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Abstract In this paper, we show a Branch-and-Cut approach to solve the
Minimum Spanning Tree problem with conflicting edge pairs. This is a NP-
hard variant of the classical Minimum Spanning Tree problem, in which there
are mutually exclusive edges. We introduce a new set of valid inequalities for
the problem, based on the properties of its feasible solutions, and we develop
a Branch-and-Cut algorithm based on them. Computational tests are per-
formed both on benchmark instances coming from the literature and on some
newly proposed ones. Results show that our approach outperforms a previous
Branch-and-Cut algorithm proposed for the same problem.

Keywords minimum spanning tree · conflicting edges · Branch-and-Cut

1 Introduction

The minimum spanning tree problem with conflicting edge pairs (MSTC) is
a very recent variant of the classical minimum spanning tree (MST) problem.
Given a connected, undirected and edge-weighted graph, as well as a set of
edges pairs in conflict with each other, a feasible MSTC solution is a spanning
tree without conflicts whose total weight is minimal, i.e., a minimum spanning
tree containing at most an edge for each pair in the conflict set.

Variants of the same type (that is, with the addition of conflicts) have
already been studied for other classic problems, such as the knapsack prob-
lem [7], the maximum flow problem [8], the bin packing problem [9] and the
minimum cost perfect matching [5].

The specific variant concerning the minimum spanning tree problem was
studied for the first time by Darmann et al. [2] in 2009. The authors showed
that the problem, in general, is not solvable in polynomial time. In particular,
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there exist two cases in which the problem becomes polynomially solvable:
when all pairs of edges in conflict are disjoint ([2], [3]) or when the transitive
property holds for the set of such pairs [11]. In [11], the authors presented
several meta-heuristic approaches to solve the MSTC problem, while the first
authors to face the problem through an exact approach have been Samer and
Urrutia in [10]. They presented a mathematical model for the MSTC problem,
as well as two sets of valid inequalities. In order to introduce these new sets
of valid inequalities, the authors gave an equivalent definition of the problem
by defining the concept of conflict graph, that we will resume in Section 2.

In this paper, we propose a Branch-and-Cut approach for the MSTC, and
test its effectiveness and performance on a set of instances originally proposed
in [11]. We compared these results with those obtained by the exact algorithm
presented in [10], that was tested on the same dataset. The comparison showed
that our algorithm outperformed the previous one in all cases except one, and
was able to find one additional optimal solution. Furthermore, we also test our
approach on a new, wider set of instances that we generated.

The paper is organized as follows. A formal description of the problem,
together with the needed definitions and notations, are presented in Section 2.
In Section 3, a mathematical formulation for the MSTC is provided. Moreover
our novel valid inequalities, together with the ones used in [10], are presented.
The proposed Branch-and-Cut algorithm is described in Section 4, while com-
putational results are presented in Section 5. Finally, Section 6 contains our
conclusions.

2 Notations and problem definition

Let G = (V,E) be an undirected, edge weighted graph, where V is the set of
n vertices and E is the set of m edges. We denote by we the weight associated
to the edge e ∈ E. For a given subset S ⊆ V , let E(S) be the set of the edges
with both endpoints in S. Furthermore, let P be a set of edge pairs of E, called
conflict set, defined as follows:

P = {{ei, ej} : ei, ej ∈ E, ei is in conflict with ej}.

For each ei ∈ E, we indicate with χ(ei) the set of edges that are in conflict
with it.

The MSTC problem consists of finding the minimum spanning tree T =
(VT , ET ) of G such that its edges are conflict free, i.e.

∀ei, ej ∈ ET , {ei, ej} /∈ P .

We now resume the concept of conflict graph G′ = (E,P ), originally pre-
sented in [10]. G′ contains a node for each edge E of G, and two nodes ei, ej
are connected in G′ if and only if {ei, ej} ∈ P .

Figure 1 shows an example of graph G and the related conflict graph G′. We
can note that, for instance, {e1, e3, e5, e6, e8} is a feasible MST solution being
a spanning tree of G, but it is not feasible for the MSTC since {e1, e5} ∈ P . On
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Fig. 1: (a) An example of graph G with |V | = 6, |E| = 9 and conflict set
P = {{e1, e5}, {e1, e7}, {e1, e9}, {e3, e4}, {e3, e7}, {e3, e9}, {e4, e7}} (|P | = 7).
(b) The related conflict graph G′ = (E,P ), where each node corresponds to
an edge of G and each edge corresponds to a pair in P .

the other hand, {e2, e4, e5, e6, e9} is a conflict free spanning tree and therefore
it is a feasible MSTC solution.

3 Basic Mathematical Model

In this section we present a mathematical model for the MSTC problem, based
on a traditional Subtour Elimination formulation for the MST with the ad-
ditional constraints to avoid the conflicts. This model was also considered in
[10]. The formulation only uses a type of decision variables xe associated with
the edges of G, with the following meaning:

xe =

{
1 if e is selected,

0 otherwise.

The mathematical programming formulation of the MSTC is the following
one.

(ILP) min
∑
e∈E

wexe (1)

s.t. ∑
e∈E

xe = |V | − 1, (2)∑
e∈E(S)

xe ≤ |S| − 1, ∀S ⊆ V, S 6= ∅, (3)

xei + xej ≤ 1, ∀{ei, ej} ∈ P, (4)

xe ∈ {0, 1}, ∀e ∈ E. (5)

The objective function (1) minimizes the weight of the spanning tree. Con-
straint (2) imposes the selection of n − 1 edges (recall that |V | = n) while
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Constraints (3) are the classical subtour elimination constraints. Finally, Con-
straints (4) ensure that two edges in conflict cannot be simultaneously selected
in the solution while constraints (5) are the integrality constraints.

3.1 Valid inequalities

In this section we present three classes of valid inequalities for the MSTC that
we used to design a Branch-and-Cut approach for this problem. The first class,
named degree-cut inequalities, ensure that there are not isolated vertices in the
solution; we use them to enforce the Subtour Elimination model. The second
one, the conflict-cycle inequalities combine the request of avoiding both cycles
and conflicts and represent our main contribution. Finally, the third class of
inequalities are the well known odd-cycle inequalities that are derived from the
conflict graph structure. In the following section we describe in details these
valid inequalities.

3.1.1 The degree-cut inequalities

Since the solution of the MSTC is a spanning tree then for each node of V at
least one incident edge is selected. For this reason, we add to our model the
following valid inequalities:

∑
e∈δ(v)

xe ≥ 1, ∀v ∈ V. (6)

The constraints (6) state explicitly that the degree of any node into the
solution must be greater than or equal to 1. These inequalities improve the
relaxed solution value of ILP model. Indeed, by removing the constraints (3)
from ILP model, the optimal solution is obtained by selecting the cheapest
n − 1 edges of the graph. This could lead to the presence of isolated nodes
(i.e. with degree equal to zero) in the solution. The inequalities (6) prevent
the construction of these type of solutions.

Since the number of inequalities (6) is equal to n, no separation procedures
are applied but they are directly introduced into the ILP model as a priori
constraints. Obviously, these constraints are not necessary to represent the
solutions space but, in our experiments, they speed up the convergence of our
Branch-and-Cut.

3.1.2 Conflict-cycle inequalities

The conflict-cycle inequalities are a stronger version of the subtour elimination
constraints obtained by exploiting the conflicts among the edges.

Let ζ be a set of edges that generate a cycle in G, and let us suppose that
two of these edges are in conflict with another edge ec that does not belong to
ζ. Then, in any feasible solutions of MSTC, the number of edges of ζ ∪ {ec}
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Fig. 2: (a) The input graph G. (b) A feasible solution that satisfies constraints
(2)-(4) and the inequalities 0 ≤ xe ≤ 1,∀e ∈ E. (c) Considering the cycle
ζ = {e4, e5, e9, e8} in the solution (b) and edge e1 in conflict with e5 and e9,
the related constraint (7) is violated.

must be lower than or equal to |ζ|−1. The following theorem proves that these
inequalities are valid for the MSTC.

Theorem 1 Let ζ be a cycle of G and let ec be an edge outside this cycle that
is in conflict with two edges of ζ. Then the constraint∑

ei∈ζ

xei + xec ≤ |ζ| − 1, (7)

is a valid inequality for the MSTC problem.

Proof By contradiction, let us suppose that in a feasible solution of MSTC we
have: ∑

e
i
′∈ζ′

xe
i
′ + xeg > |ζ

′
| − 1,

where ζ
′ ⊆ E is a cycle of G, ej′ , ek′ ∈ ζ

′
, eg ∈ E \ ζ

′
, and ej′ , ek′ ∈ χ(eg).

We have to consider the following two cases:

– If xeg = 0 then
∑
e
i
′∈ζ′ xei′ > |ζ

′ |−1. However, this last condition violates

Constraints (3). A contradiction.
– if xeg = 1 then∑

e
i
′∈ζ′

xe
i
′ + 1 > |ζ

′
| − 1 ⇒

∑
e
i
′∈ζ′

xe
i
′ > |ζ

′
| − 2.

Due to this last condition at least one of variables xe
j
′ and xe

k
′ must be

equal to 1, thereby violating the Constraints (4).
ut

Inequalities of type (7) are called conflict-cycle inequalities.

In Figure 2 an example of how the inequalities (7) work is shown. Fig-
ure 2(a) is the initial graph. Notice that the solution in Figure 2(b) satisfies
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Fig. 3: (a) An odd-cycle of length 5 in the conflict graph G′ in Figure 1. (b)
If we choose e1, it is not possible to choose e5 and e9. (c) At this point, only
one between e3 and e4 can be part of a MSTC solution.

the classical subtour elimination constraints, while it is cut off by inequalities
(7). Indeed, considering the cycle ζ = {e4, e5, e9, e8} (Figure 2(c)), we note
that e5 and e9 belong to χ(e1) (see Fig. 1).

3.1.3 Odd-Cycle inequalities

Another set of valid inequalities for the MSTC are the well-known odd-cycle
inequalities. These inequalities are based on the conflict graph G′ described in
Section 2. Each vertex of G′ is associated to an edge of G and two nodes are
connected if the corresponding edges of G are in conflict. This means that the
selection of two connected vertices in G′ is equivalent to select two edges in
conflict in G. For this reason, given a cycle ζ ′ of G′, having an odd number k
of edges, it is easy to see that it is possible to select at most k−1

2 vertices of the
cycle (that is, edges of G) without violating the conflict constraints. Formally,

∑
e∈C′

xe ≤
|C ′| − 1

2
, ∀C ′ ⊆ E odd− cycle in G′ (8)

In Figure 3 we show that, given an odd cycle of length 5 in the conflict
graph of the example in Figure 1, the maximum number of edges that can be
chosen is 5−1

2 = 2.
A Branch-and-Cut approach based on the ILP model and using, among

the others, the odd-cycle inequalities was presented in [10]. In the computa-
tional test section we will carry out a comparison between our Branch-and-Cut
approach and theirs.

4 Branch-and-Cut

In this section, we outline the main ingredients of our Branch-and-Cut algo-
rithm for the optimal MSTC solution as well as the separation procedures for
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the valid inequalities described in previous section. To obtain upper bounds
that help pruning the search tree, we use the genetic algorithm proposed in [1].
However, it is known that even finding a feasible MSTC solution is NP-hard;
furthermore, for the instances proposed in [10] that we used in our computa-
tional tests, a feasible solution is not guaranteed to exist. For these reasons,
there are several instances where these upper bounds are not available. Fur-
thermore, we did not implement a primal heuristic; indeed, its execution would
not benefit in the infeasible cases, and in the other ones it would not guaran-
tee the individuation of many solutions, and hence a positive impact on the
computational times of BC.

4.1 Initial relaxation

The initial relaxation of ILP, named R(ILP ), is composed by constraints
(2),(4),(6) and the inequalities 0 ≤ xe ≤ 1.

4.2 Separation procedures

The odd-cycle inequalities are separated by using the exact algorithm proposed
in [4] while the subtour elimination constraints are separated by using the exact
algorithm presented in [6].

In the following, we describe our procedure to separate conflict-cycle in-
equalities (7). Given a solution x̄ of R(ILP ), we build a new graph G̃ = (V, Ẽ)
where Ẽ = {e = (i, j) ∈ E : x̄e > 0}. To each edge ẽ ∈ Ẽ the weight
wẽ = 1 − x̄ẽ is assigned. The conflict-cycle inequalities (7) are heuristically
separated by using the graph G̃ with the following procedure. Given any cou-
ple of nodes ṽ1, ṽ2 ∈ V such that (ṽ1, ṽ2) ∈ Ẽ, we look for the shortest path
between them in G̃ which does not include the edge (ṽ1, ṽ2). If such a path
exists, we append (ṽ1, ṽ2) to it, obtaining a cycle ζ̃ ⊆ Ẽ. To individuate a
violated inequality, we look for an edge ẽ3 ∈ χ(ẽ1)∩ χ(ẽ2) \ ζ̃ where ẽ1, ẽ2 ∈ ζ̃
and such that

∑
ẽ∈ζ̃ x̄ẽ + x̄ẽ3 > |ζ̃| − 1; hence we look for all possible edges of

this type and all the violated inequalities are introduced in the model. Note
that if

∑
ẽ∈ζ̃ x̄ẽ+1 ≤ |ζ̃|−1, it is impossible to find violated inequalities of the

type (7), hence we don’t look for them in this case. Furthermore, we decided to
use an additional tolerance parameter εc ≥ 0, meaning that we only consider
violated inequalities if

∑
ẽ∈ζ̃ x̄ẽ + x̄ẽ3 > |ζ̃| − 1 + εc. The computational com-

plexity of this algorithm is O(m2logn). In fact the individuation of a shortest
path requires |Ẽ|log|V | and it is invoked for each edge in Ẽ. We use an m x
m binary matrix to state in O(1) that two edges are in conflict.
Note that the separation procedure for the subtour elimination constraints
cannot be used for inequalities (7), because it is not sufficient to individuate
the set of vertices S that generate a cycle. We need to know what are the
edges of the cycle to separate the conflict-cycle inequalities.



8 Francesco Carrabs et al.

4.3 Cutting plane phase

At each iteration of the cutting-plane algorithm:
– if the variables in the LP solution are all integer, the subtour elimination

constraints (3) are heuristically separated through a DFS procedure;
– otherwise, the following separation procedures are used:

1. Exact separation procedure [6] for the subtour elimination constraints (3).
2. Heuristic algorithm for separating the conflict-cycle inequalities (7)

with εc = 0.1.
3. Exact algorithm for separating the odd-cycle inequalities (8) only at

the root node.

If all separation procedures fail to find violated inequalities or a tailing-off cri-
terium is met, we branch on variables using the default parameters of CPLEX.
The tailing-off is applied when the improvement in the upper bound is less than
10−5 in five consecutive iterations.
To keep the size of the LP as small as possible, in each node of the search tree
we never add more than 50 valid inequalities. The value of this parameter was
chosen after a preliminary tuning phase.

5 Computational results

In this section we present the computational results of the tests we made in
order to evaluate the performance of our Branch-and-Cut algorithm (from now
on called BC). The algorithm was coded in C++ on an OSX platform (iMac,
mid 2011), running on an Intel(R) Core(TM) i7-2600 CPU 3.40GHz (family
6, model 42, stepping 7) with 8 GB of RAM, equipped with the IBM ILOG
CPLEX 12.6.1 solver (single thread mode).

In Section 5.1 we evaluate the performances of BC, also in comparison
with the approach presented in [10], on their proposed instances. We further
evaluate the performances of our algorithm on a new set of instances in Section
5.2. An analysis of the impact of the proposed valid inequalities is provided in
Section 5.3.

5.1 BC performance analysis and comparison on benchmark instances

We compared the results of BC with the Branch-and-Cut algorithm (from
now on called SU) proposed in [10]. Following [10], for all the experiments
we considered a time limit equal to 5000 seconds. Furthermore, we considered
a memory limit set to 3 GB. In this previous work, the authors propose a
preprocessing procedure to simplify the instances before solving them. They
divided the instances in two subsets, namely type 1 and type 2. Instances
belonging to type 2 resulted to be very easy to solve after the preprocessing
phase. Indeed, the authors do not present results about the SU performances
on these instances, since they state that after this preprocessing (taking up to
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Instance SU BC
id n m p LB UB LB UB Time

1 50 200 199 708 708 0.2
2 50 200 398 770 770 0.5
3 50 200 597 917 917 1.8
4 50 200 995 1324 1324 7.4

5 100 300 448 4041 4041 4.6
6 100 300 897 5658 5658 178.5
7 100 300 1344 6621.2 - 6635.4 - 5010.0
8 100 500 1247 4275 4275 11.5
9 100 500 2495 5951.4 6006 5997 1239.4

10 100 500 3741 6510.8 9440 6707.8 8049 5010.1
11 100 500 6237 7568.7 - 7729.3 - 5010.0
12 100 500 12474 9816.9 - 10560.2 - 5010.0

13 200 600 1797 13072.9 14707 13171.2 14086 5010.0
14 200 600 3594 17532.7 - 17595.0 - 5010.0
15 200 600 5391 Infeasible Infeasible 16.4
16 200 800 3196 20744.2 21852 20941.5 21553 5010.1
17 200 800 6392 26361.3 - 26526.7 - 5010.1
18 200 800 9588 29443.6 - 30634.2 - 5010.0
19 200 800 15980 33345.1 - 36900.2 - 5010.0

20 300 800 3196 Infeasible Infeasible 2911.1
21 300 1000 4995 51451.3 - 51398.4 - 5010.0
22 300 1000 9990 60907.8 - 61878.9 - 5010.0
23 300 1000 14985 Infeasible Infeasible 1820.0

Table 1: Comparison between the solution values of SU and BC algorithms.

18 seconds) all instances of this group were solved in negligible time. On these
same instances, the genetic algorithm that we used to initialize our method
always found (in up to 26 seconds) solutions that were very quickly certified to
be optimal by BC. For these reasons, we compare our results only on the harder
type 1 instances. We want to remark that we did not apply any preprocessing
before solving them with BC. As will be shown, despite this, we obtained
better results in all cases except one. This result, in our opinion, emphasizes
the effectiveness of our algorithm.

Table 1 reports the results of the comparison between BC and SU.

The first four columns of the table show the information concerning the
instance: a numerical identifier (id), the number of nodes (n), of edges (m) and
of conflict pairs (p). The next two columns report the lower (LB) and upper
(UB) bounds found by SU. When the lower and the upper bounds coincide,
i.e. an optimal solution is found, the optimal value is reported between the LB
and UB columns. When a ”-” is reported, no feasible solution has been found.
Finally, the last three columns report the lower bound, the upper bound and
the computational time (Time), in seconds, of BC. The bounds are shown in
bold whenever the solution found by BC is better than the solution found by
SU. In [10] the authors did not report the computational time spent by SU
on these instances, and therefore we cannot carry out a precise comparison
between the two Branch-and-Cut from this point of view.
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The first 6 instances and instance n◦8 are solved optimally by both al-
gorithms. The instance n◦9, instead, is solved to optimality by BC in 1239.4
seconds, while it was not solved by SU within 5000 seconds. Therefore, our
algorithm provides a new optimal solution for this set of instances. Both the
algorithms certify the infeasibility of instances n◦15, 20 and 23. For the re-
maining 12 instances, BC produces better lower bounds in all cases except
one (instance n◦21).

With respect to the subset of instances that are not solved by BC and SU,
both algorithms found upper bounds in the same 3 cases (instances n◦ 10,
13 and 16), and those found by BC are always better. It is worth noting the
percentage gap value between the upper and the lower bounds in these cases.
This value is computed as 100× UB−LB

UB . On the instance n◦10, the percentage
gap is equal to 31.03% for SU and 16.66% for BC. On the instance n◦13, it is
equal to 11.11% for SU and 6.49% for BC. Finally, for the instance n◦16, it is
equal to 5.07% for SU and 2.84% for BC. That is, the percentage gap of BC
for these instances is about half of the percentage gap of SU.

Regarding the performance, all the instances optimally solved by BC re-
quired less than 12 seconds, except for the instance n◦9 for which, as previously
mentioned, about 1240 seconds were spent. To certify the infeasibility, BC re-
quired around 16 seconds on the instance n◦15, 2911 seconds on the instance
n◦20 and 1820 seconds on the instance n◦23.

5.2 BC performance analysis on new instances

In order to further investigate the effectiveness and performance of BC, we
generated a new set of benchmark instances. The number of nodes n in this
new set ranges from 25 to 100, with incremental steps of size 25. The number
of edges m is assigned according to the following density values: 0.2, 0.3, 0.4. A
random integer weight chosen in the interval [10,30] is assigned to each edge.
That is, a graph with density d has m = dn(n− 1)/2 edges. This means that
our instances are much denser than the previous ones, in which the highest
density value is about 0.16.

Given m edges, we can generate at most
(
m
2

)
= m(m− 1)/2 conflict pairs.

The number of conflict pairs associated to each instance is equal to 1%, 4% and
7% of m(m− 1)/2. We generated 5 different instances for each combination of
parameters n, m and p. Thus, in total we generated 180 new instances. The
combinations of these parameters allow us to determine which of them affects
most the BC performances. It is also worth noting that the new instances were
generated ensuring their feasibility, therefore there are no unfeasible instances
as in the previous set.

We show the results on this new dataset in Tables 2 and 3. The meaning
of id, n, m and p are the same as for Table 1. Under the s columns we report
the value of a seed parameter that was used to generate different instances
with the same parameter values. The column MST indicates the value of the
minimum spanning tree without taking into account the conflict set P . The
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(a)

Instance BC
id n m p s MST LB UB Time

24 25 60 18 1 336 347 0.0
25 25 60 18 7 384 389 0.0
26 25 60 18 13 350 353 0.0
27 25 60 18 19 345 346 0.0
28 25 60 18 25 330 336 0.0
29 25 60 71 31 343 381 0.0
30 25 60 71 37 334 390 0.1
31 25 60 71 43 346 372 0.0
32 25 60 71 49 328 357 0.0
33 25 60 71 55 379 406 0.0
34 25 60 124 61 321 385 0.0
35 25 60 124 67 363 432 0.0
36 25 60 124 73 335 458 0.3
37 25 60 124 79 338 400 0.0
38 25 60 124 85 340 420 0.0
39 25 90 41 91 299 311 0.0
40 25 90 41 97 305 306 0.0
41 25 90 41 103 293 299 0.0
42 25 90 41 109 294 297 0.0
43 25 90 41 115 314 318 0.0
44 25 90 161 121 280 305 0.0
45 25 90 161 127 316 339 0.0
46 25 90 161 133 310 344 0.0
47 25 90 161 139 296 329 0.0
48 25 90 161 145 301 326 0.0
49 25 90 281 151 317 349 0.0
50 25 90 281 157 321 385 0.5
51 25 90 281 163 288 335 0.0
52 25 90 281 169 295 348 0.1
53 25 90 281 175 295 357 0.0
54 25 120 72 181 281 282 0.0
55 25 120 72 187 287 294 0.0
56 25 120 72 193 276 284 0.0
57 25 120 72 199 277 281 0.0
58 25 120 72 205 290 292 0.0
59 25 120 286 211 300 321 0.0
60 25 120 286 217 296 317 0.0
61 25 120 286 223 271 284 0.0
62 25 120 286 229 296 311 0.0
63 25 120 286 235 283 290 0.0
64 25 120 500 241 290 329 0.1
65 25 120 500 247 285 339 0.5
66 25 120 500 253 306 368 0.4
67 25 120 500 259 277 311 0.0
68 25 120 500 265 275 321 0.0

(b)

Instance BC
id n m p s MST LB UB Time

69 50 245 299 271 607 619 0.0
70 50 245 299 277 592 604 0.0
71 50 245 299 283 620 634 0.0
72 50 245 299 289 600 616 0.1
73 50 245 299 295 579 595 0.0
74 50 245 1196 301 590 678 1.4
75 50 245 1196 307 587 681 3.2
76 50 245 1196 313 606 709 6.3
77 50 245 1196 319 575 639 1.5
78 50 245 1196 325 577 681 3.8
79 50 245 2093 331 567 791.20 833 5010.1
80 50 245 2093 337 604 835 1938.7
81 50 245 2093 343 577 773.23 840 5010.1
82 50 245 2093 349 598 820.02 836 5010.1
83 50 245 2093 355 594 769 25.7
84 50 367 672 361 562 570 0.1
85 50 367 672 367 545 561 1.4
86 50 367 672 373 555 573 0.0
87 50 367 672 379 553 560 0.0
88 50 367 672 385 543 549 0.5
89 50 367 2687 391 551 612 7.5
90 50 367 2687 397 546 615 6.6
91 50 367 2687 403 528 587 3.0
92 50 367 2687 409 549 634 7.3
93 50 367 2687 415 587 643 3.2
94 50 367 4702 421 558 701.26 726 5010.1
95 50 367 4702 427 555 719.45 770 5010.0
96 50 367 4702 433 571 723.89 786 5010.0
97 50 367 4702 439 541 669.84 711 5010.0
98 50 367 4702 445 599 737.31 764 5010.0
99 50 490 1199 451 537 548 0.1

100 50 490 1199 457 525 530 0.5
101 50 490 1199 463 543 549 0.0
102 50 490 1199 469 532 540 0.2
103 50 490 1199 475 534 540 0.0
104 50 490 4793 481 546 594 7.8
105 50 490 4793 487 529 579 13.8
106 50 490 4793 493 539 589 3.0
107 50 490 4793 499 528 577 7.5
108 50 490 4793 505 529 592 6.0
109 50 490 8387 511 534 631.43 678 5010.0
110 50 490 8387 517 528 626.72 651 5010.0
111 50 490 8387 523 539 658.38 689 5010.0
112 50 490 8387 529 541 662.22 682 5010.1
113 50 490 8387 535 542 641.31 674 5010.0

Table 2: Computational results of BC on new instances: (a) n = 25, (b) n = 50

last three columns report, as in Table 1, the results of our approach (lower
bound (LB) and upper bound (UB), or a value in between when an optimum
is found) and the computational times in seconds.

We can see that all instances with n = 25 (Table 2(a)) are solved to opti-
mality within 0.5 seconds, with 38 out of 45 of them requiring under 0.1 sec-
onds. We can, however, start noticing a trend with respect to how parameters
affect the complexity of the instances. Indeed, the 4 instances that required
the most time to be solved all correspond to cases in which the number of
conflict pairs is the highest, with respect to the other instances with the same
number of edges. These cases correspond to instances n◦36 (m = 60, p = 124),
n◦50 (m = 90, p = 281), n◦65 and 66 (m = 120, p = 500), that are solved in
0.3, 0.5, 0.5 and 0.4 seconds, respectively.

The trend is confirmed for instances of all sizes. For n = 50 (Table 2(b))
we can observe that all instances with p equal or less than the 4% of

(
m
2

)
are

again solved optimally, with computational times growing up to 6.3 seconds
for m = 245, 7.5 seconds for m = 367 and 13.8 seconds for m = 490. When
p grows to the 7% of the maximum number of conflicts, the related instances
result to be considerably more difficult to solve, since we reach a certified
optimal solution only for 2 out of 15 of them, namely instances n◦80 and 83,
solved in 1938.69 and 25.7 seconds, respectively. In the other 13 cases, the
gap between the returned lower and upper bounds are between 2% and 8%
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(a)

Instance BC
id n m p s MST LB UB Time

114 75 555 1538 541 837 868 0.7
115 75 555 1538 547 842 871 3.0
116 75 555 1538 553 805 838 0.3
117 75 555 1538 559 833 855 4.4
118 75 555 1538 565 830 857 4.1
119 75 555 6150 571 851 1023.72 1047 5010.0
120 75 555 6150 577 839 1008.82 1069 5010.2
121 75 555 6150 583 814 987.31 1040 5010.1
122 75 555 6150 589 828 985.64 998 5010.1
123 75 555 6150 595 825 962.55 994 5010.1
124 75 555 10762 601 817 1054.25 - 4647.3
125 75 555 10762 607 860 1069.51 - 3483.6
126 75 555 10762 613 815 1040.97 - 5010.0
127 75 555 10762 619 798 1006.30 - 5010.0
128 75 555 10762 625 838 1046.43 - 3208.1
129 75 832 3457 631 779 798 4.8
130 75 832 3457 637 795 821 1.1
131 75 832 3457 643 797 816 4.0
132 75 832 3457 649 802 820 23.9
133 75 832 3457 655 789 815 1.4
134 75 832 13828 661 782 873.83 903 3463.3
135 75 832 13828 667 805 901.81 953 4443.7
136 75 832 13828 673 780 873.67 892 5010.0
137 75 832 13828 679 786 885.57 915 4570.8
138 75 832 13828 685 792 886.87 896 5010.0
139 75 832 24199 691 805 949.55 - 1305.3
140 75 832 24199 697 788 907.80 - 1161.2
141 75 832 24199 703 789 910.00 - 953.0
142 75 832 24199 709 800 943.98 - 1224.2
143 75 832 24199 715 803 956.31 - 962.3
144 75 1110 6155 721 777 787 2.1
145 75 1110 6155 727 764 785 5.4
146 75 1110 6155 733 766 783 0.0
147 75 1110 6155 739 774 784 3.3
148 75 1110 6155 745 778 797 5.7
149 75 1110 24620 751 777 846.69 867 4067.5
150 75 1110 24620 757 760 829.23 851 4573.5
151 75 1110 24620 763 767 841.54 892 2189.8
152 75 1110 24620 769 767 841.62 864 2866.0
153 75 1110 24620 775 763 835.04 882 1783.3
154 75 1110 43085 781 769 868.72 - 1049.9
155 75 1110 43085 787 768 853.45 - 1350.7
156 75 1110 43085 793 779 884.67 1194 1522.3
157 75 1110 43085 799 762 853.00 - 1466.3
158 75 1110 43085 805 766 853.98 - 1461.4

(b)

Instance BC
id n m p s MST LB UB Time

159 100 990 4896 811 1070 1119 43.7
160 100 990 4896 817 1094 1137 11.8
161 100 990 4896 823 1076 1113 71.8
162 100 990 4896 829 1066 1110 48.6
163 100 990 4896 835 1044 1090 35.8
164 100 990 19583 841 1086 1249.38 - 5010.0
165 100 990 19583 847 1066 1225.76 1491 5010.0
166 100 990 19583 853 1063 1215.00 1510 5010.0
167 100 990 19583 859 1093 1264.17 1441 5010.2
168 100 990 19583 865 1080 1257.27 1560 5010.1
169 100 990 34269 871 1047 1262.00 - 3006.9
170 100 990 34269 877 1051 1290.68 - 3371.9
171 100 990 34269 883 1091 1318.54 - 3684.2
172 100 990 34269 889 1064 1282.38 - 3939.1
173 100 990 34269 895 1061 1304.45 - 3103.7
174 100 1485 11019 901 1049 1079 248.6
175 100 1485 11019 907 1029 1056 113.4
176 100 1485 11019 913 1034 1059 47.9
177 100 1485 11019 919 1024 1046 195.2
178 100 1485 11019 925 1040 1072 249.6
179 100 1485 44075 931 1040 1143.95 1374 3018.3
180 100 1485 44075 937 1030 1143.61 1291 2144.6
181 100 1485 44075 943 1028 1137.62 1344 3075.6
182 100 1485 44075 949 1028 1136.90 1286 3523.3
183 100 1485 44075 955 1028 1134.63 1370 2954.2
184 100 1485 77131 961 1019 1164.44 - 4773.8
185 100 1485 77131 967 1028 1168.20 - 5010.0
186 100 1485 77131 973 1031 1180.02 - 5010.0
187 100 1485 77131 979 1040 1183.53 - 5010.0
188 100 1485 77131 985 1030 1159.25 - 5010.0
189 100 1980 19593 991 1011 1031 214.4
190 100 1980 19593 997 1015 1036 42.8
191 100 1980 19593 1003 1007 1024 21.8
192 100 1980 19593 1009 1011 1025 27.4
193 100 1980 19593 1015 1010 1028 151.0
194 100 1980 78369 1021 1015 1096.83 1234 1938.3
195 100 1980 78369 1027 1005 1065.64 1187 2160.3
196 100 1980 78369 1033 1015 1087.39 1213 3595.6
197 100 1980 78369 1039 1009 1081.26 1221 2411.8
198 100 1980 78369 1045 1008 1084.09 1245 2385.6
199 100 1980 137145 1051 1004 1098.61 - 5010.1
200 100 1980 137145 1057 1010 1126.27 - 5010.1
201 100 1980 137145 1063 1012 1111.27 - 5010.1
202 100 1980 137145 1069 1024 1114.58 - 5010.1
203 100 1980 137145 1075 1014 1114.07 - 5010.2

Table 3: Computational results of BC on new instances: (a) n = 75, (b) n = 100

for m = 245, between 3% and 8% for m = 367 and between 3% and 7% for
m = 490.

When n = 75 (Table 3(a)) we are able to find optimal solutions for all
the 15 instances with p equal to the 1% of

(
m
2

)
. Computational times in these

cases grow up to 23.9 seconds once (instance n◦132) and are lower than 5.5
seconds for the remaining 14 instances. None of the remaining 30 instances is
solved to optimality. When p = 4% of

(
m
2

)
, we were always able to find both

an upper and a lower bound, with gaps between 1% and 6% for m = 555,
between 1% and 5% for m = 832 and between 2% and 6% for m = 1110. It
can be noticed that in 3 out of 5 cases for m = 832 as well as in all 5 cases
with m = 1110 the computational times are lower than the time limit, as in
these cases it was the memory limit to be reached first. The instances with the
p equal to the 7% of

(
m
2

)
are again the hardest, since we were able to identify

a lower bound only for one of them (instance n◦156). Even in this case, the
gap between upper and lower bound is considerably high, being equal to 26%.
In 13 out of 15 cases we reached the memory limit.

Finally, we consider the results for instances with n = 100, reported in
Table 3(b). Again, all instances with p = 1% of

(
m
2

)
could be solved to op-

timality, within 71.8 seconds for m = 990, 249.6 seconds for m = 1485 and
214.4 seconds for m = 1980. None of the instances with p = 4% of

(
m
2

)
was

solved to optimality, and we were able to identify a lower bound for each of
them except one (instance n◦164). The gaps between lower and upper bounds
are between 12% and 20% for m = 990, between 11% and 17% for m = 1485
and between 10% and 13% for m = 1980. The time limit was always reached
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for the 5 instances with the smallest number of edges, while the memory limit
was always reached in the remaining 10 cases. Finally, when p = 7% of

(
m
2

)
we

were never able to find an upper bound. The memory limit was reached for 6
of these instances, while the time limit was reached in the other 9 cases. With
respect to the MST column, we note that for no instance of our new dataset
the optimal solution coincides with this trivial lower bound.

To conclude we can note that, predictably, the factor that most affects the
BC performances is the ratio between the number of edges and the number of
conflict pairs. Indeed, as p grows with respect to m, it becomes more difficult
to find feasible solutions. Between instances with the same number of nodes,
increasing the number of edges while keeping constant this ratio have in many
cases either marginal or unnoticeable effect on the performances. While in-
creasing the number of nodes leads to harder instances, even the largest ones
(with up to 100 nodes and 1980 edges) with the fewest number of conflict pairs
could be solved to optimality within about 4 minutes.

5.3 Valid inequalities performance analysis

In this section we evaluate the impact of our valid inequalities on the effec-
tiveness and performance of BC. To this end, we compare BC with a “basic”
Branch-and-Cut algorithm composed by constraints (2)-(5) and (8). We will
refer to this approach with the name “Basic” from now on. We carry on this
comparison on the larger and more diverse set of instances that we introduced
in this work. We recall that these instances are guaranteed to be feasible. In
order to better assess the effectiveness of our new valid inequalities, we did
not provide a starting solution for these tests. Furthermore, a 5000 seconds
time limit was considered also for these tests.

The results of this comparison are reported in Table 4. The first column
reports the instance id. The following eight columns report, for each of the two
approaches, the lower bound (LB), the upper bound (UB), the computational
time in seconds (Time) and the percentage gap (Gap) between the UB and LB
values, returned by CPLEX. As in the previous tables, whenever an optimal
solution is found, it is reported between the LB and UB columns.

No relevant information can be derived from the smallest instances with
n = 25, since they are all optimally solved by both models in less than a
second (see Table 4a). The results in Table 4b (referring to n = 50) show that
Basic and BC do not solve to optimality the same subset of 14 instances. On
these instances, the gap value of BC is smaller than the one of Basic in 11 out
of 14 cases. In 6 of these cases (instances n◦80, 81, 82, 95, 96 and 98) the gap
difference is higher than 4%, while it is higher than 6% in 3 of these cases. In
the 3 cases in which the gap of Basic is smaller, the difference is always lower
than 2% (see instances n◦97, 110 and 112). With respect to the computational
time performances, we note that BC is faster than Basic for 29 out of the 31
instances that are solved to optimality by both approaches. In the two cases
in which Basic is faster the difference is negligible, being smaller than 0.2
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id Basic BC
LB UB Time Gap LB UB Time Gap

24 347 0.0 0.00% 347 0.0 0.00%
25 389 0.0 0.00% 389 0.0 0.00%
26 353 0.0 0.00% 353 0.0 0.00%
27 346 0.0 0.00% 346 0.0 0.00%
28 336 0.0 0.00% 336 0.0 0.00%
29 381 0.0 0.00% 381 0.0 0.00%
30 390 0.2 0.00% 390 0.1 0.00%
31 372 0.0 0.00% 372 0.0 0.00%
32 357 0.0 0.00% 357 0.0 0.00%
33 406 0.0 0.00% 406 0.0 0.00%
34 385 0.0 0.00% 385 0.0 0.00%
35 432 0.0 0.00% 432 0.0 0.00%
36 458 0.3 0.00% 458 0.3 0.00%
37 400 0.0 0.00% 400 0.0 0.00%
38 420 0.2 0.00% 420 0.0 0.00%
39 311 0.0 0.00% 311 0.0 0.00%
40 306 0.0 0.00% 306 0.0 0.00%
41 299 0.0 0.00% 299 0.0 0.00%
42 297 0.0 0.00% 297 0.0 0.00%
43 318 0.0 0.00% 318 0.0 0.00%
44 305 0.0 0.00% 305 0.0 0.00%
45 339 0.0 0.00% 339 0.0 0.00%
46 344 0.0 0.00% 344 0.0 0.00%
47 329 0.2 0.00% 329 0.1 0.00%
48 326 0.1 0.00% 326 0.1 0.00%
49 349 0.1 0.00% 349 0.0 0.00%
50 385 0.5 0.00% 385 0.4 0.00%
51 335 0.3 0.00% 335 0.0 0.00%
52 348 0.2 0.00% 348 0.2 0.00%
53 357 0.1 0.00% 357 0.1 0.00%
54 282 0.0 0.00% 282 0.0 0.00%
55 294 0.0 0.00% 294 0.0 0.00%
56 284 0.0 0.00% 284 0.0 0.00%
57 281 0.0 0.00% 281 0.0 0.00%
58 292 0.0 0.00% 292 0.0 0.00%
59 321 0.0 0.00% 321 0.1 0.00%
60 317 0.0 0.00% 317 0.0 0.00%
61 284 0.0 0.00% 284 0.0 0.00%
62 311 0.0 0.00% 311 0.0 0.00%
63 290 0.0 0.00% 290 0.0 0.00%
64 329 0.6 0.00% 329 0.3 0.00%
65 339 0.7 0.00% 339 0.6 0.00%
66 368 0.3 0.00% 368 0.4 0.00%
67 311 0.3 0.00% 311 0.3 0.00%
68 321 0.1 0.00% 321 0.0 0.00%

(a)

id Basic BC
LB UB Time Gap LB UB Time Gap

69 619 1.2 0.00% 619 0.1 0.00%
70 604 0.2 0.00% 604 0.1 0.00%
71 634 0.1 0.00% 634 0.0 0.00%
72 616 0.5 0.00% 616 0.2 0.00%
73 595 0.1 0.00% 595 0.0 0.00%
74 678 3.1 0.00% 678 1.9 0.00%
75 681 3.9 0.00% 681 2.4 0.00%
76 709 7.5 0.00% 709 6.1 0.00%
77 639 1.5 0.00% 639 1.3 0.00%
78 681 8.0 0.00% 681 5.3 0.00%
79 773.43 826 5010.1 6.36% 781.81 820 5010.0 4.66%
80 806.36 870 5010.0 7.31% 832.56 842 5010.0 1.12%
81 759.95 869 5010.0 12.55% 769.48 811 5010.1 5.12%
82 798.78 857 5010.0 6.79% 820.00 836 5010.0 1.91%
83 769 139.0 0.00% 769 46.3 0.00%
84 570 0.2 0.00% 570 0.2 0.00%
85 561 2.1 0.00% 561 2.1 0.00%
86 573 0.0 0.00% 573 0.2 0.00%
87 560 0.0 0.00% 560 0.0 0.00%
88 549 1.5 0.00% 549 1.5 0.00%
89 612 6.6 0.00% 612 10.5 0.00%
90 615 9.5 0.00% 615 7.6 0.00%
91 587 4.3 0.00% 587 3.9 0.00%
92 634 13.7 0.00% 634 7.9 0.00%
93 643 6.0 0.00% 643 2.7 0.00%
94 691.99 741 5010.0 6.61% 696.65 744 5010.0 6.36%
95 708.06 797 5010.0 11.16% 719.42 753 5010.0 4.46%
96 716.14 838 5010.0 14.54% 718.56 797 5010.1 9.84%
97 668.85 711 5010.1 5.93% 664.13 721 5010.0 7.89%
98 726.68 810 5010.0 10.29% 731.33 777 5010.0 5.88%
99 548 3.3 0.00% 548 0.9 0.00%

100 530 1.2 0.00% 530 0.7 0.00%
101 549 3.1 0.00% 549 0.4 0.00%
102 540 5.8 0.00% 540 0.3 0.00%
103 540 0.3 0.00% 540 0.0 0.00%
104 594 7.5 0.00% 594 6.5 0.00%
105 579 17.3 0.00% 579 14.7 0.00%
106 589 7.6 0.00% 589 4.6 0.00%
107 577 9.7 0.00% 577 6.6 0.00%
108 592 8.8 0.00% 592 7.6 0.00%
109 626.81 684 5010.1 8.36% 632.20 666 5010.0 5.08%
110 619.41 658 5010.0 5.86% 621.49 663 5010.0 6.26%
111 654.44 683 5010.0 4.18% 653.81 678 5010.0 3.57%
112 654.48 700 5010.1 6.50% 655.34 710 5010.1 7.70%
113 640.66 677 5010.0 5.37% 644.17 657 5010.0 1.95%

(b)
id Basic BC

LB UB Time Gap LB UB Time Gap

114 868 10.5 0.00% 868 0.9 0.00%
115 871 11.5 0.00% 871 5.7 0.00%
116 838 5.2 0.00% 838 0.3 0.00%
117 855 12.6 0.00% 855 7.1 0.00%
118 857 7.4 0.00% 857 4.3 0.00%
119 1012.44 1107 5010.0 8.54% 1016.73 1059 5010.1 3.99%
120 1001.68 1089 5010.1 8.02% 1003.86 1114 5010.0 9.89%
121 980.65 1057 5010.1 7.22% 984.46 1084 5010.0 9.18%
122 975.79 1013 5010.0 3.67% 979.31 1017 5010.2 3.71%
123 953.45 1060 5010.0 10.05% 960.47 1003 5010.1 4.24%
124 1046.74 - 5010.0 - 1054.48 - 5010.0 -
125 1064.37 - 5010.0 - 1070.88 - 5010.0 -
126 1033.18 - 5010.0 - 1040.94 - 5010.0 -
127 1006.13 - 5010.0 - 1006.35 - 5010.0 -
128 1047.47 - 5010.0 - 1048.05 - 5010.0 -
129 798 51.3 0.00% 798 36.7 0.00%
130 821 50.5 0.00% 821 1.0 0.00%
131 816 25.1 0.00% 816 15.2 0.00%
132 820 33.8 0.00% 820 23.3 0.00%
133 815 40.3 0.00% 815 8.9 0.00%
134 871.54 916 5010.2 4.85% 875.65 891 5010.0 1.72%
135 897.83 969 5010.1 7.34% 899.49 947 5010.1 5.02%
136 867.48 943 5010.1 8.01% 869.94 905 5010.1 3.87%
137 879.01 952 5010.1 7.67% 879.68 920 5010.1 4.38%
138 883.89 899 5010.0 1.68% 884.78 896 5010.0 1.25%
139 951.91 - 5010.1 - 955.79 - 4332.2 -
140 912.91 - 5010.1 - 913.03 - 3362.6 -
141 913.16 - 5010.1 - 915.04 - 2839.6 -
142 950.36 - 5010.1 - 949.84 - 3795.0 -
143 958.86 - 5010.1 - 960.83 - 2776.8 -
144 787 55.9 0.00% 787 17.7 0.00%
145 785 84.3 0.00% 785 10.0 0.00%
146 783 68.1 0.00% 783 1.3 0.00%
147 784 69.5 0.00% 784 12.0 0.00%
148 797 69.9 0.00% 797 22.4 0.00%
149 847.08 855 5010.0 0.93% 846.49 857 5010.0 1.23%
150 825.59 897 5010.1 7.96% 827.87 860 5010.2 3.74%
151 839.97 902 5010.0 6.88% 840.73 901 5010.2 6.69%
152 838.72 894 5010.2 6.18% 840.80 877 5010.2 4.13%
153 835.07 880 5010.2 5.11% 837.77 868 5010.1 3.48%
154 873.46 - 3332.9 - 870.27 - 2357.1 -
155 854.24 - 3116.3 - 857.00 - 3106.8 -
156 883.54 - 3801.8 - 885.94 - 3443.8 -
157 856.67 - 3946.8 - 856.22 - 3448.3 -
158 857.41 - 3938.4 - 859.11 - 3146.2 -

(c)

id Basic BC
LB UB Time Gap LB UB Time Gap

159 1119 117.3 0.00% 1119 88.8 0.00%
160 1137 58.3 0.00% 1137 12.3 0.00%
161 1113 126.0 0.00% 1113 66.7 0.00%
162 1110 91.9 0.00% 1110 71.0 0.00%
163 1090 93.6 0.00% 1090 20.4 0.00%
164 1247.59 - 5010.0 - 1249.38 - 5010.0 -
165 1216.97 - 5010.1 - 1217.29 - 5010.0 -
166 1206.80 - 5010.0 - 1211.03 - 5010.0 -
167 1256.52 - 5010.1 - 1258.81 - 5010.0 -
168 1250.44 - 5010.0 - 1253.76 - 5010.0 -
169 1254.25 - 5010.0 - 1264.77 - 5010.0 -
170 1288.38 - 5010.0 - 1295.60 - 5010.0 -
171 1309.62 - 5010.0 - 1323.71 - 5010.0 -
172 1274.36 - 5010.0 - 1283.59 - 5010.0 -
173 1298.12 - 5010.0 - 1309.11 - 5010.0 -
174 1079 270.0 0.00% 1079 282.7 0.00%
175 1056 195.6 0.00% 1056 141.2 0.00%
176 1059 8.1 0.00% 1059 142.8 0.00%
177 1046 218.2 0.00% 1046 117.3 0.00%
178 1072 367.5 0.00% 1072 249.0 0.00%
179 1141.12 - 5010.1 - 1141.83 - 5010.1 -
180 1141.56 - 5010.1 - 1141.95 1801 5010.2 36.59%
181 1133.96 - 5010.2 - 1134.27 - 5010.1 -
182 1133.23 - 5010.2 - 1135.19 - 5010.1 -
183 1131.49 - 5010.2 - 1132.51 1691 5010.1 33.03%
184 1163.15 - 5010.0 - 1164.44 - 5010.0 -
185 1160.56 - 5010.0 - 1168.20 - 5010.0 -
186 1187.83 - 5010.0 - 1180.02 - 5010.0 -
187 1183.69 - 5010.0 - 1183.53 - 5010.0 -
188 1164.47 - 5010.0 - 1159.25 - 5010.0 -
189 1031 2293.5 0.00% 1031 4.3 0.00%
190 1036 549.6 0.00% 1036 256.5 0.00%
191 1024 601.8 0.00% 1024 319.8 0.00%
192 1025 582.9 0.00% 1025 472.9 0.00%
193 1028 750.4 0.00% 1028 30.1 0.00%
194 1096.39 1550 5010.4 29.27% 1097.00 1521 5010.1 27.88%
195 1062.91 - 5010.2 - 1064.18 1540 5010.1 30.90%
196 1084.42 - 5010.1 - 1086.79 1437 5010.2 24.37%
197 1080.75 - 5010.1 - 1083.45 1506 5010.2 28.06%
198 1083.57 1597 5010.3 32.15% 1083.75 1684 5010.1 35.64%
199 1100.57 - 5010.1 - 1098.61 - 5010.1 -
200 1125.85 - 5010.1 - 1126.27 - 5010.1 -
201 1110.66 - 5010.1 - 1111.27 - 5010.1 -
202 1118.69 - 5010.1 - 1114.58 - 5010.1 -
203 1114.14 - 5010.1 - 1114.07 - 5010.2 -

(d)

Table 4: Computational comparison between Basic and BC algorithms.

seconds. On the other hand, when BC is faster, the difference is greater than 3
seconds in 6 cases, and greater than 2 seconds in 10 cases. The peak for both



Minimum spanning tree with conflicting edge pairs: a Branch-and-Cut approach 15

algorithms is instance n◦83, that is solved in 139 seconds by Basic and in 46.3
seconds by BC.

From the results of Table 4c (n = 75), we note that 15 instances are solved
to optimality by both models. In these cases, BC is always faster, often by a
significant margin. Indeed, BC requires up to one fourth of the time required
by Basic in 7 out of 15 cases, and up to one third in 9 cases. Moreover, both
approaches find upper and lower bounds for the same 15 instances. For BC,
the gap between upper and lower bounds is smaller than 5% in 11 cases, while
it is smaller than 5% only in 4 cases for Basic. Finally, no feasible solution
is found by either of the two approaches for the remaining 15 instances. For
these instances, BC finds better lower bounds than Basic in 12 cases.

Finally, we comment the results for the instances with n = 100 (Table 4d).
Both algorithms solve to optimality 15 instances. In these cases, BC requires
less computational time than Basic 13 times. We observe in particular that
BC is about 500 times faster for the instances n◦189, and about 25 times
faster for the instance n◦193. In 5 cases, BC is at least twice faster than Basic.
On the other hand, Basic is significantly faster only once (instance n◦176).For
the remaining 30 instances, Basic is able to find feasible solutions only twice
(instances n◦194 and 198), while BC finds feasible solutions in 5 additional
cases (instances n◦180, 183, 195, 196 and 197). Finally, considering the 23
instances for which both algorithms do not find feasible solutions, BC finds
better lower bounds than Basic 17 times.

Overall, BC outperforms Basic significantly, being able to find more feasible
solutions, and having in most cases either faster convergence times or better
solution gaps when a time limit is reached.

6 Conclusions

In this work, we described a novel Branch-and-Cut approach to solve the
MSTC problem. In particular, our main contribution is related to the proposal
of a new set of valid inequalities, based on combined properties belonging to
any feasible solution. Furthermore, we tested the approach we designed on the
benchmark instances and compared it with a previous one. Our tests showed
our approach to perform better on all instances except one, despite not using
a preprocessing algorithm presented in the previous work in order to simplify
the instances. Moreover, we created a new set of feasible instances, in order
to test farther our approach and allow other researchers to have access to a
wider set of benchmark instances for the problem. Future research will focus on
finding new effective valid inequalities in order to improve our Branch-and-Cut
approach.
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