound. In addi-
tion, we introduce a variant of HDA equipped with a local search procedure,
which is called each time the relaxed problem is solved and it is aimed at
finding a feasible solution to IP by removing the conflicts. In other words,
we propose also a Lagrangian heuristic which is able to provide an upper
bound too for MSTC. Figure 3 displays the flowchart of HDA.

The algorithm takes as input the graph G and applies to it the prepro-
cessing phase described in [25]. This is a three-step iterative process, where

each step is executed as long as the problem instance is updated. The aim
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Figure 3: HDA flowchart

is to reduce, whenever possible, the size of the instance by removing edges
that cannot belong to any feasible solution of MSTC. The first step looks for
cut-edges (bridges) in G. Since a cut-edge e; is in any spanning tree of G, any
feasible solution of MSTC cannot contain edges in x(e;) and then these edges
are removed from G. In the second step, it is verified the connectivity of the
graph when an edge e; is forced to be selected. If, due to the edges in x(e;),
the resulting graph is disconnected, then e; is removed from G. Finally, in
the third step pairs of edges {e;, e;} are selected and, after the removal of the
edges in x(e;) U x(e;), the connectivity of G is verified. If G is disconnected
then the pair {e;,e;} is added to P. In the following, we assume that G is
the input graph on which the preprocessing phase is already applied.

At each iteration, a new minimum spanning tree T of GG is computed by
Kruskal’s algorithm according to the weight w,,. The algorithm stops when

a fixed number of iterations maxzIT is reached and the best lower bound
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LB is returned. In our implementation, maxIT is set to 500. The dual
ascent procedure is invoked on 7' until one of the following conditions is
satisfied. The former condition is that 7" is a feasible solution, that is, T
is conflict—free. In this case, the dual ascent cannot work because there are
not edge pairs in conflict to select. The second condition is the achievement
of a fixed number of iterations. In our implementation, such a number is
equal to 10% of maxIT. When one of the previous two conditions holds,
HDA invokes ten times the Subgradient procedure. The flag subG states
which one between the Subgradient and the Dual Ascent procedure is to be
invoked at the current iteration. Once the ten iterations of the Subgradient
procedure have been completed, the multipliers of the best lower bound are
saved and used to update the weights w.,. We have introduced the second
condition because the ascent of the DualAscent procedure can be slow due
to the low value of A. By invoking the Subgradient procedure, after a fixed
number of iterations, we obtain “jumps” on the lower bound values that often

speed up the ascent of DualAscent procedure.

5.1 Upper Bound Computation

During the computation of HDA several spanning trees are generated and
the conflict—free ones are feasible solutions for IP. Therefore, HDA could
also provide upper bounds of IP optimal solution without additional costs.
However, in order to increase the number of upper bounds found and their
quality, we introduce a variant of HDA named HDA™, that invokes a local
search procedure on each spanning tree generated by Kruskal’s algorithm.
The aim of this local search procedure, named ConflictRemouval, is to make
conflict—ree the spanning tree given in input.

ConflictRemoval was introduced in [3] and used without modification in

HDA™. The procedure works as follow. Given an infeasible spanning tree

15



T, ConflictRemoval finds the edge e, € Er having the maximum number
of conflicts with the other edges of Er, i.e. e, = argmax |P(e;, Er)|. The
procedure removes e, from Ep generating a forest corz;?)ged of two subtrees
T, and T,. To obtain a new spanning tree T, ConflictRemoval connects T}

and T3 by using the edge e, € E'\ Er where e, = argmin |P(e;, Er \ {ex})|.
61‘EE\ET
If |C(Er)| < |C(Er)| the procedure restart from 7" otherwise it stops.

We will see in the next section that HDA™ is slower than HDA, due to
the use of ConflictRemoval, but it can find upper bounds whose quality is
comparable with the ones obtained by the best metaheuristics for MSTC,

proposed in the literature.

6. Computational Tests

In this section we describe the results of algorithms HDA and HDA*. They
have been coded in C++ using the LEMON graph library [10]. All tests have
been performed on an OSX platform (iMac mid 2011), running on an Intel
Core i7-2600 3.4 GHz processor (family 6, model 42, stepping 7) with 8 GB
of RAM.

The computational tests are carried out on the instances proposed in [26]
and in [5]. The dataset is available here: http://www.dipmat2.unisa.it/
people/carrabs/www/ or, alternatively, upon request to the authors. The
first set of benchmark instances has been generated by using a different value
for nodes, edges and number of conflicts and they are classified into two
types: type 1 and type 2. By construction, there exists at least one conflict—
free solution for all type 2 instances while type 1 instances may not have
conflict—free solutions. In the computational tests, we will consider only the
type 1 instances where the presence of a feasible solution is guaranteed. The
instances 10 and 11 are classified in literature as type 1 (unknown feasibility),

even though the presence of a feasible solution for these instances was proved
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Instance Opt LB-MST LB-MI HDA

ID n m LB Time Gap LB Time Gap LB Time Gap
150 200 708 701.09 0.12 0.98% 702.79 8.04 0.74% 70550  0.26  0.35%
2 50 200 770 739.84 0.16 3.92% 757.82 8.33 1.58% 760.98 031 1.17%
350 200 917 782.67 0.35  14.65% 807.75 39.39  11.91% 867.66  0.35  5.38%
Type 1 4 50 200 1324 835.68 0.38  36.88% 877.50 39.72  33.72% 961.89 044 27.35%
Feasible 5 100 300 4041 3893.48 1.42 3.65% 3991.18 232.00 1.23% 4036.59  0.89  0.11%
6 100 300 5658 4508.16 1.38  20.32% 4624.24 32201  18.27% 4982.01 1.37  11.95%
7 100 500 4275 4124.53 2.54 3.52% 4165.68 610.83 2.56% 426857 225 0.15%
8 100 500 5997 4701.87 240 21.60% 4805.40 579.58  19.87% 5238.15 251 12.65%
9 100 500 7665* 4743.83 2.87  38.11% 4871.27 600.95  36.45% 5418.78  2.63 29.30%
Type 1 10 200 600 1797 15029 1111.60 1037 92.60% 11425.80  3422.03  23.97% 12451.60  4.86 17.15%
F.Unknown 11 200 800 3196 22110% 1742880  13.32  21.17% 17922.60  5107.72  18.94% 19685.10  8.59 10.97%
1250 200 3903 1636 775.12 081  52.62% 877.47 46.37% 104277 121 36.26%
1350 200 4877 2043 698.68 1.32 65.80% 887.48 56.56% 1116.34 1.63  45.36%
14 50 200 5864 2338 626.92 102 73.19% 1030.25 55.93% 2338.00  0.81  0.00%
15 100 300 8609 7434 4043.38 3.39  45.61% 5754.85 22.59% 7434.00 059 0.00%
16 100 300 10686 7968 3970.52 298 50.17% 6192.29 22.29% 7968.00  0.55  0.00%
17 100 300 12761 8166 3936.27 3.59  51.80% 6758.57 17.24% 8166.00  0.47  0.00%
18 100 500 24740 12652 4280.85  11.30  66.09% 5104.90 794.09  59.65% 5565.20  9.04 56.01%
19 100 500 30886 11232 3972.68 64.63% 5078.82 732.86  54.78% 5672.69 15.52 49.50%
20 100 500 36827 11481 3918.06 26.44  65.87% 5710.77 662.14  50.26% 11481.00 0.00%
21 200 400 13660 17728 14085.80 3.23 % 328.60 2.72% 17728.00 0.00%
22200 400 17089 18617 14067.30 4.33 4.44% 48. 341.14 3.06% 18617.00 0.00%
23 200 400 20470 19140 13998.70 754 26.86% 18646.20 423 2.58% 19140.00 0.00%
24 200 600 34504 20716 9466.06  36.91  54.31% 15393.10  3754.52  25.69% 20716.00 0.00%
Type 2 25 200 600 42860 18025 9100.64  51.67 % 13971.50  3952.81  22.49% 18025.00 0.00%
26 200 600 50984 20864 8734.53 5849  58.14% 16708.10  4087.03  19.92% 20864.00 0.00%
27 200 800 62625 39895 16806.50  88.95  57.87% 23792.30  5927.01  40.36% 39895.00 0.00%
28 200 800 78387 37671 15803.10 107.83  58.05% 2217420 5742.03  41.14% 37671.00 0.00%
29 200 800 93978 38798 15470.10 131.01  60.13% 24907.00  5708.92  35.80% 38798.00 0.00%
30 300 600 31000 43721 34154.20 2944 21.88% 42720.60  2020.12 2.29% 43721.00 0.00%
31 300 600 38216 44267 33320.10 1659 24.73% 43486.70  1315.62 1.76% 44267.00 0.00%
32300 600 45310 43071 32072.30 8.67  25.54% 42149.00 2.14% 43071.00 0.00%
33 300 800 59600 43125 2438430  90.67  43.46% 36629.60 15.06% 43125.00 0.00%
34 300 800 74500 42292 22913.20 107.97  45.82% 38069.30 € 9.98% 42292.00 0.00%
35 300 800 89300 44114 21624.60 31.68  50.98% 3 00 1382246  11.95% 44114.00 0.00%
36 300 1000 96590 71562 36544.70  167.21  48.93% 56048.30 2340623  21.68% 71562.00 0.00%
37 300 1000 120500 76345 34380.80 195.12  54.97% 58780.10 21368.69  23.01% 76345.00 0.00%
38 300 1000 144090 78880 24448 57.55% 60810.80 2137546  22.91% 78880.00 0.00%
AVG 39.14 41.50% 4177.58 22.62% 7.99%

Table 1: Comparison among the Lagrangian approaches for the MSTC.

in [3]. We verify the effectiveness and the performance of HDA by comparing
it with the two Lagrangian approaches, LB-MST and LB-MI, proposed for
the MSTC in [26]. The results of this comparison are reported in Table 1.
In order to have a fair comparative study, the CPU time reported in [26] has
been scaled according to the Whetstone benchmark [1].

The first five columns of this table show the characteristics of the instances
while the column Opt reports the optimal solution value or the best known

“*” gymbol. The next

solution value when this value is reported with the
nine columns report the lower bound (LB), the computational time (Time),
in seconds, and the percentage gap (Gap) from the best known value of LB-
MST, LB-MI and HDA algorithms, respectively. Notice that, in reporting

the computational time of our algorithm, we have included the time required
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by the preprocessing phase described in Section 5.

At the bottom of the table, the line AVG shows the average computational
time and Gap values for the three algorithms. The results reported on AVG
line show that HDA is much more effective of the other two algorithms.
Indeed, its gap from the Opt value is around 8% while this gap increases
to 22.62% for LB-MI and 41.50% for LB-MST. In any case, the Gap value
of HDA is always better than the Gap value of the other two algorithms.
Moreover, HDA reaches to find the optimal solution on 23 out of 35 instances,
where an optimal solution is known, while LB-MI and LB-MST never find
an optimal solution.

In comparing the running times of HDA, LB-MI and LB-MST, we ob-
serve that HDA is always faster than the other two algorithms. On average,
the computational time of HDA is lower than 5 seconds and only in three
cases this time is greater than 10 seconds. On the contrary, the average com-
putational time of LB-MST and LB-MI is equal to 39 and to 4177 seconds,
respectively. Actually, there are cases in which LB-MI takes so much time
(more than 21000 seconds) that its use in practice is not convenient. Ac-
cording to the results of Table 1, we observe that HDA is suitable for being
embedded into a branch and bound approach because it can quickly find

tight lower bounds.

In order to further investigate the effectiveness and performance of HDA,
we run our algorithm even on the new instances proposed in [5]. These
instances were generated with a number of nodes that ranges from 25 to
100 with a step of 25. The number of edges m is assigned according to a
density equal to 0.2, 0.3, 0.4. A random integer weight chosen in the interval
[10, 30] is assigned to each edge. This means that a graph with a density
equal to d has m = dn(n—1)/2 edges. Finally, the number of conflicts pairs p
associated with each instance is equal to 1%, 4%, 7% of m(m—1)/2. For each
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Instance HDA Instance HDA

ID n m p s Opt LB Time Gap ‘ ‘ ID n m P s Opt LB Time Gap
51 25 60 18 1 347 347.00  0.04  0.00% 96 50 245 299 271 619 619.00  0.34  0.00%
52 25 60 18 7 389 389.00  0.04 0.00% 97 50 245 299 277 604 604.00  0.36  0.00%
53 25 60 18 13 353 353.00  0.04 0.00% 98 50 245 299 283 634 634.00  0.34  0.00%
54 25 60 18 19 346 346.00  0.04 0.00% 99 50 245 299 289 616 615.50  0.34  0.08%
55 25 60 18 25 336 336.00 0.04  0.00% 100 50 245 299 295 595 595.00 0.34  0.00%
5 25 60 71 31 381 379.63 0.06 0.36% 101 50 245 1196 301 678 668.50 0.57  1.40%
57 25 60 71 37 390 381.50 0.05 2.18% 102 50 245 1196 307 681 655.49 0.56  3.75%
58 25 60 71 43 372 372.00 0.05  0.00% 103 50 245 1196 313 709 678.22 0.59  4.34%
59 25 60 71 49 357 357.00 0.05  0.00% 104 50 245 1196 319 639 634.04 0.56  0.78%
60 25 60 71 55 406 406.00 0.05  0.00% 105 50 245 1196 325 681 658.82 0.56  3.26%
61 25 60 124 61 385 385.00 0.06  0.00% 106 50 245 2093 331 833* 661.27 0.76  20.62%
62 25 60 124 67 432 432.00 0.06  0.00% 107 50 245 2093 337 835 705.98 0.75 15.45%
63 25 60 124 73 458 424.48 0.07  7.32% 108 50 245 2093 343 840% 666.45 0.74  20.66%
64 25 60 124 79 400 398.00 0.07  0.50% 109 50 245 2093 349 836* 680.81 0.76  18.56%
65 25 60 124 85 420 406.77 0.08  3.15% 110 50 245 2093 355 769 693.86 0.74  9.77%
66 25 90 41 91 311 310.10  0.05 0.29% 111 50 367 672 361 570 570.00  0.82  0.00%
67 25 90 41 97 306 306.00  0.05 0.00% 112 50 367 672 367 561 561.00  0.86  0.00%
68 25 90 41 103 299 299.00  0.05 0.00% 113 50 367 672 373 573 573.00  0.86  0.00%
69 25 90 41 109 297 297.00  0.05 0.00% 114 50 367 672 379 560 560.00  0.86  0.00%
70 25 90 41 115 318 318.00  0.05 0.00% 115 50 367 672 385 549 549.00  0.83  0.00%
7125 90 161 121 305 305.00  0.08 0.00% 116 50 367 2687 391 612 596.44  1.26  2.54%
72 25 90 161 127 339 339.00  0.09 0.00% 117 50 367 2687 397 615 596.67  1.27  2.98%
7325 90 161 133 344 344.00  0.08 0.00% 118 50 367 2687 403 587 577.09  1.26  1.69%
7425 90 161 139 329 328.00  0.09 0.31% 119 50 367 2687 409 634 608.47  1.26  4.03%
75025 90 161 145 326 325.00  0.08 0.31% 120 50 367 2687 415 643 636.06  1.26  1.08%
76 25 90 281 151 349 34793 0.10 0.31% 121 50 367 4702 421 726* 624.43  1.66 13.99%
7725 90 281 157 385 370.63  0.10 3.73% 122 50 367 4702 427 T70* 635.39  1.65 17.48%
78 25 90 281 163 335 330.78  0.11  1.26% 123 50 367 4702 433 86* 646.89  1.64 17.70%
79 25 90 281 169 348 334.67  0.10 3.83% 124 50 367 4702 439 T1* 59747 1.72 15.97%
80 25 90 281 175 357 350.05  0.10 1.95% 125 50 367 4702 445 764%* 665.14  1.71 12.94%
81 25 120 72 181 282 282.00  0.07 0.00% 126 50 490 1199 451 548 548.00  1.68  0.00%
82 25 120 72 187 294 294.00  0.06 0.00% 127 50 490 1199 457 530 530.00  1.66  0.00%
83 25 120 72 193 284 284.00  0.06 0.00% 128 50 490 1199 463 549 549.00  1.65  0.00%
84 25 120 72 199 281 281.00  0.06  0.00% 129 50 490 1199 469 540 540.00  1.67  0.00%
85 25 120 72 205 292 292.00  0.06 0.00% 130 50 490 1199 475 540 540.00  1.65  0.00%
86 25 120 286 211 321 32025 012 0.24% 131 50 490 4793 481 594 584.26 2.38  1.64%
87 25 120 286 217 317 317.00  0.12  0.00% 132 50 490 4793 487 579 559.85 240 3.31%
88 25 120 286 223 284 284.00  0.12  0.00% 133 50 490 4793 493 589 578.34 243  1.81%
89 25 120 286 229 311 311.00  0.12  0.00% 134 50 490 4793 499 577 565.41 239 2.01%
90 25 120 286 235 290 290.00  0.13  0.00% 135 50 490 4793 505 592 57744 240 2.46%
91 25 120 500 241 329 319.24 016 2.97% 136 50 490 8387 511 678* 574.99  3.08 15.19%
92 25 120 500 247 339 326.05 016  3.82% 137 50 490 8387 517 651* 569.00  3.07 12.60%
93 25 120 500 253 368 35449  0.16  3.67% 138 50 490 8387 523 689* 59220 3.08 14.05%
94 25 120 500 259 311 306.54  0.16  1.44% 139 50 490 8387 529 682* 59250  3.07 13.12%
95 25 120 500 265 321 318.01 0.16  0.93% 140 50 490 8387 535 674% 587.45 3.09 12.84%
AVG 0.08 0.86% | | AVG 1.40 5.96%

Table 2: Comparison between the optimal solutions and the lower bounds
found by HDA on the small instances proposed in [5].

combination of parameters n, m and p, 5 different instances were generated
for a total of 180 instances. The parameter s is the seed used to initialize
the random number generator. The results of HDA on these instances are
shown in Table 2 and Table 3.

The first five columns of these tables show the characteristics of the in-
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stances. The column Opt reports the optimal solution value computed by
the branch-and-cut (BC) proposed in [5]. When a certified optimal solution
is not found within the time limit of 5000 seconds, the best solution found is
shown, if available, and a “*”

next three columns show the lower bound (LB), the CPU time (Time), the

symbol is added near the related value. The

gap percentage from the Opt value (Gap), respectively. Finally, the last line

of the table reports the average values of Time and Gap columns.

In Table 2 the results on the small instances with 25 and 50 nodes are
reported. For the instances with 25 nodes, HDA finds the optimal solution
on 23 out of 38 instances and the gap is greater than 3% only six times.
The average gap value of HDA is equal to 0.86%. The CPU time requires
to obtain these results is around 0.1 seconds. By increasing the size of the
instances to 50 nodes, we observe that the average gap grows to 6% and HDA
finds the optimal solution only 13 times. However, we have to consider here
that BC provides the optimal solution for 32 out of 45 instances while on the
remaining instances only an upper bound is provided. Of course, compari-
son of the lower bound with an upper bound, rather than with the optimal
solution, provides an overestimate of the gap. Indeed, the average gap value
computed only on the 32 instances, where the optimal solution is known, is
equal to 2%. The computational time of HDA remains negligible with an

average of 1.4 seconds.

In Table 3 the results of HDA on the large instances are reported. Unfor-
tunately, due to the size of these instances and, in particular, to the number
of conflicts present in them, the BC algorithm finds the optimal solution
only for the instances with the minimum number of conflicts. Instead, on
the instances with the greatest number of conflicts, BC fails to provide even

an upper bound. As a consequence, the number of comparisons performed
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Instance HDA Instance HDA
ID n m P s Opt LB Time Gap ‘ ‘ 1D n m P s Opt LB Time Gap
141 75 555 1538 541 868 868.00 2,51 0.00% 186 100 990 4896 811 1119 1118.48  11.59  0.05%
142 75 555 1538 547 871 870.93 2.49  0.01% 187 100 990 4896 817 1137 1134.74 1143 0.20%
143 75 555 1538 553 838 838.00 2.45  0.00% 188 100 990 4896 823 1113 1112.45  11.71  0.05%
144 75 555 1538 559 855 855.00 247  0.00% 189 100 990 4896 829 1110 1109.63  11.48  0.03%
145 75 555 1538 565 857 857.00 247  0.00% 190 100 990 4896 835 1090 1088.67  11.99  0.12%
146 75 555 6150 571 1047* 942.34 3.49 10.00% 191 100 990 19583 841 1175.62
147 75 555 6150 577 1069* 937.61 3.54  12.29% 192 100 990 19583 847 1491* 1141.98
148 75 555 6150 583 1040%* 910.90 348 12.41% 193 100 990 19583 853 1510%* 1140.74
149 75 555 6150 589 998* 3.08 8.51% 194 100 990 19583 859 1441% 1178.06 0
150 75 555 6150 595 994* 9.67% 195 100 990 19583 865 1560* 1176.36  15.36  24.59%
151 75 555 10762 601 196 100 990 34269 871 1126.42  22.20
152 75 555 10762 607 197 100 990 34269 877 1148.91  24.59
153 75 555 10762 613 198 100 990 34269 883 1179.91  21.17
154 75 555 10762 619 199 100 990 34269 889 1146.74  20.30
155 75 555 10762 625 200 100 990 34269 895 1154.99  20.42
156 75 832 3457 631 798 797.77  6.86  0.03% 201 100 1485 11019 901 1079 1077.94 3481 0.10%
157 75 832 3457 637 821 820.00 6.83  0.12% 202 100 1485 11019 907 1056 1054.88  34.46  0.11%
158 75 832 3457 643 816 815.32 6.87  0.08% 203 100 1485 11019 913 1059 1059.00  34.29  0.00%
159 75 832 3457 649 820 819.97 7.16  0.00% 204 100 1485 11019 919 1046 1045.99  34.09  0.00%
160 75 832 3457 655 815 814.99 7.23  0.00% 205 100 1485 11019 925 1072 1071.22  34.17  0.07%
161 75 832 13828 661 903* 830.85 9.08  7.99% 206 100 1485 44075 931 1374% 1096.86  46.07 20.17%
162 75 832 13828 667 953% 859.49 9.05 9.81% 207 100 1485 44075 937 1291* 1090.97  45.60 15.49%
163 75 832 13828 673 892* 829.00 9.04  7.06% 208 100 1485 44075 943 1344% 1084.44  46.54 19.31%
164 75 832 13828 679 915* 842.24 8.98  7.95% 209 100 1485 44075 949 1286* 1089.38  46.01 15.29%
165 75 832 13828 685 896* 846.70 9.05  5.50% 210 100 1485 44075 955 1370* 1088.39  45.84 20.56%
166 75 832 24199 691 869.99 12.24 211 100 1485 77131 961 1083.49
167 75 832 24199 697 837.71 12.33 212 100 1485 77131 967 1085.99
168 75 832 24199 703 842.00 12.01 213 100 1485 77131 973 1093.98
169 75 832 24199 709 862.99 11.98 214 100 1485 77131 979 1105.91
170 75 832 24199 715 878.66 12.14 215 100 1485 77131 985 1090.90
171 75 1110 6155 721 87 787.00 14.88 216 100 1980 19593 991 1031 1030.91
172 75 1110 6155 727 785 785.00 14.82 217 100 1980 19593 997 1036 1034.88
173 75 1110 6155 733 783 783.00 14.78 218 100 1980 19593 1003 1024 1024.00
174 75 1110 6155 739 784 783.88 1494 219 100 1980 19593 1009 1025 1024.98
175 75 1110 6155 745 797 796.50  14.86 220 100 1980 19593 1015 1028 1027.50

221 100 1980 78369 1021 1234* 1060.50 0
222 100 1980 78369 1027 1187* 1033.99 .82 12 0
223 100 1980 78369 1033 1213* 1050.54 104.96 13.39%
224 100 1980 78369 1039 1221%* 1048.10 103.83 14.16%
Z 3. . 225 100 1980 78369 1045 1245* 1048.88  103.99 15.75%
181 75 1110 43085 781 816.97 27.33 226 100 1980 137145 1051 1041.79  129.47

176 75 1110 24620 751 867* 816.88  19.16
177 75 1110 24620 757 851* 797.98  19.28

182 75 1110 43085 787 804.00 2674 227 100 1980 137145 1057 1066.49  129.26
183 75 1110 43085 793 1194  827.29 26.90 30.71% 228 100 1980 137145 1063 1052.36  130.38
184 75 1110 43085 799 799.00 2717 229 100 1980 137145 1069 1062.85  130.01
185 75 1110 43085 805 806.00 27.14 230 100 1980 137145 1075 1055.48  132.96
AVG 11.09 5.13% | | AVG 55.74 8.71%

Table 3: Comparison between the optimal solutions and the lower bounds
found by HDA on the large instances proposed in [5].

on these instances is limited. The AVG values show that on the instances
with 75 nodes, the Gap value is around 5% even if this value is computed
by comparing our lower bound with an upper bound, instead of with the
optimal solution. Indeed, the worst Gap values are often observed on the
instances where BC provides an upper bound. On average, the CPU time
is around 11 seconds and it never exceeds 30 seconds. It is interesting to

observe that as the number of conflicts increases as the computational time
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of HDA increases. This trend will be confirmed even on the largest instances
with 100 nodes and it proves that the number of conflicts is the main pa-
rameter that affects the performance of HDA much more than the number
of nodes or edges on the instance.

Finally, on the instances with 100 nodes, the average gap value is equal
to 8.71%. As for the instances with 75 nodes, the highest Gap occurs on
those ones where BC provides an upper bound. By computing the average
gap only on the instance with an optimal solution, this value is equal to
0.06%. On average, the computational time is around 55 seconds and it
never exceeds 133 seconds. These results show that HDA remains very fast.
However, also for these instances, the trend observed for the 75 nodes ones
is confirmed, that is the computational time increases with the number of
conflicts. To highlight the impact of the conflicts on the performance of
HDA let us compare the time required to solve the instances number 216
and 230. Both these instances have the same number of nodes and edges
but the instance 230 contains much more conflicts. In fact, the time required
to solve the instance 230 is 75% greater than the time required to solve the

instance 216.

6.1 Upper Bounds Results

In Section 5.1, we described the ConflictRemoval procedure that tries to
remove the conflicts from a spanning tree to produce a feasible solution for
the MSTC. We introduced ConflictRemoval in the computations carried out
by HDA to obtain the new algorithm HDA™ that provides a larger number
of upper bounds. In order to evaluate the quality of these upper bounds,
we compare them with those produced by metaheuristic MEGA proposed
in [3]. Although we do not expect that our simple local search procedure

overcomes the effectiveness of such ad hoc metaheuristic, nevertheless the
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Instance MEGA HDA*

ID n m P Opt UB Time Gap UB Time Gap

150 200 199 708 708 0.71  0.00% 726 035 2.54%

2 50 200 398 770 770 0.68  0.00% 780 045  1.30%

3 50 200 597 917 917 0.63  0.00% 1176 0.56 28.24%

Type 1 4 50 200 995 1324 1336 0.66 0.91% 1587  0.79 19.86%

Feasible 5 100 300 448 4041 4088 239 1.16% 4099 119 1.44%
6 100 300 897 5658 6095 1.81  7.72% 2.14

7 100 500 1247 4275 4275 518  0.00% 4301 296  0.61%

8 100 500 2495 5997 6199 512 3.3™% 8214 549 36.97%
9 100 500 3741 7665% 7665  3.72  0.00% 6.81
Type 1 10 200 600 1797 15029* 15029 12.23  0.00% 8.57
F.Unknown 11 200 800 3196 22110% 22110 2342 0.00% 18.93

12 50 200 3903 1636 1636 0.46  0.00% 1653 217  1.04%

13 50 200 4877 2043 2043 047  0.00% 2043 251 0.00%

14 50 200 5864 2338 2338 0.51  0.00% 2338  0.82  0.00%

15 100 300 8609 7434 7434 1.88  0.00% 7434 0.64  0.00%

16 100 300 10686 7968 7968 1.68  0.00% 7968  0.54  0.00%

17 100 300 12761 8166 8166 1.72 0.00% 8166  0.46  0.00%

18 100 500 24740 12652 12652 3.30  0.00% 12681  20.82  0.23%

19 100 500 30886 11232 11232 3.48 0.00% 11287  26.37  0.49%

20 100 500 36827 11481 11481 3.51  0.00% 11481  24.36  0.00%

21 200 400 13660 17728 17728 7.25  0.00% 17728 140  0.00%

22 200 400 17089 18617 18617  7.49  0.00% 18617  1.44  0.00%

23 200 400 20470 19140 19140  7.40  0.00% 19140 1.44  0.00%

24 200 600 34504 20716 20716  11.17  0.00% 20716 3.01  0.00%

Type 2 25 200 600 42860 18025 18025 11.35  0.00% 18025  2.24  0.00%

26200 600 50984 20864 20864 12.38  0.00% 20864  1.99  0.00%

27 200 800 62625 39895 39895 16.35  0.00% 39895 45.78  0.00%

28 200 800 78387 37671 37671 15.70  0.00% 37671 819  0.00%

29 200 800 93978 38798 38798  16.02  0.00% 38798 471 0.00%

30 300 600 31000 43721 43721 18.61  0.00% 43721 344  0.00%

31 300 600 38216 44267 44267  21.28  0.00% 44267  3.36  0.00%

32 300 600 45310 43071 43071 24.32  0.00% 43071 3.06  0.00%

33 300 800 59600 43125 43125  31.86  0.00% 43125 3.10  0.00%

34 300 800 74500 42292 42292 3431  0.00% 42292 3.21  0.00%

35 300 800 89300 44114 44114 34.25  0.00% 44114 3.15  0.00%

36300 1000 96590 71562 71562 39.81  0.00% 71562 9.52  0.00%

37 300 1000 120500 76345 76345  31.60  0.00% 76345 6.70  0.00%

38 300 1000 144090 78880 78880  36.11  0.00% 78880  5.43  0.00%

AVG 11.86 0.35% 6.27 2.73%

Table 4: Comparison between the feasible solutions found by Mega and
HDA™ for the MSTC.

results reported in Table 4 show that the upper bounds of HDA' and MEGA
are at least comparable with HDA™ being significantly faster than MEGA.
The headings of Table 4 are the same as in Table 1, except for the LB columns
that are replaced by the upper bound (UB) columns.

It is apparent (see AVG line) that MEGA is more effective than HDA™
because its average gap from the Opt value is equal to 0.35% while this gap is
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equal to 2.73% for HDA™. MEGA finds the optimal solution on 34 out of 38
instances and, in the remaining instances, its Gap value is smaller than 8%.
Instead, HDA™ finds the optimal solution for 24 out of 38 instances and, on
31 out of 38 instances, its Gap value is lower than 2.6%. In four cases HDA™
did not even find a feasible solution and on the remaining three instances the
Gap value is poor. The counterpart is HDA™ ability to obtain rather tight
upper bounds by just invoking a relatively cheap local search procedure.
Regarding the performance, since MEGA and HDA" are executed on the
same machine, their CPU times are directly comparable. From the average
CPU time reported in the last row of Table 4, we can see that HDA™ is around
two times faster than MEGA. In particular, the CPU time of HDA™ results
27 times lower than 5 seconds while for MEGA this occurs only 16 times.
There are, however, some instances where MEGA is faster than HDA™.

It is worth noting that the computational time of HDA™ is not signif-
icantly greater than the computational time of HDA, at least on these in-
stances because it requires two seconds more than HDA, on average.

To further investigate the effectiveness of HDA™', we compare the upper
bounds with the optimal solutions provided by B&C on the set of small
instances proposed in [5]. The results of this comparison are reported in
Table 5. Table headings have the same meaning they have for Table 3, the
only difference being that column LB is replaced by column UB. On the
instances, with 25 nodes the upper bounds provided by HDA™ coincide with
the optimal solution on 33 out of 45 instances. On the remaining 12 instances,
the gap is greater than 3% in only three cases and, in the worst case, it is equal
to 4.08%. The average gap in all these instances is 0.46%. These results show
that effectiveness of HDA™, on the small instances. The computational time
is negligible because, on average, it is equal to 0.11 seconds and in the worst
case it is equal to 0.3 seconds. On the instances with 50 nodes the quality

of the upper bounds decreases. Indeed, these upper bounds coincide with
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Instance HDA* Instance HDA™"
ID n m p s Opt UB Time Gap ID n m P s Opt UB Time Gap

51 25 60 18 1 347 347 0.05  0.00% 96 50 245 299 271 619 619  0.37  0.00%
52 25 60 18 7 389 380 0.04 0.00% 97 50 245 299 277 604 604  0.38  0.00%
53 25 60 18 13 353 353 0.04 0.00% 98 50 245 299 283 634 634  0.35 0.00%
54 25 60 18 19 346 346 0.05  0.00% 99 50 245 299 289 616 616  0.40  0.00%
55 25 60 18 25 336 336 0.04 0.00% 100 50 245 299 295 595 595 044  0.00%
56 25 60 71 31 381 381 0.07  0.00% 101 50 245 1196 301 678 698  0.96  2.95%
57 25 60 71 37 390 390 0.07  0.00% 102 50 245 1196 307 681 721 099 5.87™%
58 256 60 71 43 372 372 0.06 0.00% 103 50 245 1196 313 709 725 1.00  2.26%
59 25 60 71 49 357 357 0.06 0.00% 104 50 245 1196 319 639 656  0.86  2.66%
60 25 60 71 55 406 406 0.06  0.00% 105 50 245 1196 325 681 748 1.01  9.84%
61 25 60 124 61 385 385 0.07  0.00% 106 50 245 2093 331 833*
62 25 60 124 67 432 432 0.07  0.00% 107 50 245 2093 337 835
63 25 60 124 73 458 474 0.10  3.49% 108 50 245 2093 343 840*
64 25 60 124 79 400 400 0.08  0.00% 109 50 245 2093 349 836*
65 25 60 124 85 420 421 012 0.24% 110 50 245 2093 355 769

66 25 90 41 91 311 311 0.05  0.00% 111 50 367 672 361 570 570 0.88  0.00%
67 25 90 41 97 306 306 0.06 0.00% 112 50 367 672 367 561 561 0.98  0.00%
68 25 90 41 103 299 299 0.05  0.00% 113 50 367 672 373 573 573 1.06  0.00%
69 25 90 41 109 297 297 0.05  0.00% 114 50 367 672 379 560 560  0.87  0.00%
70 25 90 41 115 318 318 0.05 0.00% 115 50 367 672 385 549 551 0.99  0.36%
7125 90 161 121 305 305 0.09 0.00% 116 50 367 2687 391 612 657 237 7.35%
72 25 90 161 127 339 339 011  0.00% 117 50 367 2687 397 615 663 224  7.80%
7325 90 161 133 344 344 0.09  0.00% 118 50 367 2687 403 587 635 233 8.18%
74 25 90 161 139 329 331 0.11  0.61% 119 50 367 2687 409 634 721 240 13.72%
75 25 90 161 145 326 327 011 0.31% 120 50 367 2687 415 643 688 245  7.00%
76 25 90 281 151 349 349 0.13  0.00% 121 50 367 4702 421 T26*

7725 90 281 157 385 385 0.16  0.00% 122 50 367 4702 427 T70*

78 25 90 281 163 335 335 0.14  0.00% 123 50 367 4702 433 786*

79 25 90 281 169 348 358  0.18 2.87% 124 50 367 4702 439 T11*

80 25 90 281 175 357 359 0.17  0.56% 125 50 367 4702 445 T64* 868  3.36 13.61%
81 25 120 72 181 282 282 0.06 0.00% 126 50 490 1199 451 548 552 2.03  0.73%
82 25 120 72 187 294 294 0.06 0.00% 127 50 490 1199 457 530 531 1.88  0.19%
83 25 120 72 193 284 284 0.08  0.00% 128 50 490 1199 463 549 549 176 0.00%
84 25 120 72 199 281 281 0.07  0.00% 129 50 490 1199 469 540 541 2.01  0.19%
85 25 120 72 205 292 292 0.06 0.00% 130 50 490 1199 475 540 540 171 0.00%
86 25 120 286 211 321 321 0.16  0.00% 131 50 490 4793 481 594 629  4.63 5.89%
87 25 120 286 217 317 317 017 0.00% 132 50 490 4793 487 579 650  4.90 12.26%
88 25 120 286 223 284 284 012 0.00% 133 50 490 4793 493 589 657  4.75 11.54%
89 25 120 286 229 311 312 017  0.32% 134 50 490 4793 499 577 643 4.74 11.44%
90 25 120 286 235 290 290 0.13  0.00% 135 50 490 4793 505 592 670  4.71 13.18%
91 25 120 500 241 329 341 0.26  3.65% 136 50 490 8387 511 678* 812 6.54 19.76%
92 25 120 500 247 339 347 025 2.36% 137 50 490 8387 517 651%

93 25 120 500 253 368 383 030 4.08% 138 50 490 8387 523 689*

94 25 120 500 259 311 314 022 0.96% 139 50 490 8387 529 682*

95 25 120 500 265 321 325 025 1.25% 140 50 490 8387 535 674% 828 6.95 22.85%

AVG 0.11 0.46% 2.56 5.44%

Table 5: Comparison between the optimal solutions and the upper bounds
found by HDA" on the small instances proposed in [5].

the optimal solution on 11 out of 45 instances while there are 12 instances
where HDA™ does not find an upper bound. Often these instances coincide

with the cases where the B&C does not provide the optimal solution. The
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average gap is equal to 5.44% but in seven cases it is greater than 10%. The
computational time is always lower than 7 seconds and, on average, it is

equal to 2.56 seconds.

7. Conclusion

In this paper, we developed a Lagrangian approach, HDA, to solve the Mini-
mum Spanning Tree Problem with Conflicting Edge Pairs; the method com-
putes both upper and lower bounds for the MSTC. The computation of the
lower bound is obtained by alternating a Dual Ascent and a Subgradient pro-
cedure, while the upper bound is obtained by using a local search procedure
acting on the infeasible solutions generated during the lower bound compu-
tation. We tested the performance of HDA in terms of accuracy and running
time. The computational results on type 1 and type 2 instances show that
the lower bounds of HDA coincide with the optimal solution in 60% of the
cases. Moreover, HDA is faster and more effective than the other two La-
grangian approaches proposed in the literature. Regarding the upper bounds,
HDA™ does not reach the performance of MEGA but in 60% of instances the
bounds provided by the two algorithms coincide with the optimal solution.
Moreover, the upper bounds provided by HDA™ often coincide or are very
close to the optimal solution on the instances with 25 nodes proposed in [5]
while, on the instances with 50, nodes we observed a quality reduction of
these bounds. Finally, the results on the type 3 instances confirm the good

solution quality of the lower bounds provided by our approach.
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