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Abstract

This paper deals with the Constrained Forward Shortest Path Tour Prob-
lem, an NP-complete variant of the Forward Shortest Path Tour Problem.
Given a directed weighted graph G = (V,A), where the set of nodes V is
partitioned into clusters T1, ..., TN , the aim is determining a shortest path
between two given nodes, s and d, with the properties that clusters must
be visited according to a given order, and each arc can be crossed at most
once. We introduce a mathematical formulation of the problem, and a re-
duction procedure to reduce the number of variables involved in the model.
Furthermore, we propose a Greedy Randomized Adaptive Search Procedure
(GRASP) algorithm to solve large instances of the problem. Computational
tests show that the reduction procedure is very effective and its application
significantly speeds up the resolution of the model. Moreover, the computa-
tional results certify the effectiveness of GRASP that often finds the optimal
solution and, in general, provides quickly high-quality sub-optimal solutions.
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1 Introduction

The Constrained Forward Shortest Path Tour Problem (CFSPTP) consists in
finding a single-origin single-destination shortest path in a directed weighted
graph such that a given set of constraints must be satisfied. In particular, in
the CFSPTP it is required that a feasible path i) crosses a sequence of node
subsets (clusters) that are given in a fixed order, ii) can involve a node in a
given cluster if and only if at least one node for each preceding cluster has
been already visited, and iii) does not include arcs crossed more than ones.
Since the triangular inequality does not hold in this problem, the optimal
solution could require to visit the same cluster more than once.

The CFSPTP has many applications. It arises, for example, in the context
of freight transportation of hazardous materials carried out by vehicles with
one door, on the rear, where loading and unloading operations are executed.
Avoiding unnecessary handling is very important when delivering hazardous
materials, and then the loading and unloading operations have to be carried
out in LIFO order (LAST-IN-FIRST-OUT). This means that when loading,
the goods are always placed at the rear of the vehicle. Similarly, unloading
at a delivery location is allowed only if the goods of the current delivery are
at the rear (Carrabs et al. (2013)). Each cluster contains several unloading
points belonging to the same company, and the vehicle must visit a cluster
at least once in order to deliver the required materials. The vehicle starts
from the depot completely loaded, unloads the goods in a location for each
cluster, and finally completes the tour reaching the destination. The visiting
sequence of the clusters is stated by the loading order of the goods into the
vehicle. Finally, to reduce the traffic of hazardous materials on a single arc,
and the associated risks, double use of the same arc is explicitly forbidden
(see Bianco et al. (2013), Wolfler Calvo and Cordone (2003) and Michallet
et al. (2014)). The routing problems associated with this type of constraints
are usually named “peripatetic” routing models.

Another application of the CFSPTP arises in designing a tourist trip
itinerary for visiting several kinds of points of interest (POIs), that meets
the preferences of the tourists. The POIs are grouped according to their
typology, for instance, museums, historical monuments, national parks, lakes,
and these groups are sorted by the preferences of the tourists. The aim is
to visit at least a POI for each group, according to the given order, by
minimizing the total travelling time. Finally, to avoid that tourists see more
than once the same landscape, it is forbidden repeating the same journey
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between two POIs. This is particularly relevant when journeys have scenic
backgrounds, such as mountains areas, cliffs, and so on.

The Shortest Path Tour problem was firstly introduced in Bajaj (1971),
and proposed as a dynamic programming exercise in Bertsekas (2005). Nev-
ertheless, Festa (2010) is the first study focused on the problem, that was
successively tackled by Festa et al. (2013). Later, Ferone et al. (2016) pro-
posed a variant of SPTP called Constrained Shortest Path Tour Problem,
where an arc cannot be traversed more than once. The authors showed that
the Hamiltonian Path Problem (Bertossi, 1981) can be polynomially reduced
to the CSPTP and that the CSPTP belongs to the NP-hard class. The
CSPTP was further studied in de Andrade and Saraiva (2018) and Ferone
et al. (2019). These two works independently proposed two similar math-
ematical models for the problem. The CSPTP is a variant of the all color
shortest path problem Carrabs et al. (2018, 2020), in which the vertices are
grouped into clusters according to their color and a shortest path visiting at
least one vertex for each cluster should be visited.

Finally, Di Puglia Pugliese et al. (2020) studied a further variant of the
SPTP, where time windows constraints are introduced.

In 2017, Carrabs et al. defined the Forward Shortest Path Tour Problem,
a simpler version of the CFSPTP, where a feasible path can cross repeated
arcs. The word forward in the name of the problem means that a node of a
given cluster can be visited if and only if at least one node for each preceding
cluster has been already visited. This is a crucial difference with respect to
the SPTP problem, where this precedence constraint is not applied. To the
best of our knowledge, the CFSPTP has not been previously addressed in
the scientific literature. Since it can be viewed as a variant of the CSPTP
(Ferone et al., 2016), it remains an NP-hard problem.

The contribution of this paper can be summarized as follows. We propose
a mathematical formulation of the problem and a procedure that significantly
reduces the number of variables of the model speeding up its convergence.
To find optimal solutions, we solve its mathematical model by using CPLEX.
To address large problem instances, we design and implement a Greedy Ran-
domized Adaptive Search Procedure (GRASP) metaheuristic. An extensive
computational phase is carried out to assess the performance of the proposed
approaches in terms of both computational effort and solution quality.

The remainder of this paper is organized as follows. In Section 2, we
define the problem and introduce some notations. In Section 3, we mathe-
matically formulate the CFSPTP, while the GRASP algorithm is described
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in Section 4. Computational results and the analysis of the performance of
the proposed algorithms are presented in Section 5. Concluding remarks are
given in Section 6.

2 Problem description and notation

Let G = (V,A) be a directed graph, where |V | = n and |A| = m. Given
a source node s ∈ V and a destination node d ∈ V , the set of nodes V is
partitioned into N clusters, T1, ..., TN , such that T1 = {s} and TN = {d}.
Let us introduce a function c : A→ R+, that associates a non-negative cost
cij to each arc (i, j) ∈ A. Given two nodes u, v ∈ V , we denote with SPu,v
the shortest path from u to v, computed on graph G. The cost of such path,
c(SPu,v), is the sum of the cost of the arcs belonging to the path. Let us
consider the small graph shown in Figure 1. The shortest path from node s
to node 4 is the path SPs,4 =< (s, 1), (1, 4) >, and c(SPs,4) = 3.
Given a node u ∈ Tk, with k = 2, .., N , a Constrained Forward Path Tour
(CFPT) from s to u, denoted with Ps,u, is a path in G from s to u, such that:

(i) at least one node of each cluster Tp, with p ≤ k, is visited;

(ii) for every 2 ≤ p ≤ k, a node in Tp can be visited if and only if at least
a node for each cluster T1, ..., Tp−1 has been already visited;

(iii) each arc can be crossed at most once.

We denote with c(Ps,u) the cost of the path Ps,u. If we consider again the
graph shown in Figure 1, a CFPT from s to 4, is for example Ps,4 =<
(s, 1), (1, 3), (3, 4) >, and its cost is c(Ps,4) = 8, which is obviously greater
than c(SPs,4) on the same graph. In more detail, it results that c(Ps,j) ≥
c(SPs,j), for any j ∈ V . Let l(Ps,u) be the length of Ps,u, that is the number of
arcs belonging to it. The Constrained Forward Shortest Path Tour Problem
(CFSPTP) consists of finding the cheapest CFPT from s to d in G. In
the graph shown in Figure 1, the optimal solution of CFSPTP is the path
Ps,d =< (s, 1), (1, 3), (3, 4), (4, 1), (1, 2), (2, d) >, its cost is c(Ps,d) = 13 and
its length is l(Ps,d) = 6.
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Figure 1: Toy example.

3 Mathematical formulation

CFSPTP can be formulated as an integer linear program (ILP) as follows.
We first introduce some notations. Given S, T ⊆ V , we define E(S : T ) =
{(i, j) ∈ A : i ∈ S, j ∈ T}. Let δ+(S) = E(S : V \ S) and δ−(S) =
E(V \ S : S) be the sets of outgoing and ingoing arcs of S, respectively, and
E(S) = E(S : S) is the set of the arcs having both extremes in S. When
S = {i}, we write δ+(i) and δ−(i). Let xtij be a binary variable equal to 1 if
and only if arc (i, j) ∈ A occurs in the t-th position in Ps,d. Let us observe
that since a feasible solution for CFSPTP cannot contain repeated arcs, it
can contain at most all the arcs of the graph once, and then its length is at
most m. Therefore, index t belongs to the set {1, ...,m}. Finally, we define
xt(A′) =

∑
(i,j)∈A′ x

t
ij, where A′ ⊆ A and t ∈ {1, ...,m}.

With the above notation, the ILP formulation of CFSPTP is the following:

Minimize z =
∑

(i,j)∈A

m∑
t=1

cijx
t
ij (1)
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subject to∑
(s,j)∈δ+(s),j∈T2

x1sj = 1 (2)

m∑
t=N−1

xt(δ−(d)) = 1 (3)

∑
i∈Tk

m∑
t=k−1

xt(δ−(i)) ≥ 1 k = 2, ..., N − 1 (4)

∑
i∈Tk

xt(δ−(i)) ≤
t−1∑

t′=k−2

∑
j∈Tk−1

xt
′
(δ−(j)) k = 3, ..., N, t = k − 1, ...,m

(5)

xt(δ−(i)) = xt+1(δ+(i)) i ∈ V \ {s, d}, t = 1, ...,m− 1
(6)

xt(A) ≤ 1 t = 1, ...,m
(7)

m∑
t=1

xtij ≤ 1 (i, j) ∈ A (8)

xtij ∈ {0, 1} (i, j) ∈ A, t = 1, ...,m (9)

The objective function (1) to be minimized is the sum of the costs of the
selected arcs. Constraint (2) ensures that the first selected arc must be an
arc from the source node to a node belonging to the second cluster. Con-
straint (3) forces the selection of exactly an arc ending to the destination
node. Constraints (4) ensure that at least a node from every cluster is vis-
ited. Constraints (5) make sure that the sequence of clusters is respected.
Constraints (6) ensure the connectivity of the path. Finally, constraints (7)
and (8), guarantee that the number of arcs selected in each position is at
most one, and that each arc is selected at most once, respectively.
Let us observe that constraints (4) are redundant, since they can be obtained
through the combination of constraints (3) and (5). Nevertheless, we intro-
duce them in the model since they are used by CPLEX to derive cuts so as to
improve the value of the LP relaxation. Therefore, this leads to a significant
reduction in terms of the computational time.
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3.1 Reduction of the binary variables

The number of binary variables of the model is m2, and this slows down the
convergence of the model even for small instances. Indeed, by considering a
complete graph with only 50 nodes, the number of variables in the model is
about six million. To overcome this problem, we design a procedure that,
through the computation of an upper bound of the number of arcs involved
in the optimal solution, allows us to reduce the number of binary variables
of the model. As we pointed out before, the length of a feasible solution
for CFSPTP can be at most m, but this bound is rarely reached. Indeed,
even if in the worst case a feasible solution contains all the arcs of the graph,
usually its length is much lower than m and it is strictly affected by the
characteristics of the instance. Hence, we aim to determine a better bound
for the index t, in other words, we look for an upper bound on the length
of any optimal solution. Let us denote with Gk = (Vk, Ak) the subgraph of
G induced by clusters Ti, with i = 1, ..., k. More in detail, Vk =

⋃k
i=1 Ti

and Ak = {(i, j) ∈ A : i, j ∈ Vk}. Firstly, we compute a feasible solution of
CFSPTP through a greedy algorithm (see Algorithm 1). At the first iteration
of Algorithm 1 we compute Ps,v, the CFPT from s to v, for every v ∈ T2,
applying Dijkstra’s algorithm (Dijkstra, 1959) on the subgraph G2 (line 1-4).
Then, at each iteration k ∈ {2, ..., N − 1}, we compute the CFPT from s
to every node v ∈ Tk+1, Ps,v. To this aim, we consider the shortest path
SPu,v from every node u ∈ Tk to every node v ∈ Tk+1, on the subgraph
Gu
k+1 = (Vk+1, A

u
k+1), where Auk+1 = {(i, j) ∈ Ak+1 : (i, j) /∈ Ps,u} (line 7).

The construction of SPu,v is carried out ensuring that no vertices belonging
to following clusters are visited, and that it does not contain arcs already
used in Ps,u. In such a way, the path obtained through the concatenation
of Ps,u and SPu,v is a CFPT from s to v in G. Once we have SPu,v, if
c(Ps,u) + c(SPu,v) < c(Ps,v), we update Ps,v doing the concatenation between
Ps,u and SPu,v (line 8-10 of Algorithm 1). The algorithm stops returning as
output Ps,d, that is a CFPT from s to d.

For example, let us apply Algorithm 1 to the graph G = (V,A) de-
picted in Figure 2. At the first iteration, we compute Ps,1 and Ps,2, which
are simply shortest paths in the subgraph G2 from s to node 1 and from
s to node 2, respectively. We have that Ps,1 =< (s, 1) >, while Ps,2 =<
(s, 1), (1, 2) >. Then, we look for Ps,3 and Ps,4, and we compute SP1,3 and
SP1,4 in the subgraph G1

3 (see Figure 3). It is easy to see that SP1,3 =<
(1, 2), (2, 3) > and SP1,4 =< (1, 2), (2, 3), (3, 4) >. Thus, Ps,3 = Ps,1 ⊕
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Algorithm 1 Greedy

1: c(Ps,i)←∞
2: Ps,i ← NULL
3: for all v ∈ T2 do
4: (Ps,v, c(Ps,v))← Dijkstra(G2, s, v, c)

5: for k ← 2 to N − 1 do
6: for all u ∈ Tk, v ∈ Tk+1 do
7: (SPu,v, c(SPu,v))← Dijkstra(Gu

k+1, u, v, c)
8: if c(Ps,u) + c(SPu,v) < c(Ps,v) then
9: Ps,v ← Ps,u ⊕ SPu,v

10: c(Ps,v)← c(Ps,u) + c(SPu,v)
return Ps,d
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Figure 2: A graph G = (V,A), where |V | = 6, T1 = {s}, T2 = {1, 2},
T3 = {3, 4}, and T4 = {d}.
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Figure 4: (a) The subgraph G3
4. (b) The subgraph G4

4.

SP1,3 =< (s, 1), (1, 2), (2, 3) >, and Ps,4 = Ps,1⊕SP1,4 =< (s, 1), (1, 2), (2, 3), (3, 4) >.
The next step consists in computing SP2,3 and SP2,4 in the subgraph G2

3: if
c(Ps,2)+c(SP2,3) < c(Ps,3) then Ps,3 = Ps,2⊕SP2,3, and if c(Ps,2)+c(SP2,4) <
c(Ps,4) then Ps,4 = Ps,2 ⊕ Ps,4. It is easy to see that, for the given graph,
we do not have to update neither Ps,3 nor Ps,4. Finally, to obtain Ps,d, we
compute SP3,d in the subgraph G3

4 (see Figure 4(a), and SP4,d in G4
4 (see

Figure 4(b)). We have that SP3,d =< (3, d) >, and SP4,d =< (4, 1), (1, d) >.
Therefore, since 12 = c(Ps,3) + c(SP3,d) < c(Ps,4) + c(SP4,d) = 13, we have
that Algorithm 1 returns the path Ps,d =< (s, 1), (1, 2), (2, 3), (3, d) >, where
c(Ps,d) = 12 and l(Ps,d) = 4. Let us note that this is not the optimal solution
of CFSPTP, since the path P ∗s,d =< (s, 2), (2, 3), (3, 4), (4, 1), (1, 2), (2, d) >
is a CFPT from s to d, and c(P ∗s,d) = 11. Given the feasible solution Ps,d
found by Algorithm 1, by definition the cost of an optimal solution is lower
than or equal to c(Ps,d). As a consequence, the maximum number of arcs of
the graph, whose sum of the costs does not exceed c(Ps,d), is the maximum
length of any optimal solution. Hence, to obtain a tighter upper bound tmax
for t, we sort the arcs in a non-decreasing order of their cost, and we count
the number of arcs that can be selected from this ordered list, until the sum
of their costs does not exceed c(Ps,d). Using this procedure for the graph
of the previous example, we have that tmax = 7, and then the number of
variables passes from 121 to 77. Let us note that tmax is the optimal solution
of a Knapsack problem, where the number of items is equal to the number
of arcs of the graph, every item has value 1, and the weight of an item is the
cost of the corresponding arc. Since this is a particular case of the Knap-
sack problem, where each item has the same value, the procedure we used to
determine tmax returns the optimal solution.
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4 GRASP

GRASP is an iterative multistart meta-heuristic for difficult combinatorial
optimization problems and has been introduced in Feo and Resende (1989).
It has been applied to a large set of problems, like graph planarization (Re-
sende and Ribeiro, 1997), antibandwidth problem (Duarte et al., 2010), and
scheduling (González-Neira et al., 2017). For an extensive survey the reader
is referred to Festa and Resende (2002, 2009a,b).

Each GRASP iteration is characterized by two main phases: a construc-
tion phase and a local search phase. The construction phase iteratively adds
one element at a time until it obtains a complete feasible solution. Each
element is randomly selected from a restricted candidate list (RCL), whose
elements are among the best ordered, according to some greedy function that
measures the (myopic) benefit of selecting each element.

Once a feasible solution is obtained, the local search procedure attempts
to improve it by producing a locally optimal solution with respect to some
suitably defined neighborhood structure. Construction and local search phases
are repeatedly applied. The best solution found is returned. The pseudocode
of the GRASP heuristic is shown in Algorithm 2.

Algorithm 2 Pseudocode of a generic GRASP.

1: procedure GRASP(MaxIterations)
2: for i = 1, . . . , MaxIterations do
3: Build a greedy randomized solution x
4: x← LocalSearch(x)
5: if i = 1 then
6: x∗ ← x
7: else if x is better than x∗ then
8: x∗ ← x
9: return x∗

4.1 Construction phase

The GRASP construction phase relies on an adaptive greedy function, a con-
struction mechanism for the RCL, and a probabilistic selection criterion. The
greedy function takes into account the contribution to the objective function
achieved by selecting a particular element. In the case of the CFSPTP, the
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construction phase is iterative and is described in Algorithm 3. It starts with
an empty chain of paths and ends with a complete solution given by a chain
of paths from s to d.

At each iteration of the construction phase, all the candidate paths (i.e.
those that can be added to the solution) are ordered in a candidate list
CL, with respect to the length of the candidate paths, the better ones are
inserted in the RCL. The paths’ length is computed by DijkstraVariant
function, that applies Dijkstra’s algorithm taking into account both that arcs
are traversed more than once and the clusters that have been already visited.

The probabilistic component is characterized by randomly choosing one
of the candidates in the RCL, but not necessarily the top candidate.

The pseudocode of the construction phase is reported in Algorithm 3.
Firstly, an index i is selected at random in [2, N − 1]. Path Pi = {si, . . . , di}
is computed from si ∈ Ti to di ∈ Ti+1, path PT is initialized with a chain
made of only Pi. Then, the partial chain PT is iteratively augmented both
toward the origin s and the destination d. In fact, starting from j = i+2 and
until a complete feasible solution is obtained, at each iteration of the loop
while two more paths are added in a greedy randomized adaptive fashion:
a path from a node in Ti−1 to si and a path from dj−1 to a node in Tj.

Two key components of the algorithm are n × n matrix K = (kij), and
the DijkstraVariant procedure. kij represents the number of times arc
(i, j) has been involved in the partial solution PT . The procedure Dijk-
straVariant takes as input both K and an integer t that represents that
the last visited set is Tt. Differently from the standard Dijkstra algorithm,
when an arc (i, j) must be relaxed, its cost is considered as +∞ if either
kij > 0 or j ∈ Tq, with q > t+ 1. In this way, it is not possible wither to tra-
verse arcs already traversed, or visit forbidden sets. Procedures Increase
and Decrease update K to reflect the choices made by the construction
algorithm.

4.2 Local search

At each GRASP iteration, once obtained a greedy randomized adaptive path
tour PT , a local search procedure is applied starting from PT in the attempt
of improving it by producing a locally optimal solution with respect to a
suitably defined neighborhood structure.

The pseudocode of the local search procedure we have designed for the
CFSPTP is reported in Algorithm 4. It takes as input the GRASP path
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Algorithm 3 Construction of a Greedy Randomized Solution

1: function Construction(V,A, s, d,N, {Ti}i=1,...,N , C,K, α)
2: i← Rand(2, N − 2); PT ← Nil; CL← ∅
3: for all v ∈ Ti do
4: for all w ∈ Ti+1 do
5: (l, P )← DijkstraVariant(V,A, v, w, C,K, i)
6: CL← CL ∪ { (l, P, v, w) }
7: RCL← makeRCL(α); (l, P, v, w)← Select(RCL)
8: Pi ← P ;PT ← PT ⊕ Pi
9: si ← v; di ← w

10: increase(Pi, w,K)
11: j ← i+ 2; i← i− 1
12: while (i > 0) ∨ (j < N) do
13: . Look for a candidate path from a node in Ti to node si+1

14: CL← ∅
15: if i > 1 then
16: for all v ∈ Ti do
17: (l, P )← DijkstraVariant(V,A, v, si+1, C,K, i)
18: CL← CL ∪ { (l, P, v, si+1) }
19: else if i = 1 then
20: (l, P )← DijkstraVariant(V,A, s, s2, C,K, i)
21: CL← CL ∪ { (l, P, s, s2) }
22: RCL← makeRCL(α); (l, P, v, w)← Select(RCL)
23: Pi ← P ;PT ← Pi ⊕ PT
24: si ← v; di ← w
25: increase(Pi, w,K)
26: . Look for a candidate path from node dj−1 to a node in Tj
27: CL← ∅
28: if j < N then
29: for all v ∈ Tj do
30: (l, P )← DijkstraVariant(V,A, dj−1, v, C,K, j − 1)
31: CL← CL ∪ { (l, p, dj−1, v) }
32: else if j = N then
33: (l, P )← DijkstraVariant(V,A, dj−1, d, C,K, j − 1)
34: CL← CL ∪ { (l, P, dj−1, d) }
35: RCL← makeRCL(α); (l, P, v, w)← Select(RCL)
36: Pj ← P ;PT ← PT ⊕ Pj
37: sj ← v; dj ← w
38: increase(Pj, w,K)
39: j ← j + 1; i← i− 1

40: return PT

12



Algorithm 4 Local Search

1: function LocalSearch(pt, V, A, s, d,N, {Ti}i=1,...,N , C,K)
2: flag ← True
3: while flag = True do
4: flag ← False
5: for i← 2 to N − 1 do
6: Decrease(Pi−1, di−1, K)
7: Decrease(Pi, di, K)
8: min← L(Pi−1) + L(Pi)
9: for all v ∈ Ti do

10: (l′, P ′)← DijkstraVariant(V,A, si−1, v, C,K, i− 1)
11: (l′′, P ′′)← DijkstraVariant(V,A, v, di, C,K, i)
12: if l′ + l′′ < min then
13: min← l′ + l′′

14: Pi−1 ← P ′

15: Pi ← P ′′

16: flag ← True

17: Increase(Pi−1, di−1, K)
18: Increase(Pi, di, K)

19: return PT
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tour PT and outputs a local optimal feasible tour. The loop while (lines
3–18) stops as soon as any improving solution in the neighborhood of the
current solution can be found. At each iteration, given the current solution
PT =

⊕N−1
i=1 Pi, iteratively for i = 2, . . . , N − 1 it checks whether Pi−1 ⊕ Pi

can be substituted by any shorter P ′ ⊕ P ′′, where P ′ originates in si−1 and
ends in some node v in Ti and P ′′ originates in v and ends in di (lines 9–16).

The neighborhood is explored with a best improvement strategy.

5 Computational Results

In this section, we describe the results of the mathematical model and the
GRASP algorithm obtained during our computational test phase. The com-
putational tests phase has three main purposes: the validation of the effec-
tiveness of the reduction procedure, the validation of the effectiveness of the
GRASP heuristic by comparing its solutions with the optimal ones, where
available, and, finally, the evaluation of the GRASP performance on the large
instances. GRASP was coded in C++ and ran on a machine with an Intel
Core i5-6400 2.70GHz x 4 processor, 8GB RAM, under the Linux (Ubuntu
18.04) operating system. The mathematical formulation was coded in C++
using the Concert library of IBM ILOG CPLEX 12.8. A time limit of 3600
seconds has been fixed.

5.1 Generation of Instances

As no benchmark instances are available in the literature for the CFSPTP, we
have generated two sets of instances: small and large. Small instances have
been generated according to the following parameters: n ∈ {50, 60, 70, 80, 90,
100}, m = d × n × (n − 1), where the density d ∈ {0.2, 0.4, 0.6, 0.8}, and
N = bβ nc, where β ∈ {0.10, 0.15, 0.20, 0.25}, for a total of 96 instances. For
the large instances, n ∈ {200, 350, 500}, while the density d and the number
of clusters N have been chosen as in the generation of the small instances.

The generation of the instances is carried out according to the following
steps:

1. The source and the destination nodes are assigned to T1 and TN , respec-
tively, while the remaining nodes are randomly assigned to the clusters
T2, . . . , TN−1, assuring that each cluster contains at least one node.
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Figure 5: Percentage of the reduction of the number of variables for Small
instances, in relation to the number of nodes and the density.

2. The generation of the m arcs is carried out randomly but ensuring that
a feasible solution always exists.

3. The cost of each arc is randomly chosen in the interval [10, 50].

5.2 Effectiveness of the reduction procedure

In this section, we verify the effectiveness of the reduction procedure intro-
duced in Section 3.1, by checking the number of variables that it removes
from the ILP model. We remind here that the number of variables xtij in the
model is equal to m2 while with the application of the reduction procedure
this value decreases to m× tmax. The results of this procedure are shown in
the bar charts in Figure 5 and Figure 6.

Fixed a size n and a density d, a bar in Figure 5 shows the percentage re-
duction of the number of variables. The chart concerns only small instances,
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Figure 6: Percentage of the reduction of the number of variables for Small
instances, in relation to the number of nodes and the parameter β.

where the model runs. The percentage of reduction obtained is impressive
because it is always higher than 94%. More in detail, we observe that, on
instances with d = 0.2, as the size n increases, the percentage increases from
95% to 97.2%. For the other densities, the percentage increases very slowly,
but it is always higher than 98%.

A bar in Figure 6 represents the percentage reduction of the number of
variables with respect the number of nodes and β. As β increases, namely
as the number of clusters increases, the percentage reduction decreases. The
reduction of the variables heavily impacts on the performance of the model.
Indeed, without the reduction procedure, even the smallest instances with
50 nodes and density equal to 0.8, were not optimally solved within the time
limit. For higher size, even the construction of the matrix of variables, is
really expensive from a computational point of view. Indeed, for n = 100
and d = 0.8, this matrix contains more than 62 million of variables and
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n ImprovLP RedTime

50 4.08% 18.51%
60 5.04% 33.64%
70 5.98% 30.03%
80 6.97% 28.91%
90 8.35% 16.24%

100 9.00% 23.67%

Table 1: Percentage improvement of the value of the LP relaxation, and im-
provement percentage of the computational time gained by the introduction
of constraints (4) in the mathematical formulation.

CPLEX either reaches the time limit, before the declaration of the matrix is
completed, or it runs of memory.

5.3 Small instances

In this section, we show the computational results over the set of Small in-
stances. First of all, we want to highlight the impact of constraints (4) on the
performances of the mathematical formulation. Let LP and LP (4) be the
values of the LP relaxation of the mathematical formulation, without con-
straints (4) and with constraints (4), respectively. Furthermore, we denote by
Time and Time(4) the computational times of CPLEX, without constraints
(4) and with constraints (4), respectively. For any instance, we computed the
improvement obtained with the introduction of constraints (4) in terms of
the value of the LP relaxation, according to the formula (LP (4)−LP )/LP ,
and the reduction of the computational time as (Time−Time(4))/T ime. In
Table 1 we reported the number of nodes (n), the average of the percentage
of improvement of the value of the LP relaxation (ImprovLP ), and the av-
erage of the percentage of reduction of the computational time (RedT ime).
We can see that, thanks to the introduction of constraints (4) in the model,
we obtain lower bounds which are at least 4.08% better, and the computa-
tional time of CPLEX reduces by at least 16.24%. Finally, the introduction
of constraints (4) allowed us to optimally solve within the time limit three
additional instances: two instances having n = 70, and one with n = 100.
The computational tests carried out on the Small instances aim to verify the
quality of the solutions found by GRASP, by comparing these solutions with
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Figure 7: Percentage of optimal solutions found by GRASP (red) and
CPLEX (blue), within the computational time reported on the x-axis.

the optimal ones, in case the latter are available. The mathematical formu-
lation provides the optimal solution for 73 instances over 96, while for the
remaining 21 instances an upper bound of the optimal solution value is given.
For what concerns the GRASP metaheuristic, it finds the optimal solution
on 64 out of 73 instances. The detailed results are reported in Tables 3 and
4 (Appendix A).

The results of these tables are summarized in Figure 7 The horizontal
axis represents the CPU time, in seconds, and the vertical axis represents the
percentage of instances optimally solved within a fixed CPU time. In other
words, given a CPU time α, we compute the percentage of optimally solved
instances within α seconds. For instance, in 10 seconds GRASP finds the
optimal solution for the 55% of the instances for which the optimal solution
is known. This means that the faster the growth, the better the performance
of the algorithm. It is evident from this figure that the GRASP metaheuristic
is very effective and fast, because it finds the optimal solution in less than 40
seconds for the 88% of the instances for which the optimal solution is known,
while CPLEX takes 200 seconds to reach the same percentage.
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5.4 Large instances

In this section, we focused on the performance of GRASP over the set of
Large instances. For these instances CPLEX was not even able to find a
feasible solution within the time limit. Therefore, the lower bound we used
to evaluate the quality of the solutions of the GRASP metaheuristic, is the
optimal solution of the FSPTP on the set of Large instances. To solve the
FSPTP we used the polynomial time algorithm proposed by Carrabs et al.
(2017).

Results are shown in Table 2. The first three columns show the charac-
teristics of the instances: the number of nodes n, of arcs m and the number
of clusters N , respectively. Column LB reports the optimal solution value
for the FSPTP, that is a lower bound for the optimal solution of CFSPTP.
The next two columns report the solution value (Obj) and the computational
time (Time), in seconds. Finally, the last column (GAP ) reports the per-
centage gap between the solution found by GRASP and the lower bound.
In all but six cases, Gap is lower than 5%, and it is equal to 8.78%, in the
worst case. For two instances with n = 200, the optimal solution of the
FSPTP is equal to the solution found by GRASP, therefore they are optimal
solutions of the CFSPTP. GRASP provides a solution in less than 90 seconds
for all the instances with 200 nodes. From the results of column Time, it is
evident that the performance of the algorithm is affected by both the density
of the graph and, in particular, by the number of clusters. For example,
on the instances with 200 nodes and 31840 arcs, the computational time of
GRASP ranges from 40 seconds, when N = 20, to 61 seconds, when N = 50.

The outlier results for the instance with n = 200,m = 31840, N = 50 can
be explained by observing that the higher N , the lower the cardinality of
each Ti, i = 1, . . . , N , and this impacts in both construction and local search
phases. Indeed, small sets Ti implies that a small number of paths must be
found during the construction, and there exist few neighbors for the local
search. In particular, this instance presents several sets Ti for which |Ti| < 3.

On the instances with 350 nodes, GRASP requires up to 300 seconds.
Even in these instances, the trend about the density and the number of
clusters is confirmed. In particular, the gap time required by GRASP on the
instances with the same number of nodes and arcs but a different number
of clusters increases. For instance, on the instances with n = 350 and m =
97720, the time ranges from 142 seconds, when N = 35, to 299 seconds (the
double), when N = 87. Finally, the results on the largest instances with 500

19



n m N LB GRASP GAP
Obj Time

200

7960 20 337 351 12.53 3.99%
7960 30 574 591 16.23 2.88%
7960 40 780 785 18.13 0.64%
7960 50 1135 1142 21.15 0.61%

15920 20 272 277 22.22 1.81%
15920 30 516 529 28.87 2.46%
15920 40 700 718 32.84 2.51%
15920 50 915 915 39.46 0.00%
23880 20 270 281 32.53 3.91%
23880 30 437 449 42.74 2.67%
23880 40 662 673 57.62 1.63%
23880 50 846 860 85.49 1.63%
31840 20 247 247 40.74 0.00%
31840 30 377 391 50.84 3.58%
31840 40 566 581 77.67 2.58%
31840 50 779 782 61.18 0.38%

350

24430 35 592 649 39.82 8.78%
24430 52 1027 1062 56.33 3.30%
24430 70 1470 1483 71.91 0.88%
24430 87 2000 2011 78.13 0.55%
48860 35 482 514 71.95 6.23%
48860 52 803 827 99.6 2.90%
48860 70 1164 1214 122.35 4.12%
48860 87 1626 1667 149.64 2.46%
73290 35 440 467 97.37 5.78%
73290 52 720 744 145.17 3.23%
73290 70 1079 1095 176.26 1.46%
73290 87 1459 1492 220.08 2.21%
97720 35 425 457 142.84 7.00%
97720 52 698 729 197.63 4.25%
97720 70 1019 1050 254.97 2.95%
97720 87 1372 1394 299.36 1.58%

500

49900 50 856 917 162.95 6.65%
49900 75 1471 1518 213.25 3.10%
49900 100 2024 2072 269.49 2.32%
49900 125 2840 2916 299.77 2.61%
99800 50 712 747 292.16 4.69%
99800 75 1176 1226 431.68 4.08%
99800 100 1741 1804 515.38 3.49%
99800 125 2327 2366 618.4 1.65%

149700 50 624 656 462.92 4.88%
149700 75 1089 1148 640.52 5.14%
149700 100 1527 1586 697.14 3.72%
149700 125 2123 2164 877.23 1.89%
199600 50 614 659 584.07 6.83%
199600 75 979 1024 813.54 4.39%
199600 100 1486 1545 1029.7 3.82%
199600 125 1973 2011 1114.52 1.89%

Table 2: Computational results of GRASP on the large instances with up to
500 nodes.
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Figure 8: Trend of Cpu Time required by GRASP with respect the number
of clusters, for instances with 200, 350 and 500 nodes.

nodes confirm the previous trend. Since, in the worst case, GRASP requires
less than 1115 seconds, we can conclude that the algorithm remains fast even
on the largest instances with maximum density, and with maximum number
of clusters.

The results of Table 2 are graphically summarized in Figure 8. Here it is
shown the trend of the computational time required by GRASP, with respect
the number of clusters, of instances with 200, 350 and 500 clusters, for each
value of density.
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6 Conclusions

We introduced the Constrained Forward Shortest Path Tour Problem, a vari-
ant of the Forward Shortest Path Tour Problem. We proposed an integer lin-
ear programming formulation for the CFSPTP. Since the number of variables
involved in the model is the square of m, we devised a reduction procedure,
which removes at least 94% of the variables for the set of Small instances.
Since the model is exploitable only for instances with up to 100 nodes, then
we designed a GRASP metaheuristic to run on the large instances. The com-
putational results showed that GRASP is very effective because it finds the
optimal solution for the 88% of the instances which were optimally solved by
CPLEX. On the Large instances, its computational time never exceeds 1115
seconds. Furthermore, we compared the solutions found by GRASP on the
set of Large instances, with the optimal solutions of the Forward Shortest
Path Tour Problem, which is a lower bound for the optimal solution of the
CFSPTP. We found that the percentage gaps between the solutions returned
by GRASP and these lower bounds is often less than 5%. Future directions
will be focused on the development of exact approaches for the CFSPTP,
such as a Branch and Cut algorithm.
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Appendix A Detailed Computational Results

In Tables 3 and 4 the detailed results on the small instances of CPLEX
and GRASP are reported. The first four columns show the characteristics
of the instances: the number of nodes n, of arcs m, and the number of
clustersN , and tmax value computed by the reduction procedure, respectively.
The next three columns report the best objective function value returned by
CPLEX (Opt), together with the corresponding computation time (Time)
and the optimality gap (Gap), respectively. We use the symbol −, if no
feasible solution has been found within the time limit. Finally, the last three
columns report the solution value (Obj) and the computational time (Time)
in seconds of GRASP, and the relative error in percentage (Er), computed
as Er = Obj−Opt

Opt
. We highlight in bold the Obj value of the 64 out of

96 instances which are optimally solved by GRASP. Furthermore, GRASP
provides an upper bound which is better than the one returned by CPLEX
for 21 out of the 32 remaining instances. Whenever this happens the solution
value of the GRASP is marked with a ∗ symbol and the corresponding relative
error is negative. In more detail, the smaller the relative error, the better
the upper bound found by the GRASP.
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n m N tmax CPLEX GRASP Er
Opt Time Gap Obj Time

50

490 5 10 90 0.57 0.00% 90 1.48 0.00%
490 7 21 126 1.68 0.00% 126 1.65 0.00%
490 10 24 243 3.36 0.00% 243 1.49 0.00%
490 12 43 348 5.59 0.00% 348 1.71 0.00%
980 5 9 58 0.91 0.00% 58 3.44 0.00%
980 7 12 113 1.20 0.00% 113 2.70 0.00%
980 10 18 151 2.60 0.00% 151 2.50 0.00%
980 12 30 210 5.24 0.00% 210 3.19 0.00%

1470 5 4 49 0.15 0.00% 49 3.23 0.00%
1470 7 10 92 1.42 0.00% 92 3.22 0.00%
1470 10 19 136 2.92 0.00% 136 3.87 0.00%
1470 12 25 182 7.65 0.00% 182 3.83 0.00%
1960 5 5 49 2.05 0.00% 49 3.25 0.00%
1960 7 9 90 2.18 0.00% 90 3.82 0.00%
1960 10 16 147 6.43 0.00% 147 4.61 0.00%
1960 12 18 176 5.82 0.00% 176 4.29 0.00%

60

708 6 13 85 1.17 0.00% 85 3.06 0.00%
708 9 26 211 5.01 0.00% 211 2.96 0.00%
708 12 40 205 5.10 0.00% 205 3.27 0.00%
708 15 33 362 55.64 0.00% 362 4.20 0.00%

1416 6 9 76 1.39 0.00% 76 3.42 0.00%
1416 9 16 145 3.27 0.00% 145 3.87 0.00%
1416 12 24 233 76.51 0.00% 233 4.57 0.00%
1416 15 42 278 436.38 0.00% 278 6.02 0.00%
2124 6 7 70 2.10 0.00% 70 5.15 0.00%
2124 9 12 109 2.82 0.00% 109 6.08 0.00%
2124 12 22 208 64.03 0.00% 208 5.69 0.00%
2124 15 28 255 188.37 0.00% 255 7.25 0.00%
2832 6 6 63 5.40 0.00% 63 6.28 0.00%
2832 9 11 108 3.15 0.00% 108 7.38 0.00%
2832 12 19 175 11.66 0.00% 175 9.02 0.00%
2832 15 25 226 71.68 0.00% 226 9.57 0.00%

70

966 7 14 105 1.62 0.00% 105 5.10 0.00%
966 10 27 182 5.45 0.00% 182 4.79 0.00%
966 14 42 304 156.24 0.00% 304 4.90 0.00%
966 17 63 473 3610 14.40% 472* 4.96 -0.21%

1932 7 14 90 3.43 0.00% 90 5.88 0.00%
1932 10 21 161 43.05 0.00% 161 7.79 0.00%
1932 14 34 257 36.46 0.00% 257 8.02 0.00%
1932 17 42 349 3610 16.10% 340* 8.07 -2.58%
2898 7 9 77 3.14 0.00% 77 9.40 0.00%
2898 10 17 144 10.43 0.00% 144 8.85 0.00%
2898 14 27 231 510.80 0.00% 236 11.26 2.16%
2898 17 31 271 234.11 0.00% 271 10.36 0.00%
3864 7 7 66 5.55 0.00% 66 10.44 0.00%
3864 10 13 118 5.88 0.00% 119 10.80 0.85%
3864 14 28 206 510.57 0.00% 206 15.23 0.00%
3864 17 27 254 545.99 0.00% 254 13.96 0.00%

Table 3: Computational results of GRASP, on small instances with n =
50, 60, 70.
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n m N tmax CPLEX GRASP Er
Opt Time Gap Obj Time

80

1264 8 21 148 5.23 0.00% 148 4.75 0.00%
1264 12 32 223 10.53 0.00% 223 7.40 0.00%
1264 16 45 341 472.24 0.00% 341 7.85 0.00%
1264 20 68 565 3610 17.80% 541* 9.30 -4.25%
2528 8 12 106 3.35 0.00% 108 7.76 1.89%
2528 12 23 188 39.51 0.00% 188 12.42 0.00%
2528 16 38 316 3610 8.61% 316* 16.08 0.00%
2528 20 49 392 3610 6.70% 392* 13.82 0.00%
3792 8 11 109 5.61 0.00% 109 14.00 0.00%
3792 12 25 194 63.37 0.00% 194 15.76 0.00%
3792 16 33 248 154.38 0.00% 248 18.50 0.00%
3792 20 42 370 3610 19.76% 348* 24.31 -5.95%
5056 8 10 92 5.73 0.00% 92 14.43 0.00%
5056 12 17 140 11.59 0.00% 140 19.53 0.00%
5056 16 22 213 62.33 0.00% 213 21.23 0.00%
5056 20 38 329 3610 7.40% 329* 23.37 0.00%

90

1602 9 21 188 16.80 0.00% 191 9.07 1.60%
1602 13 48 282 3610 4.24% 282* 9.31 0.00%
1602 18 53 439 3610 16.15% 432* 9.73 -1.59%
1602 22 67 654 3610 22.66% 607* 13.71 -7.19%
3204 9 14 127 5.54 0.00% 127 13.37 0.00%
3204 13 21 201 138.84 0.00% 201 15.77 0.00%
3204 18 37 352 3610 9.40% 352* 17.46 0.00%
3204 22 63 499 3610 24.03% 459* 21.49 -8.02%
4806 9 12 118 7.55 0.00% 118 17.85 0.00%
4806 13 22 190 62.86 0.00% 190 21.52 0.00%
4806 18 31 282 3610 11.75% 285 26.08 1.06%
4806 22 43 406 3610 21.37% 383* 29.42 -5.67%
6408 9 11 101 7.97 0.00% 104 19.64 2.97%
6408 13 17 165 22.27 0.00% 167 24.31 1.21%
6408 18 30 251 2005.91 0.00% 251 33.52 0.00%
6408 22 40 409 3610 20.46% 387* 32.61 -5.38%

100

1980 10 19 150 5.03 0.00% 150 9.15 0.00%
1980 15 42 300 2779.07 0.00% 300 10.81 0.00%
1980 20 77 507 3610 30.34% 429* 14.03 -15.38%
1980 25 85 - 625 15.60 -
3960 10 13 135 6.55 0.00% 135 15.67 0.00%
3960 15 22 207 59.05 0.00% 212 27.14 2.42%
3960 20 42 383 3610 23.79% 360* 24.07 -6.01%
3960 25 63 567 3610 30.21% 492* 33.05 -13.23%
5940 10 16 130 22.62 0.00% 130 26.60 0.00%
5940 15 24 220 193.31 0.00% 226 28.48 2.73%
5940 20 40 305 3610 2.92% 303* 32.80 -0.66%
5940 25 50 519 3610 32.02% 458* 42.08 -11.75%
7920 10 12 121 14.28 0.00% 126 30.08 4.13%
7920 15 21 202 107.22 0.00% 202 39.86 0.00%
7920 20 37 343 3610 11.74% 325* 46.49 -5.25%
7920 25 43 451 3610 28.75% 385* 50.96 -14.63%

Table 4: Computational results of GRASP, on small instances with n =
80, 90, 100.
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