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Abstract This article introduces the Generalized Minimum Branch Vertices

problem. Given an undirected graph, where the set of vertices is partitioned

into clusters, the Generalized Minimum Branch Vertices problem consists of

finding a tree spanning exactly one vertex for each cluster and having the mini-

mum number of branch vertices, namely vertices with degree greater than two.

When each cluster is a singleton, the problem reduces to the well-known Min-
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imum Branch Vertices problem, which is NP-hard. We show some properties

that any feasible solution to the problem has to satisfy. Some of these proper-

ties can be used to determine useless vertices or edges, which can be removed

to reduce the size of the instances. We propose an integer linear programming

formulation for the problem, we derive the dimension of the polytope, we study

the trivial inequalities and introduce two new classes of valid inequalities, that

are proved to be facet-defining.

Keywords generalized network design · spanning tree · branch vertices ·

polyhedral analysis

Mathematics Subject Classification (2000) 90C10 · 90C35 · 90C57

1 Introduction

In this paper, we introduce the Generalized Minimum Branch Vertices (GMBV)

problem: given an undirected graph G = (V,E), where V is partitioned into

clusters V1, ..., Vk, the aim is determining a connected subgraph spanning ex-

actly one vertex for each cluster, and with the minimum number of branch

vertices, namely vertices with degree greater than two. The GMBV problem

is NP-Hard, indeed when each cluster is a singleton it reduces to the Mini-

mum Branch Vertices (MBV) problem. The MBV problem was introduced by

Gargano et al. [1]. Carrabs et al. [2] proposed four mathematical formulations,

while Silvestri et al. [3] derived some valid inequalities and proposed a hybrid

formulation with both undirected and directed variables, which was solved
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through a Branch & Cut algorithm. Landete et al. [4] investigated decompo-

sition methods for degree dependent spanning tree problems. Merabet et al.

[5] proposed a generalization of the MBV problem, introducing the definition

of k-branch vertex, a vertex with degree greater than k + 2. Furthermore, in

[6] it is showed that, given a connected graph with n vertices and minimum

degree at least equal to
(

1
s+3 + o(1)

)
n, with s ≥ 1, then there exists in the

graph a spanning tree having at most s branch vertices.

The GMBV problem arises in the context of optical networks. When design-

ing Metropolitan Area Network (MAN), we need to interconnect several Local

Area Network (LAN), by selecting a hub for each LAN, and then connecting

hubs through transmission links. If more than two links entering a hub are

chosen, the optical signal has to be split using a dedicated network device, a

switch. Then, the minimization of the number of switches in the network is

required to minimize the costs. This problem can be modelled as a GMBV

problem, where each LAN is a cluster, each hub is a vertex and hubs, where

a switch is deployed, are branch vertices. Notice that, in location problems,

hubs are facilities, that serve as transhipment and switching point to consoli-

date flows at certain locations for transportation, airline, and postal systems

so they are vital elements of such networks. Here, with the word ”hub”, we

refer to one of the most simple network devices used as a connection point for

devices in a network. Basically, it is a simple repeater because it repeats the

signal that comes in one of its ports out all other ports. To the best of our

knowledge, the GMBV problem has never been introduced before. However, in
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the literature, the generalized version of other Network Design Problems have

been extensively studied. Feremans et al. [7] provided a definition of the Gen-

eralized Network Design Problem, as a problem defined over clustered graph

and where the feasibility conditions are expressed in terms of the clusters.

Myung et al. [8] introduced the Generalized Minimum Spanning Tree prob-

lem, and Feremans et al. [9] proposed several mathematical formulations for it.

Moreover in [10], they developed new valid inequalities and designed a Branch

& Cut algorithm. Fischetti et al. [11] conducted a polyhedral analysis for the

Generalized Travelling Salesman Problem, and in [12] they proposed a Branch

& Cut algorithm.

Other applications in the optical networks with clustered graphs arise in the

wavelength routing and assignment problem ([13] and [14]), Partition Graph

Coloring problem ([15], [16] and [17]), and Bandwidth Allocation problems

([18]).

The remainder of the paper is organized as follows. In Section 2, we introduce

the definition of the problem and some notations. In Section 3, we propose

an integer linear programming formulation for the GMBV problem. Section

4 reports some properties about clustered graphs. In Section 5, we derive the

dimension of the polytope, we studied the trivial inequalities and introduce

two new classes of valid inequalities, that are proved to be facet-defining. Con-

clusions are given in Section 6. Finally, in the Appendix, we prove some facetal

results regarding the polytope of the MBV problem, that are necessary for the

proof of some propositions in Section 5.
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2 Definition of the Problem and Notation

Let G = (V,E) be an undirected graph, where V is the set of vertices, and E is

the set of edges. We denote by n the number of vertices, and by m the number

of edges in G. Moreover, G is clustered, which means that V is partitioned into

k clusters, V1, ..., Vk, see Figure 1(a). A generalized spanning tree (gst) of G is a

subgraph GT = (VT , ET ) of G, such that GT is a tree and |VT ∩Vi| = 1, for any

i = 1, ..., k. A vertex v ∈ VT is a branch vertex if its degree is greater than two

in GT . The Generalized Minimum Branch Vertices (GMBV) problem, consists

of finding a gst in G, with the minimum number of branch vertices. Since

exactly one vertex for each cluster can be selected, from now on we assume

that G does not contain any edge within any cluster. Let us consider the graph

G shown in Figure 1(a). An optimal solution to the GMBV problem in G is

the tree in Figure 1(b), having only one branch vertex.

V1

V2

V3

V4

V5

(a)

V1

V2

V3

V4

V5

(b)

Fig. 1 (a) A graph G with five clusters. (b) A gst of G with one branch vertex.
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3 Mathematical Formulation

The GMBV problem can be formulated as an integer linear program (ILP) as

follows. The binary variables are:

– xe, ∀e ∈ E, is equal to 1 if e is selected, and 0 otherwise;

– yv, ∀v ∈ V , is equal to 1 if v is selected, and 0 otherwise;

– zv, ∀v ∈ V , is equal to 1 if v is a branch vertex, and 0 otherwise.

Given E′ ⊆ E and V ′ ⊆ V , we use the notations x(E′) =
∑

e∈E′ xe, and

y(V ′) =
∑

v∈V ′ yv. For S, T ⊆ V , we define

E(S : T ) = {{u, v} ∈ E : u ∈ S, v ∈ T}.

E(S) = E(S : S) is the set of the edges having both extremes in S. We denote

by δ(S) = E(S : V \ S) the set of edges incident to vertices in S, and by

N(S) = {v ∈ V \S : ∃{u, v} ∈ δ(S), u ∈ S}. When S = {v}, δ({v}) andN({v})

become δ(v) and N(v) respectively, and we denote by d(v) the cardinality of

δ(v). Let us denote by K the set of indices of the clusters, K = {1, ..., k}.

Given S ⊆ V , we define µ(S) = |{i ∈ K : Vi ⊆ S}|, that is the number of

clusters included in S. Given a vertex v ∈ V , we denote by h(v) the index of

the cluster containing v, and then by Vh(v) the cluster containing v. Finally,

given a subset of vertices V ′ ⊆ V , we denote by G[V ′] = (V ′, E(V ′)), the

subgraph induced by V ′. When V ′ = {a1, ..., al}, instead of G[{a1, ..., al}], we

use simply G[a1, ..., al].
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The ILP formulation is the following:

Minimize z =
∑
v∈V

zv (1)

subject to

x(E) = k − 1 (2)

y(Vi) = 1 i ∈ K (3)

x(E(S)) ≤ y(S)− 1 S ⊂ V : |S| ≥ 2, µ(S) > 0 (4)

x(δ(v))− 2yv ≤ (d(v)− 2)zv v ∈ V (5)

xe ∈ {0, 1} e ∈ E (6)

yv ∈ {0, 1} v ∈ V (7)

zv ∈ {0, 1} v ∈ V (8)

The objective function (1) minimizes the number of branch vertices. Con-

straint (2) requires that the number of selected edges coincides with the num-

ber of clusters minus one. Constraints (3) guarantee that exactly a vertex is

selected for each cluster. Constraints (4) are the Generalized Subtour Elimi-

nation Constraints (GSECs), introduced in [10]. Constraints (5) ensure that a

selected vertex v is a branch vertex if at least three edges in δ(v) are selected.

The objective function forces variables zv to zero when x(δ(v)) ≤ 2 holds.
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It is worth noting two particular cases of the GSECs:

x(E({v} : Vi)) ≤ yv i ∈ K, v ∈ V \ (W ∪ Vi) (9)

x(δ(v)) ≥ yv v ∈ V (10)

Constraints (9) are obtained from constraints (4), when S = Vi ∪ {v}, while

(10) are obtained choosing S = V \ {v}. Let us note that constraints (9)

ensure that yv is equal to 1 if at least one edge incident to v is selected, while

constraints (10) ensure that yv is equal to 0 if no edge in δ(v) is selected.

4 Properties of the Clustered Graphs

In this section, we show some properties that any feasible solution to the

GMBV problem satisfies. Some of these properties can be used to determine

useless vertices or edges since they do not belong to any feasible solution.

These elements could be identified and removed to reduce the size of the

graph. Moreover, they will be used in Section 5 to obtain some polyhedral

results about the GMBV polytope.

4.1 v-Connection

Definition 4.1 Given a vertex v ∈ V , G is v-connected if there exist vertices

a1 ∈ V1, ..., ak ∈ Vk, with ah(v) = v, such that G[a1, ..., ak] is connected.

Given the graph G = (V,E), shown in Figure 2(a), it is easy to see that it is

v1-connected since the subgraph G[v1, v4, v5, v6] is connected (see Figure 2(b)).
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On the contrary, G is not v2-connected, because neither G[v2, v3, v5, v6] nor

G[v2, v4, v5, v6] is connected. If the subgraph G[a1, ..., ak] is not connected, let

us denote by c(a1, ..., ak) the number of connected components of G[a1, ..., ak].

Then, we define

cv = min{c(a1, ..., ak) :a1 ∈ V1, ..., ak ∈ Vk, ah(v) = v,

G[a1, ..., ak] is not connected}.

For example, in the graph shown in Figure 2(a), it results that c(v2, v3, v5, v6) =

= c(v2, v4, v5, v6) = 2, then cv2
= 2.

Remark 4.1 If each cluster is a singleton, given a vertex v ∈ V , G is v-

connected if and only if G is connected.

Indeed, since each cluster is a singleton, we have that V1 = {a1}, ..., Vk = {ak},

and G[a1, ..., ak] = G. Therefore, the v-connection is an extension of the con-

nection property to clustered graphs.

v1

v2

V1

V2

V4

V3

v6

v3 v4

v5

(a)

V2

v1

V1 V3

V4
v6

v4

v5

(b)

Fig. 2 (a) A graph G, such that G is v1-connected, but not v2-connected. (b) A connected
subgraph G[v1, v4, v5, v6].
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Lemma 4.1 Given a vertex v ∈ V , G is v-connected, if and only if there

exists a feasible solution to the GMBV problem containing v.

Proof If G is v-connected, there exist a1 ∈ V1, ..., ak ∈ Vk, with ah(v) = v, such

that G[a1, ..., ak] is connected. Therefore, there exists a gst GT in G[a1, ..., ak],

that is a feasible solution to the GMBV problem containing v.

On the contrary, let GT be a gst containing v. The subgraph induced by the

vertices in GT is connected, and then G is v-connected. ut

Thanks to Lemma 4.1 it is possible to identify in G vertices that are useless

because they do not belong to any feasible solution. To this end, for any v ∈ V ,

we have to check if G is v-connected and, if this condition does not hold, v

can be removed from G. In what follows, we assume that G is v-connected,

for any v ∈ V , to guarantee that any vertex may belong to a feasible solution

to the GMBV problem. It is worth noting that in G there could be useless

edges too. Indeed, given an edge {u, v} ∈ E, even if G is both u-connected

and v-connected, it may not be contained in any feasible solution, as shown

by the following remark:

Remark 4.2 Given an edge e = {u, v} ∈ E, even if G is u-connected and

v-connected, this does not imply that there exists a feasible solution to the

GMBV problem in G, containing e.

Let us consider the graph shown in Figure 3: it is u-connected and v-connected.

It is easy to see that edge {u, v} cannot belong to any feasible solution, since

the contemporary selection of u and v does not allow to reach cluster V3.

Given 1 ≤ l ≤ k and {a1, ..., al} ⊆ V , with h(a1) 6= h(a2) 6= ... 6= h(al), we
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V1

V2

V4

V3

u

v

Fig. 3 A v-connected (dotted line) and u-connected (dashed line) graph, such that the edge
{u, v} does not belong to any feasible solution.

denote by G(a1, ..., al) the subgraph of G obtained by removing all vertices in

Vh(i), except for ai, for i = 1, ..., l. Thus,

G(a1, ..., al) = G[V \ {Vh(a1) \ {a1}} \ {Vh(a2) \ {a2}} \ ... \ {Vh(al) \ {al}}].

Lemma 4.2 Given an edge e = {u, v} ∈ E, G(u) is v-connected, if and only

if there exists a feasible solution to the GMBV problem in G containing e.

Proof SinceG(u) is v-connected, there exist a1 ∈ V1, ..., ak ∈ Vk, with ah(v) = v,

such that G[a1, ..., ak] is connected. Moreover, Vh(u) in G(u) is a singleton

containing only vertex u, thus ah(u) = u. Therefore, in G[a1, ..., ak] there ex-

ists a gst, GT = (VT , ET ), spanning u and v. If edge e belongs to ET , the

lemma is proved. Otherwise, we can build a new gst, G′T = (VT , E
′
T ), where

E′T = ET ∪ {e} \ {e′}, with e′ one of the edges in ET belonging to the cycle

generated by the introduction of e in GT .

On the contrary, if there exists a gst, GT = (VT , ET ), in G containing edge

e, then GT is a connected subgraph containing u and v, and this implies that

G(u) is v-connected. ut
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V2

v1

V1 V3

V4
v7

v4

v5
v2

v3

v6

Fig. 4 A graph G, such that vertex v1 is a generalized cut vertex.

4.2 Generalized Cut Vertex

In this section, we extend the notion of cut vertices to clustered graphs, where

a cut vertex is a vertex whose removal disconnects the graph.

Definition 4.2 A vertex v ∈ V is a generalized cut vertex in G, if there exists

a vertex u ∈ N(v), such that G[V \ Vh(v)] is not u-connected.

In the graph depicted in Figure 4, v1 is a generalized cut vertex, indeed

it results that G[V \ Vh(v1)] is not u-connected for any u ∈ N(v1), with

N(v1) = {v3, v4, v6, v7}. If v is a generalized cut vertex, let us denote by

c(v) = min{cu : u ∈ N(v), G[V \ Vh(v)] is not u-connected}. In the previous

example, we have that c(v1) = min{cv3
, cv4

, cv6
, cv7
}, where cv3

= cv6
= 3,

cv4 = min{c(v4, v5, v7), c(v4, v6, v7)} = 2, and cv7 = 2. Therefore, c(v1) = 2.

Remark 4.3 If each cluster is a singleton, a generalized cut vertex is exactly a

cut vertex.

Lemma 4.3 Given a vertex v ∈ V , if G[V \Vh(v)] is not u-connected, for any

u ∈ N(v), and c(v) ≥ 3, then v is a branch vertex in every GMBV feasible

solution which contains v.
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Proof Let us suppose that G[V \ Vh(v)] is not u-connected, for any u ∈ N(v),

and c(v) ≥ 3. Whenever in cluster Vh(v) we select v, to guarantee connectivity,

we have to select at least three edges in δ(v). Therefore, v is a branch vertex

in every feasible solution which contains v. ut

Lemma 4.4 If a vertex v ∈ V is not a generalized cut vertex, then there exists

a feasible solution to the GMBV problem containing v, and exactly one edge

incident on v.

Proof Since v is not a generalized cut vertex, for any u ∈ N(v), G[V \Vh(v)] is

u-connected. W.l.o.g., let us assume Vh(v) = V1. According to the definition,

there exist a2 ∈ V2, ..., ak ∈ Vk, with ah(u) = u, such that G[a2, ..., ak] is con-

nected. Therefore, there is a spanning tree GTu = (VTu , ETu) in G[a2, ..., ak],

that is a gst in G[V \Vh(v)] containing u. Finally, if we consider GT = (VT , ET ),

where VT = VTu
∪ {v} and ET = ETu

∪ {u, v}, it is a feasible solution to the

GMBV problem in G, containing v and exactly one edge in δ(v). ut

Notice that, if v ∈ V is not a generalized cut vertex, we have at least d(v)

feasible solutions to the GMBV problem containing v, and exactly one edge

incident on it, one for each edge in δ(v).

Lemma 4.5 If there are no generalized cut vertices in G, then there exists a

feasible solution to the GMBV problem containing v, and at least two edges in

δ(v), for any v ∈ V .

Proof Since G does not contain any generalized cut vertex, d(v) ≥ 2 for any

v ∈ V . Given v ∈ V , let us consider u ∈ N(v). Since u is not a generalized cut
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vertex, according to Lemma 4.4, there exists a feasible solution to the GMBV

problem, GT , containing u and exactly one edge in δ(u). In more detail, let

us assume that {u, v} belongs to GT . Therefore, GT contains {u, v} and at

least another edge incident on v, thus it is a feasible solution to the GMBV

problem containing v, and with at least two edges belonging to δ(v). ut

5 Polyhedral Analysis

Let us denote by P (G) the polytope described by the constraints (2)-(8), that

is:

P (G) = conv{(x, y, z) ∈ R|E|+2|V | : (x, y, z) satisfies (2)− (8)}. (11)

In this section, we examine some properties of the polytope P (G). To assure

that each vertex could be a branch vertex in a GMBV solution, we assume that

k ≥ 4 and N(v) contains at least three vertices belonging to three different

clusters, for any v ∈ V .

Let us consider the set W = {v ∈ V : |Vh(v)| = 1}, containing vertices which

belong to clusters that are singletons. We denote by t = |V \W |, and by s the

number of clusters that are not singletons, namely s = |{i ∈ K : |Vi| > 1}|.

We assume that:

(A1) G does not contain any generalized cut vertex;
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V2

V1 V3

V4

v2

v3

v5

v6

v1

v4

v7

Fig. 5 A graph G = (V,E), with k = 4, t = 6 and s = 3, satisfying assumptions (A1) and
(A2).

(A2) if t > 0, there exist S1 ⊂ S2 ⊂ ... ⊂ St−s ⊂ V , with µ(Si) = 0 and |Si| = i,

for any i = 1, ..., t−s, such that G[V \Si] does not contain any generalized

cut vertex.

Let us consider the graph G = (V,E) shown in Figure 5. Here we have, k = 4,

t = 6 and s = 3. G satisfies assumption (A1). Moreover, it satisfies assumption

(A2), with S1 = {v1}, S2 = {v1, v4} and S3 = {v1, v4, v7}. Let us introduce

some results, which were proposed by [11] for the Generalized Travelling Sales-

man problem, and here they are adapted to the GMBV problem.

Definition 5.1 Let αx ≤ βy + γz + δ be a valid inequality for P (G). We

denote by H(α, β, γ, δ), the face of P (G) induced by αx ≤ βy + γz + δ. Given

a vertex v ∈ V \W , the v-restriction of αx ≤ βy + γz + δ is the inequality

obtained through the deletion of the variables yv, zv and xe, for all e ∈ δ(v).

Lemma 5.1 Given a valid inequality αx ≤ βy+γz+δ, for any v ∈ V \W , the

dimension of H(α, β, γ, δ) is greater than or equal to the sum of the following

quantities:
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(i) the dimension of the face of the polytope P (G[V \ {v}]) induced by the

v-restriction of αx ≤ βy + γz + δ;

(ii) the rank of the matrix containing the coordinates of the extreme points of

H(α, β, γ, δ) with yv = 1, restricted to yv, zv and xe, for any e ∈ δ(v).

Proof Let us consider the matrix X, where each row is an extreme point of

the face H(α, β, γ, δ). Let us note that, since the polytope does not contain

the origin, the dimension of H(α, β, γ, δ) is the rank of X minus 1. Given

v ∈ V \W , matrix X can be partitioned in this way:

X =


X11 0 0 0

X21 X22 1 0

X31 X32 1 1


The last two columns are associated to variables yv and zv, respectively, while

the submatrix

X22

X32

 contains variables xe, with e ∈ δ(v). It results that

rank X ≥ rank X11 + rank

X22 1 0

X32 1 1

 , where rank X11 minus 1 is exactly

the dimension of the face of P (G[V \ {v}]), induced by the v-restriction of

αx ≤ βy + γz + δ. ut

Given V ′ ⊆ V , we represent V ′ by its characteristic vector, νV ′ ∈ Bn, with

νV ′

v = 1 if v ∈ V ′, and νV ′

v = 0 otherwise. Analogously, given E′ ⊆ E, let

πE′ ∈ Bm be its characteristic vector, with πE′

e = 1 if e ∈ E′, and πE′

e = 0

otherwise. Moreover, we denote by 0 and 1, the vectors of all zeros and all

ones, respectively.
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Proposition 5.1 If (A1) and (A2) hold, then dim(P (G)) = m+ 2n− k− 1.

Proof Inequality dim(P (G)) ≤ m+ 2n− k− 1 is trivial, indeed constraints (2)

and (3) are valid for P (G), and they are linearly independent. We show the

inverse inequality by induction on t. We recall that t = |V \W |, namely t is

the number of vertices which belong to clusters that are not singletons. When

t = 0, the GMBV problem reduces to the MBV problem and the claim is true

(see [3]). Let us assume that the claim holds for t, we prove it for t+ 1. Since

t > 0, then there exists at least a vertex v ∈ V \W . According to Lemma 5.1,

given the valid inequality 0 ≤ 0, dim(P (G)) ≥ rank X11 + rank

X22 1 0

X32 1 1

.

Furthermore, assumption (A2) implies that we can choose v ∈ V \W such

that G[V \ {v}] satisfies the same conditions as G. Thus, from the induction

hypothesis, it follows that rank X11 = |E \ δ(v)|+ 2|V \ {v}| − k − 1. There-

fore, we need to show that rank

X22 1 0

X32 1 1

= d(v) + 2. This matrix contains

the columns associated to yv, zv and xe, e ∈ δ(v), of the incidence vectors of

GMBV solutions containing vertex v. We have to exhibit d(v)+2 incidence vec-

tors belonging to P (G), such that, when restricted to yv, zv and xe, e ∈ δ(v),

are linearly independent. Due to assumption (A1) and Lemma 4.4, for any

u ∈ N(v), there exists a gst GTu = (VTu , ETu), such that yv = 1, x{u,v} = 1,

and x(δ(v)) = 1. Therefore, for any u ∈ N(v), (πETu ,νVTu ,1\ν{v}) belongs to

P (G), and matrix X22 is the identity matrix Id(v). Moreover, (πETu ,νVTu ,1),

with u ∈ N(v), belongs to P (G) too. Due to Lemma 4.5, there exists a gst

GT = (VT , ET ), with yv = 1 and x(δ(v)) > 1. Thus, (πET ,νVT ,1) belongs to
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P (G). Introducing in the matrix the incidence vectors of these solutions, we

have:

X22 1 0

X32 1 1

=


Id(v) 1 0

1 0 0 0 ... 0 1 1

1 ...1 0 ... 0 1 1


The rows of this matrix are linearly independent, thus its rank is d(v) + 2. ut

Lemma 5.2 Given a valid inequality αx ≤ βy+γz+δ inducing a proper face

of P (G), if there exists a vertex v ∈ V \W such that:

(i) P (G[V \ {v}]) satisfies assumptions (A1) and (A2);

(ii) the v-restriction of this inequality is facet-defining for P (G[V \ {v}]);

(iii) there are d(v) + 2 incidence vectors of GMBV solutions containing v and

belonging to H(α, β, γ, δ), such that their restriction to xe, e ∈ δ(v), yv and

zv, are linearly independent;

then, αx ≤ βy + γz + δ is facet-defining for P (G).

Proof Inequality αx ≤ βy + γz + δ induces a proper face of P (G), then

dim(H(α, β, γ, δ)) ≤ m+ 2n− k − 2. Therefore, we have to prove the inverse

inequality. From Lemma 5.1 follows that

dim(H(α, β, γ, δ)) ≥ dim(v − restriction) + rank

X22 1 0

X32 1 1

 .

Hypothesis (ii) implies that the v-restriction of the inequality is a facet of

P (G[V \{v}]), then, for the Proposition 5.1 it results that dim(v−restriction) =
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= |E \ δ(v)|+ 2|V \ {v}| − k − 2 = m+ 2n− k − d(v)− 4. Moreover, hypoth-

esis 2 implies that rank

X22 1 0

X32 1 1

= d(v) + 2. Therefore, we have that

dim(H(α, β, γ, δ)) ≥ m+ 2n− k − d(v)− 4 + d(v) + 2 = m+ 2n− k − 2. ut

Lemma 5.3 Given a valid inequality αx ≤ βy+γz+δ inducing a proper face

of P (G), if there exists a vertex v ∈ V \W such that:

(i) P (G[V \ {v}]) satisfies assumptions (A1) and (A2);

(ii) the v-restriction of this inequality is trivial;

(iii) there are d(v) + 1 incidence vectors of GMBV solutions containing v and

belonging to H(α, β, γ, δ), such that their restriction to xe, e ∈ δ(v), yv and

zv, are linearly independent;

then, αx ≤ βy + γz + δ is facet-defining for P (G).

Proof The proof of this lemma is almost the same as the one of Lemma 5.2. ut

Remark 5.1 Inequality xe ≥ 0, e ∈ E, is a facet of P (G) if G \ {e} satisfies

assumptions (A1) and (A2).

Proof From Proposition 5.1 follows that dim(P (G\{e})) = m−1+2n−k−1.

Thus, in P (G) there exist m+2n−k−1 affinely independent incidence vectors

which satisfy xe ≥ 0 with equality. ut

Remark 5.2 Given e = {u, v} ∈ E, inequality xe ≤ 1 is a facet of P (G), if

and only if u, v ∈W .

Proof It is easy to see that, when u (respectively v) does not belong to W ,

inequality xe ≤ 1 is dominated by x(E({u} : Vh(v))) ≤ yu (respectively,
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x(E({v} : Vh(u))) ≤ yv). We show the converse by induction on t. If t = 0, we

reduce to the MBV problem and the claim is true. We now assume that the re-

sult holds for t, and we show its validity for t+1. Given that t > 0, there exists

a vertex w ∈ V \W , such that the graph G[V \ {w}] satisfies (A1) and (A2).

Thanks to the induction hypothesis, the first request of Lemma 5.2 is satisfied,

and to complete the proof it remains to exhibit d(w)+2 GMBV solutions, such

that yw = 1, xe = 1, and the restrictions of their incidence vectors to yw, zw

and xf , with f ∈ δ(w), are linearly independent. Since w is not a generalized

cut vertex in G, for any w̄ ∈ N(w), there exists a gst GT w̄ = (VT w̄ , ET w̄) in G,

such that yw = 1 and x(δ(w)) = 1. Furthermore, since both u and v belong to

W , it is always possible to choose a subgraph GT w̄ , such that e ∈ ET w̄ . There-

fore, (πETw̄ ,νVTw̄ ,1 \ν{w}) belongs to P (G), for any w̄ ∈ N(w), and satisfies

xe ≤ 1 to equality. Moreover, (πETw̄ ,νVTw̄ ,1) belongs to P (G) too. Finally,

from Lemma 4.5 follows that there exists a GMBV solution GT = (VT , ET ),

such that yw = 1 and x(δ(w)) > 1. We can always choose a subgraph GT such

that e ∈ ET . Thus (πET ,νVT ,1) belongs to P (G). Obviously, the restrictions

of these GMBV solutions to yw, zw and xf , with f ∈ δ(w), are d(w)+2 linearly

independent vectors satisfying yw = 1 and xe = 1. ut

Remark 5.3

1. Inequality yv ≥ 0, v ∈ V , is not facet-defining for P (G).

2. Inequality yv ≤ 1, v ∈ V , is not facet-defining for P (G).

Proof
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1. Inequality yv ≥ 0 is not facet-defining for P (G), indeed we have that the

face P (G) ∩ {(x, y, z) : yv = 0} is properly contained in the proper face

P (G) ∩ {(x, y, z) : x(E({v} : Vi)) = 0}, for any i 6= h(v).

2. The inequality yv ≤ 1, v ∈ V , does not define a facet of P (G), because of

the constraints (3).

ut

Remark 5.4 Inequality zv ≤ 1, v ∈ V , is a facet of P (G), if assumption (A2)

holds for S1, ..., St−s ⊂ V \ {v}.

Proof We prove the proposition by induction on t. When t = 0, all clusters are

singleton, so the GMBV problem reduces to the MBV problem, and the claim

is true. Let us assume that the claim holds for t, we prove it for t + 1. Since

t > 0, then there is a vertex u ∈ V \W , with u 6= v, such thatG[V \{u}] satisfies

assumptions (A1) and (A2). By the induction hypothesis, the first request of

Lemma 5.2 is satisfied. If we prove that the second hypothesis of Lemma 5.2

is satisfied too, we are done. To this end, we exhibit d(u) + 2 GMBV solutions

containing u, satisfying zv = 1, and such that the restrictions of their incidence

vectors to yu, zu and xe, e ∈ δ(u), are linearly independent. By Lemma 4.4,

for any w ∈ N(u), there exists a gst GTw = (VTw , ETw) in G, with yu = 1 and

x(δ(u)) = 1. The vector (πETw ,νVTw ,1 \ ν{u}) belongs to P (G) and satisfies

zv = 1, for any w ∈ N(u). Furthermore, (πETw ,νVTw ,1) ∈ P (G) too. By

Lemma 4.5, there exists a GMBV solution GT = (VT , ET ) having yu = 1 and

x(δ(u)) > 1, thus (πET ,νVT ,1) belongs to P (G). These are d(u) + 2 GMBV
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solutions, which contain u, satisfy zv = 1, and such that their restriction to

the variables associated to u gives rise to a full rank matrix. ut

Remark 5.5 Inequality zv ≥ 0, v ∈ V , is a facet of P (G) if

1. G[V \ {v}] satisfies assumptions (A1) and (A2);

2. µ(N(v)) > 1.

Proof We distinguish two cases:

– v ∈ W : we prove the assert by induction on t. For t = 0, each cluster is a

singleton, thus the GMBV problem reduces to the MBV problem and the

claim is true. Let us assume that the claim is true for t, we prove it for

t+ 1. Since t > 0, there exists u ∈ V \W , such that the graph G[V \ {u}]

satisfies (A1) and (A2). Let us note that u 6= v, since v ∈ W . Therefore,

by the induction hypothesis, the first request of Lemma 5.2 holds, and to

complete the proof, we have to exhibit d(u)+2 GMBV solutions, satisfying

yu = 1 and zv = 0, such that the restrictions of their incidence vectors to

yu, zu and xe, with e ∈ δ(u), are linearly independent. Given w ∈ N(u),

w 6= v, thanks to hypothesis 1, there exists a gst GT̄w = (VT̄w , ET̄w) in

G[V \ {v}], such that yu = 1, x{u,w} = 1 and x(δ(u)) = 1. To obtain a gst

in G, it is sufficient to add an edge connecting v to a vertex in VT̄w , and

this can always be done thanks to hypothesis 2, which ensures that there

exists i ∈ K \ {h(u)} such that Vi ⊆ N(v). Therefore, GTw = (VTw , ETw),

where VTw = VT̄w ∪ {v} and ETw = ET̄w ∪ {e}, with e ∈ δ(v) ∩ δ(Vi), is a

gst in G. There are two possibilities:
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– If v /∈ N(u), then (πETw ,νVTw ,1\ν{u,v}) belongs to P (G) and satisfies

zv = 0, for any w ∈ N(u). Therefore, these are d(u) GMBV solutions

containing u.

– On the contrary, if v ∈ N(u), (πETw ,νVTw ,1 \ ν{u,v}), for any w 6= v,

are d(u) − 1 GMBV solutions. Furthermore, let us consider the graph

GTw′ = (VTw′ , ETw′ ), with VTw′ = VT̄w′∪{v} and ETw′ = ET̄w′∪{u, v},

where (VT̄w′ , ET̄w′ ) is a gst in G[V \ {v}], for a given w′ ∈ N(u) \ {v},

such that yu = 1 and x(δ(u)) = 1. This is a GMBV solution containing

two edges in δ(u) and satisfying zv = 0.

Thus, in both cases, we have built d(u) GMBV solutions containing u

and satisfying zv = 0. The remaining two are the followings: one is that

represented by (πETw ,νVTw ,1 \ ν{v}), for a given w ∈ N(u) \ {v}; the

other one is (πET ,νVT ,1 \ ν{v}), where VT = VT̄ ∪ {v}, ET = ET̄ ∪ {e},

e ∈ δ(v) ∩ δ(Vi), and (VT̄ , ET̄ ) is a gst in G[V \ {v}] having yu = 1 and

x(δ(u)) > 1. It is easy to see that these d(u) + 2 GMBV solutions are such

that their restrictions to the variables related to u are linearly independent.

– v ∈ V \W : since v /∈ W , then we can apply Lemma 5.3. The v-restriction

of zv ≥ 0 is the trivial inequality 0 ≥ 0. Therefore, to complete the proof

it remains to exhibit d(v) + 1 feasible solutions to the GMBV problem,

satisfying yv = 1 and zv = 0, such that the restrictions of their incidence

vectors to yv, zv and xe, with e ∈ δ(v), are linearly independent. For any

u ∈ N(v), there exists a gst GTu = (VTu , ETu) in G, such that x(δ(v)) = 1
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and zv = 0. Therefore, (πETu ,νVTu ,1 \ ν{v}) belongs to P (G) for any

u ∈ N(v). Furthermore, given u ∈ N(v), let GTu = (VTu , ETu) be a

gst in G having x(δ(v)) = 1 = x({u, v}). Since µ(N(v)) > 1, then there

exist e ∈ ETu and f ∈ δ(v) \ {u, v}, such that GT = (VT , ET ), where

VT = VTu and ET = ETu ∪ {f} \ {e}, is a gst satisfying x(δ(v)) = 2.

Therefore, (πET ,νVT ,1 \ ν{v}) belongs to P (G) and satisfies zv = 0. It is

straightforward to verify that, the restrictions of the incidence vectors of

these d(v) + 1 GMBV solutions to the variables related to v, are linearly

independent.

ut

Proposition 5.2 Given k ∈ K and v ∈ V \ (W ∪ Vk), x(E({v} : Vk)) ≤ yv is

a facet of P (G) if

1. G[V \ {v}] satisfies assumptions (A1) and (A2);

2. G[V \ Vk] does not contain any generalized cut vertex.

Proof We assume that E({v} : Vk) 6= ∅, otherwise x(E({v} : Vk)) ≤ yv reduces

to yv ≥ 0.

To prove this proposition we use Lemma 5.3. The v-restriction of the inequality

x(E({v} : Vk)) ≤ yv is the trivial inequality 0 ≤ 0. Thus, it remains to

exhibit d(v) + 1 feasible solutions to the GMBV problem, satisfying yv = 1

and x(E({v} : Vk)) = yv, such that the restrictions of their incidence vectors

to yv, zv and xe, with e ∈ δ(v), are linearly independent. G[V \ Vk] does not

contain any generalized cut vertex, then given u ∈ N(v) \ Vk, there exists

a gst GT̄u = (VT̄u , ET̄u) in G[V \ Vk], such that x(δ(v)) = 1. Thus, for any
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e = {v, w} ∈ E({v} : Vk), it results thatGTu,e = (VTu,e , ETu,e), where VTu,e =

= VT̄u ∪ {w} and ETu,e = ET̄u ∪ {e}, is a gst in G. It is easy to see that,

(πETu,e ,νVTu,e ,1 \ ν{v}) belongs to P (G) for any u ∈ N(v) \ Vk, and for

any e ∈ E({v} : Vk), satisfying x(E({v} : Vk)) = yv. These solutions are

(d(v) − |E({v} : Vk)|)|E({v} : Vk)|, but only d(v) − 1 of them are such that

the restrictions of their incidence vectors to the variables related to v are

linearly independent. Furthermore, given u ∈ N(v) \ Vk and e ∈ E({v} : Vk),

(πETu,e ,νVTu,e ,1) belongs to P (G) and satisfies x(E({v} : Vk)) = yv. Finally,

given u ∈ N(v) \ Vk, there exists a gst GT̄ = (VT̄ , ET̄ ) in G[V \ Vk], such

that x(δ(v)) > 1. Therefore, given e = {v, w} ∈ E({v} : Vk), it results that

GT e = (VT e , ET e), where VT e = VT̄ ∪ {w} and ET e = ET̄ ∪ {e}, is a gst in G,

such that (πETe ,νVTe ,1) belongs to P (G) and satisfies x(E({v} : Vk)) = yv.

ut

Proposition 5.3 Given v ∈ V , inequality x(δ(v)) ≥ yv is a facet of P (G) if

1. G[V \ {v}] satisfies assumptions (A1) and (A2);

2. µ(N(v)) > 1.

Proof We distinguish two cases:

– v ∈ W : in this case inequality x(δ(v)) ≥ yv becomes x(δ(v)) ≥ 1. We

prove the proposition in this case by induction on t. For t = 0, the GMBV

problem reduces to the MBV problem and the claim is true (see Proposition

.1 in Appendix 6). Let us assume that the claim is true for t, we prove it

for t + 1. Since t > 0, there exists u ∈ V \W , with u 6= v, such that the
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graph G[V \{u}] satisfies (A1) and (A2). To complete the proof, we have to

exhibit d(u)+2 feasible solutions to the GMBV problem, satisfying yu = 1

and x(δ(v)) = 1, such that the restrictions of their incidence vectors to yu,

zu and xe, with e ∈ δ(u), are linearly independent. It is easy to see that

the d(u) + 2 GMBV solutions that we have built in point 5 of the proof of

Proposition 5.5, satisfy x(δ(v)) ≥ 1 with equality, and their restrictions to

the variables related to u are linearly independent.

– v ∈ V \ W : we can apply Lemma 5.3. The v-restriction of x(δ(v)) ≥ yv

is the trivial inequality 0 ≥ 0. For any u ∈ N(v), there exists a gst

GTu = (VTu , ETu) in G such that x(δ(v)) = 1. Therefore, it results that

(πETu ,νVTu ,1 \ ν{v}) belongs to P (G) and satisfies x(δ(v)) = yv, for any

u ∈ N(v). Furthermore, given u ∈ N(v), (πETu ,νVTu ,1) belongs to P (G)

too. It is easy to see that, the restrictions of the incidence vectors of these

d(v) + 1 solutions to the variables related to v are linearly independent.

ut

We now introduce a new family of valid inequalities, which strengthen con-

straints (5). Given v ∈ V and H ⊆ N(v), we introduce the following function

αH : K \ {h(v)} → {0, 1}, such that αH(i) = 1 if H ∩ Vi 6= ∅, and 0 other-

wise. Furthermore, we denote by d̄H(v) =
∑

i∈K\{h(v)} αH(i), the number of

clusters whose intersection with H is non-empty. When H = N(v), instead of

d̄H(v), we use simply d̄(v). Obviously, d̄(v) ≤ d(v), and when V = W , we have

that d̄(v) = d(v), for any v ∈ V .
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Proposition 5.4 Given v ∈ V , inequality

x(δ(v))− 2yv ≤ (d̄(v)− 2)zv (12)

is valid for P (G).

Proof Let us note that, given v ∈ V , x(δ(v)) ≤ d̄(v) holds, indeed it can

be selected at most one edge going from v to a vertex in N(v) ∩ Vi, for any

i ∈ K \{h(v)}. Therefore, inequality (12) ensures that whenever at least three

edges in δ(v) are selected, then v is a branch vertex. ut

It is easy to see that inequalities (12) are stronger than constraints (5).

Proposition 5.5 Given v ∈ V , inequality x(δ(v)) − 2 ≤ (d̄(v) − 2)zv is a

facet of P (G) if

1. G[V \ {v}] satisfies assumptions (A1) and (A2);

2. µ(N(v)) > 2;

3. if v ∈ V \W , there exists u1, ..., ud̄(v) ∈ N(v), with h(u1) 6= h(u2) 6= ... 6=

6= h(ud̄(v)), such that G(u1, ..., ud̄(v)) is v-connected.

Proof We need to face two cases:

– v ∈ W : we prove the result by induction on t. For t = 0, each cluster is a

singleton, thus the GMBV problem reduces to the MBV problem and the

claim is true (see Proposition .2 in Appendix 6). Let us assume that the

claim is true for t, we prove it for t+ 1. Given t > 0, there exists a vertex

u ∈ V \W , with u 6= v, such that the graph G[V \ {u}] satisfies (A1) and

(A2). Thus, by the induction hypothesis, the first request of Lemma 5.2
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holds. It remains to exhibit d(u) + 2 feasible solutions to the GMBV prob-

lem, such that yu = 1 and x(δ(v))− 2 = (d̄(v)− 2)zv is satisfied, for which

the restrictions of their incidence vectors to yu, zu and xe, with e ∈ δ(u),

are linearly independent.

Thanks to hyphotesis 1, given w ∈ N(u), w 6= v, there exists a gst

GT̄w = (VT̄w , ET̄w) in G[V \ {v}], such that yu = 1, x{u,w} = 1 and

x(δ(u)) = 1. To obtain a feasible solution in G satisfying x(δ(v))− 2 =

= (d̄(v)−2)zv, it is sufficient to add two edges connecting v to two vertices

in VT̄w , and this can always be done thanks to hypothesis 2, which ensures

that there exists i, j ∈ K\ {h(u)}, such that Vi, Vj ⊆ N(v). We distinguish

two cases:

– if v /∈ N(u), then for any w ∈ N(u), GTw = (VTw , ETw) is a gst in

G satisfying yu = 1, x(δ(u)) = 1 and x(δ(v)) − 2 = (d̄(v) − 2)zv,

where VTw = VT̄w ∪ {v}, ETw = ET̄w ∪ {e, f} \ {g}, e ∈ δ(v) ∩ δ(Vi),

f ∈ δ(v) ∩ δ(Vj) and g ∈ ET̄w \ {u,w}. Therefore, for any w ∈ N(u),

(πETw ,νVTw ,1 \ ν{u,v}) belongs to P (G) and satisfies inequality (12)

with equality;

– if v ∈ N(u), we have that d(u) − 1 GMBV solutions, one for each

w ∈ N(u) \ {v}. Another one GMBV solution is the following: given

w′ ∈ N(u) and a gst (VT̄w′ , ET̄w′ ) in G[V \ {v}] for which x(δ(u)) = 1,

let us consider GTw′ = (VTw′ , ETw′ ), where VTw′ = VT̄w′ ∪ {v} and

ETw′ = ET̄w′ ∪ {{u, v}, e} \ {f}, with e ∈ δ(v) and f ∈ ET̄w′ . Thus,
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vector (πE
Tw′ ,νV

Tw′ ,1\ν{u,v}) belongs to P (G) and satisfies inequality

(12) with equality;

Therefore, in both cases, we have d(u) GMBV solutions containing u and

satisfying x(δ(v)) − 2 = (d̄(v) − 2)zv, indeed x(δ(v)) is always equal to

two. The remaining two solutions are the followings: one is that repre-

sented by (πETw ,νVTw ,1 \ ν{v}), for a given w ∈ N(u), and the other one

is (πET ,νVT ,1 \ ν{v}), where GT = (VT̄ ∪ {v}, ET̄ ∪ {e, f} \ {g}), with

GT̄ = (VT̄ , ET̄ ) a gst in G[V \ {v}] having yu = 1, x(δ(u)) > 1, e, f ∈ δ(v)

and g ∈ ET̄ . These solutions are such that their restrictions to the variables

related to u are linearly independent.

– v ∈ V \W : we prove the result by applying Lemma 5.3. The v-restriction

of x(δ(v)) − 2yv ≤ (d̄(v) − 2)zv is the trivial inequality 0 ≤ 0. It remains

then to exhibit d(v)+1 feasible solutions to the GMBV problem, satisfying

yv = 1 and x(δ(v))− 2yv = (d̄(v)− 2)zv, such that the restrictions of their

incidence vectors to yv, zv and xe, with e ∈ δ(v), are linearly independent.

For any u ∈ N(v), there exists a gst GT̄u = (VT̄u , ET̄u) in G, such that

x(δ(v)) = 1. Since hypothesis 2 holds, then there exist e ∈ δ(v) \ {u, v}

and f ∈ ET̄u , such that GTu = (VTu , ETu) = (VT̄u , ET̄u ∪ {e} \ {f})

is a gst in G, containing v and satisfying x(δ(v)) = 2. Therefore, for any

u ∈ N(v), (πETu ,νVTu ,1\ν{v}) belongs to P (G) and satisfies with equality

x(δ(v))− 2yv ≤ (d̄(v)− 2)zv. Furthermore, since µ(N(v)) ≥ 3, it is always

possible to choose e ∈ δ(v) in such a way that the restrictions of the in-

cidence vectors of these d(v) solutions are linearly independent. Finally,
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thanks to hypothesis 3, there exists a gst GT = (VT , ET ) in G contain-

ing d̄(v) edges in δ(v). Thus, (πET ,νVT ,1) belongs to P (G) and satisfies

x(δ(v)) − 2yv = (d̄(v) − 2)zv. It is easy to see that the restriction of this

GMBV solution to the variables related to v, is linearly independent of the

previous ones.

ut

We now present a new family of valid inequalities, which is a generalization of

inequalities (12).

Proposition 5.6 Given v ∈ V and H ⊆ N(v), with d̄H(v) ≥ 3, inequality

x(E({v} : H))− 2yv ≤ (d̄H(v)− 2)zv (13)

is valid for P (G).

Proof This inequality is derived from (12) and it ensures that, whenever at

least three edges belonging to E({v} : H) are selected, then v is a branch

vertex. ut

Proposition 5.7 Given v ∈ V and H ⊆ N(v), with d̄H(v) ≥ 3, inequality

x(E({v} : H))− 2yv ≤ (d̄H(v)− 2)zv is a facet of P (G) if

1. for any i ∈ K \ {h(v)} such that H ∩ Vi 6= ∅, then |H ∩ Vi| = |N(v) ∩ Vi|;

2. G[V \ {v}] satisfies assumptions (A1) and (A2);

3. µ(H) > 2;

4. if v ∈ V \W , there exist u1, ..., ud̄H(v) ∈ H, with h(u1) 6= h(u2) 6= ... 6=

6= h(ud̄H(v)), such that G(u1, ..., ud̄H(v)) is v-connected.
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Proof It is easy to see that, if there exists j ∈ K \ {h(v)} such that H ∩Vj 6= ∅

and |H∩Vj | 6= |N(v)∩Vj |, then inequality x(E({v} : H))−2yv ≤ (d̄H(v)−2)zv

is dominated by inequality x(E({v} : H ∪H ′))− 2yv ≤ (d̄H(v)− 2)zv, where

H ′ = N(v) ∩ Vj .

The proof of this result is almost the same as the one of Proposition 5.5, indeed

inequality (13) is a generalization of (12). ut

6 Conclusions

We have provided a formulation for the Generalized Minimum Branch Vertices

problem, and we have introduced several properties characterizing any feasible

solution to the problem, some of which could be used to reduce the size of the

graph. Furthermore, we have derived the dimension of the polytope, studied

the trivial inequalities, introduced two new families of valid inequalities, and

we have proved that they are facet-defining. Finally, we have proved some

facetal results regarding the polytope of the MBV problem too. Future research

directions will require the development of a Branch and Cut algorithm, that

implements the facets proposed in this paper.

Appendix

In this Appendix, we prove three results about the Minimum Branch Vertices Problem,
which are used in the proof of Propositions 5.3, 5.5 and 5.7.
Let G = (V,E) be an undirected connected graph, having n = |V | vertices and m = |E|
edges. The Minimum Branch Vertices (MBV) problem consists of finding a spanning tree T
of G, with the minimum number of branch vertices. The MBV problem can be formulated as
an integer linear program (ILP) as follows. For any e ∈ E, let xe be a binary variable equal
to 1, if e is selected, and 0 otherwise. Moreover, for any v ∈ V , let zv be a binary variable
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equal to 1, if v is a branch vertex, and 0 otherwise. The ILP formulation is the following:

Minimize z =
∑
v∈V

zv (14)

subject to

x(E) = n− 1 (15)

x(E(S)) ≤ |S| − 1 S ⊂ V : |S| ≥ 3 (16)

x(δ(v))− 2 ≤ (d(v)− 2)zv v ∈ V (17)

xe ∈ {0, 1} e ∈ E (18)

zv ∈ {0, 1} v ∈ V (19)

The objective function (14) minimizes the total number of branch vertices. Constraint (15)
ensures that the number of selected edges is equal to the number of vertices minus 1.
Constraints (16) are the classical Subtour Elimination Constraints. Finally, inequalities (17)
ensure that a vertex v is a branch vertex, whenever at least three edges in δ(v) are selected.
Let us denote by P (G) the polytope described by the constraints (15)-(19), that is:

P (G) = conv{(x, z) ∈ R|E|+|V | : (x, z) satisfies (15)− (19)}. (20)

Silvestri et al. [3] studied the facial structure of P (G). They showed that, if G is 2-connected,
namely it does not contain any cut vertex, then the affine hull of P (G) is the following:

aff(P (G)) = {(x, z) ∈ R|E|+|V | : x(E) = n− 1}

As a consequence, if G is 2-connected, then the dimension of P (G) is n+m− 1. Moreover,
they proved that, if G is 2-connected, then yv ≤ 1, v ∈ V , and xe ≤ 1, e ∈ E, are facets of
P (G). Finally, they showed that, given v ∈ V , if also G \ {v} is 2-connected, then yv ≥ 0 is
facet-defining. To prove the polyhedral results we use the following theorem (see Theorem
3.6 of Nemhauser and Wolsey [19]).

Theorem .1 Let (A=, b=) be the equality set of S ⊆ Rk, where A= is a matrix of dimension
m′ × n′ and b= has dimension m′, and let F = {x ∈ S : πx = π0} be a proper face of S.
The following two statements are equivalent:

– F is a facet of S.
– If λx = λ0 for all x ∈ F , then

(λ, λ0) = (απ + uA=, απ0 + ub=) for some α ∈ R and some u ∈ Rm′
.

Let us consider the following particular case of constraints (16):

x(δ(v)) ≥ 1, v ∈ V (21)

Proposition .1 Let G = (V,E) be a 2-connected graph. For v ∈ V , if G \ {v} is 2-
connected, then inequality x(δ(v)) ≥ 1 defines a facet of P (G).

Proof Let us consider the proper face Fv = {(x, z) ∈ P (G) : x(δ(v)) = 1}, where v ∈ V
such that G \ {v} is 2-connected. To prove that Fv is a facet of P (G), we show that if
λ(x, z)T = λ0, for all (x, z) ∈ Fv , then we can express (λ, λ0) as (απ + uA=, απ0 + ub=),
with α, u ∈ R. W.l.o.g., we can assume that v = v1, where V = {v1, ..., vn}, E = {e1, ..., em}
and δ(v) = {e1, ..., ed(v)}. In this case we have that (π, π0) = (1, ..., 1, 0, ..., 0, 1) and
(A=, b=) = (1, ..., 1, 0, ..., 0, n− 1). Let us represent (λ, λ0) as (s1, ..., sm, t1, ..., tn, λ0), then
equality λ(x, z)T = λ0 becomes

∑
e∈E sexe +

∑
v∈V tvzv = λ0.

Since G \ {v} is 2-connected, then for any w ∈ V \ {v}, there exists a spanning tree
GT̄w

= (V \ {v}, ET̄w
) of G \ {v}, in which w is not a branch vertex. Given e ∈ δ(v),

the subgraph GTw = (V,ETw ), with ETw = ET̄w
∪ {e}, is a spanning tree of G, such that

w is not a branch vertex in GT , and the degree of v in GT is one. Thus, (πETw ,1 \ ν{w})
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and (πETw ,1) belong to Fv . Since λ(πETw ,1 \ ν{w})T − λ(πETw ,1)T = 0, we have that
tw = 0, for any w ∈ V \ {v}. Furthermore, since G is 2-connected, there exists a spanning
tree GTv = (V,ETv ) of G, such that x(δ(v)) = 1. Therefore, (πETv ,1\ν{v}) and (πETv ,1)
belong to Fv , and tv = 0.
G \ {v} is 2-connected, then there exist two spanning trees of G \ {v}, GT̄1

= (V \ {v}, ET̄1
)

and GT̄2
= (V \ {v}, ET̄2

), such that ET̄2
= ET̄1

\ {e} ∪ {f}, where e, f /∈ δ(v). Given
ev ∈ δ(v), GT1 = (V,ET1 ) and GT2 = (V,ET2 ) are two spanning trees of G, where

ET1 = ET̄1
∪{ev} and ET2 = ET̄2

∪{ev}. Since (πET1 ,1) and (πET2 ,1) belong to Fv , then

λ(πET1 ,1)T −λ(πET2 ,1)T = 0 and se = sf . Since GT̄1
is a generic spanning tree, we have

that s := se, for any e /∈ δ(v).
Let GT = (V \{v}, ET ) be a spanning tree of G\{v}. Since d(v) ≥ 2, there exist e, f ∈ δ(v),
with e 6= f , such that GT1 = (V,ET1 ) and GT2 = (V,ET2 ) are two spanning trees of G,

where ET1 = ET ∪ {e} and ET2 = ET ∪ {f}. It is easy to see that (πET1 ,1) and (πET2 ,1)

belong to Fv , then λ(πET1 ,1)T − λ(πET2 ,1)T = 0 and se = sf . Since it can be done for

any e, f ∈ δ(v), it follows that s′ := se, for any e ∈ δ(v). Equation λ(x, z)T = λ0 reduces to

s′x(δ(v)) + s x(E \ δ(v)) = λ0.

Let GT̄ = (V \ {v}, ET̄ ) be a spanning tree of G \ {v}. Given e ∈ δ(v), we have that
GT = (V,ET ), where ET = ET̄ ∪{e}, is a spanning tree of G. Since (πET ,1) belong to Fv ,
it results that λ0 = s′ + s(n− 2).
Therefore, λ(x, z)T = λ0 becomes

s′x(δ(v)) + s x(E \ δ(v)) = s′ + s(n− 2).

Thus,
(λ, λ0) = (s′, ..., s′, s, ..., s, 0, ..., 0, s′ + s(n− 2)).

Note that

(απ + uA=, απ0 + ub=) = (α+ u, ..., α+ u, u, ..., u, 0, ..., 0, α+ u(n− 1)).

Therefore, we complete the proof by setting α = s′ − s and u = s. ut

Proposition .2 Let G = (V,E) be a 2-connected graph. For v ∈ V , with d(v) ≥ 3, if
G \ {v} is 2-connected, then inequality x(δ(v))− 2 ≤ (d(v)− 2)zv defines a facet of P (G).

Proof We prove the result by using Theorem .1. Given v ∈ V such that G\{v} is 2-connected,
let us consider the proper face Fv = {(x, z) ∈ P (G) : x(δ(v)) + (2− d(v))zv = 2}. To show
that Fv is a facet of P (G), we need to prove that if λ(x, z)T = λ0, for all (x, z) ∈ Fv , then we
can express (λ, λ0) as (απ + uA=, απ0 + ub=), with α, u ∈ R. W.l.o.g., we can assume that
v = v1, where V = {v1, ..., vn}, E = {e1, ..., em} and δ(v) = {e1, ..., ed(v)}. In this case, we
have that (π, π0) = (1, ..., 1, 0, ...0, 2−d(v), 0, ..., 0, 2) and (A=, b=) = (1, ..., 1, 0, ..., 0, n− 1).
Let us represent (λ, λ0) as (s1, ..., sm, t1, ..., tn, λ0); then equality λ(x, z)T = λ0 becomes∑

e∈E sexe +
∑

v∈V tvzv = λ0.
Since G \ {v} is 2-connected, then for any w ∈ V \ {v} there exists a spanning tree
GTw = (V \ {v}, ETw ) of G \ {v}, in which w is not a branch vertex. GT = (V,ET ), where
ET = ETw ∪ {e, f} \ {g}, with e, f ∈ δ(v) and g ∈ ETw , is a spanning tree of G, such that
w is not a branch vertex in GT and the degree of v in GT is two. Therefore, it results that
(πET ,1\ν{w,v}) and (πET ,1\ν{v}) belong to Fv , and satisfy λ(x, z)T = λ0. This implies
that λ(πET ,1 \ ν{w,v})T − λ(πET ,1 \ ν{v})T = 0, and then tw = 0, for any w ∈ V \ {v}.
Since G \ {v} is 2-connected, then there exist two spanning trees GT̄1

= (V \ {v}, ET̄1
) and

GT̄2
= (V \ {v}, ET̄2

) of G \ {v}, such that ET̄2
= ET̄1

\ {e} ∪ {f} (see Diestel [20]). Since
d(v) ≥ 3, there exist ev , fv ∈ δ(v) and g ∈ ET1

∪ ET2
\ {e, f}, such that GT1

= (V,ET1
)

and GT2 = (V,ET2 ) are two spanning trees of G, where ET1 = ET̄1
∪ {ev , fv} \ {g} and

ET2
= ET̄2

∪ {ev , fv} \ {g}. Moreover, we have that ET2
= ET1

\{e}∪{f}. It is easy to see

that (πET1 ,1 \ ν{v}) and (πET2 ,1 \ ν{v}) belong to Fv .

Then λ(πET1 ,1 \ ν{v})T − λ(πET2 ,1 \ ν{v})T = 0 and se = sf . Since GT̄1
is a generic
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spanning tree we have that s := se, for any e /∈ δ(v).
Let GT = (V \{v}, ET ) be a spanning tree of G\{v}. Since d(v) ≥ 3, there exist e, f, g ∈ δ(v),
with e 6= f 6= g. There exist h, h′ ∈ ET such that GT1 = (V,ET1 ) and GT2 = (V,ET2 ),
where ET1

= ET ∪ {e, f} \ {h} and ET2
= ET ∪ {e, g} \ {h′}, are two spanning trees

of G. It is easy to see that (πET1 ,1 \ ν{v}) and (πET2 ,1 \ ν{v}) belong to Fv ; then

λ(πET1 ,1 \ ν{v})T − λ(πET2 ,1 \ ν{v})T = 0 and sf = sg . Since it can be done for any

e, f, g ∈ δ(v), it follows that s′ := se, for any e ∈ δ(v). Equation λ(x, z)T = λ0 reduces to

s′x(δ(v)) + s x(E \ δ(v)) + tvzv = λ0.

Let GT̄ = (V \ {v}, ET̄ ) be a spanning tree of G \ {v}. Given e, f ∈ δ(v), there exists
g ∈ ET̄ , such that GT = (V,ET ), where ET = ET̄ ∪ {e, f} \ {g}, is a spanning tree of G.

Since (πET ,1 \ ν{v}) belong to Fv , it results that λ0 = 2s′ + s(n − 3). Finally, given a
spanning tree GT̄ = (V \ {v}, ET̄ ) of G \ {v}, there exist e1, ..., ed(v)−1 ∈ ET̄ , such that
GT = (V,ET ) is a spanning tree of G, where ET = ET̄ ∪ δ(v) \ {e1, ..., ed(v)−1}. It is easy

to see that (πET ,1) belongs to Fv , then s′d(v) + s(n − 1 − d(v)) + tv = 2s′ + s(n − 3). It
follows that tv = (s′ − s)(2− d(v)).
From these observations λ(x, z)T = λ0 becomes

s′x(δ(v)) + s x(E \ δ(v)) + (s′ − s)(2− d(v))zv = 2s′ + s(n− 3).

Therefore, we have that

(λ, λ0) = (s′, ..., s′, s, ..., s, (s′ − s)(2− d(v)), 0, ..., 0, 2s′ + s(n− 3)).

Note that

(απ + uA=, απ0 + ub=) = (α+ u, ..., α+ u, u, ..., u, α(2− d(v)), 0, ..., 0, 2α+ u(n− 1)).

Therefore, we complete the proof by setting α = s′ − s and u = s. ut
Silvestri et al. [3] introduced the following family of valid inequalities:

Proposition .3 Given v ∈ V and H ⊆ δ(v), with |H| ≥ 3, inequality

x(H)− 2 ≤ (|H| − 2)zv (22)

is valid for P (G).

The following proposition states that inequalities (22) are facet-defining for P (G).

Proposition .4 Let G = (V,E) be a 2-connected graph. For v ∈ V and H ⊆ δ(v), with
|H| ≥ 3, if G \ {v} is 2-connected, then inequality x(H)− 2 ≤ (|H| − 2)zv defines a facet of
P (G).

Proof Since inequality (22) is a generalization of (17), the proof follows from the one of
Proposition .2. ut
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