
Noname manuscript No.
(will be inserted by the editor)

Optimization of Sensor Battery Charging to
Maximize Lifetime in a Wireless Sensors Network

Francesco Carrabs · Ciriaco
D’Ambrosio · Andrea Raiconi

Received: date / Accepted: date

Abstract The Maximum Network Lifetime is a well known and studied opti-
mization problem. The aim is to appropriately schedule the activation intervals
of the individual sensing devices composing a wireless sensor network used for
monitoring purposes, in order to keep the network operational for the longest
period of time (network lifetime). In this work, we extend this problem by
taking into account the issue of charging the sensor batteries. More specifi-
cally, it has to be decided how much charge should be provided to each sensor,
given the existence of a charging device with limited energy availability. An
exact Column Generation algorithm embedding a Genetic Algorithm for the
subproblem is proposed. Computational results reveal that by appropriately
choosing the charge levels, remarkable network lifetime improvements can be
obtained, in particular when the available energy is scarce.

Keywords Optimal Battery Charging · Wireless Sensor Network · Column
Generation

1. Introduction

Wireless Sensor Networks (WSNs) are nowadays an ubiquitous technology,
with a wide set of applications (see for instance [13],[15]). While individual
devices have generally limited hardware capabilities, due mostly to size and
cost constraints, WSNs are used to perform complex tasks by intelligently
coordinating their usage. It is therefore of paramount importance to develop
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algorithms and methods to manage WSNs efficiently, as witnessed by the ex-
tended number of research contributions belonging to this field.

Among the considered issues, one that has generated a remarkable amount
of research interest is related to the efficient scheduling of the active and idle
states of sensors used to surveil, or to collect information from, some locations
of interest positioned inside a geographical region (targets). Indeed, given a
WSN deployed within such area, activating all sensors at the same time (and
keeping them in active state until their batteries deplete) could not be their
most efficient usage, given that they may provide a redundant level of coverage
for one or more targets. If we are instead able to identify multiple, possibly
overlapping subsets of sensors that can provide complete coverage (generally
defined covers), one may keep only the sensors belonging to a cover active at
any given moment of time, while the others are kept in a battery-preserving
idle state. It is then easy to understand that by appropriately identifying covers
and activation intervals for each of them, it is possible to significantly extend
the network lifetime, that is, the operational time of the WSN.

The above illustrated problem, generally defined Maximum Network Life-
time Problem (MLP), is known to be NP-Complete (see [3]). It should be
noted that the area coverage case, in which the whole area rather than specific
targets must be kept under observation, can be reduced to the target coverage
one (see [2],[21]).

A successful line of research for MLP has proposed exact resolution meth-
ods based on Column Generation (CG). In this type of approaches, the master
problem is a linear programming formulation that, given a subset of all the
feasible covers, determines the activation times that lead to the maximum life-
time. The other component is a subproblem that, given the dual prices derived
from a master problem optimal solution, is able to identify a new attractive
cover, that is a cover with potential to improve such solution. Resolution ap-
proaches of this type for MLP and several variants of the problem have been
proposed, for instance in [8] the authors studied the case in which some sen-
sors may interfere with each other. In [4,12] a predefined number of the targets
is allowed to be not monitored, in [6,10] the authors considered connectivity
issues, in order to route the collected information to a central processing unit,
and in [5,7,9,11] both previous issues are considered together.

Recent advances in technology have raised interest in wireless networks in
which the batteries can be recharged. In [17] the authors develop and study
a hardware prototype of a WSN system that makes use of a mobile robot
equipped with a charger and a base station used to monitor the battery sta-
tus of the sensors. In [19], the authors compare three scheduling protocols
for sensors that can recharge their batteries through solar panels, used for
purposes such as autonomous organization, tracking of moving targets and
avoiding threats in the case of moving sensors. The authors of [22] consider
a moving charging device that periodically visits all the sensors of a network,
aiming at maximizing the ratio between the time spent at the home station
and the time spent traveling by this device. The authors show that the opti-
mal path is the shortest Hamiltonian Cycle, prove several properties and find
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near-optimal solutions through piece-wise linear approximation. Again in the
context of wireless networks recharged by a mobile device, different protocols
are proposed by [1] and [18].

In [20] the authors present a multi-objective problem related to the de-
tection of multiple events by a sensor network with devices that can harvest
energy from the environment. The problem is transformed into a linear pro-
gramming one through a weighted sum method, and the authors show how to
find Pareto optimal solutions.

A scenario closer to the MLP problem is considered by [23]. Indeed, in this
work, the authors consider a scenario in which rechargeable sensors are used
for target coverage. The time horizon is discretized into time slots and each
sensor is assumed to be able to harvest energy at a given rate when it is not
used for sensing. The authors present an LP formulation in which the final
time slot T is a parameter, and the objective is to minimize the overall energy
consumption while keeping all targets under observation, by determining the
activation schedule of each individual sensor. They propose to find a suitable T
value through binary search. Since the method is considered computationally
expensive, the authors also propose a heuristic algorithm.

As mentioned, several works consider the existence of a high-capacity mo-
bile charger able to recharge a WSN (see [1,17,18,22]). However, to the best
of our knowledge, the MLP problem has not been studied in such a context.
Indeed, optimizing the charge level for each different sensor depending on its
position can be crucial to prolong the network lifetime, in particular if only a
limited amount of energy is available.

For this reason, in this work we propose and study such a variant, that we
call Maximum Network Lifetime Problem with Chargeable Sensors (MLP-C).
In more detail, we consider a scenario in which a charging device with limited
capacity is available, and the issue of deciding the charge level for each sensor
of the network must be faced along with the individuation of the covers and
their activation times. We propose an exact resolution approach based on CG.
Since the subproblem is NP-Hard, we use a Genetic Algorithm (GA) for its
resolution, and solve the subproblem using an ad-hoc ILP formulation only
when the GA fails to identify attractive covers.

The proposed scenario is of particular relevance in cases in which we intend
to reuse an existing network of sensors and, due to environmental conditions,
it is difficult or not possible to keep them continually powered or replace their
batteries. In more detail, a relevant application scenario is the one of under-
water wireless rechargeable sensor networks, analyzed for instance in [14]. As
described in this work, a promising way to replenish sensor batteries in this
context is to send in their proximity charging moving devices, that the au-
thors define mules. These devices can use wireless power transfer technologies,
such as inductive charging (see also [16]) to transfer energy to sensor nodes.
Our work can be considered complementary to [14], which focuses on the de-
termination of routes for the charging devices that minimize their traveling
costs.
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In our computational tests, we will focus on the case in which the sensor
batteries are empty before the intervention of the charging device. However,
the proposed method is general enough to be applicable to scenarios in which
a residual charge exists in one or more sensors. The main aim of the considered
test case is to highlight a comparison with the classical scenario, in which each
battery has a predefined battery charge. Indeed, it will be shown that, assum-
ing to have an equal total amount of available energy for the two scenarios,
MLP-C allows to obtain very significant extensions of the network lifetime, in
particular when the available energy is scarce.

The rest of the paper is organized as follows. The problem is formally de-
fined in Section 2. The CG approach is discussed in Section 3. An evaluation of
an upper bound on the maximum theoretical improvement obtainable by our
approach with respect to the classical one is provided in Section 4. Computa-
tional results are presented and commented in Section 5. Section 6 contains
our final remarks.

2. Definitions and Notations

Let S = {s1, . . . , sn} be a network of sensing devices. We assume all devices
to have equal hardware components, and therefore the same battery capacity
b. As in [4] and other works, without loss of generality, we normalize batteries
capacity to 1 time unit (b = 1). Let ri be the battery charge of sensor si before
the intervention of the charging device (0 ≤ ri ≤ b).

Furthermore, let T = {t1, . . . , tm} be the set of targets to be kept under
observation. We define a binary parameter δij ∀ si ∈ S, tj ∈ T which is equal
to 1 if tj is located within the sensing range of si, and 0 otherwise.

A subset of sensors C ⊆ S is defined to be a cover if it can keep all targets
under observation, that is

∑
si∈C δij ≥ 1 ∀ tj ∈ T . Clearly, in order to be able

to monitor all targets, S must be a cover. Furthermore, any proper subset of
S can potentially be a cover as well.

Finally, let us assume to have an available charging device with a capacity
equal to Ra > 0 time units, and let C be the subset of all covers. Assuming
all sensor batteries to be empty before the intervention of the charging device,
MLP-C corresponds to the following Linear Programming formulation:
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[P] max
∑
Cj∈C

wj (1)

s.t.∑
Cj∈C

aijwj − yi ≤ ri ∀si ∈ S (2)

∑
si∈S

yi ≤ Ra (3)

yi ≤ 1− ri ∀si ∈ S (4)

wj ≥ 0 ∀Cj ∈ C (5)

yi ≥ 0 ∀si ∈ S (6)

Each binary parameter aij ∀si ∈ S,Cj ∈ C is equal to 1 if si belongs
to Cj , and to 0 otherwise. Each wj variable corresponds to the activation
time assigned to the related cover Cj , while the yi variables correspond to the
amount of charge transferred from the charging device to the sensors. Clearly,
the charge assigned to each sensor cannot exceed its battery capacity (see
constraints (4)).

The objective function (1) maximizes the sum of the activation times and,
therefore, the network lifetime. Constraints (2) state that the total activation
time of the covers containing a given sensor si cannot exceed yi + ri. Finally,
the constraint (3) limits the battery charge transferrable from the charging
unit to sensor batteries to Ra.

With respect to the Ra value, we note that the amount of energy necessary
to fully charge all sensors would be R =

∑
si∈S(b− ri) =

∑
si∈S(1− ri). But

then, for Ra ≥ R, no actual decision is necessary with respect to battery
charging, since we may simply assume yi = 1 − ri ∀si ∈ S. Indeed, in this
case, the problem would reduce to the classical MLP one. However, for many
real-world cases, this may not be feasible. Indeed, the constrained capacity of
the mobile charger battery may not allow full charging of all the sensors in
the network, in particular in the context of a WSN with a large number of
sensor devices. Furthermore, due to changes in the monitoring activity to be
performed, the recharge of some sensors may have limited or no utility. Indeed,
their covered targets could no longer be of interest, or (recalling for instance
the underwater application mentioned in Section 1) they may have changed
their positions.

Given these reasons, in the following we will assume Ra < R, and therefore
it becomes crucial to decide which sensors have to be recharged and how much,
in order to maximize the lifetime of the network.

To highlight the importance of appropriate battery charging, consider the
example in Figure 1, with S = {s1, s2, s3, s4} and T = {t1, t2, t3, t4}. The
wider circles represent sensor ranges, while the smaller ones are the targets.
Furthermore, suppose that r1 = r2 = r3 = r4=0 and Ra = 3.
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Fig. 1: Example network

By assigning the battery charges y1 = 1, y2 = 1, y3 = 1, y4 = 0, we can
obtain a lifetime equal to 1.5 time units by activating in sequence the covers
{s1, s2}, {s1, s3} and {s2, s3} for 0.5 time units each. If we assume to have
the same overall amount of available energy and all batteries are constrained
to have an equal charge, that is yi = 0.75 ∀i = {1, . . . , 4}, the maximum
lifetime that can be achieved is 1.125, and it is obtained by activating the
covers {s1, s2}, {s1, s3} and {s2, s3} for 0.375 time units each. Hence, we can
note that prioritizing the most useful sensors allowed a significant lifetime
improvement. A formal evaluation of the maximum solution gap between the
two cases considered in the example is provided in Section 4.

Due to the potentially large number of feasible covers, it is not conceivable
to use [P] to solve instances of the problem of non-trivial size. For this reason,
a CG approach is presented in next section.

3. Column Generation algorithm

As discussed in previous section, formulation [P] has a potentially exponential
number of variables and, consequently, of columns in the coefficient matrix.
By analyzing the structure of [P], we can see however that the number of y
variables and, consequently, of columns associated to them, is equal to |S|.
Moreover, the structure of these columns is known in advance. On the other
hand, [P] contains a column associated to a w variable for each feasible cover
belonging to C. In each of these columns, the position associated to the i-th
constraint of type (2) contains a 1 if sensor si belongs to the related cover and
a 0 otherwise, while the positions related to contraints (3) and (4) contain all
zeros.

We may therefore consider a restricted version of [P], which includes all
the y variables and some of the w ones, associated to a subset of covers C′ ⊆ C.
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Such a formulation, referred to as [RP] from now on, provides the maximum
lifetime that can be obtained using only the covers included in C′.

We use [RP] as restricted master problem of a CG algorithm. Given that
all y variables were included a priori in [RP], such a CG approach only has to
introduce new columns related to w ones. Indeed, the optimal [RP] solution is
not optimal for [P] if some wj related to a cover Cj /∈ C′ has a negative reduced
cost, in which case we say that it is attractive. We can evaluate such reduced
cost as

∑
i:si∈Cj

πi− cj , where πi are the dual prices related to constraints (2)

of [RP], and cj is the coefficient of wj in the objective function of [P]. Indeed,
given the above mentioned structure of the columns of the w variables, it is
straightforward to note that the dual prices related to the other constraints
are not needed in the reduced costs computation.

Since cj = 1 for each wj (see (1)), it follows that wj is attractive if∑
i:si∈Cj

πi < 1. We formulate therefore the subproblem [SP], aimed at finding
the cover that minimizes the sum of the dual prices associated to the sensors
that are chosen to belong to it.

[SP] min
∑
si∈S

πixi (7)

s.t.∑
si∈S

δijxi ≥ 1 ∀tj ∈ T (8)

xi ∈ {0, 1} ∀si ∈ S (9)

Binary variables xi that assume value 1 correspond to sensors chosen to
belong to the cover, while constraints (8) ensure that each target is monitored
by at least one of them.

If the [SP] optimal solution is greater than or equal to 1, no attractive
covers exists and therefore the optimal [RP] solution is also optimal for [P].
Otherwise, we add to [RP] the wj variable associated to the cover correspond-
ing to the optimal [SP] solution, and solve [RP] again. Note that we can easily
reconstruct the wj column corresponding to such cover. Indeed, it will contain
value yi in the position corresponding to the constraint of type (2) associated
to each sensor si, and zero in the other positions.

The process can be iterated until [SP] certifies the optimality of the last
solution found by the master problem. We do note, however, that [SP] is a set
covering problem and is NP-Hard. For this reason, we introduce a stopping
criterion for [SP]; that is, we prematurely interrupt the ILP resolution
as soon as an attractive cover is found. Furthermore, we decided to
propose a method to solve the CG subproblem heuristically, as described in
next subsection.
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3.1 Subproblem GA

The proposed heuristic resolution method for the subproblem is a GA, which
is an adaptation of the one proposed in [4] for the classical MLP problem.

In the GA, each chromosome is a binary vector of length |S|, which corre-
sponds to the encoding of a cover. In the following, given a chromosome p, let
p[i] refer to the gene corresponding to sensor si.

The fitness function of each chromosome p corresponds to the objective
function value of [SP], that is, it can be computed as

∑
si∈S πip[i]. Therefore,

each chromosome with a fitness function value that is lower than 1 is the
encoding of an attractive cover.

The population P has a predefined fixed size, and is composed of randomly
generated chromosomes. In our computational tests, we chose |P | = 50. Each
GA iteration generates a new child chromosome pc by combining two parents
p1 and p2. The parents are chosen through binary tournament; that is, to
choose each of them we first extract at random two chromosomes from the
current population, and then select the one with the best (i.e. lower) fitness
function. The new chromosome pc is then obtained by applying in sequence
the following four operators:

– Crossover: Each gene pc[i] (i = 1, . . . , |S|) is set to 1 if both p1[i] = 1 and
p2[i] = 1, and 0 otherwise.

– Mutation: A random gene i whose value is equal between p1 and p2 is
chosen (that is, such that p1[i] = p2[i]), and the value of pc[i] is switched
from 0 to 1 or vice versa. If p1 and p2 differ in all genes, a random gene
of pc is switched. The i-th gene value will be switched back only if strictly
necessary for the Feasibility and Redundancy operators, described next.

– Feasibility: The feasibility operator makes sure that pc actually corre-
sponds to a cover. If the sensors encoded by genes set to 1 do not cover all
targets, a random sensor si that can cover at least a new target is chosen,
and the related gene pc[i] is set to 1. The procedure iterates until all targets
are covered.

– Redundancy: This operator makes sure that the cover corresponding to
pc does not contain unneeded sensors. The operator builds a list containing
each sensor si such that pc[i] = 1 but could be switched to 0 without
affecting feasibility. A random element of the list is chosen, and the related
gene is set to 0. The list is then recomputed, and the procedure iterates
until no additional sensor can be removed.

Each newly built chromosome pc is discarded if an identical one already
exists in P . Otherwise, it replaces an older chromosome, chosen at random
among the |P/2| worst ones in terms of fitness function.

The above described Feasibility and Redundancy operators are also used
for buiding the individuals composing the initial population. Each of them is
built by applying the two operators in sequence, starting from a binary vector
in which all positions are set to 0, again discarding eventual duplicates.



Optimization of Sensor Battery Charging to Maximize Lifetime in a WSN 9

Two stopping criteria are considered, namely a maximum number of it-
erations without improvements with respect to the incumbent best solution
encountered, and a maximum number of consecutive identical chromosomes
generated. For the computational tests reported in Section 5, values 1500 and
100 have been chosen for these two parameters, respectively.

As soon as a stopping criterion is reached, we check if the final population
contains at least one chromosome corresponding to an attractive cover. If
this is the case, all the newly individuated attractive covers are added at
once to [RP], as an attempt to reduce the number of CG iterations, and the
master problem is solved again. If no attractive covers were found by GA, the
subproblem is solved using the [SP] formulation. As previously mentioned,
the [SP] resolution is interrupted as soon as an attractive cover is found.

4. Upper bound on lifetime improvement

In this section, we aim to identify the maximum theoretical improvement that
can be obtained by our proposed approach that identifies the optimal charge
levels for each sensors, with respect to a scenario in which the same overall
amount of energy is equally distributed among all of them. In more detail,
we want to compare the maximum lifetimes achievable by the following two
approaches:

– OC (Optimal Charging), our proposed CG algorithm to solve MLP-C,
presented in Section 3;

– UC (Uniform Charging), an exact algorithm for MLP, in which each sensor
is given a battery charge equal to β = Ra

|S| , where Ra is the charging device

capacity considered by OC (note that, by definition, 0 < β < 1).

We assume all batteries to be empty before the uniform or optimized bat-
tery charges are given, in order to fully evaluate the advantage provided by
OC with respect to UC.

The aim of presenting this upper bound is to provide additional insights
on the computational results discussed in Section 5, in which OC and UC
solutions are experimentally evaluated and compared.

Let LF (A) be the objective function value obtained by executing a given
algorithm A for a reference instance. In Section 5, we will report percentage
gaps between the lifetimes obtained by the two considered approaches through

the formula GAP = 100× LF (OC)−LF (UC)
LF (UC) .

First of all, we note that such gap can never be negative. Indeed, by def-
inition OC can only find solutions that are greater than or equal to the ones
found by UC, since the fixed battery setting considered for UC is feasible for
OC.

Furthermore, let LTmax be the maximum lifetime value obtainable by solv-
ing to optimality the classical MLP problem, giving to all sensors a battery
charge equal to 1 time unit. Since UC solves to optimality the same problem,
with battery capacities scaled of a factor β, it follows that
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LF (UC) = β × LTmax (10)

Finally, we observe that LTmax represents a trivial upper bound on the
maximum lifetime achievable for the same instance through OC for any 0 <
β < 1, since it is the maximum lifetime that would be obtained by the algo-
rithm for Ra = R. The following upper bound on the GAP value can then be
derived:

100× LTmax − β × LTmax

β × LTmax
= 100× 1− β

β
(11)

5. Computational tests

In this section, we evaluate the effectiveness of the proposed approach on a
set of benchmark instances. In more detail, we compare the OC and UC algo-
rithms, described in the previous section. As previously mentioned, OC is an
implementation of the CG algorithm described in Section 3. UC was obtained
starting from the same code, and by constraining in the master problem each
sensor to receive β as battery charge.

The algorithms were coded in C++ on a macOS platform, running on an
Intel Core i5 3.1 GHz processor with 8 GB of RAM. The mathematical for-
mulations within the CG algorithms were solved through IBM ILOG CPLEX
12.8. Default CPLEX parameters and single thread mode were used.

In Section 5.1 we describe the considered instances, while in Section 5.2 the
obtained numerical results, along with some comments on them, are presented.

5.1 Test instances

We executed our algorithms on a dataset of randomly generated instances,
using the following values:

– Number of sensors |S| equal to 500, 750, 1000, 1250 or 1500;
– ri = 0 ∀si ∈ S;
– Number of targets |T | equal to 15 or 30;
– Charging device capacity Ra = βR = β|S|, with β equal to 0.25, 0.50 or

0.75.

We generated 10 different instances for each combination of values for
|S| and |T |. In more detail, we considered a square area of size 500 × 500,
and generated at random the spatial coordinates of each sensor and target
within this space. Each sensor is given a sensing range equal to 100. During
the instance generation phase we also make sure that, in each instance, each
target is covered by at least one sensor and each sensor covers at least one
target. For each of these base 100 instances, tests were executed considering
the three mentioned β values.
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We recall that, in the case of UC, the β value corresponds to the predefined
battery charge assigned to each sensor of the network. According to (11), the
maximum percentage gap between OC and UC is therefore equal to

– 300% for β = 0.25
– 100% for β = 0.50
– 33.3% for β = 0.75

Clearly, as β decreases the related upper bound is likely to be looser. In-
deed, achieving a 300% gap on an instance with β = 0.25 would mean that we
were able to achieve the same lifetime (LTmax) that we would have achieved
with fully charged batteries using only a quarter of the same overall energy.

5.2 Test results

In order to evaluate the contribution of the genetic algorithm, we start by
comparing OC with a basic version (from now on called basicOC) in which
the subproblem is always solved by using [SP]. As previously mentioned, in
both algorithms we interrupt the [SP] resolution as soon as it finds an attrac-
tive column. In preliminary tests, this policy showed to significantly improve
the performances of both algorithms. The results of the comparison between
basicOC and OC are contained in Table 1.

Each row of the table contains average values computed on a test scenario,
composed of 10 instances corresponding to the same values of β, |S| and |T |.
The first three columns report, for each of the considered scenarios, the values
of these three parameters. The following four columns contain average lifetime
values and computational times in seconds for basicOC and OC, respectively.

We note that the computational times of basicOC are influenced in par-
ticular by the β value. In particular, the computational time for |S| = 1500,
|T | = 30 and β = 0.25 is equal to 24.01 seconds, while it grows to 153.14 sec-
onds for the same instances and β = 0.5, and to 294.60 seconds for β = 0.75.
On the other hand, OC solves 22 out of 30 scenarios within 10 seconds and
requires more than 30 seconds only twice, with a peak equal to 66.12 sec-
onds. Understandably, having a larger charging device enlarges the solution
space and allows more complex solutions; in this context, the GA contribution
appears to be more effective.

We now present the comparison between UC and OC algorithms. As pre-
viously mentioned, both algorithms are based on the same code, and both
embed the GA algorithm for the subproblem. The results of this comparison
are shown in Table 2, where the headings of the first seven columns have the
same meaning that they have for Table 1, with UC instead of basicOC. The
additional column contains percentage gaps between the lifetime values of the
two algorithms for each scenario, computed and described in Section 4.

As discussed, gaps can never be negative. We can however observe that,
in practice, OC always improved the UC solutions by a significant margin.
Indeed, the gap is always equal to 33.3% for β = 0.75, it ranges between
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basicOC OC
β |S| |T| lifetime time lifetime time

0.25

500 15 22.126 1.50 22.126 1.03
30 16.696 1.42 16.696 3.31

750 15 32.874 3.69 32.874 2.97
30 24.923 3.57 24.923 9.61

1000 15 43.351 7.45 43.351 3.60
30 33.713 7.59 33.713 19.82

1250 15 56.671 13.53 56.671 5.95
30 39.978 13.88 39.978 32.00

1500 15 66.576 23.33 66.576 9.90
30 51.267 24.01 51.267 66.12

0.5

500 15 37.896 4.43 37.896 1.11
30 28.273 4.46 28.273 3.17

750 15 52.788 12.15 52.788 2.30
30 37.838 12.98 37.838 6.18

1000 15 79.397 38.51 79.397 6.03
30 51.842 33.39 51.842 13.53

1250 15 101.433 72.11 101.433 11.21
30 61.532 73.65 61.532 20.56

1500 15 122.255 149.81 122.255 17.27
30 81.267 153.14 81.267 27.25

0.75

500 15 41.900 5.63 41.900 0.89
30 29.100 6.11 29.100 0.91

750 15 56.900 18.51 56.900 1.72
30 38.900 19.96 38.900 1.68

1000 15 84.200 57.55 84.200 3.08
30 53.300 50.98 53.300 2.97

1250 15 111.400 120.69 111.400 5.10
30 65.300 143.25 65.300 4.61

1500 15 130.200 256.92 130.200 7.41
30 85.800 294.60 85.800 7.06

Table 1: Comparison between OC and its version without the genetic algo-
rithm.

80.89% and 94.54% for β = 0.50 and ranges between 103.49% and 156.28% for
β = 0.25. It is remarkable to note that the theoretical upper bound is therefore
always reached for β = 0.75, and almost reached for β = 0.50.

Furthermore, the gaps consistently increase as β decreases. This matches
the intuitive expectation that, the scarcer is a resource, the more critical it is
to optimize its usage. In more detail, for small values of β, we can imagine
OC to highly prioritize sensors that, because of their favorable position, allow
to achieve a greater lifetime if given a greater charge. These same sensors, in
UC, are constrained to a low charge.

We also note, for any value of |S| and β = 0.25, a further gap increase
between 18% and 47% for the case |T | = 30 with respect to |T | = 15. That
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UC OC
β |S| |T| Lifetime Time Lifetime Time GAP

0.25

500 15 10.475 0.90 22.126 1.03 111.22%
30 7.275 0.95 16.696 3.31 129.50%

750 15 14.225 1.70 32.874 2.97 131.10%
30 9.725 1.61 24.923 9.61 156.28%

1000 15 21.050 3.07 43.351 3.60 105.94%
30 13.325 2.86 33.713 19.82 153.01%

1250 15 27.850 5.39 56.671 5.95 103.49%
30 16.325 4.40 39.978 32.00 144.89%

1500 15 32.550 7.21 66.576 9.90 104.53%
30 21.450 6.57 51.267 66.12 139.01%

0.5

500 15 20.950 0.87 37.896 1.11 80.89%
30 14.550 0.94 28.273 3.17 94.32%

750 15 28.450 1.75 52.788 2.30 85.54%
30 19.450 1.59 37.838 6.18 94.54%

1000 15 42.100 3.08 79.397 6.03 88.59%
30 26.650 2.98 51.842 13.53 94.53%

1250 15 55.700 5.35 101.433 11.21 82.11%
30 32.650 4.49 61.532 20.56 88.46%

1500 15 65.100 7.32 122.255 17.27 87.79%
30 42.900 6.57 81.267 27.25 89.43%

0.75

500 15 31.425 0.84 41.900 0.89 33.33%
30 21.825 0.95 29.100 0.91 33.33%

750 15 42.675 1.71 56.900 1.72 33.33%
30 29.175 1.63 38.900 1.68 33.33%

1000 15 63.150 3.03 84.200 3.08 33.33%
30 39.975 2.91 53.300 2.97 33.33%

1250 15 83.550 5.25 111.400 5.10 33.33%
30 48.975 4.48 65.300 4.61 33.33%

1500 15 97.650 7.17 130.200 7.41 33.33%
30 64.350 6.46 85.800 7.06 33.33%

Table 2: Comparison between the optimal and the uniform charging algo-
rithms.

is, the waste of energy due to constrained uniform charging appears to have a
greater impact on the final solution when there are more targets to cover, and
therefore more sensors are likely to be needed in each cover.

With respect to computational times, UC is faster than OC in most sce-
narios, which is again an expected results given the more limited solutions
space. The worst case is β = 0.25, |S| = 1500, |T | = 30, in which OC is one
order of magnitude slower. That said, OC is still very fast in absolute terms,
requiring as previously mentioned 66.12 seconds in the worst case.
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6. Conclusion

In this work, we proposed a method to optimize the charge of sensor batteries
in the context of a wireless sensor network used for monitoring purposes. After
formally defining the underlying problem, we proposed a Column Generation
solution approach, embedding an effective genetic algorithm for the subprob-
lem. The computational results validate our idea, showing potential for large
increases in terms of network lifetime when the charging is optimized, with
respect to the traditional approach that considers uniform predefined charges
for the sensors. The obtainable improvements are particularly relevant when
the available energy is scarce.
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