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aDipartimento di Matematica, Università degli Studi di Salerno, Via Giovanni Paolo II 132,
84084 Fisciano (SA), Italia

bDipartimento di Ingegneria Gestionale e della Produzione, Politecnico di Torino, (TO), Italia
cCNR, IEIIT, Torino, (TO), Italia

dIndustrial Engineering Department, University of Louisville, KY, USA

Abstract

We study the problem of determining the bounds of the optimal cost of a trans-
portation problem when the capacity of the suppliers and the demand of the cus-
tomers vary over an interval. We consider transportation costs such that the trans-
portation paradox does not arise. We design a new heuristic approach based on
some polyhedral properties of the problem and provide a novel integer linear pro-
gramming mathematical formulation to solve it exactly. Our computational re-
sults, carried out on benchmark instances from the literature and on some new
instances, show that our heuristic algorithm greatly outperforms the best solution
approaches currently used.

Keywords: Interval Optimization, Interval RHS, Transportation Paradox,
Transportation problem

1. Introduction

The Transportation Problem (TP) is one of the most important problem in op-
eration research and optimization. It has been formulated for the first time in [1],
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more than seventy years ago and it still raises great research interest. It consists
of determining the transportation plan for shipping items from suppliers to cus-
tomers such that the total cost is minimized while meeting customers’ demand and
respecting capacity constraints at the suppliers. In this research, we examine the
transportation problem in which it is assumed that supply and demand vary over
specific intervals; this problem is referred to as the Interval Transportation Prob-
lem (ITP). Under this scenario, the transportation cost associated with the optimal
solutions will also vary over a range. Our goal is to determine the range of the
optimal cost of ITP over all possible realizations of the supply and demand pa-
rameters. Generally speaking, the addressed problem fits into the field of interval
linear programming, where it is assumed that the uncertain coefficients of a linear
problem vary independently within given ranges. In this context, the focus of our
research leads to solve a max-min problem, rather than finding a stable solution
in the worst case (as in robust optimization) which can be addressed by solving
a min-max problem. The problem addressed in this paper relates, in particular,
to the optimal value range problem [2, 3, 4, 5, 6, 7] which consists of finding the
best and the worst optimal values, among the optimal values associated with all
the possible data realizations, of an interval linear programming problem. The
search for the worst optimum falls into the field of bilevel programming, since it
can be seen as a bilevel problem where a leader selects the values to be assigned
to the uncertain data, and then the follower solves the related deterministic linear
problem. While the majority of the studies in the literature addresses the optimal
value range problem for a generic interval linear programming problem, in this pa-
per, we focus on the specific version obtained when the underlying interval linear
problem is a transportation problem with interval right-hand-sides. ITP has been
explored recently in the literature. Chanas [8] proposed a technique for transform-
ing the ITP into a classical transportation problem and finding the lowest optimal
cost value. Liu [9] provided a linear programming formulation to find the best
optimal value and a nonlinear programming formulation, based on duality theory,
to find the worst optimal value. In this paper, we introduce a mixed integer linear
programming formulation inspired by Liu’s nonlinear model to provide an exact
approach to find the worst optimal value. Juman and Hoque [10] designed two
heuristic approaches to find the best optimal value and a lower bound on the worst
optimal value. Xie et al. [11] constructed a genetic algorithm to tackle this same
problem. Cerulli et al. [12] studied certain properties of the range of the opti-
mal cost; they also developed a Local Search based heuristic to determine a lower
bound for the worst value of the optimum. More recently, D’Ambrosio et al. [13]
presented the Immune Interval Transportation Problem (IITP), which is a special
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case of ITP characterized by a transportation cost matrix that is immune against
the transportation paradox. The transportation paradox is encountered in the clas-
sical transportation problem whenever –paradoxically– by increasing the quantity
of goods sent, the transportation cost of the optimal solution decreases [14, 15].
D’Ambrosio et al. [13] studied some properties of IITP and provided a heuristic
algorithm, namely, δ -Alg., to solve it.

In this work, from existing results on convex optimization, we present a novel
mixed-integer linear model of the problem which can be used to optimally solve
it. We also present a dual multi-start efficient solution heuristic. Our solution
approaches are tested on a large set of instances and our dual algorithm is shown
to greatly outperform the best solution approaches currently used in the literature.

The remaining parts of the paper are organized as follows. Section 2 presents
a formal problem definition. Section 3 reviews existing results and provides new
properties that are useful for developing our heuristic algorithm and our mathe-
matical model. Section 4 describes the details of the dual algorithm. Section 5
contains a novel mixed-integer model to optimally solve the problem. Experi-
mental results are presented in Section 6. Finally, Section 7 offers some closing
remarks.

2. Problem Definition

Let I = {1, . . . ,m} represent the set of the suppliers, and J = {1, . . . ,n} the
set of the customers. We denote the supply level of the supplier i, by si, ∀i ∈ I,
while the quantity demanded at customer j, by d j, ∀ j ∈ J. Assume that both
supply and demand vary over a specified non-negative interval, [si,si] and [d j,d j],
respectively. Let ci j ≥ 0 represent the cost of transporting one unit of flow from
supplier i ∈ I to customer j ∈ J. The Interval Transportation Problem (ITP) is
formulated as follows:

[IT P] : min ∑
i∈I, j∈J

ci jxi j (1)

∑
j∈J

xi j ≤ [si,si] ∀i ∈ I (2)

∑
i∈I

xi j = [d j,d j] ∀ j ∈ J (3)

xi j ≥ 0 ∀i ∈ I, ∀ j ∈ J (4)

where xi j indicates the quantity of material that is shipped from supplier i to cus-
tomer j. Constraints (2) ensure that the supply level at each supplier is respected,
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and constraints (3) ensure that customer demand is always satisfied. Note that
for any particular value of supply and demand (i.e., si,∀i, and d j,∀ j) within the
specified intervals, the problem becomes the classical transportation problem in
which the goal is to determine a transportation plan that results in the minimum
total cost while satisfying all capacity and demand constraints. Hence, ITP con-
sists of the complete set of classical transportation problems corresponding to all
possible supply-demand realizations. Each of these TPs has an associate optimal
cost, and, therefore, the optimal cost for the ITP varies over a range. Our goal is to
find the range of these optimal costs, that is, the best and worst values in the entire
set. Next, we formally define this problem. Let the pair (s,d) define a scenario
of ITP. In particular, s is a vector of length m such that si ≤ si ≤ si, ∀i ∈ I, and d
is a vector of length n such that d j ≤ d j ≤ d j, ∀ j ∈ J. Given any particular sce-
nario (s,d), we denote by TP(s,d) the associated classical transportation problem,
which is formulated as follows:

[T P(s,d)] : min ∑
i∈I, j∈J

ci jxi j (5)

∑
j∈J

xi j ≤ si ∀i ∈ I (6)

∑
i∈I

xi j = d j ∀ j ∈ J (7)

xi j ≥ 0 ∀ j ∈ J, ∀i ∈ I (8)

Let F(s,d) denote the feasible region of T P(s,d), and let z(s,d) denote the op-
timal transportation cost associated with it. Note that F(s,d) 6= /0 if and only if
∑i∈I si ≥ ∑ j∈J d j. Let SD denote the set of all feasible values of supply and de-
mand (i.e., feasible scenarios), that is:

SD = {(s,d) ∈ Rm+n
+ : si ≤ si ≤ si,∀i ∈ I;d j ≤ d j ≤ d j,∀ j ∈ J;∑

i∈I
si ≥ ∑

j∈J
d j}

Let us also assume that ITP is well defined and therefore SD 6= /0. We address the
problem of determining the two following values:

z = {minz(s,d) : (s,d) ∈ SD} (9)

z = {maxz(s,d) : (s,d) ∈ SD} (10)

The values {z,z} denote the total cost bounds, the best and the worst optimal
costs, respectively, for ITP solved over all the feasible scenarios. Chanas [8] and
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Liu [9] presented a method whereby z can be found easily via a linear program-
ming formulation. Our focus, therefore, is to determine z, i.e., solving problem
(10). We specifically focus on finding z for the Interval Immune Transportation
Problem (IITP), that is a specific version of ITP obtained when the transportation
cost matrix in the model formulation (1)–(4) is immune against the transportation
paradox. The transportation paradox was defined for the equality constrained ver-
sion of the classical TP and it occurs for some instances for which an increase
in the total amount of goods transported leads to a decrease of the corresponding
optimal cost. In the remainder of the paper, we will assume that the assumption
of immunity holds, i.e., the costs ci j meet the following definition:

Definition 1. [16] A given m×n cost matrix C = {ci j} of ITP is immune against
the transportation paradox if, given any pair of scenarios (s1,d1) and (s2,d2)
such that s2

i ≥ s1
i , ∀i ∈ I, d2

j ≥ d1
j , ∀ j ∈ J, ∑i s1

i = ∑ j d1
j , and ∑i s2

i = ∑ j d2
j , then

z(s2,d2)≥ z(s1,d1).

We remark that, as explained in [13], problem (10) is a member of the general
class of problems involving the maximization of a convex function over a polyhe-
dral set. This entire class of problems has been shown to be NP-hard even for very
particular cases [17, 18], however, a formal proof of the computational complexity
of IITP is still missing in the literature.

In the next section we recall some properties of problem (10) introduced
in [13] and recall some properties from the convex programming literature, useful
for developing the solution approaches presented in Sections 4 and 5.

3. IITP Properties

As the analysis carried out in [13], two specific versions of IITP are consid-
ered, namely the supply-surplus and the demand-surplus version, which are de-
fined considering the vectors s and d, that is si = si ∀i ∈ I, and d j = d j ∀ j ∈ J.
They are formally defined as follows.

Definition 2. We define a version of IITP such that ∑i∈I si > ∑ j∈J d j, a supply-
surplus version.

Definition 3. We define a version of IITP such that ∑i∈I si < ∑ j∈J d j, a demand-
surplus version.

The two versions defined above are the computational challenging versions of
IITP, since the special case obtained when ∑ j∈J d j = ∑i∈I si is solvable in polyno-
mial time as stated in the following theorem:
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Theorem 3.1. [13] Given an instance of IITP such that ∑ j∈J d j = ∑i∈I si then
z = z(s,d).

Note that the above theorem is true if the costs are immune against the trans-
portation paradox. If such a condition is not satisfied then the theorem may not
hold as shown in the following example.
Example 1. Let us consider an instance of ITP with two supply nodes and two
demand nodes. The unit transportation costs are c11 = 5, c12 = 17, c21 = 18 and
c22 = 6. The interval extremes of the supplies and of the demands are: s1 = 7 and
s1 = 10 for the first supply, s2 = 8 and s2 = 13 for the second supply, d1 = 9 and
d1 = 11 for the first demand and d2 = 8 and d2 = 12 for the second demand. Let
us consider the two feasible scenarios in Table 1. The first scenario is such that
s1

1 = s1, s1
2 = s2, d1

1 = d1, d1
2 = d2, and the corresponding optimal cost is equal

to z(s1,d1) = 140. The second scenario is such that s2
1 = 9, s2

2 = s2, d2
1 = d1 and

d2
2 = 11, and the optimal cost is z(s2,d2) = 147. Since the cost are not immune

against the transportation paradox, decreasing the amount of goods to be trans-
ported may result in a higher cost, and the worst optimum may not be attained
with the extreme scenario (s,d), that is Theorem 3.1, in this example, does not
hold.

s1 s2 d1 d2 z(s,d)

Scenario 1 10 13 11 12 140

Scenario 2 9 13 11 11 147

Table 1: Optimal costs for two different scenarios of the ITP instance described in Example 1.

In the analysis to follow, for clarity of exposition, we will focus on the supply
surplus-version of IITP. The analysis of the demand-surplus version of IITP is
provided in the Appendix. The following Theorem 3.2 was proved in [13], and it
states that the scenario where the optimum value z is achieved is such that all the
demands d j are equal to their upper value d j.

Theorem 3.2. [13] Given a supply-surplus version of IITP then the optimal value
z of z(s,d) is the solution of the following optimization problem:

z = {maxz(s,d) : s≤ s≤ s;∑
i∈I

si ≥ ∑
j∈J

d j} (11)
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Let us denote by PS the polyhedron described by the constraints in (11), that is:

PS = {s ∈ Rm : s≤ s≤ s;∑
i∈I

si ≥ ∑
j∈J

d j} (12)

The following corollary describes an additional polynomial case of problem (10):

Corollary 3.3. Given a supply-surplus version of IITP, if ∑i∈I si ≥ ∑ j∈J d j, then
z = z(s,d).

Proof. Since ∑i∈I si ≥ ∑ j∈J d j then s ∈ PS, F(s,d) 6= /0, and T P(s,d) admits an
optimal solution. Let z(s,d) be the corresponding optimum value. Let us con-
sider any other vector s ∈ PS such that s 6= s. Note that si ≥ si ∀i ∈ I, and, since
F(s,d)⊆ F(s,d), then z(s,d)≤ z(s,d). Hence, z(s,d)≥ z(s,d),∀s ∈ PS.

For the supply-surplus version of IITP then the only meaningful version to be
analyzed is when ∑i∈I si < ∑ j∈J d j. Under such an assumption we can restrict
the set of scenarios to be analyzed to those for which the sum of the supplies is
equal to the sum of the upper extremes of the demand intervals, as stated in the
following lemma:

Lemma 3.4. Given a supply-surplus version of IITP, if ∑i∈I si < ∑ j∈J d j, then the
optimal value z of z(s,d) is the solution of the following optimization problem:

z = {maxz(s,d) : s≤ s≤ s;∑
i∈I

si = ∑
j∈J

d j} (13)

Proof. Since ∑i∈I si < ∑ j∈J d j < ∑i∈I si then polyhedron PS 6= /0. We want to show
that from any vector s∈ PS such that ∑i∈I si > ∑ j∈J d j we can build another vector
s′ ∈ PS such that ∑i∈I s′i = ∑ j∈J d j and such that z(s′,d)≥ z(s,d). Let us consider
any vector s ∈ PS, such that δ = ∑i∈I si−∑ j∈J d j > 0. Let us consider the two sets
of indices I1 and I2 such that si = si, ∀i ∈ I1, and si > si,∀i ∈ I2. Note that |I2| ≥ 1
since ∑i∈I si < ∑ j∈J d j. Let us build a new vector s′ such that:

s′i = si = si, ∀i ∈ I1;

and the following procedure is applied for the remaining components i ∈ I2:

1: δ ← ∑i∈I si−∑ j∈J d j

2: Randomly select i ∈ I2
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3: while δ > si− si
4: I2← I2 \{i}
5: s′i = si;
6: δ = δ − (si− si);
7: Randomly select i ∈ I2

8: s′i = si−δ ;

Note that s′ ∈PS, and ∑i∈I s′i =∑ j∈J d j. Moreover, since s′ is built such that s′i≤ si,
∀i ∈ I, hence F(s′,d)⊆ F(s,d), and z(s′,d)≥ z(s,d).

In [13] the authors proved that z(s,d) is a convex function hence, it is easy to see
that function z(s,d) is convex too. The maximum value of a convex function over
a polyhedron is achieved on one of the vertices of the polyhedron [19]. Polytope
PS is known in the literature as the continuous knapsack polytope. A complete
characterization of its vertices has been provided in the literature [20, 21]. In
what follows, we reinterpret the existing results through the lens of the transporta-
tion problem application. These results constitute the basis of the mathematical
formulation and of the dual-algorithm presented in the sections to follow. Let
us introduce the definition of an extreme scenario and of a supply-quasi-extreme
scenario first.

Definition 4. A scenario (s,d) is an extreme scenario if each supply si and each
demand d j is equal to either its lower bound or its upper bound, i.e., si ∈ {si,si},
∀i ∈ I and d j ∈ {d j,d j}, ∀ j ∈ J.

We focus on supply-quasi-extreme scenarios, that is those scenarios for which at
most one among all the supplies might not be at either its lower or upper bound.

Definition 5. A scenario (s,d) is a supply-quasi-extreme scenario if there exists
at most one index ih such that sih < sih < sih , while si ∈ {si,si} ∀i ∈ I\{ih} and
d j ∈ {di,d j}, ∀ j ∈ J.

The specific supply that, for a given supply-quasi-extreme scenario, might assume
values internal to its corresponding interval is referred to as the critical supply of
the scenario. The formal definition is given next.

Definition 6. Given a supply-quasi-extreme scenario we refer to the supply ih
which might not be equal to one of the extremes of its interval as the critical
supply.
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Existing results on the characterization of the vertices of the polytope PS lead
directly to the following property whose proof is therefore omitted:

Property 3.5. Given a supply-surplus version of IITP the following statements
hold:

• the vertices of the polyhedron PS correspond to supply-quasi-extreme sce-
narios;

• the optimal value z of z(s,d) is achieved on a supply-quasi-extreme sce-
nario;

• if s, s, d and d have integer components, then the vertices of polyhedron PS
are integer.

Summarizing, thanks to Lemma 3.4 and Property 3.5, to solve problem (10),
we can focus only on the subset of supply-quasi-extreme scenarios such that
∑i∈I si = ∑ j∈J d j. Additionally, when s, s, d and d have integer components,
we can restrict further to consider only the supply-quasi-extreme scenarios with
integer components.

4. Dual Algorithm

In this section we introduce a dual multistart based algorithm, named Dual-
Alg., to compute a feasible solution to problem (10). All the discussion is carried
out for the supply-surplus version of IITP, however, it can easily be adapted to
solve the demand-surplus version as well.

Let us consider a feasible scenario (s,d) ∈ SD and the mathematical formulation
T P(s,d) of the associated classical transportation problem:

z(s,d) = min ∑
i∈I, j∈J

ci jxi j (14)

∑
j∈J

xi j ≤ si ∀i ∈ I (15)

∑
i∈I

xi j = d j ∀ j ∈ J (16)

xi j ≥ 0 ∀i ∈ I, ∀ j ∈ J (17)
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From duality theory, the optimum value z(s,d) can be found solving the following
associated dual formulation DT P(s,d) [9]:

z(s,d) = max∑
i∈I

siui + ∑
j∈J

d jv j (18)

ci j ≥ ui + v j ∀i ∈ I, ∀ j ∈ J (19)
ui ≤ 0, v j unsigned, ∀i ∈ I, ∀ j ∈ J (20)

where ui and v j are the dual variables associates with constraints (15)–(16), re-
spectively. If we consider the supplies si, ∀i ∈ I, to be variables, then problem
(13), given Lemma 3.4, can be obtained by solving the following non linear opti-
mization model:

max ∑
i∈I

siui + ∑
j∈J

d jv j (21)

ci j ≥ ui + v j ∀i ∈ I, ∀ j ∈ J (22)
si ≤ si ≤ si ∀i ∈ I (23)

∑
i∈I

si = ∑
j∈J

d j (24)

ui ≤ 0, v j unsigned, ∀i ∈ I, ∀ j ∈ J (25)

Let us consider formulation (21)–(25) and assume the value ui are given (i.e.,
ui = u∗i ), the corresponding mathematical formulation becomes then:

max ∑
i∈I

siu∗i + ∑
j∈J

d jv j (26)

ci j ≥ u∗i + v j ∀i ∈ I, ∀ j ∈ J (27)
si ≤ si ≤ si ∀i ∈ I (28)

∑
i∈I

si = ∑
j∈J

d j (29)

v j unsigned, ∀ j ∈ J (30)

This formulation can be simplified by observing that variables v j can be set
such that v j = mini(ci j−u∗i ), ∀i, and hence constraints (27) can be removed from
the model. As a result, the model can then be easily solved by using the greedy
procedure presented in Algorithm 1. Specifically, the procedure initially sets all
the values si = si. Successively, it sorts all the supplies in non increasing order
with respect to the corresponding value u∗i , and set them to their upper bound si
until constraint (29) is respected.
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Algorithm 1: Constructive procedure to solve formulation (26) – (30)
Input: u∗,Cm×n, [d,d], [s,s];

1 si← si;
2 supply← sort(si,u∗i ); // sort si, in non increasing order, according to u∗i
3 ∆← ∑ j∈J d j−∑i∈I si;
4 for i = 1 to m do
5 sk← supply[i];
6 if ∆≥ sk− sk then
7 ∆← ∆− (sk− sk);
8 sk← sk;

9 else
10 sk← sk +∆;
11 ∆← 0;
12 break;

13 v j←mini(ci j−u∗i ), ∀i ∈ I, ∀ j ∈ J;
14 return ∑i siu∗i +∑ j d jv j;

Our dual multistart algorithm randomly generates a supply-quasi extreme sce-
nario (s,d), solves the dual formulation DT P(s,d) (i.e., model (18) – (20)) and
determines the corresponding optimal values u∗i . Then, Dual-Alg. uses the opti-
mal values u∗i of the dual variables as input of Algorithm 1 to solve formulation
(26) – (30) to further increase the objective function value. The process is iterated
a predefined number of times.
More specifically, let us consider the pseudo-code given in Algorithm 2. Line 1
initializes the value of the current best solution. If we are under the condition of
Corollary 3.3, then the optimum value z is found by solving a single transportation
problem (Line 3). An initial random supply-quasi-extreme scenario is generated
by randomly assigning to all but one supply either value si or value si so that the
sum of the supplies is equal to the sum of the demands. This is obtained by steps
6–17. Specifically, initially (Line 7) all the supplies si are set equal to their lower
bound, and (Line 8) the supply surplus ∆ is computed. The loop in lines 8–17
aims at changing the value of some of the supplies from their lower bound to their
upper bound until ∑i∈I si = ∑ j∈J d j.At each iteration of the loop (Lines 8–17),
each supply is selected uniformly at random (randomSupply procedure, line 10)
over the supplies not assigned yet.

Then, model (18) – (20) is solved considering the randomly generated supply-
quasi-extreme scenario and the best u∗i ’s are obtained (Line 21).
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Algorithm 2: Pseudocode of Dual-Alg. for the supply-surplus version of IITP
Input: Cm×n, [d,d], [s,s], ITmax;

1 BestSol← 0;
2 if ∑i∈I si ≥ ∑ j∈J d j then
3 BestSol← z(s,d);

4 else
5 for h = 1 to ITmax do
6 IterationBestSol← 0;
7 si← si ∀i ∈ I ;
8 ∆← ∑ j∈J d j−∑i∈I si;
9 do

10 k← randomSupply(1 . . .m);
11 if ∆≥ sk− sk then
12 ∆← ∆− (sk− sk);
13 sk← sk;

14 else
15 sk← sk +∆;
16 ∆← 0;

17 while ∆ > 0;
18 DualSol← 0;
19 do
20 if DualSol > IterationBestSol then
21 IterationBestSol← DualSol;

22 Solve model (18) - (20), and let u∗ be the optimal values of the decision
variables;

23 DualSol← Algorithm1(u∗,Cm×n, [d,d], [s,s]);
24 while DualSol > IterationBestSol;
25 if IterationBestSol > BestSol then
26 BestSol← IterationBestSol;

27 return BestSol;

Finally (Line 23), model (26) – (30) is solved considering the fixed values u∗i to
further increase the objective function value. The whole process is iterated for a
given number ITmax of iterations.

5. An integer programming formulation

In this section, we provide an exact method to solve problem (13). The ap-
proach is based on a mixed integer linear programming formulation (MILP) in-
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spired by Liu’s bilinear model. Unlike Liu’s model, our approach explores only
scenarios based on Property 3.5, that is quasi-extreme-scenarios. The idea behind
our method is to enumerate all quasi-extreme-scenarios. In particular, we con-
sider, in turn, each supply as the critical supply h. Then, for each integer value
in [sh, s̄h], we solve the MILP formulation to decide the values of the remaining
supplies, that is to determine which supply has to be equal to its lower bound and
which one to its upper bound. Let us now describe our exact approach in more
details.

Let us consider a feasible scenario (s,d) and the two following versions of the
classical transportation problem:

z1 = min ∑
i∈I, j∈J

ci jxi j (31)

∑
j∈J

xi j ≤ si ∀i ∈ I (32)

∑
i∈I

xi j = d j ∀ j ∈ J (33)

xi j ≥ 0 ∀i ∈ I, ∀ j ∈ J (34)

z2 = min ∑
i∈I, j∈J

ci jxi j (35)

∑
j∈J

xi j ≥ si ∀i ∈ I (36)

∑
i∈I

xi j ≥ d j ∀ j ∈ J (37)

xi j ≥ 0 ∀i ∈ I, ∀ j ∈ J (38)

The following Lemma shows that, under some conditions, the optimum value of
model (31)–(34) and the optimal value of model (35)–(38) are the same.

Lemma 5.1. Given a scenario (s,d) such that ∑i∈I si = ∑ j∈J d j and such that the
costs are immune against the transportation paradox then z1 = z2.

Proof. Let x∗ be the optimal solution of model (31)–(34) and let the corresponding
value of the objective function be z1. Since ∑i si = ∑ j d j, then constraints (32) are
all binding and x∗ is also feasible for (35)–(38). Note that, x∗ is also optimum
for (35)–(38). Indeed, let us assume by contradiction that the optimal solution for
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(35)–(38) is a vector x̂ different from x∗ and whose corresponding optimal value is
ẑ < z1. Since x̂ 6= x∗, this would imply that at least one of the constraints (36)–(37)
is not binding. Hence, we would have ∑i j x̂i j >∑i j x∗i j, however, since we assumed
ẑ < z1, this is a contradiction, since costs are immune against the transportation
paradox. Hence, x∗ is optimum for (35)-(38) and the claim follows.

Now let us consider the dual of the optimization model (35)–(38) for a generic
scenario (s,d), which is as follows:

max∑
i∈I

siui + ∑
j∈J

d jv j (39)

ci j ≥ ui + v j ∀i ∈ I, ∀ j ∈ J (40)
ui ≥ 0 ∀i ∈ I (41)
v j ≥ 0 ∀ j ∈ J (42)

If we consider the supplies si, ∀i ∈ I, to be variables, then problem (13), given
Lemma 3.4 and Lemma 5.1, consists in solving the following non linear opti-
mization model:

max ∑
i∈I

siui + ∑
j∈J

d jv j (43)

ci j ≥ ui + v j ∀i ∈ I, ∀ j ∈ J (44)
si ≤ si ≤ si ∀i ∈ I (45)

∑
i∈I

si = ∑
j∈J

d j (46)

ui ≥ 0, si ≥ 0 ∀i ∈ I (47)
v j ≥ 0 ∀ j ∈ J (48)

We know that the optimum of problem (13) occurs at a supply-quasi-extreme
scenarios. Let us assume we know the critical supply h such that sh ≤ sh ≤ sh
and its exact value. The following mathematical programming formulation can
be used to determine the optimum value z, by optimally setting the remaining
supplies values si, i ∈ I\{h} to be equal to either their lower bound si or their
upper bound si. Let us introduce m binary variables yi where yi = 1 implies si = si,
and si = si otherwise. Then, model (43)–(48) can be rewritten as follows:
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max shuh + ∑
i∈I, i 6=h

siui +(si− si)yiui + ∑
j∈J

d jv j (49)

ci j ≥ ui + v j ∀i ∈ I, ∀ j ∈ J (50)
sh + ∑

i∈I, i 6=h
si +(si− si)yi = ∑

j∈J
d j (51)

ui ≥ 0 ∀i ∈ I (52)
v j ≥ 0 ∀ j ∈ J (53)

yi ∈ {0,1} ∀i ∈ I (54)

Model (49)–(54) is still non linear but an equivalent integer linear program-
ming formulation can be determined as follows. Let cmin

i = min j∈J{ci j} ∀i ∈ I,
that is cmin

i is the minimum cost coefficient ci j among all destinations d j con-
nected to supply si. Consider introducing a set of m variables ti with the aim of
having ∑i∈I, i6=h ti = ∑i∈I, i6=h(si− si)yiui. We guarantee that ti is not superior to
(si− si)yiui whatever the value of yi, by introducing the following constraints:

ti ≤ (si− si)ui ∀i ∈ I (55)

and, since ci j ≥ ui + v j ≥ ui, we add also the following constraints:

ti ≤ (si− si)c
min
i yi ∀i ∈ I (56)

This final set of big-M constraints guarantees that the following ILP model reaches
the same solution of model (49)–(54) when we assume to know the critical supply
h and its optimum value sh:

Max shuh + ∑
i∈I, i6=h

siui + ti + ∑
j∈J

d jv j (57)

ci j ≥ ui + v j ∀i ∈ I, ∀ j ∈ J (58)
ti ≤ (si− si)ui ∀i ∈ I (59)

ti ≤ (si− si)c
min
i yi ∀i ∈ I (60)

sh + ∑
i∈I, i 6=h

si +(si− si)yi = ∑
j∈J

d j (61)

ui ≥ 0 ∀i ∈ I (62)
v j ≥ 0 ∀ j ∈ J (63)
ti ≥ 0 ∀i ∈ I (64)

yi ∈ {0,1} ∀i ∈ I (65)
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The above formulation (57)–(65) can be used to find the optimal value z when
we assume the vectors s, s, d and d have integer components. The main idea is
to solve model (57)–(65) multiple times by changing the selection of the critical
supply and its value as shown in Algorithm 3. Line 1 initializes the value of the
current best solution. If we are under the condition of Corollary 3.3 (Line 2), then
the optimum value z is found by solving a single transportation problem (Line 3).
Line 5–9 contain two embedded for loops. The external loop fixes a supply to be
the critical supply, and the inner loop solves model (57)–(65) for each possible
integer value that the critical supply can assume inside its interval. The best value
among all is then returned. Given the results in the previous section, and under
the assumption of integrality of s, s, d, and d, Algorithm 3 returns the optimum
value z.

Algorithm 3: Pseudocode of our exact algorithm for the supply-surplus ver-
sion of IITP, when s, s, d, and d are integer values.

Input: Cmxn, [d,d], [s,s];

1 BestSol← 0;
2 if ∑i∈I si ≥ ∑ j∈J d j then
3 Bestsol← z(s,d);

4 else
5 for h ∈ I do
6 for sh ∈ [sh, . . . ,sh]∩Z do
7 Solve model (57)–(65) and let zh be its optimal solution value;
8 if zh > Bestsol then
9 Bestsol← zh;

10 return BestSol;

6. Experimental Results

In this section, we describe the results of Dual-Alg. obtained during our com-
putational test phase. Our algorithm was implemented in C++ and the mathemati-
cal models were solved using the IBM ILOG CPLEX 12.10 solver. The nonlinear
model is solved by using CPLEX with its default parameters’ values which re-
quire also the definition of an optimality target [22]. In particular, when solving
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Liu’s model, the only optimality target that guarantees a successful solution of the
model is the “first-order optimality” target (all the other options return wrongly
either “Infeasible Status” or “Unbounded Status”).

All tests were performed in single thread mode on a workstation with an Intel
Xeon CPU E5-2650 v3 @ 2.30 GHz and 128 GB of RAM.
The computational tests are carried out on two different data sets:

Data set 1: This set contains the benchmark instances proposed in [13]. The
data set is composed of 330 instances and it contains supply-surplus instances
(that is, instances for which ∑i∈I si > ∑ j∈J d j) of scenarios having a size ranging
from 5× 5 to 100× 100, and having supply and demands intervals widths equal
to 5, 10 and 20. Each scenario is composed of 10 instances generated in a random
way, such that the extremes of the supply and demand intervals assume integer
values. The costs are generated so that the transportation paradox does not arise.
To this end, we applied the following theorem [16]:

Theorem 6.1. A given m×n cost matrix C = {ci j} is immune against the trans-
portation paradox if and only if, for all integers q,r,s, t with 1 ≤ q, s ≤ m, 1 ≤ r,
t ≤ n, q 6= s, r 6= t the following inequality is satisfied:

cqr ≤ cqt + csr

In order to satisfy the conditions of the theorem, cost values can be randomly gen-
erated in [ k

2 ,k], for any k > 0. Instances in this data set were generated by setting
k = 30, therefore the resulting costs vary in the range [15,30].

Data set 2: We generated a new set of random supply-surplus instances with
wider interval width and a different way of generating costs. Specifically, the size
of the new scenarios ranges from 10× 10 to 100× 100. The supply and demand
intervals widths are equal to 10, 20 and 30. Each scenario is composed of 10
instances generated in a random way, according to the previous parameters, for a
total of 300 instances. Again, instances are generated such that the extremes of the
supply and demand intervals assume integer values. The costs ci j are generated
in a prespecified range of values [cmin,cmax] according to the following three steps
procedure:

Step 1: Generation of the minimum cost values
Randomly generate values αp, p= 1,2, . . . ,m such that: (i) αp≥ cmin, p= 1, . . . ,m,
and (ii) αp +αq ≤ cmax, p = 1, . . . ,m, q = 1, . . . ,m.
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Step 2: Assignment of the minimum cost values to rows and columns of the
cost matrix
Randomly associate the generated values αp, p = 1, . . . ,m to rows and columns
of the cost matrix such that exactly one value is assigned to row i and exactly one
values is associated with each column j of the cost matrix. Let us define α i· and
α · j, the values associated with row i and column j, respectively.

Step 3: Generation of the remaining costs
For each element in the cost matrix which was not associated to any value in
the previous step, randomly generate a cost ci j such that max{α i·,α · j} ≤ ci j ≤
α i·+α · j.

The above procedure ensures that the generated costs satisfy the conditions
stated in Theorem 6.1, and therefore they are immune against the transportation
paradox. The generated instances are such that cmin = 10 and cmax = 50. All the
instances are available upon request to the authors.

Table 2 and Table 3 show the results of our experiments on data set 1 and data
set 2, respectively. Each row of the tables shows average values of the results
obtained on 10 instances. The first two columns report the number of nodes (Size)
and the width of the intervals (Width). The remaining eight columns report the
objective value (Obj) and the computational time in “seconds” (Time) of our for-
mulation (MIP), of the non linear model presented by Liu [9] (NLP-Liu), of the
algorithm proposed in [13] (δ -Alg.), and of our dual algorithm (Dual-Alg.).

The non-linear model proposed by Liu [9] has a non-linear objective func-
tion and linear constraints. It builds a scenario by using supplies and demands
variables defined over the non-negative intervals and the dual variables derived
from the classical transportation problem. The NLP-Liu formulation, used for
the computational test, is described in details in the appendix of [13] . The δ -
Alg. proposed in [13] is a constructive algorithm that builds a feasible scenario by
starting from an infeasible one. It takes as input an IITP instance and it returns as
output the built scenario and the solution value of the corresponding transportation
problem. In the case of a supply-surplus instance, δ -Alg. starts by considering
a scenario where each demand is fixed at its upper bound and each supply at its
lower bound. Iteratively, the algorithm selects a supply and increases its value by
a given predefined quantity δ . The procedure stops when the total amount of the
supply is equal to the total amount of the demand.

The maximum number of iterations (ITmax) of Dual-Alg. was set to 20, while
we set δ = 1 for the δ -Alg. A time limit of three hours is fixed for both NLP-Liu
and MIP. Whenever NLP-Liu reaches the time limit or stops with the NumBest
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MIP NLP-Liu δ -Alg. Dual-Alg.
Size Width Obj Time Obj Time Obj Time Obj Time

5x5

5

3,084.00 0.04 3,084.00 0.01 3,070.10 0.01 3,084.00 0.04
10x10 6,025.90 0.58 6,025.90 0.01 5,993.20 0.03 6,025.90 0.05
20x20 13,951.60 132.07 13,951.50 0.16 13,922.00 0.10 13,951.60 0.14
30x30 21,854.00 1.89 21,813.10 0.22 21,854.10 0.32
40x40 37,599.40 8.09 37,560.40 0.51 37,599.00 0.58
50x50 52,674.00 31.69 52,646.80 1.01 52,674.00 0.92
60x60 63,786.17∗ 3,308.37 63,745.60 1.61 63,785.50 1.45
70x70 80,494.90 161.99 80,472.00 3.52 80,494.90 2.01
80x80 115,106.90∗ 1,478.80 115,081.30 5.50 115,106.90 2.48
90x90 140,545.80 1,028.75 140,535.20 7.08 140,545.80 3.25
100x100 159,866.70∗ 4,742.66 159,857.50 9.23 159,867.10 4.25

5x5

10

3,700.20 0.07 3,700.20 0.01 3,674.70 0.02 3,700.20 0.04
10x10 6,946.80 0.26 6,946.80 0.01 6,908.70 0.03 6,946.80 0.05
20x20 14,702.20 150.06 14,700.40 0.14 14,632.00 0.10 14,702.20 0.16
30x30 23,903.80 2.89 23,821.80 0.43 23,904.10 0.34
40x40 39,963.11∗ 224.75 39,861.00 0.93 39,962.50 0.62
50x50 55,563.18∗ 1,588.82 55,526.20 1.88 55,590.50 0.94
60x60 69,584.50∗ 1,451.09 69,511.70 2.46 69,583.70 1.41
70x70 87,381.41∗ 3,436.85 87,335.70 5.32 87,384.00 2.08
80x80 125,948.50∗ 1,574.59 125,924.20 8.66 125,948.50 2.52
90x90 138,773.20 1,055.02 138,760.90 11.87 138,773.20 3.19
100x100 160,993.70∗ 5,822.09 160,978.90 12.36 160,993.70 4.04

5x5

20

4,519.40 0.11 4,515.50 0.01 4,461.50 0.04 4,519.40 0.04
10x10 9,571.20 1.20 9,570.30 0.02 9,440.00 0.08 9,571.20 0.05
20x20 18,086.90 358.01 18,085.50 0.18 17,987.20 0.28 18,086.90 0.15
30x30 28,556.58∗ 39.60 28,453.70 0.76 28,563.10 0.34
40x40 47,460.40 6.21 47,312.60 2.14 47,462.20 0.64
50x50 61,423.50 72.21 61,287.70 3.74 61,423.90 0.92
60x60 74,371.23∗ 2,264.45 74,275.40 4.66 74,369.30 1.38
70x70 98,027.45∗ 2,388.65 97,958.40 10.03 98,025.80 1.90
80x80 138,745.80∗ 4,701.01 138,687.60 19.09 138,744.30 2.70
90x90 160,476.70∗ 4,975.37 160,447.40 26.17 160,476.70 2.78
100x100 183,589.10∗ 3,256.76 183,568.60 33.59 183,588.40 3.61

Avg 1,321.91 5.26 1.38

#Best 20 0 25

Table 2: Computational results on data set 1 instances.

CPLEX status on at least one of the 10 instances of the scenario, the related solu-
tion value is marked with a “∗” symbol. Rows with no values in the MIP columns
correspond to scenarios where the solver has not been able to find the optimal so-
lution for all the 10 instances of the scenario within the time limit. The best value,
on each row, is reported in bold. The last two rows report the total average com-
putational time (Avg) and the number of times the best solution was found (#Best)
by NLP-Liu, δ -Alg. and Dual-Alg., respectively. From the results of Table 2, it
is evident that Dual-Alg. is the most effective and fastest algorithm. Indeed, it
finds the best solution in 25 out of 33 scenarios, and it always finds the optimal
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solution, where this value is known (i.e., on the instances up to 20x20). NLP-Liu
finds the best solution on 20 out of 33 scenarios, while δ -Alg. is the least effec-
tive algorithm with zero best solution found. When comparing the computational
time, Dual-Alg. is the fastest one with an average computational time equal to
1.38 seconds and a peak equal to 4.25 seconds. It is worth noting that for the
instances up to 50x50 the time of Dual-Alg. is lower than one second making it
particularly suitable to quickly find high quality solutions. δ -Alg. is slower than
Dual-Alg with an average time equal to 5.26 seconds and a peak equal to 33.59
seconds. Finally, the slowest approach is NLP-Liu which, on average, requires
1,321 seconds and, in the worst case, it reaches the time limit of three hours.

In Table 3 the results of the algorithms, on the data set 2, are reported. The
computational times are approximately doubled for all the instances, revealing
that the instances in this data set are more challenging than those on data set 1.
However, the trend of the results, observed in Table 2, is confirmed also for these
instances. Indeed, Dual-Alg. finds the best solution on 27 out of 30 scenarios,
while NLP-Liu finds the best solution on 12 scenarios. Again δ -Alg. never finds
the best solution. With 2.21 seconds, on average, Dual-Alg. remains the fastest
algorithm and the gap from the computational time of the δ -Alg. increases on
these instances. For NLP-Liu the computational time significantly increases, with
respect to the computational time required to solve instances of the data set 1, with
an average of 2,772 seconds. Summarizing, the results of Table 2 and 3 show that
Dual-Alg. strongly outperforms both state of the art algorithms with particular
emphasis on quality with respect to δ -alg (Dual-Alg. reaches worse solutions on
all scenarios) and on computational time with respect to NLP-Liu (on the average
NLP-Liu is three order of magnitude slower).

7. Conclusions

In this paper we focused on finding the best and worst values of the optimal cost
for a transportation problem when all the supplies and demands range over an in-
terval and the cost matrix is such that the transportation paradox does not arise
(referred to as the Immune Interval Transportation Problem -IITP-). We specif-
ically focused on determining the worst optimal cost, since finding the best one
can be done in polynomial time. We looked at the case of a transportation prob-
lem with inequality constraints for supply and equality constraints for demand.
Based on existing results on convex optimization, we introduced the definition of
quasi-extreme scenarios as those scenarios whose corresponding optimal trans-
portation cost is a candidate to be the worst optimal cost among all the data re-
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MIP NLP-Liu δ -Alg. Dual-Alg.
Size Width Obj Time Obj Time Obj Time Obj Time

10x10

10

3,628.80 0.28 3,628.50 0.01 3,596.20 0.04 3,628.80 0.07
20x20 7,090.70 13.75 7,090.70∗ 3.68 6,945.00 0.16 7,090.70 0.22
30x30 10,814.70 760.04 10,814.20 3.46 10,512.80 0.45 10,814.70 0.47
40x40 14,132.90∗ 180.63 13,803.70 1.05 14,132.90 0.81
50x50 18,429.10∗ 757.90 18,216.70 2.24 18,429.20 1.23
60x60 21,675.90∗ 2,383.19 20,889.00 4.13 21,676.20 1.82
70x70 26,114.10∗ 1,285.22 25,572.40 6.80 26,114.10 2.82
80x80 28,629.80∗ 5,296.98 27,978.80 10.86 28,629.80 3.76
90x90 32,529.36∗ 7,179.82 31,576.50 16.71 32,529.50 4.90
100x100 36,523.70∗ 7,736.79 35,735.30 18.46 36,523.70 6.10

10x10

20

5,227.40 0.32 5,227.40 0.02 5,151.80 0.07 5,227.40 0.07
20x20 10,518.50 13.15 10,516.60 0.29 10,243.90 0.32 10,518.50 0.22
30x30 15,887.20 587.78 15,887.20 30.22 15,484.10 0.96 15,887.20 0.46
40x40 21,499.34∗ 188.10 20,777.80 2.25 21,499.40 0.78
50x50 26,375.10∗ 1,078.46 25,705.00 4.66 26,375.20 1.27
60x60 32,667.95∗ 2,293.90 31,853.50 8.41 32,673.70 1.88
70x70 37,589.87∗ 5,590.16 36,696.50 14.34 37,589.70 2.66
80x80 41,900.76∗ 5,812.89 41,042.00 23.33 41,943.60 3.50
90x90 47,957.96∗ 6,032.02 46,827.40 35.54 47,958.00 5.03
100x100 52,658.70∗ 7,402.78 50,628.10 42.50 52,658.70 6.34

10x10

30

6,818.90 0.39 6,806.80 0.03 6,696.90 0.10 6,818.60 0.06
20x20 13,901.60 13.15 13,901.60 0.14 13,739.60 0.49 13,901.60 0.21
30x30 20,762.50 468.08 20,761.90 1.44 20,068.70 1.41 20,762.50 0.47
40x40 28,197.40 14.25 27,686.50 3.33 28,198.40 0.83
50x50 34,584.30∗ 3,000.16 33,466.60 7.12 34,584.30 1.24
60x60 41,872.59∗ 3,733.95 40,857.30 13.26 41,873.80 1.83
70x70 50,540.46∗ 4,508.15 49,301.20 21.70 50,552.10 2.64
80x80 56,417.85∗ 5,743.83 55,196.80 35.50 56,415.70 3.72
90x90 63,630.43∗ 5,314.93 60,740.40 54.45 63,630.60 4.82
100x100 71,549.89∗ 7,614.09 70,030.60 72.80 71,549.90 6.14

Avg 2,772.92 13.45 2.21

#Best 12 0 27

Table 3: Computational results on data set 2 instances.

alizations. This characterization forms the basis for a new mathematical mixed
integer model to solve the problem optimally and for a new heuristic algorithm
that strongly outperforms the current state of the art procedures.
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Appendix

Properties of the demand-surplus version of IITP

Results similar to those shown in section 3 can be obtained for the demand-surplus
version of IITP. The following theorem, proved in [13], states that the optimum
values z of the demand-surplus version of IITP is achieved on a scenario such that
all the supplies si are equal to their upper value si:

Theorem 7.1. [13] Given a demand-surplus version of IITP then the optimal
value z of z(s,d) is the solution of the following optimization problem:

z = {maxz(s,d) : d ≤ d ≤ d; ∑
j∈J

d j ≤∑
i∈I

si} (66)

Let us denote by PD the polyhedron described by the constraints in (66), that is:

PD = {d ∈ Rn : d ≤ d ≤ d; ∑
j∈J

d j ≤∑
i∈I

si}

We can distinguish three different cases of problem (66) as stated in the following
three lemmas.

Lemma 7.2. Given a demand-surplus version of IITP, if ∑ j∈J d j > ∑i∈I si, then
PD = /0.

Proof. Under the given assumption any scenario (s,d) is such that F(s,d)= /0.

Lemma 7.3. Given a demand-surplus version of IITP, if ∑ j∈J d j = ∑i∈I si, then
z = z(s,d,).

Proof. Under the given assumption scenario (s,d) is the only feasible scenario,
that is, SD = {(s,d)}, and hence the claim follows.
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Lemma 7.4. Given a demand-surplus version of IITP, if ∑ j∈J d j < ∑i∈I si, then
the optimal value z of z(s,d) is the solution of the following optimization problem:

z = {maxz(s,d) : d ≤ d ≤ d; ∑
j∈J

d j = ∑
i∈I

si} (67)

The proof of this lemma is omitted since it can be derived by using similar
arguments used for the supply-surplus version of the problem.
As for the supply-surplus version of IITP, vertices of polyhedron PD, can be asso-
ciated to demand-quasi-extreme scenarios. Let us formally introduce the defini-
tion of demand-quasi-extreme scenarios.

Definition 7. A scenario (s,d) is a demand-quasi-extreme scenario if si ∈ {si,si},
∀i ∈ I, and there exists at most one index jh such that dh < d jh < dh and d j ∈
{d j,d j}, ∀ j ∈ J\{ jh}.

Demand-quasi-extreme scenarios are those scenarios where a most one among the
demands might not be neither at its lower or upper bound, and all the supplies are
either at their lower or upper bounds. The following property follows directly
from known results in convex optimization [20, 21] and its proof is omitted:

Property 7.5. Given a demand-surplus version of IITP the following statements
hold:

• the vertices of the polyhedron PD correspond to supply-quasi-extreme sce-
narios;

• if s, s, d and d have integer components, then the vertices of polyhedron PD
are integer.
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