A Biased Random-Key Genetic Algorithm for the Set Orienteering Problem

Francesco Carrabs

Department of Mathematics, University of Salerno, 84084, Fisciano, Italy

Abstract

This paper addresses the Set Orienteering Problem which is a generalization of the Orienteering Problem where the customers are grouped in clusters, and the profit associated with each cluster is collected by visiting at least one of the customers in the respective cluster. The problem consists of finding a tour that maximizes the collected profit but, since the cost of the tour is limited by a threshold, only a subset of clusters can usually be visited. We propose a Biased Random-Key Genetic Algorithm for solving the Set Orienteering Problem in which three local search procedures are applied to improve the fitness of the chromosomes. In addition, we introduced three rules useful to reduce the size of the instances and to speed up the resolution of the problem. Finally, a hashtable is used to quickly retrieve the information that are required several times during the computation. The computational results, carried out on benchmark instances, show that our algorithm is significantly faster than the other algorithms, proposed in the literature, and it provides solutions very close to the best-known ones.

Keywords: Metaheuristics; Biased Random-Key Genetic Algorithm; Orienteering problem; Routing

1. Introduction

Routing problems with profits received significant attention in recent years, as witnessed by the large literature surveyed in recent papers [3, 20]. The most widely known problem in this class is the Orienteering Problem (OP) introduced in [37]. In the OP a profit is associated with each customer and the objective is to find a single vehicle tour maximizing the profit collected from visited customers and such that the duration of the tour does not exceed a maximum time limit.

Email address: fcarrabs@unisa.it (Francesco Carrabs)

The profit of each customer can be collected at most once.

In this paper, we face the Set Orienteering Problem (SOP) which is a generalization of the OP where customers are grouped in clusters and a profit is associated with each cluster. To gain the profit associated with a cluster it is necessary to visit at least a customer of that cluster. The problem consists of finding a tour over a subset of clusters such that i) the profit collected is maximized and ii) the tour length is within a given threshold T_{max} . The SOP is similar to another routing problem with profits, named Clustered Orienteering Problem (COP) [1]. The difference between these two problems lies in how the profit is gained because, in the COP, the profit of a cluster is collected if and only if all the customers of that cluster are visited.

The SOP was introduced the first time in [2]. In this paper, the authors proposed a formulation of the problem and a matheuristic algorithm named MASOP. MASOP is made by two phases: the first one builds an initial solution and the second one invokes a Tabu Search metaheuristic to improve this initial solution. The initial solution is found by a greedy algorithm that starts from a tour containing only the depot and, at each iteration, it adds the closest vertex belonging to the cluster with the highest profit and not yet visited. The greedy algorithm stops when no more vertices can be added due to the cost limit. The tabu search uses three operators: ExploreNeighborhood, MIPMove, and Shake. The first operator generates the neighborhood of the solution by using the insert and swap operators while MIPMove generates a different neighborhood obtained by solving a MILP model and neglecting the tabu list. Finally, the Shake procedure partially destroys the current solution by removing randomly some clusters (diversification phase). The authors defined two sets of benchmark instances, one by adapting the classical instances of the Generalized Traveling Salesman Problem (GTSP) and another one by generating random instances. In [27] the authors proposed an alternative formulation for the SOP and a Variable Neighborhood Search metaheuristic that is used also for other two variants of the OP: the Orienteering Problem with Neighborhoods [5, 15] and the Dubins Orienteering Problem [28, 29].

The SOP finds application in mass distribution products in which a different distribution plan is sought. For instance, let us consider the case when customers are clustered in areas and the service to each area is made by delivering the entire quantity required by all customers in that area to a single customer, the one that is visited. This happens also when private customers group together to reach large quantity orders, and thus hopefully a lower price. Typically, in this case, the delivery is made to a single location. There are even other applications of the SOP that are far from the ones originally outlined in [2]. Indeed, the SOP can be used for any application of the GTSP, discussed in [25], where the salesman has a limited budget, and cluster profits can be used for prioritization like the travel guide problem.

In this work, we propose a Biased Random-Key Genetic Algorithm (BRKGA) for the SOP. This method was chosen for its successful results obtained on a significant number of optimization problems [17], such as scheduling problems [8, 9, 30, 34], container loading problems [18, 32], and transportation problems [4, 22, 26, 33]. The main contributions of the paper are:

- the introduction of a BRKGA algorithm for the SOP,
- the introduction of three local search procedures used to improve the fitness of the chromosomes,
- the use of a hashtable and of a three-dimensional matrix to speed up the resolution of the problem by avoiding redundant computations and
- the introduction of a set of rules to reduce the size of the instances.

More in detail, the chromosome defines *i*) the clusters to be visited in the tour and *ii*) the visiting order of these clusters while the decoder function states the clusters that can be visited according to the cost limit imposed by the problem. The three local search procedures try to improve the fitness of the chromosomes either by introducing new clusters into the current solution or by swapping clusters. In the hashtable, we save the information, concerning the chromosomes, that is crucial to both reduce the number of invocations of the decoder function and to quickly provide the input data required by local search procedures. Finally, we prove that there are rules for the removal of useless vertices, arcs, and clusters, defined for the GTSP, that hold also for the SOP. These rules are applied in a preprocessing phase of the algorithm. The application of a hashtable, of the three-dimensional matrix and the reduction of the instance size significantly impact on the performance of our algorithm. The computational results, carried out on benchmark instances, show that the BRKGA is faster than the other algorithms, proposed in the literature, and the solutions it provides are very close to the best-known solutions.

The remainder of this paper is organized as follows. In Section 2, we introduce the terminology and the notation used throughout the paper. In Section 3, we describe the preprocessing procedure while, in Section 4, we present our new metaheuristic. Computational results as reported in Section 5. Finally, conclusions are provided in Section 6.

2. Definitions and notation

The Set Orienteering Problem is defined on a directed and complete arc weighted graph G = (V, A), where $V = \{v_0\} \cup C$ is the set of vertices with |V| and A is the set of arcs with |A|. The vertex v_0 represents the depot from which the vehicle starts and ends its tour while C is the set of customers. The vertices of G are grouped in clusters C_g with g = 1, ..., l, such that $\bigcup_{g=1}^l C_g = V$ and $C_g \cap C_h = \emptyset$, $\forall C_g, C_h \in \mathcal{P}$, where $\mathcal{P} = \{C_1, ..., C_l\}$ is the set of clusters. A profit p_g is associated with each cluster and it is collected if and only if at least a customer $i \in C_g$ is visited in the tour. The profit of each cluster can be collected at most once. The cluster C_1 contains only the depot v_0 and its profit is equal to 0. A cost c_{ij} is associated with each arc $(i, j) \in A$ and we assume that costs c_{ij} satisfy the triangle inequality. The SOP consists of finding a tour that maximizes the collected profit and such that its cost (or duration) does not exceed a maximum value T_{max} . In the following, we denote this last condition as *cost constraint*. Since the arc costs satisfy the triangle inequality, an optimal tour always includes at most one vertex per cluster [2]. Let $\mathcal{C} : V \to \mathcal{P}$ be a function that, given a vertex $v \in V$, returns the cluster containing v. For instance, $\mathcal{C}(v_0) = C_1$.

Any solution of the SOP can be described by a permutation $\sum_{k} = (\sigma_1, ..., \sigma_k)$ of the cluster indexes, with $1 \leq \sigma_i \leq l, \sigma_i \neq \sigma_j$ for $i \neq j$ and $\sigma_1 = 1$, defined according to the visiting sequence of the clusters in the tour.

3. Preprocessing phase

In this section, we prove that there are rules for the removal of useless vertices, arcs, and clusters, defined for the GTSP, that hold also for the SOP. These rules are useful to reduce the size of the instances and to speed up the resolution of the SOP on them. To this aim, we take advantage of the characteristics of the problem, as the grouping of the vertices in the clusters and the T_{max} cost limit of the tour. The main idea is to remove from G vertices, arcs, and clusters not necessary to build an optimal solution. In the following, we report how these removals are carried out.

• Arcs and vertices removal

This procedure is based on the removal procedures proposed in [21] for the GTSP. However, it is worth noting that the correctness of the procedures given in [21] is based on the cost of the tour since the optimality of a solution for the GTSP depends only on its cost. For the SOP this is not true because the cost of the tour states if a solution is feasible or not but the optimality depends on the profit collected. For this reason, we provide a proof of the uselessness of the edges and vertices removed by taking into account both the cost of the tour and the profit collected. Finally, for the edge removal, we use the implementation proposed in [11] and successfully applied also in [10, 12]. The removal procedure, named *Graph Reduction Algorithm* (GRA), works as follows.

Given a cluster C_g , let us consider two customers $u \in C_h$ and $v \in C_k$, such that $h \neq k \neq g$. The GRA computes the shortest path between u and v, passing through C_g . Since triangle inequality holds, this shortest path is composed of two arcs: (u, w) and (w, v), where $w \in C_g$. The GRA marks as needed these two arcs of the shortest path and the vertex w crossed in C_g . The algorithm repeats this operation for each cluster $C_g \in \mathcal{P}$ and for all possible couples of customers u and v, with $\mathcal{C}(u) \neq \mathcal{C}(v) \neq C_g$. At the end of the computation, the GRA removes all not-marked arcs and vertices from the graph. Proposition 1 ensures that there always exists an optimal solution without not marked arcs.

Proposition 1. Given a cluster $C_g \in \mathcal{P}$, let S be the set of the shortest paths from $u \in C_h$ to $v \in C_k$ passing through C_g , with $h \neq k \neq g$. Moreover, let $A_{\bar{S}}$ be the set of arcs incident to the vertices in C_g that do not belong to any shortest path of S. Then an optimal solution of the SOP, not containing arcs in $A_{\bar{S}}$, always exists.

Proof. W.l.o.g. let us suppose that T^* is an optimal solution containing the arcs (u, w) and (w, v), with $u \in C_h$, $w \in C_g$, $v \in C_k$ and $(u, w) \in A_{\overline{S}}$. Since (u, w) does not belong to any shortest path in S, then there exists another customer $w' \in C_g$ such that the path $\{u, w', v\}$ is shorter than $\{u, w, v\}$. By replacing $\{u, w, v\}$ with $\{u, w', v\}$ in T^* , we obtain a new tour T' that is feasible and optimum because $c(T') < c(T^*)$ and $p(T') = p(T^*)$.

Proposition 2. Given a cluster $C_g \in \mathcal{P}$, let S be the set of the shortest paths from $u \in C_h$ to $v \in C_k$ passing through C_g , for each $C_h, C_k \in \mathcal{P} \setminus \{C_g\}$ with $h \neq k$. Moreover, let $V_{\bar{S}}$ be the set of vertices in C_g that do not belong to any shortest path of S. Then an optimal solution of the SOP, not containing vertices in $V_{\bar{S}}$, always exists.

Proof. Similar to Proposition 1.

• Clusters removal

Since the feasibility of a tour depends on the T_{max} value, lower is this value lower is the number of feasible solutions in G. To state if a cluster C_k is useless, it is sufficient to check the distance between the depot v_0 and each vertex $v_i \in C_k$. More in detail, if the distance between v_0 and a vertex $v_i \in C_k$ is greater than $\frac{T_{max}}{2}$ then any tour starting from v_0 and visiting v_i is infeasible because violated the cost constraint. As a consequence, the vertex v_i is useless and then it is removed. This check is carried out for all the vertices in C_k and if, at the end, the cluster is empty then it is removed from G. The procedure to find useless clusters requires O(|E|) time, and as expected, its effectiveness increases as T_{max} decreases. A similar strategy was proposed in [13] for the Orienteering Problem where the aim was to find a path from a starting vertex to an ending vertex maximizing the profit and satisfying a maximum length T_{max} . The authors used the starting and ending vertices as foci of an ellipse having the length of the major axis equal to T_{max} and they removed all the vertices outside the ellipse because useless.

The application of the previous strategies improves the performance of our BRKGA algorithm because the subgraph G', obtained by applying the preprocessing phase on G, contains fewer vertices, arcs, and clusters of G.

3.1 Insertion cost matrix

One of the most used operations in our algorithm is the insertion of a new cluster in the current tour. To carry out this operation, it is necessary to choose the vertex w of the cluster C_k to insert and the two consecutive vertices u and v, of the current tour, between which w will be inserted. Because of the cost constraint, it is important to know how much the cost of the tour increases, to state if the new tour is feasible or not. Instead of computing this information every time the algorithm performs an insertion operation, we compute it just one time, during the preprocessing phase, and we save it in a three-dimensional matrix, named ICM, having size $|V| \times |V| \times l$. More in detail, given a couple of vertices u and v and a cluster C_k , with $C(u) \neq C(v) \neq C_k$, we compute the shortest path from u to v crossing C_k and we save the cost of this path and the vertex $w \in C_k$, crossed by this shortest path, in the position [u,v,k] of the matrix. In this way, it is possible to retrieve in constant time both the minimum insertion cost of a cluster C_k , between two vertices of the tour, and the vertex of C_k to insert to have that insertion cost.

It is worth noting that the costs of ICM are locally optimal because they are computed according to the vertices visited in the current tour T. As a consequence, if ICM states that the insertion of a cluster C_k , in any position of T, violates the cost constraint, this is true only for the current visited vertices in T. However, it could be possible to obtain a new feasible solution, by inserting C_k in T, provided that some vertices of T are replaced by other ones of the same clusters.

4. Biased Random-Key Genetic Algorithm

In this section, we present the BRKGA concept, including a detailed description of the solution encoding and decoding, the evolutionary process and the fitness function. We also describe three operators used to intensify the search in promising communities and the hashing strategy used to improve the performance of the algorithm.

4.1 The BRKGA framework

The BRKGA is a metaheuristic proposed in [17], in which chromosomes (solutions) are encoded as vectors with n elements of real numbers in the interval [0,1]. These numbers are called *randomkeys* or *allele*. A decoding function associates to each chromosome a solution of the underlying optimization problem, from which the objective function value or fitness can be computed. This function is named *decoder*. The decoder function and the chromosome definition represent the main aspects which define the BRKGA, since the other aspects are essentially problem-independent. The BRKGA starts with and then evolves a population containing exactly p chromosomes, each having n allele, for a number of generations until a stopping criterion is met. The population is partitioned in two sets of chromosomes: the *elite* containing p_e individuals with the best fitness values and a *non-elite* set with the remaining individuals. The evolutionary process at generation i + 1 is carried out as follows. The p_e elite chromosomes of generation i are copied in the new population.

Figure 1: Generation of a new population in the BRKGA. The p_e elite chromosomes are directly copied in the new population in which p_m mutant chromosomes are added. To complete the population, $p - p_e - p_m$ offspring chromosomes are generated by randomly selecting one elite and one non-elite chromosome and by applying on them the parametrized uniform crossover operator.

Moreover, p_m chromosomes are randomly generated and introduced in the new population. These p_m chromosomes are named *mutants*, and they are used in place of the mutation operator usually found in evolutionary algorithms [6, 23]. The remaining $p - p_e - p_m$ chromosomes (offspring) are generated by randomly selecting one chromosome from the elite set and one chromosome from the not-elite set and carrying out the parametrized uniform crossover [35]. More in detail, fixed a probability ρ_e , this crossover defines the value of the *j*-th allele of offspring *i* by generating a random number *r* in the interval [0,1); if $r > \rho_e$ then the offspring *i* inherits the *j*-th allele of its elite parent otherwise it inherits the *j*-th allele of the non-elite parent. Figure 1 shows how a new generation is created from the previous one in BRKGA. In the following subsections, we describe in detail how we designed BRKGA to solve SOP.

4.2 Chromosome representation and decoding

We defined the chromosome representation for the SOP by taking into account the following proposition.

Proposition 3. [7] Given a clustered graph G = (V, E) and a visiting sequence \sum_k of clusters,

Figure 2: (a) Chromosome representation. (b) The sorting operation carried out to state the (possible) clusters to visit and in which order. (c) Decoding operation.

the problem of finding the shortest tour, that visits the clusters according to this sequence, can be solved in polynomial time by solving a shortest path problem.

The computation of the shortest tour of Proposition 3 is carried out on a graph G' = (V', E')built as follows. The vertices in G' are the vertices belonging to the clusters in \sum_k plus a dummy vertex named v'_0 , which is $V' = \bigcup_{i=1}^k C_{\sigma_i} \cup v'_0$. The arcs in G' connect vertices belonging to adjacent clusters of \sum_k . More in detail, $(u, v) \in E'$ if $u \in C_{\sigma_i}, v \in C_{\sigma_{i+1}}$, and $(u, v) \in E$. Moreover, any vertex $v \in C_{\sigma_k}$ is connected to the dummy vertex v'_0 with an arc having cost equal to c_{v,v_0} . The shortest path from v_0 to v'_0 is the shortest tour we are looking for.

From Proposition 3, we derive that each chromosome has to report two information: *i*) the visited clusters in the tour and *ii*) the visiting order of these clusters. For this reason, the chromosome in our BRKGA is a vector of random keys (real numbers between 0 and 1) having a number of alleles equal to the number of clusters in G. Figure 2(a) shows a chromosome S_t , having eleven clusters, and its alleles. In the following, we denote by a_i the allele associated with the cluster C_i .

To state what clusters should be visited and their visiting order, the clusters are sorted according to their alleles, in non-increasing order. In case of ties, the cluster with lower id is selected first (Figure 2(b)). The clusters candidate to be visited on the tour are the ones having the allele greater than 0.5. In our example, clusters C_2, C_5 , and C_9 are discarded from the construction of the tour because of their alleles (Figure 2(b)). The sorted list of clusters with allele greater than 0.5 represents the visiting sequence \sum_k of the clusters. In our example this sequence is $\sum_8 = (1, 8, 4, 11, 6, 10, 7, 3)$. Since any feasible tour has to start from the depot, the allele of C_1 is set to 1 to assure that C_1 is always the first visited cluster. Note that, the shortest tour, visiting the clusters according to \sum_k , can be infeasible for the SOP if its cost is greater than T_{max} . For this reason, a deterministic procedure, named *Decoder*, has to be invoked on the sequence \sum_k to produce a feasible solution.

The *Decoder* procedure starts with a visiting sequence \sum' containing only C_1 . At iteration *i*, the *Decoder* adds to \sum' the *i*-th cluster of \sum_k and it finds the shortest tour T' visiting the clusters according to \sum' . If $c(T') \leq T_{max}$ then the *i*-th cluster of \sum_k is left in \sum' otherwise it is removed. The procedure proceeds with the next cluster in \sum_k and so on until no more clusters are available.

In Figure 2(b) the clusters selected by the *Decoder* to build the tour are highlighted. Since clusters C_4 , C_{10} and C_7 are not selected by the *Decoder*, their alleles have to be decreased to a value lower than or equal to 0.5. To this end, the *Decoder* sets the alleles $a_{\sigma_4} = 1 - a_{\sigma_4}$, $a_{\sigma_{10}} = 1 - a_{\sigma_{10}}$ and $a_{\sigma_7} = 1 - a_{\sigma_7}$ and it sorts again the clusters according to the new allele values (Figure 2(c)). The final sequence produced by the *Decoder* is $\sum_5 = (1, 8, 11, 6, 3)$ and the fitness associated to this chromosome is given by the sum of the profits of clusters in \sum_5 .

4.2.1 Hashtable

The decoding function should be invoked on all the chromosomes, generated during the evolutionary process, to define the feasible solution associated with the chromosome and to compute its fitness. However, since this operation is computationally expensive, and the decoder is a deterministic procedure, the idea is to avoid its invocation on the chromosomes on which it has been already invoked in the previous evolutionary steps. To this end, we use a hashtable in which, after the invocation of the decoder on a chromosome, we save three information: i) the cost of the tour found by *Decoder*, ii) the vertices of the tour and iii) the fitness of the chromosome. The hash key associated with each chromosome is generated according to the sorted sequence of its alleles greater than 0.5. For instance, given the chromosome in Figure 2(a), after the sorting of the alleles (Figure 2(b)), the hash key of this chromosome is < 1, 8, 4, 11, 6, 10, 7, 3 >. Before invoking the decoder on a chromosome, we verify if its hash key is already present into the hashtable. If not, *Decoder* is invoked on the chromosome otherwise all the information about the tour are directly obtained from the hashtable.

4.3 Initial population

Each chromosome of the initial population is generated by assigning to its alleles a random number chosen in the real interval [0,1]. The only exception is for the allele associated with cluster C_1 that is always set to 1 because any feasible tour has to start from the depot v_0 . The number of chromosomes in each population is equal to p. We use two populations, not evolved in parallel, that exchange their best chromosome every *swap_best* iterations [18]. Finally, we apply the idea proposed in [19] consisting of resetting the populations after pop_{reset} iterations without improvement. This is to avoid the BRKGA staying trapped in local optimum regions.

4.4 Improvement heuristics

In this section, we describe three local search operators used to improve the fitness of a given chromosome S_t . In the following, we suppose that \sum_k is the visiting sequence associated with S_t by *Decoder*. Since we do not allow operators to change a visited vertex in \sum_k with another one of the same cluster, then the insertion cost of a new cluster in \sum_k can be computed in constant time thanks to *ICM* (see Section 3.1).

• Insert Operator

The *Insert* operator tries to insert new clusters in the current sequence \sum_k to increase the fitness of the chromosome. First, the operator checks if S_t is in the hashtable and, if this is the case, the operator stops because it has been already invoked on this chromosome. Otherwise, *Insert* proceeds as follows.

The operator builds a list $\ell_{\bar{v}}$ of the not visited clusters that is sorted according to their allele, in non-increasing order. Insert goes through the sorted list $\ell_{\bar{v}}$ by selecting the clusters, one by one, as a possible candidate for the insertion in \sum_k . More in detail, given a $C_h \in \ell_{\bar{v}}$, the operator finds the cheapest position j in \sum_k where to insert a vertex of C_h . If the cost of this new tour is lower than or equal to T_{max} , then C_h is inserted in position j of \sum_k and its allele is set to $(a_{\sigma_{j-1}} + a_{\sigma_j})/2$. Otherwise, C_h is rejected, and Insert selects the next cluster in $\ell_{\bar{v}}$. The operator stops when all the clusters in $\ell_{\bar{v}}$ are checked for the insertion. Finally, the operator generates the hash key of this new chromosome and inserts it into the hashtable, if not yet present, with the other information.

Notice that, the insertion cost of C_h , in any position of \sum_k , is computed in constant time thanks to *ICM*. This makes much faster the *Insert* operator.

• Swap Operator

The *Swap* operator tries to improve the fitness of S_t by replacing some visited clusters with some other not visited ones. First, the operator checks the presence of S_t in the hashtable and, if it is present, the operator stops because it has been already invoked on this chromosome. Otherwise, *Swap* proceeds as follows.

According to the alleles of S_t , the operator builds a list ℓ_v of the visited clusters, and it sorts this list according to the clusters' profit, in non-decreasing order. Moreover, *Swap* builds a list $\ell_{\bar{v}}$ of the not visited clusters, and it sorts this list according to the clusters' profit, in non-increasing order.

Swap goes through the sorted list ℓ_v by selecting a cluster in this list as a possible candidate for the swap operation. Once selected a cluster C_i from ℓ_v , Swap goes through the sorted list $\ell_{\bar{v}}$ to find a cluster C_j that could replace C_i in \sum_k . We state that a swap operation between two clusters C_i and C_j can be done if and only if the following two conditions are satisfied: i) $p_i < p_j$ and ii) the cost of the new tour, crossing C_j instead of C_i , does not exceed T_{max} . Notice that the second condition can be quickly verified thanks to *ICM* that returns, in constant time, the insertion cost of cluster C_j between the two clusters adjacent to C_i in \sum_k . After the swap operation, the cluster C_i and C_j are removed from their respective sorted lists and \sum_k is updated accordingly. The allele of C_i is set to $1 - a_{\sigma_i}$ while for the allele of C_i it is used the same policy applied by the *Insert* operator.

Swap starts a new iteration by selecting the next cluster in ℓ_v . The operator stops when the profit p_i of cluster $C_i \in \ell_v$ is greater than or equal to the profit p_j of the first cluster $C_j \in \ell_{\bar{v}}$. Indeed, if $p_i \ge p_j$, the profit of any cluster in $\ell_{\bar{v}}$ is not greater than p_i . This statement holds because of the sorting, we carried out on ℓ_v and $\ell_{\bar{v}}$. Since the first condition for the swap operation cannot be satisfied anymore, the operator stops. Finally, the operator generates the hash key of this new chromosome and inserts it into the hashtable, if not yet present, with the other information.

Notice that, the Insert and Swap operators sort the clusters by using a different criterion: the allele and the profit value, respectively. There is a reason behind this choice. After the decoding operation, generally, the cost of the chromosomes is far enough away from the T_{max} threshold to allow the insertion of different clusters inside them. Since the profit of the clusters never changes, using this criterion to establish the insertion order leds to the risk to insert always the same clusters in the chromosomes. For this reason, we prefer to use the allele values to ensure that it is the evolutionary process to establish this order of insertion according to the allele values assigned to the chromosomes. The situation is different for the swap operator. This operator is invoked after the insert operator and therefore it works on a chromosome whose cost is already close to the T_{max} threshold. Moreover, since the main aim of this operator is to increase the fitness of the chromosome, all the swap operations that do not increase the profit are rejected. As a consequence, the Insert operator. Having fewer operations available, we try to maximize the profit, gained by each swap operation, by sorting the lists ℓ_v and $\ell_{\bar{v}}$, according to the profit, in non-decreasing order and in non-increasing order, respectively.

• Mck operator

Given a sequence \sum_k , let $\ell_{\bar{v}}$ be the set of not visited clusters. Since the insertion of a new cluster in \sum_k is carried out between two consecutive clusters of \sum_k , then there are exactly k available positions to perform this insertion. Moreover, thanks to *ICM*, for each cluster $C_h \in \ell_{\bar{v}}$ and for each position k in \sum_k , we already know the vertex $v \in C_h$ which insertion cost in position k is minimum.

By examining how our insertion operation works, we found out that we are facing a variant of the Multiple-Choice Knapsack Problem (MCKP) [24, 31]. This problem is formally defined as follows. Let $N_1, ..., N_m$ be a set of mutually disjoint classes of items to be packed into a knapsack of capacity W. To each item $i \in N_j$ a profit p_{ij} and a weight w_{ij} are associated. MCKP consists of choosing one item from each class such that the profit sum is maximized without exceeding the capacity W in the corresponding weight sum.

Figure 3: The Mck operator framework.

For our insertion operation, the classes of the MCKP correspond with the k positions available in \sum_k . Moreover, each class j has exactly one vertex $v_i \in C_h$, $\forall C_h \in \ell_{\bar{v}}$, where v_i is the vertex that minimizes the insertion cost of cluster C_h in position j. The profit associated with v_i is equal to the profit of its cluster C_h while its weight is given by the insertion cost of v_i in position j of \sum_k . Since the vertex $v_i \in C_h$ to insert in j is unique, in the following we talk about the insertion in position j of cluster C_h or of vertex v_i interchangeably. By using the information saved in ICM, we can quickly build the k classes with the appropriate vertices and the right weights. Finally, the capacity W of the knapsack is equal to the difference between T_{max} and the cost of \sum_k .

Figure 3 shows how Mck works. We use the same chromosome and the same sequence reported in Figure 2. This means that $\ell_{\bar{v}} = \{C_2, C_4, C_5, C_7, C_9, C_{10}\}$ and there are 5 positions of \sum_5 where Mck can introduce these clusters. Therefore, we have 5 classes, each one associated with a different position j in \sum_5 . For each $C_h \in \ell_{\bar{v}}$, the class associated with the position jcontains the vertex of C_h that minimizes the insertion cost of this cluster in position j.

There are three differences between the MCKP and the version we use for the SOP. The first difference is that the classes are not mutually disjoint because the same vertex can belong to several classes. The second one is that, when a vertex $v \in C_h$ is inserted into a position j, then no other vertex of C_h can be inserted in the other positions of \sum_k . The third difference is that we can select at most one vertex for each class rather than exactly one as in the original problem. The formulation of our modified version of the MCKP is the following. The decision variables are x_{ij} equal to 1 if cluster *i* is inserted in position *j* and 0 otherwise.

$$\max \sum_{i \in \ell_{\bar{v}}} \sum_{j=1}^{k} p_i x_{ij} \tag{1}$$

$$\sum_{i \in \ell_{\bar{v}}} \sum_{j=1}^{k} w_{ij} x_{ij} \le W \tag{2}$$

$$\sum_{j=1}^{k} x_{ij} \le 1 \qquad \forall i \in \ell_{\bar{v}} \tag{3}$$

$$\sum_{i \in \ell_{\bar{v}}} x_{ij} \le 1 \qquad j = 1, \dots, k \tag{4}$$

$$x_{ij} \in \{0, 1\}$$
 $\forall i \in \ell_{\bar{v}}, j = 1, ..., k$ (5)

The objective function (1) maximizes the profit collected by the insertion of new clusters in \sum_k . Constraint (2) ensures that the cost of the final tour does not exceed the limit T_{max} . Constraints (3) impose that each cluster can be inserted in at most one position of the sequence \sum_k while Constraints (4) ensure that at most one cluster is inserted in each position. Finally, (5) are variable definitions.

Our *Mck* operator solves the previous model to obtain the best possible insertion of the clusters in the current sequence \sum_k . However, since this operator solves a MIP model, it is much more expensive than the *Insert* operator. For this reason, we invoke it only on the chromosomes of the last population generated by the BRKGA.

4.5 Termination criteria

The algorithm ends when max_{it} iterations have been executed, or when $max_{it}/3$ consecutive iterations have failed to improve the incumbent solution and populations have been reset at least once. The second criterion is often satisfied with the small instances where the algorithm usually finds the best solution during the first iterations.

4.6 Pseudocode

The pseudocode of the BRGKA is listed in Algorithm 1. In this algorithm, the procedures having the suffix POP are applied on all the chromosomes of the population. For instance, the

Algorithm 1: The BRKGA pseudocode

Input: G, \mathcal{P}, T_{max} **Output:** A feasible tour for the SOP $1 \quad i \leftarrow 1$, $resetDone \leftarrow false;$ 2 $P_i \leftarrow \text{genPopulation}(\mathcal{P}), P_i'' \leftarrow \text{genPopulation}(\mathcal{P});$ 3 $P_i \leftarrow \text{decodePOP}(P_i), P_i'' \leftarrow \text{decodePOP}(P_i'');$ 4 $P_i \leftarrow \text{insertPOP}(P_i), P_i'' \leftarrow \text{insertPOP}(P_i'');$ 5 $P_i \leftarrow \text{insertPOP}(P_i), P_i'' \leftarrow \text{insertPOP}(P_i'');$ 5 $P_i \leftarrow swapPOP(P_i), P_i'' \leftarrow swapPOP(P_i');$ 6 while $i \leq max_{it}$ do $P_{i+1} \leftarrow \texttt{evolve}(P_i), \quad P_{i+1}'' \leftarrow \texttt{evolve}(P_i'');$ 7 // if the current iteration is not the last one if $i < max_{it}$ then 8 $\begin{array}{l} P_{i+1} \leftarrow \texttt{insertPOP}(P_{i+1}), \quad P_{i+1}'' \leftarrow \texttt{insertPOP}(P_{i+1}'); \\ P_{i+1} \leftarrow \texttt{swapPOP}(P_{i+1}), \quad P_{i+1}'' \leftarrow \texttt{swapPOP}(P_{i+1}''); \end{array}$ 9 10else 11 $| P_{i+1} \leftarrow \texttt{mckPOP}(P_{i+1}), P_{i+1}'' \leftarrow \texttt{mckPOP}(P_{i+1}'');$ 12// aspiration criterion if $((i - iter_{Best}) \ge max_{it}/3 \ \mathcal{CC}$ resetDone = true) then 13break; 14// reset the populations after pop_{reset} iterations without improvements if $((i - iter_{Best}) \% (pop_{reset}) = 0)$ then 15 $P_i \leftarrow \text{genPopulation}(\mathcal{P}), \quad P''_i \leftarrow \text{genPopulation}(\mathcal{P});$ 16 17 $resetDone \leftarrow true;$ // best individual exchange every $swap_{best}$ iterations if $(i \% (swap_{best}) = 0)$ then 18 $exchange_best(P_{i+1}, P_{i+1}'');$ 19 $i \leftarrow i + 1;$ 20 21 return the tour associated to the best individual found;

procedure $insertPOP(P_i)$ applies the *insert* operator on all the chromosomes of the population P_i and it returns the population with the updated chromosomes.

The algorithm takes as input a graph G, a set of clusters \mathcal{P} , and a threshold T_{max} . To make the pseudocode more readable, we avoid passing these three parameters to the procedures but all of them, except genPopulation, use these parameters. The first step of the BRKGA is the initialization of the iteration counter i to 1 and of the flag resetDone to false. The next step is the generation of the starting populations P_i and P''_i (line 2) according to the rules described in Section 4.3. Then, the decodePOP, insertPOP and swapPOP procedures are invoked on P_i and on P''_i (line 3-5). The while loop (line 6) iterates until max_{it} iterations are carried out. The first step of the loop is the generation of the next populations P_{i+1} and P''_{i+1} by invoking the evolve procedure on the current populations P_i and P''_i (line 7), respectively. To this end, the evolve procedure executes the steps reported in Sections 4.1 and summarized in Figure 1. If the current iteration *i* is not the last one, then the procedures *insertPOP* and *swapPOP* are invoked on P_{i+1} and P_{i+1}'' (lines 9-10), otherwise, the procedure *mckPOP* is invoked on these two populations (line 12). The aspiration criterion states that if $max_{it}/3$ iterations are carried out without improving the incumbent solution, found at iteration *iter_{best}*, and if at least one reset of the population has been carried out, then the algorithm stops (line 13-14). Every *pop_{reset}* iterations, without improvements of the incumbent solution, a reset of the populations is carried out and the flag *resetDone* is set to true (line15-17). Finally, every *swap_{best}* iterations the procedure *exchange_best* is invoked to exchange the best individuals between the populations (line 18-19). The last step of the while loop increases by one the iteration counter *i* (line 20). The algorithm returns the best individual found (line 21).

5. Computational Tests

In this section, we describe the results of BRKGA obtained during our computational test phase carried out on the SOP benchmark instances. Our algorithm was coded in C++ using the LEMON graph library [14] and the brkgaAPI [36]. All tests have been performed on an OSX platform (iMac late 2012), running on an Intel Core i7 2.8 GHz processor with 16 GB of RAM. The mathematical formulation was solved using the ILOG Concert Technology library and CPLEX 12.8.

The computational tests are carried out on 306 instances proposed in [2] and named Set1. This set of 306 instances was obtained by adapting 51 instances for the Generalized Traveling Salesman Problem proposed in [16]. These instances have a number of vertices ranging from 52 to 1084 and a number of clusters equal to ~ 20% of the number of vertices. T_{max} is set to $\omega \times GTSP^*$, where $GTSP^*$ is the best-known solution value of the GTSP (taken from [16]) and ω has been set to 0.4, 0.6, and 0.8. Finally, the profit associated with each cluster is assigned by using two different rules. The first rule sets the profit of each cluster C_g equal to $|C_g|$. The second rule sets the profit of a vertex j equal to 1 + (7141j + 73)mod(100) in order to obtain pseudo-random profits. The profit of a cluster is then obtained by summing up the profit of all the vertices belonging to it. In the following we call g_1 and g_2 the first and the second rule, respectively.

In [2] the authors generated a new set of instances named Set2. This new set of instances is equal to Set1 except for the generation of clusters. In particular, the number of clusters remains the same of Set1 but the vertices are randomly assigned to these clusters. The computational

Parameter	Value	Description
n	$ \mathcal{P} $	Number of alleles per chromosome
p	$100 + 25\alpha$	Number of chromosomes in the population ($\alpha = 1$ if $ V \ge 200$ and zero otherwise)
p_e	20%	Size of the elite set in the population
p_m	25%	Number of mutants to be introduced in the population at each generation
$ ho_e$	0.8	Probability that an allele is inherited from the elite parent
max_{it}	150 + 0.3 V	Maximum number of iterations
pop_{reset}	$\frac{max_{it}}{3}$	number of iterations without improvement before resetting the populations
$swap_{best}$	$\frac{max_{it}}{6}$	number of iterations after which an exchange of best individuals among the popu-
	-	lations is carried out

Table 1: The BRKGA parameters.

results of the three algorithms on *Set2* are reported in Appendix A.

The values of the BRKGA parameters were chosen after a preliminary tuning phase carried out on Set1 and they are reported in Table 1. According to the literature [9, 17, 18, 19], the main parameters of BRKGA are usually chosen in the following sets: $p_e \in \{15\%, 20\%, 25\%\}$ of p, $p_m \in \{15\%, 20\%, 25\%\}$ of p, and $\rho_e \in \{0.6, 0.7, 0.8\}$. Among all the possible combinations of these values, we have chosen the ones that provided us the best results in terms of performance and effectiveness.

Finally, before starting the description of the results, there are some observations, concerning the instances with $\omega = 1$, that have to be reported. As described above, *Set1* was obtained by adapting instances proposed in [16] for the GTSP. If an optimal solution T^* is known for GTSP, then it is possible to visit all the clusters paying a cost equal to $c(T^*)$. However, in the GTSP addressed in [16], the problem is solved without specifying a starting depot. On the contrary, for the SOP instances, the first vertex of the instance is always selected as depot v_0 . This means that if v_0 does not belong to any optimal solution of GTSP, then the shortest tour visiting all the clusters and containing v_0 has a cost greater than $c(T^*)$. As a consequence, by setting $T_{max} = c(T^*)$ (i.e. $\omega = 1$), it is not guarantee that all the clusters can be visited by a tour, containing v_0 , and then $\sum_{g=1}^{l} p_g$ is not necessary the optimal solution value for SOP (as erroneously reported in [2]) but it is surely an upper bound.

Moreover, for Set2 with $\omega = 0.8$, the T_{max} value is enough large to guarantee that, for all the instances but one, all the clusters can be visited. For this reason, it is useless to further increase to 1 the ω value and then no results will be reported in the following for this value.

		Н	lash Hits			
	$\omega =$	0.4	$\omega =$	0.6	$\omega =$	0.8
Instance	g_1	g_2	g_1	g_2	g_1	g_2
11berlin52	82.59%	82.93%	79.48%	79.84%	54.39%	89.09%
11eil51	81.94%	73.02%	62.50%	73.93%	56.02%	65.65%
14st70	65.60%	53.49%	53.18%	54.23%	55.48%	44.43%
16eil76	52.02%	84.47%	42.98%	44.30%	26.85%	39.28%
16pr76	52.51%	58.54%	41.24%	40.46%	34.18%	37.80%
20kroA100	46.95%	54.78%	37.20%	39.32%	27.75%	32.63%
20kroB100	49.70%	52.11%	38.52%	38.94%	32.28%	30.81%
20kroC100	59.26%	63.04%	37.36%	38.46%	32.29%	30.77%
20kroD100	51.76%	58.84%	21.44%	37.51%	31.04%	31.99%
20kroE100	65.75%	85.81%	39.19%	41.34%	27.73%	31.52%
20rat99	69.73%	65.94%	50.80%	57.83%	28.84%	36.95%
20rd100	48.62%	59.43%	36.56%	37.28%	32.23%	29.66%
21eil101	48.04%	53.23%	32.64%	33.98%	32.25%	22.93%
21lin105	67.68%	77.57%	45.90%	48.24%	30.52%	32.81%
22pr107	40.67%	53.17%	56 02%	74 44%	24 22%	39.21%
25pr124	39 72%	45 97%	34 29%	35.02%	26.67%	30 29%
26bier127	33 58%	37 24%	24 59%	24.56%	23 16%	19.95%
26ch130	43 78%	34 70%	29.73%	30.30%	23 54%	20.92%
28pr136	42.08%	47.36%	31 48%	29.94%	20.31%	23.08%
20pr144	41 31%	43.86%	26 45%	31 48%	23.97%	21.83%
20p1111 30ch150	41.34%	41 59%	27.01%	21.00%	25.57%	21.00%
30kro 4150	37.47%	38.03%	30.12%	23.31%	23.01%	10 57%
30kroB150	32.86%	36.98%	23.41%	29.51%	26.07%	21.80%
31pr152	47.60%	51 33%	27.85%	27.02%	27 10%	26.01%
321150	30.63%	38.02%	27.03%	27.0270	10.00%	17.07%
39rat195	35.64%	34 82%	20.46%	25.84%	22 29%	23.48%
40d198	30 70%	44.08%	20.10%	24.09%	13 /3%	17.81%
40kroa200	24 58%	24 73%	16.82%	16 31%	13 31%	13.62%
40krob200	21.00%	25.53%	18 54%	19.36%	15 73%	18.93%
45te225	25.34%	23.00%	17 38%	16 19%	14.86%	15.04%
45tsp225	26.12%	26.90%	21.36%	25.30%	18 13%	17 71%
46pr226	24.65%	25.18%	30.03%	25.63%	18.21%	21.20%
53gil262	24.00%	28.80%	22 40%	18 50%	14.08%	15 58%
53pr264	18 12%	18.04%	25 50%	24.26%	16.84%	21 43%
56a280	10.1270	23 52%	21.88%	24.2070	16.16%	15 23%
60pr200	10.52%	10.80%	20.06%	20.1470	10.1070	16.40%
64lin318	19.5270 99.55%	21.81%	18 68%	25.0070 15.48%	19.35% 12.17%	14 40%
80rd400	18.46%	18 12%	17 10%	16.60%	15.61%	14.45%
848417	13.03%	17 70%	16.36%	14.07%	0.37%	19.13%
88pr/30	15.93%	18.04%	12.00%	14.0770	9.91%	13 / 3%
80pch442	16 30%	17.69%	15 59%	14.69%	11.01%	13.40%
00d403	22 48%	24 54%	14.35%	16 77%	13 54%	13.05%
115rot575	17.07%	24.0470	14.33%	14 50%	12.06%	13.00%
1151574	20.14%	15.61%	19.58%	14.05%	10.79%	12.00%
131p654	10.31%	13.0170	13 23%	12.85%	6.51%	10 11%
1394657	20.71%	18 89%	1/ 10%	14 57%	11 0102	11 170%
14511794	40.7170 15 790%	18.54%	11 810%	19.66%	11 500%	11 0107
14JU124 157ro+783	14 46%	15.0470	19 220%	12.0070	10.51%	10 0907
201pr1002	19 1007	14 060%	11 9907	11 /00%	0.01/0	0.9507
201p11002 212n1060	19.1070	13 990%	10.0907	10.900%	0.0270 9 5007	9.00% 9.950%
212u1000 217um1084	12.0470	13.3370	8 810%	0.28%	0.0070 7 740%	0.0070 7 990%
	12.21/0	10.1070	0.01/0	0.2070	01 #1.04	00.000
Avg	35.28%	38.22%	27.36%	28.72%	21.71%	23.38%

Table 2: Number of times, in percentage, that a chromosome is found into the hashtable before invoking the decoder functions.

5.1 Hashtable, graph reduction algorithm and ICM effectiveness

In this section, we evaluate the effectiveness of the hashtable, the reduction procedures, and the ICM strategy introduced in Section 3.

As reported in Section 4.2.1, the hashtable avoids invoking the decoder procedure for the

chromosomes that have been already met during the evolutionary process. It is worth noting that the invocation of *Decoder* on a chromosome requires i) to build a number of graphs equal to the number of alleles greater than 0.5 and ii) to solve a shortest path problem on each of these graphs. Taking into account the number of chromosomes generated during the evolutionary process, it is easy to see that *Decoder* is one of the most expensive operations carried out by BRKGA. For this reason, the use of the hashtable is crucial to reduce as much as possible the number of invocations of this procedure.

In Table 2 the number of avoided invocations of *Decoder*, because the chromosome is already into the hashtable, is reported, in percentage. The results on each row of the table are the average values obtained by performing 10 independent runs of the algorithm on each instance. This last statement holds for the next tables too. The table is vertically divided according to the T_{max} value (ω) and the type of profit used (g_1 and g_2). Under the *Instance* heading, we report the instance name. The percentage values are computed by using the formula: $100 \times \frac{numCrom-hits}{numCrom}$, where *numCrom* is the number of chromosomes on which the decoder should be invoked and *hits* is the number of times these chromosomes are already found into the hashtable. At the bottom, *Avg* reports the average percentage.

From the Avg values the effectiveness of the hashtable is evident because it reduces the number of invocations of *Decoder* from 20% to 38%. In particular, we observe that the lower is the ω value, the higher are the percentages. This occurs because the number of feasible solutions depends on the ω value and the lower is the number of feasible solutions the higher will be the number of hits obtained. By analyzing the single results, we observe that, generally, the percentage value decreases as the instance size increases because of a greater number of feasible solutions available. It is worth noting that there are instances where the percentage is greater than 80% and that only on 11 out of 306 instances this percentage is lower than 10%.

Regarding the graph reduction algorithm, in Figure 4 the percentage of vertices, arcs, and clusters removed during the preprocessing phase is shown for the instances with $\omega = 0.4$, $\omega = 0.6$ and $\omega = 0.8$, respectively.

The instance name is reported on the x-axis while on the y-axis the percentage of reduction is shown. Three bars are associated with each instance representing the percentage of vertices (blue),

Figure 4: Percentage of vertices, arcs and clusters removed by the preprocessing phase on the instances with (a) $\omega = 0.4$, (b) $\omega = 0.6$ and (c) $\omega = 0.8$, respectively.

arcs (red) and clusters (black) removed for that instance.

On the instances with $\omega = 0.4$, Figure 4(a), the number of vertices removed is greater than 20% on 30 out of 51 instances and this percentage of reduction is, in particular, observed on the instances with up to 300 vertices (i.e. 60pr299). By considering all the instances, the average percentage of vertices removed is around 27%. Even more interesting are the results obtained on the removal of the arcs where an average of 48% is observed. On 39 out of 51 instances, this percentage is greater than 20% while on 11 instances this percentage exceeds the 75% with a peak equal to 90% on the instance 22pr107. Finally, the percentage of clusters removed is significantly lower than the other two parameters but remains relevant with an average equal to 18% and 20 instances where this percentage is greater than 20%.

The bars in Figure 4(b) reveal that the percentages of removal on the instances with $\omega = 0.6$ are lower with respect to the instances with $\omega = 0.4$. This behaviour was expected because lower is the T_{max} value greater is the chance of the preprocessing phase to find vertices, arcs and clusters useless. Anyway, on average, we observe a percentage of vertices, arcs and clusters removed equal to 9.1%, 25.3% and 2.4%, respectively. The threshold of 20% is reached on 5 instances for the vertex removal, and on 30 instances for the arc removal. Only in one case (20rat99) the percentage of clusters removed is greater than 20%.

The results in Figure 4(c) certify the trend observed in the previous charts with a further reduction of the removal percentages. On average, the percentage of vertices, arcs, and clusters removed is equal to 6.3%, 21.1%, and 0.19%. There are 28 instances where the percentage of arcs removed is greater than 20% while the percentage of vertices and clusters removed is always lower than this threshold.

Summarizing, the results of Figure 4 highlights the effectiveness of the reduction procedures, in particular, when $\omega = 0.4$. It is worth noting that, whatever is the ω value, the percentage of arcs removed remains relevant.

In order to evaluate the impact of the graph reduction procedures and of ICM strategy, on the performance of BRKGA, we implemented a version of BRKGA without the reduction procedures (*noRed*) and another version without the ICM matrix (*noICM*). The comparison of the computational time of these three algorithms is reported in Table 3.

							BRKGA wi	thout red	luctions o	r without	ICM							
			ω =	= 0.4					ω =	- 0.6					$\omega =$	0.8		
Instance	BRKGA	g_1 noRed	noICM	BRKGA	g_2 noRed	noICM	BRKGA	g_1 noRed	noICM	BRKGA	g_2 noRed	noICM	BRKGA	g_1 noRed	noICM	BRKGA	g_2 noRed	noICM
11 berlin 52	1.24	12.53%	7.19%	1.23	16.53%	8.55%	1.42	8.15%	10.68%	1.44	5.14%	5.14%	1.67	3.42%	4.98%	1.41	1.91%	3.68%
11eil51	1.26	5.38%	4.83%	1.34	6.92%	5.29%	1.51	1.92%	6.35%	1.45	1.73%	6.02%	1.65	1.94%	4.24%	1.58	1.27%	4.24%
14st70	1.40	9.05%	5.34%	1.48	9.78%	5.26%	1.72	3.14%	7.10%	1.70	3.24%	7.30%	2.02	3.47%	7.04%	1.99	2.01%	11.19%
16eil76	1.56	7.65%	12.60%	1.38	8.04%	11.15%	1.92	3.81%	7.99%	1.91	3.77%	8.49%	2.42	2.85%	6.87%	2.23	6.06%	9.16%
16pr76	1.62	7.24%	7.92%	1.58	5.52%	8.05%	2.04	1.18%	9.27%	2.05	1.07%	9.21%	2.49	1.20%	4.69%	2.42	6.57%	9.30%
20kroA100	1.74	14.04%	10.41%	1.68	14.42%	10.55%	2.12	3.54%	14.98%	2.11	3.46%	14.22%	2.62	6.87%	14.66%	2.45	2.21%	14.68%
20kroB100	1.70	10.21%	8.39%	1.68	10.46%	8.68%	2.11	3.41%	14.82%	2.11	3.23%	14.85%	2.50	1.64%	15.81%	2.53	1.54%	18.76%
20kroC100	1.59	13.77%	12.77%	1.57	13.00%	9.62%	2.14	3.60%	15.04%	2.12	2.79%	13.70%	2.46	3.90%	13.79%	2.47	2.99%	13.26%
20kroD100	1.01	14.13%	8.00%	1.58	12.74%	8.11%	2.29	0.00%	14.74%	2.11	4.88%	13.35%	2.43	4.00%	13.23%	2.45	9.02%	10.7607
20kroE100	1.52	20.08%	4.1507	1.42	10.88%	2.96%	2.03	10.18%	9.31%	2.01	8.81%	9.40% 5 7007	2.45	0.02%	11.84%	2.51	4.38%	10.70%
20rat99	1.42	14.90%	4.1070	1.47	12 2007	4.2870 9.270%	1.01	2 46%	10.3170	1.00	0.0770	12.00%	2.02	2.94%	0.9370 14.04%	2.33	9.04%	20.4370
2010100 21.eil101	1.70	1 510%	14 1907	1.03	2 10%	15 910%	2.20	2 16%	19.9276	2.23	1.1070	14.90%	2.80	1.46%	0.51%	2.13	11 110%	11.00%
210n105	1.55	20.13%	5 83%	1.07	17.02%	5 16%	2.41	0.56%	0.41%	2.40	9.50%	0.25%	2.61	-1.4070	13 79%	2.63	0.81%	19.40%
22pr107	1.00	28.47%	5.87%	1.45	27.87%	4 55%	1.87	8.67%	8 24%	1.72	7.60%	12.24%	2.01	9.16%	20.00%	2.03	1.88%	18 36%
22pr107 25pr124	1.70	14.03%	11.69%	1.00	14.17%	11.00%	2.48	4 77%	16.07%	2.46	5 39%	17.80%	3.02	7.68%	17 79%	3.04	13 19%	10.00%
20pt124 26bior127	2.05	4 33%	17.16%	3.15	0.35%	15.51%	2.40	6.03%	10.30%	2.40	0.68%	7.63%	4.32	-1.30%	8.68%	4.08	-2.63%	10.9270
26ch130	2.36	2 76%	26.41%	2.41	8.83%	21.96%	2.81	1 78%	28.61%	2.80	0.50%	25 70%	3.41	3 79%	21.65%	3.64	4 07%	20.71%
28pr136	1.96	12.23%	14 37%	1.91	12 17%	14 94%	2.01	4 14%	25.50%	2.00	3 27%	20.1076	3.56	9.94%	29.13%	3 43	6.45%	21.35%
20pr144	2.10	12.20%	17.62%	2.08	12.19%	16.32%	3.06	8 68%	35.46%	3.09	10.73%	31.48%	3.50	12.83%	21.21%	3.48	8 71%	22.26%
30ch150	2.05	12.73%	23.50%	2.11	13.06%	28.22%	2.94	3.37%	29.85%	3.32	1.87%	20.27%	3.76	7.68%	25.88%	3.54	8.34%	27.64%
30kroA150	2.23	9.37%	20.04%	2.27	9.36%	19.16%	2.90	4.55%	31.53%	2.97	2.60%	23.20%	3.69	0.35%	24.12%	3.71	10.96%	21.36%
30kroB150	2.43	6.67%	23.52%	2.38	6.02%	22.60%	3.49	0.77%	28.17%	3.58	6.36%	27.21%	3.91	2.84%	24.53%	3.92	6.60%	21.95%
31pr152	1.97	14.61%	16.34%	1.94	14.99%	15.40%	3.14	2.01%	22.18%	3.12	2.78%	24.01%	3.76	1.01%	20.55%	3.52	6.20%	26.67%
32u159	2.37	19.45%	19.11%	2.28	14.10%	17.14%	3.10	8.55%	25.97%	3.12	7.50%	23.72%	4.10	10.20%	20.36%	4.15	7.94%	19.16%
39rat195	2.45	26.15%	22.03%	2.42	27.91%	24.77%	3.71	8.17%	23.02%	3.95	8.19%	30.56%	5.00	0.98%	26.26%	5.08	0.67%	26.93%
40d198	1.94	31.56%	12.17%	1.90	30.98%	12.33%	4.46	23.75%	41.98%	4.92	10.84%	21.61%	5.24	3.49%	28.78%	5.03	4.51%	28.62%
40kroa200	3.12	29.53%	44.15%	3.11	31.28%	38.79%	4.72	40.40%	32.65%	4.83	27.62%	33.06%	6.16	20.30%	32.79%	6.39	32.15%	30.18%
40krob200	3.09	36.23%	32.57%	3.00	34.72%	31.29%	5.04	19.80%	35.47%	5.11	19.16%	37.39%	6.34	24.79%	40.01%	6.00	38.83%	32.91%
45ts225	3.15	37.54%	39.64%	3.49	42.41%	47.05%	5.09	39.34%	39.65%	5.28	36.74%	34.32%	6.44	39.03%	34.42%	6.78	40.21%	32.33%
45tsp225	2.71	50.13%	36.85%	2.72	50.33%	32.23%	5.95	6.74%	36.94%	5.49	3.72%	38.13%	8.15	0.42%	35.10%	8.59	3.35%	38.08%
46pr226	2.87	44.54%	29.05%	2.85	43.94%	28.94%	5.16	9.65%	52.86%	5.25	5.43%	45.30%	7.68	16.62%	36.23%	7.64	19.06%	39.63%
53gil262	5.06	8.48%	34.00%	5.03	10.04%	44.65%	8.01	2.73%	38.29%	8.15	8.41%	47.12%	10.80	11.82%	42.63%	11.59	6.28%	39.74%
53pr264	3.56	83.94%	18.48%	3.55	77.15%	18.54%	7.05	2.54%	47.03%	6.59	4.23%	51.34%	11.96	9.89%	33.19%	11.38	6.25%	43.48%
56a280	3.64	50.69%	44.42%	4.00	76.95%	41.21%	8.24	-8.52%	46.26%	8.01	2.56%	50.18%	12.48	-3.29%	33.90%	12.52	-0.68%	34.01%
60pr299	4.02	65.83%	36.11%	4.26	65.23%	33.40%	8.35	5.75%	70.05%	8.22	1.34%	48.10%	14.44	-0.88%	42.00%	14.27	2.40%	44.88%
64lin318	7.49	7.80%	60.06%	7.18	10.20%	55.59%	12.70	4.99%	52.40%	12.46	-2.15%	50.87%	16.95	2.77%	43.06%	16.23	10.79%	49.85%
80rd400	11.41	8.73%	96.31%	12.76	0.36%	79.84%	18.44	1.93%	63.61%	18.79	8.91%	48.92%	24.71	2.46%	47.86%	25.19	3.90%	47.24%
84fl417	11.10	21.54%	78.61%	12.43	12.00%	68.60%	15.60	12.25%	61.44%	16.42	17.38%	65.67%	24.36	16.77%	42.85%	26.48	17.62%	52.47%
88pr439	20.61	-0.81%	60.45%	22.85	-0.48%	45.49%	28.59	7.45%	51.50%	29.84	-0.12%	45.86%	33.66	3.30%	49.71%	34.51	-3.30%	44.93%
89pcb442	14.24	2.01%	88.53%	14.91	2.23%	79.51%	21.98	2.56%	66.28%	23.47	0.83%	53.57%	30.06	-3.43%	51.10%	29.84	6.25%	55.28%
99d493	16.12	4.12%	78.64%	15.21	12.20%	72.66%	36.15	-2.98%	50.09%	35.20	4.18%	49.53%	45.72	3.86%	48.27%	49.19	6.88%	42.43%
115rat575	20.56	7.31%	99.96%	21.88	5.48%	89.76%	34.82	3.68%	77.08%	36.29	3.01%	69.51%	47.94	4.44%	59.99%	48.88	2.90%	60.01%
115u574	22.66	2.51%	99.11%	23.32	-1.92%	110.97%	40.98	1.31%	69.41%	40.54	2.22%	67.64%	55.65	1.21%	54.79%	56.14	2.83%	51.51%
131p654	25.53	35.87%	78.31%	25.67	32.98%	76.62%	48.26	16.53%	65.81%	46.93	11.15%	56.75%	79.01	22.15%	61.67%	79.63	22.43%	60.25%
132d657	27.65	-0.33%	94.26%	27.51	2.56%	100.02%	51.98	2.45%	61.71%	50.31	4.61%	79.62%	72.99	3.13%	57.68%	72.91	5.36%	55.33%
140U/24	35.69	2.79%	101.90%	30.05	-0.70%	108.10%	59.95	2.07%	80.33%	70.00	0.02%	19.80%	80.01	2.00%	07.49% 61.01%	83.79	4.47%	60.2007
10/rat/83	42.93	-2.41%	121.80%	44.28	-1.11%	110.81%	156.07	0.00%	88.87%	10.60	0.00%	80.20%	100.67	-0.03%	01.21% 57.60%	102.78	-2.00%	60.29%
201pr1002	88.97	-2.04%	114.050%	89.40	2.41%	120.17%	100.37	-0.09%	(1.79%) 79.79%	100.01	4.33%	70.29%	213.96	1.00%	07.08%	210.35	0.08%	01.30%
21201000 217mm1084	108.07	3.97%	114.95% 01.72%	05.07	-0.01% 49.09%	118.23%	185.13	4.23%	12.13% 75.67%	184.72	57.00%	74.10%	247.62	2.99%	57 98 ⁰⁷	248.01	0.83% 50.76%	67.06%
Ave	91.41	17 5507	91.73% 40.54%	95.07	42.02%	20 2007	144.19	7 50%	27.0007	140.02	7 100%	25 9407	193.37	00.20%	20.0197	160.99	00.70%	91 6607
Avg		11.3370	40.3470		11.1370	35.3270		1.3970	31.0970		1.1070	33.2470		0.0070	30.9170		0.2370	31.0070

Table 3: Impact on the BRKGA performance of the reduction procedures and *ICM* strategy. The gap percentage reports how much slower is BRKGA without these components.

The table is vertically divided according to the T_{max} value (ω) and the profit used (g_1 and g_2). Under the *Instance*, we report the instance name while under the heading *BRKGA* it is reported the computational time, in seconds, of this algorithm. The other two columns, *noRed* and *noICM*, report the percentage gap of their computational time with respect to the computational time of BRKGA, respectively. The percentage gap is positive when BRKGA is faster and negative otherwise. At the bottom, *Avg* reports the average percentage. The values of the *Avg* line show that, with $\omega = 0.4$, the version of BRKGA without the reduction procedures is 17.5% slower with the g_1 profit and 17.7% slower with g_2 profit. There are instances where this gap is greater than 50% but there are even instances where *noRed* results faster. This can happen because of the overhead generated by the cost of the reduction procedures but even because of the aspiration criterion that can significantly reduce the total number of iterations carried out by the algorithms if the best solution is found soon. Usually, the effectiveness of the reduction procedures decreases as the ω value increases (Figure 4), and, indeed, the average percentage gaps are lower when $\omega = 0.6$ and $\omega = 0.8$. In particular, with $\omega = 0.6$ the average percentage gap is equal to 7.5% and 7.1%, respectively while, with $\omega = 0.8$, the values are 6.6% and 8.2%.

Much more relevant is the impact of ICM strategy on the performance of BRKGA with respect to the reduction procedures. Indeed, from the Avg line, we can see that whatever are the values of ω and the type of profits considered, noICM is at least 30% slower than BRKGA and, in the worst case, the average gap is 40.5%. The detailed results show that it is never faster than BRKGA while on 192 out of 306 instances BRKGA results at least 20% faster than noICM and, in eleven instances, the gap is greater than 100%. These results highlight that the idea to save information rather than recompute them several times is effective and significantly reduces the computational time of BRKGA.

The results of Table 3 have shown the effectiveness of the reduction procedures and ICM strategy. However, it is interesting to know also the cost that we pay, in terms of computational time, to apply these strategies. This information is reported in Table 4 where the percentage computational time used for the reduction procedures and for the *ICM* strategy is shown. For readability reasons, the table reports only the results for g_1 profit because the results for g_2 are very similar. The table is vertically divided according to the T_{max} value (ω). Under the Instance heading, we report the instance name while under the *BRKGA* heading the computational time, in seconds, of this algorithm is reported. The other two columns, *Reductions* and *ICM*, show the percentage of time spent on the reduction procedures and to build the *ICM* matrix, respectively. Finally, the last line of the table reports the average percentage (Avg). The values in this last line show that, on average, the computational time required by the reduction procedures is lower than 1%, with respect to the total computational time, while the time spent for building the *ICM* matrix is lower than 2.14%. It is worth noting that, even analyzing the single results, the reduction procedures appear cheap because they never exceed the 4.45% of the total computational time. Much more time is, usually, required by ICM strategy that, in three cases, has required over 10% of the total time. Anyway, on 140 out of 153 instances this percentage is lower than or equal to 5%. Summarizing, according to the results shown in Table 3, the computational cost paid for these

	Computational time of the reduction procedures and the <i>ICM</i> strategy													
		$\omega = 0.4$			$\omega=0.6$			$\omega=0.8$						
Instance	BRKGA	Reductions	ICM	BRKGA	Reductions	ICM	BRKGA	Reductions	ICM					
11berlin52	1.24	0.00%	0.00%	1.42	0.00%	0.00%	1.67	0.00%	0.00%					
11eil51	1.26	0.00%	0.00%	1.51	0.00%	0.00%	1.65	0.00%	0.00%					
14st70	1 40	0.00%	0.00%	1 72	0.00%	0.00%	2.02	0.00%	0.00%					
16eil76	1.56	0.00%	0.00%	1.92	0.00%	0.00%	2.02	0.00%	0.00%					
16pr76	1.60	0.00%	0.00%	2.04	0.00%	0.00%	2.12	0.00%	0.00%					
$20 kro \Delta 100$	1.02	0.00%	0.00%	2.01	0.00%	0.00%	2.10	0.00%	0.00%					
20kroB100	1.74	0.00%	0.00%	2.12	0.00%	0.0070	2.02	0.00%	0.0070					
20kroC100	1.70	0.00%	0.00%	2.11	0.00%	0.0070	2.50	0.00%	0.2470					
20kroD100	1.55	0.00%	0.0070	2.14	0.00%	0.0070	2.40	0.00%	0.0070					
20kr0D100	1.01	0.00%	0.00%	2.29	0.00%	0.0070	2.45	0.00%	0.0070					
20kr0E100	1.02	0.00%	0.0070	2.05	0.00%	0.007	2.40	0.00%	0.00%					
20rat99	1.42	0.00%	0.00%	1.81	0.00%	0.00%	2.02	0.00%	0.00%					
20rd100	1.70	0.00%	0.00%	2.23	0.00%	0.00%	2.80	0.00%	0.00%					
2101101	1.93	0.00%	0.10%	2.41	0.00%	0.25%	3.01	0.00%	0.03%					
211in105	1.56	0.00%	0.00%	2.03	0.00%	0.00%	2.61	0.00%	0.27%					
22pr107	1.76	0.00%	0.00%	1.87	0.00%	0.00%	2.41	0.00%	0.00%					
25pr124	1.95	0.00%	0.00%	2.48	0.00%	0.40%	3.02	0.33%	0.33%					
26bier127	2.95	0.34%	0.34%	3.70	0.27%	0.27%	4.32	0.23%	0.23%					
26ch130	2.36	0.42%	0.42%	2.81	0.36%	0.36%	3.41	0.29%	0.29%					
28pr136	1.96	0.00%	0.51%	2.71	0.37%	0.37%	3.56	0.28%	0.28%					
29pr144	2.10	0.00%	0.48%	3.06	0.33%	0.33%	3.50	0.29%	0.29%					
30ch150	2.05	0.39%	0.49%	2.94	0.34%	0.68%	3.76	0.27%	0.45%					
30kroA150	2.23	0.45%	0.45%	2.90	0.34%	0.65%	3.69	0.27%	0.52%					
30kroB150	2.43	0.41%	0.41%	3.49	0.29%	0.54%	3.91	0.26%	0.51%					
31pr152	1.97	0.00%	0.51%	3.14	0.32%	0.32%	3.76	0.27%	0.27%					
32u159	2.37	0.00%	0.42%	3.10	0.32%	0.32%	4.10	0.24%	0.27%					
39rat195	2.45	0.00%	0.41%	3.71	0.35%	0.57%	5.00	0.40%	0.60%					
40d198	1.94	0.00%	0.52%	4.46	0.22%	0.45%	5.24	0.38%	0.57%					
40kroa200	3.12	0.74%	0.99%	4.72	0.64%	0.85%	6.16	0.49%	0.65%					
40krob200	3.09	0.65%	0.97%	5.04	0.60%	0.79%	6.34	0.47%	0.63%					
45 ts 225	3.15	0.63%	0.98%	5.09	0.59%	0.79%	6.44	0.47%	0.62%					
45tsp225	2.71	0.37%	0.74%	5.95	0.50%	0.84%	8.15	0.38%	0.61%					
46pr226	2.87	0.35%	1.01%	5.16	0.58%	0.77%	7.68	0.39%	0.52%					
53gil262	5.06	0.79%	1.27%	8.01	0.85%	1 19%	10.80	0.59%	0.87%					
53pr264	3 56	0.28%	0.56%	7.05	0.71%	1 14%	11.96	0.42%	0.67%					
56a280	3.64	0.55%	1 10%	8 24	0.73%	1 21%	12.48	0.52%	0.83%					
60pr200	4.02	0.50%	1.10%	8 35	0.90%	1.54%	14.44	0.52%	0.0070					
64lin318	7.49	1.07%	1.0270 1.75%	12 70	0.30%	1.0470	16.95	0.53%	1.03%					
80rd400	11.43	2 1 2 2	3.87%	18.44	1 20%	2 270%	24.71	0.04%	1.76%					
849417	11.41	1 540%	0.6170	15.60	1.25%	2.0170	24.71	0.9070	1 490%					
88nr420	20.61	1.0470	2.0370	15.00	1.3570	2.2070	24.30	0.8470	1.4070					
80pr459	20.01	1.1970	2.0170	20.09	1.0107	1.0470	20.06	0.1270	1.0007					
69pcb442	14.24	1.90%	4.0570	21.90	1.2170	2.0070	30.00	0.8970	1.9670					
990493 115+575	10.12	2.10%	4.0170	30.15	1.02%	4.03% 4.00%	40.72	0.81%	2.01%					
115rat5/5	20.56	2.38%	0.30%	34.82	1.03%	4.22%	47.94	1.18%	3.U1%					
11000/4	22.66	2.40%	0.41%	40.98	1.33%	3.33% 2.4507	55.65	0.99%	2.05%					
131p654	25.53	1.59%	4.12%	48.26	1.60%	3.45%	79.01	0.97%	2.10%					
132d657	27.65	3.00%	7.84%	51.98	1.67%	4.49%	72.99	1.19%	3.20%					
1450724	35.69	3.27%	8.37%	59.95	1.95%	4.98%	86.01	1.35%	3.47%					
157rat783	42.93	3.76%	9.48%	69.64	2.31%	5.84%	100.67	1.60%	4.05%					
201pr1002	88.97	3.31%	11.77%	156.37	1.87%	6.67%	213.96	1.37%	4.87%					
212u1060	108.07	3.14%	11.20%	185.13	1.83%	6.54%	247.62	1.37%	4.89%					
217vm1084	97.41	4.45%	10.20%	144.19	2.97%	6.78%	195.57	2.19%	5.00%					
Avg		0.86%	2.14%		0.65%	1.46%		0.49%	1.07%					

Table 4: Percentage of computational time dedicated by BRKGA to the reduction procedures and the building of ICM matrix.

reduction procedures and *ICM* strategy is widely repaid by the speed up gained by BRKGA.

5.2 The BRKGA effectiveness and performance

In this section, we verify the effectiveness and the performance of BRKGA by comparing it with the matheuristics MASOP proposed in [2], the VNS-SOP metaheuristic proposed in [27] and the best-known solutions, available in the literature. All the algorithms run on the same machine so that their CPU times are directly comparable. Obviously, the computational time of BRKGA includes the time required by the removal procedures and the time spent to build the *ICM* matrix. The results of this comparison, when $\omega = 0.4$ and the profit is g_1 , are shown in Table 5.

In order to verify the stability of the algorithms, the results on each row of the table are obtained by performing 10 independent runs of the algorithms on each instance. We report the instance name under the *Instance* heading and the best solution value, obtained by selecting the maximum value between the best value provided by the three algorithms and the best-known solution value, available in the literature, under the *Best* heading. The Best value is reported in bold whenever the best-known solution value is improved by one of the three algorithms. The next twelve headings report the best solution value (*Sol*), the average solution value (*Sol*_{avg}), the average computational time (*Time*), in seconds, and the percentage gap (*Gap*) between the *Best* value and *Sol* value of MASOP, VNS-SOP and BRKGA, respectively. More in detail, this gap is computed by using the formula: $100 \times \frac{Best-Sol}{Best}$. The Sol values are in bold whenever they coincide with the Best values. At the bottom, *Avg* reports the average computational time and the average gap of the algorithms. #*Best* reports the number of times that an algorithm finds the *Best* solution value and *Dev.st*% reports the percentage standard deviation computed on the percentage gap between *Sol* and *Sol*_{avg}.

From the values of #Best line, we note that MASOP finds 40 times the best solution and one of these times it provides a new best solution for the instance 115u574. Instead, the best solution is found 41 times by VNS-SOP that, in three cases (40d198, 80rd400, and 115rat575), improves the best-known solution. The best results are obtained by BRKGA with 42 best-known solutions found, and two of them (115rat575 and 157rat783) are new ones. Moreover, BRKGA shows the lowest average gap value equal to 0.19% but MASOP is very close with a value equal to 0.20%. These gap values show that these two algorithms provide solutions very close to the best-known ones. VNS-SOP is less effective with respect to the other algorithms because its average gap value is equal to 0.65%. Regarding the performance, we observe a significant difference between the

Set1						$\omega =$	0.4 a	nd g_1	L				
			MA	ASOP			VN	S-SOP			BR	KGA	
Instance	Best	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$
11 berlin 52	37	37	37.0	1.86	0.00%	37	37.0	0.28	0.00%	37	37.0	1.24	0.00%
11 eil 51	24	24	24.0	1.98	0.00%	24	24.0	0.26	0.00%	24	24.0	1.26	0.00%
14st70	33	33	33.0	4.46	0.00%	33	33.0	0.36	0.00%	33	33.0	1.40	0.00%
16eil76	40	40	40.0	3.48	0.00%	40	40.0	0.49	0.00%	40	40.0	1.56	0.00%
16pr76	47	47	47.0	6.06	0.00%	47	47.0	0.55	0.00%	47	47.0	1.62	0.00%
20kroA 100	42	42	42.0	6.29	0.00%	42	41.6	0.81	0.00%	42	42.0	1.74	0.00%
$20 \mathrm{kroB100}$	49	49	49.0	5.42	0.00%	49	49.0	0.68	0.00%	49	49.0	1.70	0.00%
$20 \mathrm{kroC100}$	42	42	42.0	5.80	0.00%	42	42.0	0.68	0.00%	42	42.0	1.59	0.00%
$20 \mathrm{kro} \mathrm{D100}$	39	39	39.0	6.42	0.00%	39	39.0	0.63	0.00%	39	39.0	1.61	0.00%
$20 \mathrm{kroE100}$	52	52	52.0	7.77	0.00%	52	52.0	0.69	0.00%	52	52.0	1.52	0.00%
20rat99	37	37	37.0	4.70	0.00%	37	37.0	0.57	0.00%	37	37.0	1.42	0.00%
20rd100	45	45	45.0	6.82	0.00%	45	45.0	0.68	0.00%	45	45.0	1.70	0.00%
21eil101	67	67	67.0	6.41	0.00%	67	67.0	0.95	0.00%	67	67.0	1.93	0.00%
21 lin 105	50	50	50.0	7.62	0.00%	50	50.0	0.71	0.00%	50	50.0	1.56	0.00%
22pr107	41	41	41.0	8.73	0.00%	41	41.0	0.61	0.00%	41	41.0	1.76	0.00%
25pr124	46	46	46.0	9.00	0.00%	46	46.0	1.00	0.00%	46	46.0	1.95	0.00%
26bier127	110	110	110.0	8.53	0.00%	110	110.0	1.93	0.00%	110	110.0	2.95	0.00%
26ch130	70	70	69.8	9.76	0.00%	70	70.0	1.22	0.00%	70	70.0	2.36	0.00%
28pr136	53	53	53.0	7.61	0.00%	53	53.0	1.34	0.00%	53	53.0	1.96	0.00%
29pr144	60	60	60.0	9.47	0.00%	60	60.0	1.20	0.00%	60	60.0	2.10	0.00%
30ch150	61	61	59.8	2.35	0.00%	61	61.0	1.60	0.00%	61	61.0	2.05	0.00%
30kroA150	58	58	58.0	9.02	0.00%	58	58.0	1.67	0.00%	58	58.0	2.23	0.00%
30kroB150	66	66	66.0	7.88	0.00%	66	65.9	1.58	0.00%	66	66.0	2.43	0.00%
31pr152	57	57	57.0	8.95	0.00%	57	57.0	1.11	0.00%	57	57.0	1.97	0.00%
32u159	76	76	76.0	11.93	0.00%	76	76.0	2.07	0.00%	76	76.0	2.37	0.00%
39rat195	71	71	71.0	13.53	0.00%	71	71.0	2.32	0.00%	71	71.0	2.45	0.00%
40d198	70	67	67.0	9.99	4.29%	70	70.0	1.88	0.00%	67	67.0	1.94	4.29%
40kroa200	92	92	92.0	14.36	0.00%	92	92.0	2.93	0.00%	92	92.0	3.12	0.00%
40krob200	87	87	87.0	10.79	0.00%	87	87.0	3.00	0.00%	87	87.0	3.09	0.00%
45ts225	101	101	101.0	11.76	0.00%	101	101.0	4.20	0.00%	101	101.0	3.15	0.00%
45tsp225	80	80	80.0	12.86	0.00%	80	80.0	3.25	0.00%	80	80.0	2.71	0.00%
46pr226	86	86	85.4	15.04	0.00%	86	86.0	2.82	0.00%	86	86.0	2.87	0.00%
53gil262	105	105	104.8	19.42	0.00%	105	104.2	5.54	0.00%	105	104.7	5.06	0.00%
53pr264	128	128	128.0	36.52	0.00%	128	128.0	5.21	0.00%	127	127.0	3.56	0.78%
56a280	107	107	107.0	19.05	0.00%	106	105.1	5.59	0.93%	107	107.0	3.64	0.00%
60pr299	131	131	131.0	29.18	0.00%	131	130.6	6.72	0.00%	131	131.0	4.02	0.00%
64lin318	169	169	169.0	28.91	0.00%	169	168.8	9.28	0.00%	169	169.0	7 49	0.00%
80rd400	209	208	206.5	65.05	0.48%	209	208.2	16.41	0.00%	208	207.6	11 41	0.48%
84fl417	201	201	175.5	48.04	0.00%	201	201.0	14 48	0.00%	201	200.6	11 10	0.00%
88pr/39	335	334	333.0	72 11	0.30%	222	332.4	33.07	0.60%	334	320.0	20.61	0.30%
89nch442	224	223	222.2	65.88	0.45%	223	220.9	24 85	0.45%	224	221.9	14 24	0.00%
99d493	278	278	222.2	92.11	0.00%	278	275.9	25.43	0.00%	278	278.0	16.12	0.00%
115rat575	264	262	259.5	101 /0	0.0070	264	258.0	26.40	0.00%	264	210.0	20.56	0.00%
1151574	275	202	200.0 270.2	191.40	0.00%	204	265.1	30.32	1.82%	204	260.5	20.00	0.0070
131p654	215	215	215.0	102.31	0.00%	210	200.1	30.78	0.00%	214	203.1	25.53	0.00%
1324657	308	304	303.0	246 30	1 30%	300	205.0	46 75	2.60%	305	200.3	20.00 27.65	0.0070
145794	206	204	201.0	240.39 172.99	0.61%	215	295.0	40.75 64.04	2.0070	202	299.3	25.60	0.9170
140u124 157ro+799	3/0	944 949	344.0	205 14	0.0170	946 946	221 0	80.02	0.8607	940 940	219 0	49.09	0.9270
201pr1009	526	040 525	529 F	440.44 659.11	0.2970	040 510	331.2 401.4	140.92	0.0070 2 1707	549 525	507 9	42.93	0.00%
201p11002	562	550	002.0 520 0	792.11	0.1970	525	491.4 591.9	149.07	0.1770 4.0707	569	528.0	108.07	0.19%
212u1000	679	009	004.0 656.0	162 00	0.7170	222	521.Z	101.21	4.9170 14 E007	203	000.0 655 C	07 41	1.00%
$\frac{217 \text{vm1084}}{\Delta \text{vg}}$	072	000	000.9	403.80	0.89%	374	551.9	221.34	14.08%	003	0.660	97.41	0 1007
#Bost				10.04	/0			20.00	/1			12.09	10.1970
$\frac{\#\text{Dest}}{\text{Dev.st}\%}$	 		1.90%		40		1.25%		41		1.05%		42

Table 5: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with $\omega = 0.4$ and g_1 profit.

average computational time of MASOP and of BRKGA: the former algorithm requires 73 seconds, while the latter only 12 seconds. Moreover, in the worst case, MASOP needs 723 seconds while

Set1						$\omega = 0.4$	and	92					
			MA	SOP			VNS-	SOP			BRF	GA	
Instance	Best	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	\mathbf{Time}	Gap%
11berlin52	1829	1829	1829.0	1.87	0.00%	1829	1829.0	0.29	0.00%	1829	1829.0	1.23	0.00%
11eil51	1279	1279	1279.0	2.09	0.00%	1279	1279.0	0.26	0.00%	1279	1279.0	1.34	0.00%
14st70	1672	1672	1672.0	4.39	0.00%	1672	1672.0	0.40	0.00%	1672	1672.0	1.48	0.00%
16eil76	2223	2223	2223.0	4.92	0.00%	2223	2223.0	0.51	0.00%	2223	2223.0	1.38	0.00%
16pr76	2449	2449	2449.0	5.96	0.00%	2449	2449.0	0.56	0.00%	2449	2449.0	1.58	0.00%
20kroA100	2151	2151	2151.0	6.42	0.00%	2151	2151.0	0.66	0.00%	2151	2151.0	1.68	0.00%
20kroB100	2431	2202	2202.0	2.14	9.42%	2431	2431.0	0.66	0.00%	2431	2431.0	1.68	0.00%
20kroC100	2174	2174	2174.0	5.57	0.00%	2174	2174.0	0.67	0.00%	2174	2174.0	1.57	0.00%
20kroD100	1740	1740	2415.0	0.07	0.00%	1740	2415.0	0.63	0.00%	1740	2415.0	1.08	0.00%
20kroE100	2415	2415 1005	2415.0	1.02	0.00%	2415	2415.0 1005.0	0.09	0.00%	2415 1005	2415.0 1005.0	1.42	0.00%
201at55	2228	1900	2228.0	6.54	0.00%	1303	2228.0	0.50	0.00%	2200	2228.0	1.47	0.00%
2010100 21eil101	3365	3365	3365.0	7 10	0.00%	3365	3365.0	0.09	0.00%	3365	3365.0	1.05	0.00%
21lin105	2489	2489	2489.0	7.10	0.00%	2489	2489.0	0.55	0.00%	2489	2489.0	1.07	0.00%
22pr107	2123	2123	2123.0	8.42	0.00%	2123	2123.0	0.63	0.00%	2123	2123.0	1.65	0.00%
25pr124	2302	2302	2302.0	7.29	0.00%	2302	2302.0	1.08	0.00%	2302	2302.0	1.88	0.00%
26bier127	5420	5420	5420.0	10.35	0.00%	5420	5420.0	1.94	0.00%	5420	5420.0	3.15	0.00%
26ch130	3423	3423	3412.2	6.84	0.00%	3423	3423.0	1.36	0.00%	3423	3419.4	2.41	0.00%
28pr136	2699	2699	2699.0	7.80	0.00%	2699	2691.6	1.38	0.00%	2699	2699.0	1.91	0.00%
29pr144	3055	3055	3055.0	10.13	0.00%	3055	3055.0	1.22	0.00%	3055	3055.0	2.08	0.00%
30ch150	3131	3078	3076.1	9.89	1.69%	3131	3131.0	1.54	0.00%	3078	3078.0	2.11	1.69%
30kroA150	3039	3039	3039.0	10.01	0.00%	3039	3039.0	1.61	0.00%	3039	3039.0	2.27	0.00%
30kroB 150	3172	3172	3172.0	9.02	0.00%	3172	3172.0	1.67	0.00%	3172	3172.0	2.38	0.00%
31pr152	2915	2915	2915.0	9.15	0.00%	2915	2915.0	1.12	0.00%	2915	2915.0	1.94	0.00%
32u159	4002	4002	4002.0	10.41	0.00%	4002	4000.8	1.95	0.00%	4002	4002.0	2.28	0.00%
39rat195	3656	3656	3656.0	14.73	0.00%	3656	3656.0	2.33	0.00%	3656	3656.0	2.42	0.00%
40d198	3595	3400	3400.0	10.30	5.42%	3595	3595.0	1.96	0.00%	3400	3400.0	1.90	5.42%
40kroa 200	4550	4550	4550.0	15.76	0.00%	4550	4550.0	3.05	0.00%	4550	4550.0	3.11	0.00%
40krob 200	4348	4348	4348.0	12.58	0.00%	4348	4348.0	3.07	0.00%	4348	4348.0	3.00	0.00%
45 ts 225	5037	5037	5037.0	18.16	0.00%	5037	4945.0	4.63	0.00%	5037	5037.0	3.49	0.00%
45 tsp 225	4297	4297	4297.0	16.11	0.00%	4297	4297.0	3.16	0.00%	4297	4297.0	2.72	0.00%
46pr226	4403	4403	4394.6	14.74	0.00%	4403	4403.0	2.68	0.00%	4403	4403.0	2.85	0.00%
53gil262	5330	5330	5330.0	20.92	0.00%	5330	5284.9	5.76	0.00%	5330	5330.0	5.03	0.00%
53pr264	6423	6423	6423.0	38.43	0.00%	6423	6423.0	5.35	0.00%	6397	6383.5	3.55	0.40%
56a280	5630	5630	5611.3	23.15	0.00%	5630	5605.0	6.30	0.00%	5630	5606.3	4.00	0.00%
60pr299	6600	6600	6600.0	31.91	0.00%	6600	6600.0	6.91	0.00%	6600	6600.0	4.26	0.00%
0411n318	8000	10995	8000.0	35.88	1.00%	10066	8093.1	16.01	0.00%	10974	10916.6	10.76	0.00%
80F0400 849417	10900	10820	10752.5	09.09 46 79	1.29%	10900	10000.0	10.91	0.00%	10874	10810.0	12.70	0.8470
88pr430	17082	10133	9575.4 17013.5	40.75	0.30%	17022	16804.6	14.95 31.13	0.00%	10133	10125.4	12.45	0.30%
80pcb449	11697	11565	11546.3	70.00	0.20%	11627	11502.1	01.10 00.07	0.3576	11627	11587.6	14.01	0.00%
004403	1/12/	1/191	14083.3	19.99	0.00%	130027	13002.1	22.27	0.00%	14191	14131.0	15.91	0.00%
115rat575	13367	13300	13203.0	296.66	0.00%	13203	12950.8	41 04	1 23%	13367	13293.0	21.88	0.00%
1150574	14046	13969	13739.6	124.07	0.55%	13782	12300.0 13407.2	37 37	1.88%	14046	13823.3	23.32	0.00%
131p654	16003	16003	16003.0	260.42	0.00%	15983	15958 9	35 53	0.12%	16003	15902.5	25.67	0.00%
132d657	15903	15855	15790.2	311.43	0.30%	15141	14633.2	46.81	4.79%	15903	15738.4	27.51	0.00%
145u724	17230	17230	17127.2	216.07	0.00%	16616	15998.6	69.03	3.56%	17094	16974.3	36.05	0.79%
157rat783	18216	18018	17720.8	315.26	1.09%	17889	17088.8	73.92	1.80%	18216	17838.8	44.28	0.00%
201pr1002	27275	26239	26086.2	766.51	3.80%	25357	24632.4	149.33	7.03%	27189	26369.8	89.40	0.32%
212u1060	28221	27348	26638.9	771.67	3.09%	26463	25952.5	181.95	6.23%	28221	27458.3	110.62	0.00%
$217 \mathrm{vm} 1084$	34398	34291	33818.5	710.76	0.31%	31473	27875.1	217.37	8.50%	34398	33799.6	95.07	0.00%
Avg				89.98	0.56%			20.37	0.72%			12.57	0.19%
#Best					37				40				44
Dev.st%			1.14%				1.88%				0.70%		

Table 6: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with $\omega = 0.4$ and g_2 profit.

BRKGA never requires more than 108 seconds. With an average time of 20 seconds, also VNS-SOP results much faster than MASOP but slower than BRKGA. Finally, BRKGA is the more stable algorithm on these instances with a Dev.st% value equal to 1.05%, followed by VNS-SOP with 1.25%, and MASOP with 1.90%.

In Table 6 the results with $\omega = 0.4$ and g_2 profit are reported. In these instances, we observe a better behaviour of BRKGA with respect to the other two algorithms. The #Best value of BRKGA is equal to 44, whereas for VNS-SOP and MASOP it is equal to 40 and 37. Moreover, the best-known solutions are improved 8, 5, and 4 times by BRKGA, MASOP and VNS-SOP, respectively. It is worth noting that, in these instances, the average gap value of BRKGA is equal to 0.19% and that only in two cases its percentage gap is over 1%. Less effective are MASOP and VNS-SOP that show an average gap value equal to 0.56% and 0.72%, respectively. Moreover, the Gap% value is greater than 1% seven times for MASOP and 8 times for VNS-SOP. Regarding the performance, it is interesting to observe that the computational time of BRKGA and VNS-SOP are very similar to the values reported in Table 5. This means that the performance of these two algorithms is not affected by profit considered. We will see that this trend will be confirmed even in the other tables. On the contrary, with g_2 profit, the computational time of MASOP significantly increases, passing from 73 to 89.9 seconds with a peak of 771 seconds. The most stable algorithm results again BRKGA with a Dev.st% value equal to 0.70% while for MASOP and VNS-SOP this value is equal to 1.14% and 1.88%, respectively.

From the results of Tables 5 and 6, we can conclude that BRKGA is the best algorithm in terms of solution quality, performance and stability when $\omega = 0.4$. Regarding the other two algorithms, VNS-SOP is much faster than MASOP, but less effective.

Table 7 shows the results of the three algorithms with $\omega = 0.6$ and g_1 profit. Here, the most effective algorithm is MASOP with a #Best value equal to 45 and an average gap equal to 0.09%. Moreover, MASOP finds six times a solution better than the best-known one, and it is the most stable algorithm. The second place is obtained by BRKGA with an average gap equal to 0.28% and a #Best value equal to 38. The #Best value of VNS-SOP is similar to the one of BRKGA, however, its average gap is higher with a value equal to 0.87%. Moreover, VNS-SOP appears less stable on these instances with a Dev.st% value close to 2%.

Regarding the performance, BRKGA is the fastest algorithm with an average time of 20 seconds and a peak of 185 seconds. The average time of MASOP and VNS-SOP is equal to 45 and 35 seconds, with a peak equal to 285 and 410 seconds, respectively. These values show that BRKGA is 120% faster than MASOP and 70% faster than VNS-SOP. Moreover, from the computational

Set1						$\omega =$	0.6 a	nd g_1	L				
			MA	SOP			VN	S-SOP			BR	KGA	
Instance	Best	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$
11 berlin 52	43	43	43.0	2.40	0.00%	43	43.0	0.37	0.00%	43	43.0	1.42	0.00%
11eil51	39	39	39.0	5.41	0.00%	39	39.0	0.34	0.00%	39	39.0	1.51	0.00%
14st70	50	50	50.0	4.68	0.00%	50	50.0	0.53	0.00%	50	50.0	1.72	0.00%
16eil76	59	59	58.8	3.60	0.00%	59	59.0	0.67	0.00%	59	59.0	1.92	0.00%
16pr76	65	65	65.0	7.89	0.00%	65	65.0	0.78	0.00%	65	65.0	2.04	0.00%
20kroA100	65	65	65.0	7.87	0.00%	65	65.0	0.90	0.00%	65	65.0	2.12	0.00%
20kroB100	66	66	66.0	8.51	0.00%	66	66.0	0.90	0.00%	66	66.0	2.11	0.00%
$20 \mathrm{kroC100}$	62	62	62.0	6.63	0.00%	62	62.0	1.01	0.00%	62	62.0	2.14	0.00%
20kroD 100	64	64	64.0	10.15	0.00%	64	64.0	0.89	0.00%	64	64.0	2.29	0.00%
20 kroE 100	63	63	63.0	7.36	0.00%	63	63.0	0.95	0.00%	63	63.0	2.03	0.00%
20rat99	52	52	52.0	8.71	0.00%	52	52.0	0.84	0.00%	52	52.0	1.81	0.00%
20rd100	72	72	72.0	2.49	0.00%	72	72.0	1.05	0.00%	72	72.0	2.23	0.00%
21eil101	82	82	82.0	7.62	0.00%	82	82.0	1.29	0.00%	82	82.0	2.41	0.00%
21 lin 105	78	78	78.0	9.84	0.00%	78	78.0	1.04	0.00%	78	78.0	2.03	0.00%
22pr107	53	53	53.0	12.74	0.00%	53	53.0	0.94	0.00%	53	53.0	1.87	0.00%
25pr124	75	75	75.0	12.14	0.00%	75	75.0	1.43	0.00%	75	75.0	2.48	0.00%
26 bier 127	118	118	117.8	5.30	0.00%	118	118.0	2.90	0.00%	118	117.8	3.70	0.00%
26 ch 130	99	98	98.0	5.95	1.01%	99	99.0	2.60	0.00%	98	98.0	2.81	1.01%
28pr136	89	89	89.0	8.51	0.00%	89	89.0	1.93	0.00%	89	89.0	2.71	0.00%
29pr144	98	98	98.0	7.31	0.00%	98	97.9	1.70	0.00%	98	98.0	3.06	0.00%
30ch150	96	96	96.0	8.96	0.00%	96	95.4	2.28	0.00%	96	96.0	2.94	0.00%
30kro $A150$	90	90	90.0	10.45	0.00%	90	89.0	2.19	0.00%	90	90.0	2.90	0.00%
30kroB 150	105	105	105.0	8.31	0.00%	105	103.7	2.89	0.00%	105	103.9	3.49	0.00%
31pr152	105	105	105.0	12.17	0.00%	105	105.0	1.44	0.00%	105	105.0	3.14	0.00%
32u159	114	114	114.0	10.97	0.00%	114	114.0	2.48	0.00%	114	114.0	3.10	0.00%
39rat195	118	118	117.8	18.24	0.00%	118	117.3	3.57	0.00%	118	117.4	3.71	0.00%
40d198	160	160	160.0	17.41	0.00%	160	160.0	5.23	0.00%	160	159.6	4.46	0.00%
40kroa200	142	142	141.7	18.08	0.00%	142	141.1	5.06	0.00%	142	141.4	4.72	0.00%
40krob200	138	138	137.3	15.13	0.00%	138	137.1	6.03	0.00%	138	137.4	5.04	0.00%
45 ts 225	152	152	151.1	6.40	0.00%	152	151.0	7.82	0.00%	152	151.2	5.09	0.00%
45 tsp 225	147	146	146.0	21.47	0.68%	147	146.3	4.90	0.00%	146	145.7	5.95	0.68%
46pr226	162	162	162.0	10.20	0.00%	162	161.4	5.69	0.00%	162	162.0	5.16	0.00%
53gil262	177	176	176.0	17.56	0.56%	176	173.3	8.63	0.56%	177	175.9	8.01	0.00%
53pr264	162	162	161.5	29.49	0.00%	162	160.4	7.40	0.00%	162	161.4	7.05	0.00%
56a280	164	164	163.5	23.80	0.00%	164	163.8	9.33	0.00%	164	161.9	8.24	0.00%
60pr299	187	187	187.0	25.48	0.00%	177	175.0	9.39	5.35%	187	187.0	8.35	0.00%
64lin318	256	256	255.1	21.96	0.00%	256	249.4	15.80	0.00%	256	255.1	12.70	0.00%
80rd400	295	291	288.5	41.04	1.36%	294	287.5	24.83	0.34%	295	286.4	18.44	0.00%
84fl417	288	288	285.9	35.30	0.00%	286	254.3	17.73	0.69%	288	284.9	15.60	0.00%
88pr439	385	385	384.1	47.22	0.00%	385	383.5	36.33	0.00%	384	382.7	28.59	0.26%
89pcb442	327	325	322.8	58.24	0.61%	326	314.1	34.08	0.31%	323	319.0	21.98	1.22%
99d493	406	406	404.1	82.79	0.00%	402	399.1	67.96	0.99%	405	399.6	36.15	0.25%
115rat575	396	396	391.6	102.67	0.00%	392	377.9	59.25	1.01%	394	383.2	34.82	0.51%
115u574	444	442	441.0	77.04	0.45%	435	427.2	69.96	2.03%	440	434.1	40.98	0.90%
131 p 654	529	529	528.9	118.69	0.00%	476	470.4	40.17	10.02%	529	518.1	48.26	0.00%
132d657	478	478	474.1	145.54	0.00%	463	456.6	91.08	3.14%	468	459.3	51.98	2.09%
145u724	514	514	510.9	120.72	0.00%	494	476.6	114.56	3.89%	508	502.2	59.95	1.17%
157rat783	524	524	517.4	257.50	0.00%	515	495.4	130.95	1.72%	521	503.5	69.64	0.57%
201pr1002	770	770	762.6	249.39	0.00%	736	716.3	268.70	4.42%	751	740.5	156.37	2.47%
212u1060	827	827	821.8	285.05	0.00%	790	753.6	305.65	4.47%	812	790.9	185.13	1.81%
217vm1084	871	871	867.3	269.00	0.00%	822	779.0	410.45	5.63%	860	834.8	144.19	1.26%
Avg				45.32	0.09%			35.19	0.87%			20.60	0.28%
#Best					45				36				38
Dev st %	ı		0.34%				1.96%				0.93%		

Table 7: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with $\omega = 0.6$ and g_1 profit.

times of VNS-SOP, it is evident that the performance of this algorithm is affected by the increment of the ω value. In fact, its average time is almost doubled with respect to the previous tables.

Set1						$\omega = 0.6$	and	g_2					
			MA	SOP			VNS	-SOP			BRF	GA	
Instance	Best	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$
11berlin52	2190	2190	2190.0	3.03	0.00%	2190	2190.0	0.37	0.00%	2190	2190.0	1.44	0.00%
11eil51	1911	1911	1911.0	5.14	0.00%	1911	1911.0	0.35	0.00%	1911	1911.0	1.45	0.00%
14st70	2589	2589	2589.0	7.02	0.00%	2589	2589.0	0.53	0.00%	2589	2589.0	1.70	0.00%
16eil76	3119	3119	3119.0	5.30	0.00%	3119	3119.0	0.68	0.00%	3119	3119.0	1.91	0.00%
16pr76	3275	3275	3275.0	8.22	0.00%	3275	3275.0	0.80	0.00%	3275	3275.0	2.05	0.00%
20kroA100	3192	3192	3192.0	6.36	0.00%	3192	3192.0	0.94	0.00%	3192	3192.0	2.11	0.00%
20kroB100	3203	3203	3203.0	7.80	0.00%	3203	3203.0	0.92	0.00%	3203	3203.0	2.11	0.00%
20kroC100	3110	3110	3110.0	6.20	0.00%	3110	3110.0	0.96	0.00%	3110	3110.0	2.12	0.00%
20kroD100	3133	3133	3133.0	10.74	0.00%	3133	3133.0	0.90	0.00%	3133	3133.0	2.11	0.00%
20kroE100	2950	2950	2950.0	8.08	0.00%	2950	2950.0	0.97	0.00%	2950	2950.0	2.01	0.00%
20rat99	2643	2643	2643.0	8.01	0.00%	2643	2643.0	0.87	0.00%	2643	2643.0	1.83	0.00%
20rd100	3591	3585	3585.0	5.22	0.17%	3591	3588.0	1.33	0.00%	3585	3585.0	2.23	0.17%
21ei1101	4187	4187	4186.2	8.81	0.00%	4187	4185.0	1.50	0.00%	4187	4187.0	2.46	0.00%
211in105	3955	3955	3955.0	9.33	0.00%	3955	3955.0	1.05	0.00%	3955	3955.0	2.01	0.00%
22pr107	2097	2697	2697.0	12.51	0.00%	2697	2697.0	0.90	0.00%	2697	2097.0	1.72	0.00%
25pr124	3763	3763	3763.0	11.44	0.00%	3763	3763.0	1.49	0.00%	3763	3763.0	2.46	0.00%
20Dier127	5192	5882	5192.0	9.54	0.00%	5882	5192.0	2.82	0.00%	5882	5192.0	3.95	0.00%
2001130 28pm126	0120 4570	5125 4570	0120.0 4570.0	4.98	0.00%	5125 4570	0120.0 4570.0	1.02	0.00%	0120 4570	0120.0 4570.0	2.80	0.00%
20pr130	4047	4019	4047.0	9.10	0.00%	4017	4016.4	1.00	0.00%	4017	4047.0	2.70	0.007
29pr144 20cb150	4947	4947	4947.0	1.07	0.00%	4947	4910.4	1.00	0.00%	4947	4947.0	0.09 9.99	0.00%
20lmo A 150	4820	4820	4823.0	9.17	0.00%	4820	4819.0	2.40	0.00%	4820	4820.0	3.32 2.07	0.00%
30kroB150	5192	4042	4042.0 5193.0	0.58	0.00%	4042 5190	4409.4 5070.6	2.20	0.00%	4044	4042.0 5191.5	2.97	0.00%
31pr152	5235	5225	5225.0	11.08	0.00%	5225	5235.0	1.40	0.00%	5225	5225.0	3.10	0.00%
32,150	5006	5006	5006.0	11.50	0.00%	5006	5006.0	2.54	0.00%	5006	5006.0	3.12	0.00%
30rat105	5846	5846	5830.1	18.88	0.00%	5846	5820.2	2.54	0.00%	5846	5846.0	3.05	0.00%
40d198	8102	8102	8102.0	17.41	0.00%	8102	8102.0	5.84	0.00%	8102	8102.0	4 92	0.00%
40kroa200	7105	7105	7104.6	17.36	0.00%	7105	7062.4	4 90	0.00%	7105	7104.6	4.83	0.00%
40krob200	6943	6943	6943.0	14 57	0.00%	6943	6884.8	6.01	0.00%	6943	6940.0	5.11	0.00%
45ts225	7948	7948	7896.7	8.89	0.00%	7948	7853.5	7.26	0.00%	7948	7918.2	5.28	0.00%
45tsp225	7603	7603	7603.0	19.03	0.00%	7603	7584.0	4.94	0.00%	7603	7603.0	5.49	0.00%
46pr226	8280	8280	8280.0	12.60	0.00%	8280	8233.0	4.82	0.00%	8280	8280.0	5.25	0.00%
53gil262	8864	8864	8854.6	34.77	0.00%	8864	8862.4	8.60	0.00%	8864	8863.4	8.15	0.00%
53pr264	8404	8404	8404.0	30.08	0.00%	8404	8397.0	7.24	0.00%	8404	8404.0	6.59	0.00%
56a280	8470	8470	8468.1	25.79	0.00%	8470	8330.7	9.65	0.00%	8470	8468.1	8.01	0.00%
60pr299	9544	9544	9544.0	23.69	0.00%	9495	8939.9	10.58	0.51%	9544	9496.3	8.22	0.00%
64lin318	13188	13188	13188.0	21.22	0.00%	13185	13038.3	14.97	0.02%	13188	13188.0	12.46	0.00%
80rd400	15147	15051	14983.9	38.14	0.63%	15147	15009.8	21.94	0.00%	15118	14901.9	18.79	0.19%
84fl417	14937	14937	14937.0	43.20	0.00%	14812	12890.8	16.79	0.84%	14937	14826.8	16.42	0.00%
88pr439	19642	19640	19613.2	82.12	0.01%	19601	19489.7	40.23	0.21%	19642	19516.9	29.84	0.00%
89 pcb 442	16644	16523	16455.4	61.87	0.73%	16341	16099.6	35.83	1.82%	16644	16463.7	23.47	0.00%
99d493	20584	20574	20481.5	74.17	0.05%	20348	20060.5	61.42	1.15%	20376	20216.1	35.20	1.01%
115 rat 575	20062	19962	19817.6	103.39	0.50%	19811	18977.7	63.52	1.25%	19933	19530.3	36.29	0.64%
115u574	22685	22606	22149.3	75.50	0.35%	21688	20976.8	63.78	4.39%	22542	22032.8	40.54	0.63%
131 p 654	26905	26905	26904.4	134.53	0.00%	26636	24064.8	49.55	1.00%	26905	25828.1	46.93	0.00%
132d657	24186	24132	24013.7	146.78	0.22%	23867	23225.9	91.32	1.32%	24135	23644.3	50.31	0.21%
145u724	26564	26510	26302.3	173.86	0.20%	25459	24562.6	111.10	4.16%	26564	25945.0	60.15	0.00%
157rat783	26883	26740	26516.8	210.35	0.53%	25512	25076.3	138.19	5.10%	26739	25794.7	70.60	0.54%
201 pr 1002	39262	39123	38537.7	231.66	0.35%	37133	36207.1	264.15	5.42%	38336	37611.0	155.51	2.36%
212u1060	41533	41362	41042.7	434.21	0.41%	38921	37879.5	348.27	6.29%	40311	39577.9	184.72	2.94%
217vm1084	44641	44573	44325.9	341.70	0.15%	41730	40052.2	365.50	6.52%	43938	42925.3	146.62	1.57%
Avg				51.03	0.08%			35.20	0.79%			20.67	0.20%
#Best					38				35				41
Dev.st $\%$			0.41%				$\mathbf{2.46\%}$				0.99%		

Table 8: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with $\omega = 0.6$ and g_2 profit.

The results of the three algorithms with profit type g_2 are reported in Table 8. This time BRKGA reports the highest #Best value equal to 41, whereas for MASOP and VNS-SOP this value is equal to 38 and 35. Moreover, four times BRKGA improves the best-known solution while MASOP does it one time and VNS-SOP three times. The best average gap is shown by MASOP that remains even the most stable algorithm. With a value equal to 0.20% the average gap of BRKGA is close to the one of MASOP while for VNS-SOP this value is around 0.80%. Finally, the computational time of BRKGA and VNS-SOP are very similar to the ones shown in the previous table, certifying that the profit type does not affect their performance. On the contrary, we again observe that, with g_2 profit, the computational time of MASOP increases. In particular, its peak here is equal to 434 seconds, while in Table 7 it was equal to 285. For BRKGA this peak remains around 185 seconds while for VNS-SOP is equal to 365 seconds.

Summarizing the results of Tables 7 and 8, we can conclude that MASOP shows the best average gaps and stability and the highest #Best value with g_1 profit. BRKGA has a better #Best value with g_2 profit and its average gap from MASOP is always lower than 0.20%. Moreover, BRKGA remains the fastest algorithm. The results of VNS-SOP show that, with $\omega = 0.6$, the algorithm is slower and less effective than the other two algorithms and it Dev.st% is close to 2.5% on the instances with g_2 profit.

The results of the three algorithms on the instances with $\omega = 0.8$ and g_1 profit are shown in Table 9. The best results are obtained by MASOP that is surely the best algorithm in terms of the quality of the solution and stability. The results of BRKGA and VNS-SOP are very similar but worse than the ones of MASOP. However, it is worth noting that VNS-SOP improves three times the best-known solution while the other two algorithms just one time. It is interesting to notice that the computational time of MASOP is decreased on these instances with respect to Table 7 but it remains slower than BRKGA even if it has a lower peak equal to 228 seconds. Moreover, it is worth noting the increment of VNS-SOP computational time: it requires now 52 seconds, on average, and 688 seconds, in the worst case, because of the increment of ω value.

Finally, the results of the algorithms when $\omega = 0.8$ and g_2 profit are shown in Table 10. The values of Avg, #Best and Dev.st% lines confirm that, for $\omega = 0.8$, the most effective and stable algorithm is MASOP that reaches to improve the best solution six times. The average gap of BRKGA remains lower than 0.55% and a similar result is obtained by VNS-SOP too. The computational times certify that BRKGA remains the fastest algorithm and that MASOP is the only algorithm which computational time is affected by the type of profit used.

Set1						$\omega = 0$).8 an	d g_1					
			MA	SOP			VNS	S-SOP			BR	KGA	
Instance	Best	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	Gap%
11 berlin 52	47	47	47.0	7.76	0.00%	47	47.0	0.42	0.00%	47	47.0	1.67	0.00%
11eil51	43	43	43.0	2.93	0.00%	43	43.0	0.42	0.00%	43	43.0	1.65	0.00%
14st70	65	65	65.0	9.24	0.00%	65	65.0	0.64	0.00%	65	64.8	2.02	0.00%
16eil76	69	69	69.0	4.03	0.00%	69	69.0	0.81	0.00%	69	69.0	2.42	0.00%
16pr76	72	71	71.0	3.71	1.39%	72	71.7	1.12	0.00%	72	72.0	2.49	0.00%
20kroA100	79	79	79.0	7.81	0.00%	79	78.6	1.50	0.00%	79	78.9	2.62	0.00%
20kroB100	86	86	86.0	7.72	0.00%	86	86.0	1.10	0.00%	86	86.0	2.50	0.00%
20 kroC 100	83	83	83.0	8.58	0.00%	83	83.0	1.25	0.00%	83	83.0	2.46	0.00%
20kroD 100	85	85	85.0	9.56	0.00%	85	85.0	1.28	0.00%	85	85.0	2.43	0.00%
20kro $E100$	80	80	80.0	3.32	0.00%	80	80.0	1.38	0.00%	80	80.0	2.45	0.00%
20rat99	79	79	79.0	9.88	0.00%	79	79.0	1.19	0.00%	79	78.4	2.62	0.00%
20rd100	91	91	91.0	10.74	0.00%	91	91.0	1.42	0.00%	91	91.0	2.86	0.00%
21eil101	91	91	91.0	7.71	0.00%	91	91.0	1.44	0.00%	91	91.0	3.01	0.00%
21lin105	90	90	90.0	9.88	0.00%	90	90.0	1.19	0.00%	90	90.0	2.61	0.00%
22 pr 107	65	65	65.0	4.04	0.00%	65	65.0	0.86	0.00%	65	65.0	2.41	0.00%
25pr124	99	99	99.0	10.63	0.00%	99	99.0	1.66	0.00%	99	99.0	3.02	0.00%
26 bier 127	123	123	123.0	7.64	0.00%	123	123.0	3.05	0.00%	123	122.8	4.32	0.00%
26ch130	117	115	114.7	4.87	1.71%	117	116.8	2.21	0.00%	115	115.0	3.41	1.71%
28pr136	123	123	122.7	7.03	0.00%	123	123.0	2.77	0.00%	123	123.0	3.56	0.00%
29pr144	125	125	125.0	4.86	0.00%	125	124.1	2.29	0.00%	125	125.0	3.50	0.00%
30ch150	127	127	126.8	7.85	0.00%	127	126.9	3.58	0.00%	127	127.0	3.76	0.00%
30kro $A150$	120	120	120.0	9.44	0.00%	120	119.6	2.99	0.00%	120	120.0	3.69	0.00%
$30 \mathrm{kroB150}$	138	138	138.0	6.69	0.00%	138	137.8	3.48	0.00%	138	138.0	3.91	0.00%
31 pr 152	118	118	118.0	10.44	0.00%	115	115.0	1.83	2.54%	118	116.5	3.76	0.00%
32u159	140	140	140.0	9.90	0.00%	140	140.0	3.76	0.00%	140	140.0	4.10	0.00%
39rat195	167	167	167.0	12.44	0.00%	167	167.0	6.40	0.00%	167	167.0	5.00	0.00%
40d198	171	171	171.0	32.96	0.00%	171	171.0	7.84	0.00%	171	171.0	5.24	0.00%
40kroa 200	184	184	184.0	13.24	0.00%	184	183.7	5.14	0.00%	184	184.0	6.16	0.00%
40krob 200	179	179	178.1	16.74	0.00%	179	177.1	7.45	0.00%	179	177.3	6.34	0.00%
45 ts 225	193	188	187.1	4.80	2.59%	192	188.5	9.21	0.52%	193	188.5	6.44	0.00%
45 tsp 225	198	196	195.9	19.04	1.01%	198	197.9	7.48	0.00%	196	195.8	8.15	1.01%
46pr226	213	213	213.0	12.86	0.00%	213	213.0	5.13	0.00%	213	213.0	7.68	0.00%
53gil262	226	226	225.0	17.39	0.00%	226	225.0	10.69	0.00%	226	224.5	10.80	0.00%
53pr264	238	238	238.0	23.72	0.00%	233	233.0	5.96	2.10%	238	237.5	11.96	0.00%
56a280	232	232	231.8	23.05	0.00%	232	228.7	12.27	0.00%	232	231.3	12.48	0.00%
60pr299	270	270	269.5	26.29	0.00%	269	267.3	15.83	0.37%	270	269.2	14.44	0.00%
64lin318	295	295	294.1	22.17	0.00%	295	291.5	17.79	0.00%	295	291.8	16.95	0.00%
80rd400	364	363	360.7	37.22	0.27%	359	354.3	36.63	1.37%	356	350.6	24.71	2.20%
84fl417	399	399	398.8	67.36	0.00%	399	395.1	20.87	0.00%	398	397.4	24.36	0.25%
88pr439	419	419	418.9	80.23	0.00%	415	412.5	38.09	0.95%	414	412.1	33.66	1.19%
89 pcb 442	402	401	399.2	53.78	0.25%	394	385.4	44.48	1.99%	399	389.5	30.06	0.75%
99d493	468	468	467.0	44.04	0.00%	467	458.6	74.60	0.21%	466	462.1	45.72	0.43%
115rat575	498	495	493.0	79.36	0.60%	487	478.1	80.53	2.21%	486	478.2	47.94	2.41%
115u574	540	539	537.4	87.25	0.19%	533	527.2	102.86	1.30%	532	521.5	55.65	1.48%
131 p 654	637	636	636.0	95.31	0.16%	636	632.0	45.60	0.16%	636	633.0	79.01	0.16%
132d657	594	592	589.3	97.33	0.34%	575	561.1	122.89	3.20%	575	565.1	72.99	3.20%
145u724	649	645	639.4	84.98	0.62%	626	603.1	170.54	3.54%	634	621.1	86.01	2.31%
157 rat 783	663	661	653.8	149.52	0.30%	652	643.3	188.87	1.66%	641	632.1	100.67	3.32%
$201 \mathrm{pr} 1002$	928	928	925.1	184.13	0.00%	896	884.4	403.31	3.45%	909	874.5	213.96	2.05%
212u1060	1001	1001	994.5	228.23	0.00%	967	958.3	476.64	3.40%	960	945.0	247.62	4.10%
$\underline{217 \text{vm} 1084}$	1006	1004	1001.8	119.15	0.20%	979	968.4	688.76	2.68%	979	965.3	195.57	2.68%
Avg				35.66	0.19%			51.95	0.62%			28.29	0.57%
#Best					38				34				35
Dev.st %			0.25%				0.80%				0.85%		

Table 9: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with $\omega = 0.8$ and g_1 profit.

6. Conclusion

In this paper, we developed a Biased Random-Key Genetic Algorithm to solve the Set Orienteering Problem. This algorithm uses the alleles of the chromosomes to state the clusters to

Set1						$\omega = 0.8$	and	92					
			MAS	SOP			VNS	SOP			BRF	GA	
Instance	Best	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	Gap%
$11 \mathrm{berlin} 52$	2384	2384	2384.0	7.16	0.00%	2384	2384.0	0.42	0.00%	2384	2384.0	1.41	0.00%
11eil51	2114	2114	2114.0	3.26	0.00%	2114	2114.0	0.44	0.00%	2114	2114.0	1.58	0.00%
14st70	3355	3355	3355.0	8.49	0.00%	3355	3355.0	0.68	0.00%	3355	3355.0	1.99	0.00%
16eil76	3573	3573	3568.2	6.03	0.00%	3573	3573.0	0.82	0.00%	3573	3573.0	2.23	0.00%
16pr76	3611	3611	3608.0	3.25	0.00%	3611	3607.0	1.10	0.00%	3611	3611.0	2.42	0.00%
20kroA100	4115	4115	4115.0	7.87	0.00%	4115	4115.0	1.21	0.00%	4115	4115.0	2.45	0.00%
20kroB 100	4188	4188	4188.0	5.49	0.00%	4188	4169.2	1.34	0.00%	4188	4188.0	2.53	0.00%
$20 \mathrm{kroC100}$	3999	3999	3999.0	7.56	0.00%	3999	3999.0	1.14	0.00%	3999	3999.0	2.47	0.00%
20kroD 100	4267	4267	4267.0	9.31	0.00%	4267	4267.0	1.25	0.00%	4267	4267.0	2.45	0.00%
20kro $E100$	4002	4002	4002.0	4.83	0.00%	4002	3974.4	1.37	0.00%	4002	4002.0	2.51	0.00%
20rat99	3992	3992	3992.0	9.85	0.00%	3992	3992.0	1.21	0.00%	3992	3992.0	2.35	0.00%
20rd100	4640	4640	4640.0	10.30	0.00%	4640	4640.0	1.27	0.00%	4640	4640.0	2.79	0.00%
21eil101	4717	4717	4705.3	9.04	0.00%	4717	4717.0	1.45	0.00%	4717	4707.9	2.83	0.00%
21lin105	4561	4561	4561.0	9.92	0.00%	4561	4561.0	1.21	0.00%	4561	4561.0	2.59	0.00%
22pr107	3275	3275	3275.0	7.59	0.00%	3275	3275.0	0.99	0.00%	3275	3275.0	2.24	0.00%
25pr124	4947	4947	4932.2	4.88	0.00%	4947	4947.0	1.63	0.00%	4947	4947.0	3.04	0.00%
26bier127	6218	6218	6218.0	8.64	0.00%	6218	6218.0	2.98	0.00%	6218	6211.5	4.08	0.00%
26ch130	5967	5895	5882.1	7.43	1.21%	5967	5920.2	3.09	0.00%	5895	5895.0	3.64	1.21%
28pr136	6330	6330	6330.0	8.21	0.00%	6330	6330.0	2.53	0.00%	6330	6330.0	3.43	0.00%
29pr144	6356	6356	6356.0	6.38	0.00%	6356	6356.0	2.30	0.00%	6356	6356.0	3.48	0.00%
30ch150	6382	6331	6331.0	8.84	0.80%	6382	6373.5	3.10	0.00%	6331	6331.0	3.54	0.80%
30kroA150	6081	6081	6081.0	10.70	0.00%	6081	5974.8	3.15	0.00%	6081	6081.0	3.71	0.00%
30kroB150	5000	5880	5010.0	19.17	0.00%	6880	5200.0	3.49	0.00%	5880	0880.0	3.92	0.00%
31pr152	5928 7164	5928	5910.8 7164.0	13.17	0.00%	5800	5800.0 7164.0	1.84	2.10%	5928	5825.0 7164.0	3.52	0.00%
320139 20mat105	0500	/104 8599	0500 0	10.19	0.00%	1104	/104.0 0500.0	4.30	0.00%	(104 0F00	0500 0	4.10	0.00%
39rat 195	8022	8022	8522.0	20.04	0.00%	8022	8022.0	0.87	0.00%	8022	8522.0	5.08	0.00%
400198 40lmon200	0338	0040	0338.0	15 44	0.00%	0338	020.0	5.52	0.00%	0040	0338.0	6.30	0.00%
40krob200	9077	9077	9077.0	15.18	0.00%	9077	8876 Q	5.49	0.00%	9077	9066.4	6.00	0.00%
45±c225	0888	0888	0752.4	6 79	0.00%	0888	0785.2	10.11	0.00%	0888	0748.4	6.78	0.0070
45tep225	10030	0034	00214	20.41	0.0070	10030	10024.4	6.94	0.00%	0034	0027 /	8 50	0.0070
46pr226	10770	10770	10770.0	10.03	0.00%	10770	10734.6	5.57	0.00%	10770	10770.0	7 64	0.00%
53gil262	11606	11606	11586.6	20.67	0.00%	11606	11439.0	11 43	0.00%	11606	11586.6	11.59	0.00%
53pr264	12048	12048	12048.0	30.97	0.00%	12048	11824 5	6 55	0.00%	12048	12022.7	11.38	0.00%
56a280	11984	11984	11898.5	21.60	0.00%	11984	11911.4	12.68	0.00%	11952	11925.6	12.52	0.27%
60pr299	13653	13653	13619.2	30.09	0.00%	13653	13533.8	16.36	0.00%	13653	13649.5	14.27	0.00%
64lin318	15103	15103	15055.9	32.56	0.00%	15103	14981.5	19.13	0.00%	15103	15012.9	16.23	0.00%
80rd400	18529	18529	18438.3	40.62	0.00%	18239	18040.7	37.51	1.57%	18519	18225.9	25.19	0.05%
84fl417	20248	20248	20245.2	54.45	0.00%	20220	19885.6	21.94	0.14%	20220	20152.2	26.48	0.14%
88pr439	21134	21134	21094.3	77.32	0.00%	21068	21017.6	43.80	0.31%	21068	20951.4	34.51	0.31%
89pcb442	20243	20214	20159.4	55.84	0.14%	20099	19693.5	42.32	0.71%	20120	19688.9	29.84	0.61%
99d493	23726	23726	23645.9	51.99	0.00%	23646	23233.3	78.87	0.34%	23511	23361.6	49.19	0.91%
115rat575	25145	25072	24891.3	95.12	0.29%	24875	24434.6	76.20	1.07%	24779	24498.0	48.88	1.46%
115u574	27389	27389	27293.9	112.68	0.00%	26828	26308.3	97.57	2.05%	27077	26586.6	56.14	1.14%
131 p 654	32335	32335	32331.6	107.37	0.00%	32216	32030.2	49.79	0.37%	32227	32074.9	79.63	0.33%
132d657	30642	30497	30372.7	110.93	0.47%	30123	29311.8	110.47	1.69%	29962	29437.6	72.91	2.22%
145u724	33050	32935	32768.9	116.67	0.35%	31863	31633.2	165.53	3.59%	32357	31830.0	83.79	2.10%
157rat783	34081	34081	33731.1	170.03	0.00%	32613	31793.5	202.87	4.31%	32972	32383.5	102.78	3.25%
201 pr 1002	46972	46800	46719.9	146.77	0.37%	45394	44801.6	420.85	3.36%	45404	44720.2	216.35	3.34%
212u1060	50704	50704	50152.4	233.12	0.00%	48879	47680.8	566.02	3.60%	48602	47784.1	248.01	4.15%
$\underline{217 \text{vm} 1084}$	51539	51485	51323.3	185.85	0.10%	49635	48736.8	605.05	3.69%	49233	48523.5	186.99	4.47%
Avg				39.27	0.09%			52.50	0.57%			28.30	0.54%
#Best	_				42				36				33
Dev.st %			0.31%				0.85%				0.69%		

Table 10: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with $\omega = 0.8$ and g_2 profit.

visit and visiting sequence of these clusters. Three local search procedures are applied during the evolutionary process to improve the fitness of the chromosomes. To improve the performance of the algorithm, we proposed a preprocessing phase that removes from the instances the useless vertices, arcs, and clusters. Moreover, we implemented a hashtable to avoid the invocation of the decoder function on the chromosomes already decoded in a previous step of the evolutionary process. Finally, we used a three-dimensional matrix to save and to quickly retrieve information required several times during the computation. Thanks to this idea, the same information is not re-computed more and more times avoiding waste of the computational time and, significantly, improving the performance of the algorithm. The computational results show that BRKGA is the fastest algorithm, on average, on all the tested instances. Moreover, it is the best algorithm in terms of solution quality and stability on the *Set1* with $\omega = 0.4$. Finally, with an average gap from the best-known solution always lower than 0.65% on all tested instances, it results able to quickly produce high-quality solutions.

Acknowledgement

The author would like to thank Robert Pěnička for his support by providing the source code of VNS-SOP adapted to run on the OSX system.

References

- E. Angelelli, C. Archetti, and M. Vindigni. The clustered orienteering problem. European Journal of Operational Research, 238:404–414, 2014.
- [2] C. Archetti, F. Carrabs, and R. Cerulli. The set orienteering problem. European Journal of Operational Research, 267(1):264–272, 2018.
- [3] C. Archetti, M.G. Speranza, and D. Vigo. Vehicle routing problems with profits. In P. Toth and D. Vigo, editors, Vehicle Routing: Problems, Methods, and Applications, Second Edition, MOS-SIAM Series on Optimization 18, pages 273–298. SIAM, 2014.
- [4] R. Bernardino and A. Paias. Metaheuristics based on decision hierarchies for the traveling purchaser problem. *International Transactions in Operational Research*, 25(4):1269–1295, 2018.
- [5] G. Best and G.A. Hollinger. Decentralised self-organising maps for the online orienteering problem with neighbourhoods. In International Symposium on Multi-Robot and Multi-Agent Systems, pages 139–141, 2019.
- [6] H.G. Beyer and H.P. Schwefel. Evolution strategies a comprehensive introduction. Natural Computing, 1(1):3– 52, 2002.
- [7] H. Bin and Günther R.R. Effective neighborhood structures for the generalized traveling salesman problem. In Evolutionary Computation in Combinatorial Optimization: 8th European Conference, EvoCOP 2008, Naples, Italy, March 26-28, 2008. Proceedings, pages 36–47, 2008.
- [8] J.S. Brandão, T.F. Noronha, M.G.C. Resende, and C.C. Ribeiro. A biased random-key genetic algorithm for single-round divisible load scheduling. *International Transactions in Operational Research*, 22(5):823–839, 2015.

- J.S. Brandão, T.F. Noronha, M.G.C. Resende, and C.C. Ribeiro. A biased random-key genetic algorithm for scheduling heterogeneous multi-round systems. *International Transactions in Operational Research*, 24(5):1061– 1077, 2017.
- [10] F. Carrabs, C. Cerrone, R. Cerulli, and C. D'Ambrosio. Improved upper and lower bounds for the close enough traveling salesman problem. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10232 LNCS:165–177, 2017.
- [11] F. Carrabs, C. Cerrone, R. Cerulli, and M. Gaudioso. A novel discretization scheme for the close enough traveling salesman problem. *Computers and Operations Research*, 78:163–171, 2017.
- [12] F. Carrabs, C. Cerrone, R. Cerulli, and B. L. Golden. An adaptive heuristic approach to compute upper and lower bounds for the close-enough traveling salesman problem. *INFORMS Journal on Computing*, to appear. doi:10.1287/ijoc.2020.0962.
- [13] I.-M. Chao, B.L. Golden, and E.A. Wasil. A fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 88(3):475–489, 1996.
- [14] B. Dezső, A. Jüttner, and P. Kovács. LEMON an Open Source C++ Graph Template Library. Electronic Notes in Theoretical Computer Science, 264:23–45, 2011.
- [15] J. Faigl, R. Pěnička, and G. Best. Self-organizing map-based solution for the orienteering problem with neighborhoods. In *IEEE International Conference on Systems, Man, and Cybernetics*, pages 1315–1321, 2017.
- [16] M. Fischetti, J. J. Salazar Gonzàlez, and P. Toth. A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. *Operations Research*, 45(3):378–394, 1997.
- [17] J.F. Gonçalves and M.G.C. Resende. Biased random-key genetic algorithms for combinatorial optimization. Journal of Heuristics, 17(5):487–525, 2011.
- [18] J.F. Gonçalves and M.G.C. Resende. A parallel multi-population biased random-key genetic algorithm for a container loading problem. *Computers and Operations Research*, 39(2):179–190, 2012.
- [19] J.F. Gonçalves, M.G.C. Resende, and R.F. Toso. An experimental comparison of biased and unbiased randomkey genetic algorithms. *Pesquisa Operacional*, 34(2):143–164, 2014.
- [20] A. Gunawan, H.C. Lau, and P. Vansteenwegen. Orienteering problem: A survey of recent variants, solution approaches and applications. *European Journal of Operational Research*, 255(2):315–332, 2016.
- [21] G. Gutin and D. Karapetyan. Generalized traveling salesman problem reduction algorithms. arXiv preprint :0804.0735, 2009.
- [22] Y. Huang, A.C. Santos, and C. Duhamel. Model and methods to address urban road network problems with disruptions. *International Transactions in Operational Research*, 2019.
- [23] H. Jürgen and M. Reinhard. Towards an optimal mutation probability for genetic algorithms. In Parallel Problem Solving from Nature, pages 23–32, 1991.
- [24] H. Kellerer, U. Pferschy, and D. Pisinger. The Multiple-Choice Knapsack Problem, pages 317–347. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
- [25] G. Laporte, A. Asef-Vaziri, and C. Sriskandarajah. Some applications of the generalized travelling salesman problem. The Journal of the Operational Research Society, 47(12):1461–1467, 1996.
- [26] L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende. Randomized heuristics for the family traveling

salesperson problem. International Transactions in Operational Research, 21(1):41-57, 2014.

- [27] R. Pěnička, J. Faigl, and M. Saska. Variable neighborhood search for the set orienteering problem and its application to other orienteering problem variants. *European Journal of Operational Research*, 276(3):816–825, 2019.
- [28] R. Pěnička, J. Faigl, P. Váňa, and M. Saska. Dubins orienteering problem. IEEE Robotics and Automation Letters, 2(2):1210–1217, 2017.
- [29] R. Pěnička, J. Faigl, P. Váňa, and M. Saska. Dubins orienteering problem with neighborhoods. In Proceedings of the International conference on unmanned aircraft systems, pages 1555–1562, 2017.
- [30] L.S. Pessoa and C.E. Andrade. Heuristics for a flowshop scheduling problem with stepwise job objective function. European Journal of Operational Research, 266(3):950–962, 2018.
- [31] S. Prabhakant and A.A. Zoltners. The multiple-choice knapsack problem. Operations Research, 27(3):503–515, 1979.
- [32] A.G. Ramos, E. Silva, and J.F. Oliveira. A new load balance methodology for container loading problem in road transportation. *European Journal of Operational Research*, 266(3):1140–1152, 2018.
- [33] R. Reis, M. Ritt, L.S. Buriol, and M.G.C. Resende. A biased random-key genetic algorithm for ospf and deft routing to minimize network congestion. *International Transactions in Operational Research*, 18(3):401–423, 2011.
- [34] L.C.R. Soares and M.A.M. Carvalho. Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints. *European Journal of Operational Research*, 285(3):955–964, 2020.
- [35] V.M. Spears and K.A. De Jong. On the virtues of parameterized uniform crossover. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 230–236, 1991.
- [36] R.F. Toso and M.G.C. Resende. A c++application programming interface for biased random-key genetic algorithms. Optimization Methods and Software, 30(1):81–93, 2015.
- [37] T. Tsiligirides. Heuristic methods applied to orienteering. Journal of the Operational Research Society, 35:797– 809, 1984.

Appendix A. Computational Results on Set2 instances

In this section, we report the computational results of MASOP, VNS-SOP and BRKGA on *Set2* instances proposed in [2]. The only difference between *Set1* and *Set2* instances concerns the clusters generation. More in detail, the number of clusters in each instance remains the same of *Set1* but the vertices are randomly assigned to these clusters.

From the results of Tables A.11 and A.12 we observe that the best average gap is obtained by VNS-SOP, with g_1 profit, and BRKGA, with g_2 profit. MASOP shows the highest #Best value whatever is the profit used. BRKGA and VNS-SOP obtain the same #Best values for both types

Set2						$\omega = 0.4$	and	g_1					
			M	ASOP			VNS	S-SOP			BR	KGA	
Instance	Best	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	\mathbf{Time}	$\operatorname{Gap}\%$
11berlin52	50	50	50.0	8.17	0.00%	50	50.0	0.63	0.00%	50	50.0	1.99	0.00%
11eil51	37	34	34.0	1.01	8.11%	37	37.0	0.44	0.00%	37	37.0	1.60	0.00%
14st70	56	56	56.0	6.81	0.00%	56	56.0	0.76	0.00%	56	56.0	1.72	0.00%
16eil76	51	51	51.0	4.11	0.00%	51	51.0	0.88	0.00%	51	51.0	1.91	0.00%
16pr76	70	70	69.7	4.68	0.00%	70	70.0	1.17	0.00%	70	70.0	2.24	0.00%
20kroA100	80	74	74.0	1.12	7.50%	80	80.0	1.74	0.00%	80	80.0	2.51	0.00%
20kroB 100	86	86	85.7	2.85	0.00%	86	86.0	2.28	0.00%	86	86.0	2.51	0.00%
20kroC100	72	72	71.3	6.12	0.00%	72	71.2	1.69	0.00%	72	72.0	2.47	0.00%
20kroD100	78	78	78.0	7.95	0.00%	78	76.4	2.45	0.00%	78	78.0	2.44	0.00%
20kro $E100$	90	90	90.0	9.95	0.00%	90	90.0	2.37	0.00%	90	90.0	2.48	0.00%
20rat99	73	73	73.0	6.58	0.00%	73	73.0	1.46	0.00%	73	73.0	2.06	0.00%
20rd100	82	80	80.0	7.37	2.44%	82	81.6	2.18	0.00%	80	80.0	2.21	2.44%
21eil101	83	76	76.0	4.62	8.43%	83	83.0	1.71	0.00%	83	83.0	2.70	0.00%
21lin105	95	95	95.0	9.20	0.00%	95	95.0	2.17	0.00%	95	95.0	2.40	0.00%
22pr107	94	94	94.0	13.77	0.00%	94	94.0	3.21	0.00%	94	94.0	2.36	0.00%
25pr124	101	101	101.0	6.59	0.00%	101	101.0	3.27	0.00%	101	101.0	2.90	0.00%
26bier127	125	125	125.0	15.17	0.00%	125	125.0	5.24	0.00%	125	125.0	3.44	0.00%
26ch130	111	111	107.2	6.46	0.00%	111	110.3	3.98	0.00%	111	111.0	3.65	0.00%
28pr136	120	120	119.1	5.52	0.00%	120	120.0	4.44	0.00%	120	120.0	3.10	0.00%
29pr144	137	137	137.0	16.08	0.00%	137	137.0	5.28	0.00%	137	137.0	3.89	0.00%
30ch150	114	111	111.0	5.50	2.63%	114	112.7	5.15	0.00%	111	111.0	3.58	2.63%
30kroA150	110	104	103.0	2.89	5.45%	109	106.4	4.17	0.91%	110	109.8	3.75	0.00%
30kroB150	120	120	119.4	8.20	0.00%	120	118.9	6.16	0.00%	120	119.9	4.22	0.00%
31pr152	136	136	136.0	14.90	0.00%	136	136.0	7.11	0.00%	136	136.0	3.61	0.00%
32u159	143	143	143.0	11.10	0.00%	143	143.0	5.21	0.00%	143	143.0	4.08	0.00%
39rat195	135	135	135.0	7.19	0.00%	135	133.8	7.70	0.00%	135	135.0	4.03	0.00%
40d198	149	148	148.0	7.57	0.67%	149	148.1	6.61	0.00%	148	148.0	3.21	0.67%
40kroa200	173	173	173.0	13.06	0.00%	173	173.0	8.55	0.00%	173	173.0	6.31	0.00%
40krob200	162	162	161.3	15.78	0.00%	161	160.4	10.99	0.62%	162	160.7	5.76	0.00%
45 ts 225	198	198	193.1	11.18	0.00%	198	195.2	13.42	0.00%	198	197.2	7.71	0.00%
45 tsp 225	167	167	148.6	16.33	0.00%	167	166.1	10.31	0.00%	167	166.5	5.61	0.00%
46pr226	207	207	207.0	18.34	0.00%	207	207.0	14.76	0.00%	207	207.0	5.88	0.00%
53gil262	204	204	203.3	20.99	0.00%	204	203.8	18.25	0.00%	204	202.9	11.76	0.00%
53pr264	245	245	244.8	28.76	0.00%	245	242.9	35.03	0.00%	242	242.0	6.19	1.22%
56a280	204	204	203.3	19.16	0.00%	203	201.9	15.14	0.49%	204	202.9	7.65	0.00%
60pr299	254	254	242.9	25.43	0.00%	253	247.2	22.91	0.39%	254	248.4	8.83	0.00%
64lin318	289	289	288.9	40.11	0.00%	285	284.5	42.49	1.38%	289	286.4	24.58	0.00%
80rd400	351	351	345.8	42.29	0.00%	348	344.2	59.68	0.85%	346	340.8	34.11	1.42%
84fl417	375	375	375.0	114.40	0.00%	371	371.0	119.42	1.07%	371	371.0	27.32	1.07%
88pr439	431	431	430.7	59.92	0.00%	431	427.2	120.91	0.00%	427	423.4	61.74	0.93%
89pcb442	376	364	354.5	19.33	3.19%	372	365.1	69.50	1.06%	376	365.7	46.41	0.00%
99d493	412	412	408.3	53.68	0.00%	409	402.2	93.55	0.73%	412	405.1	51.05	0.00%
115rat575	420	420	410.7	76.79	0.00%	413	397.4	96.66	1.67%	401	394.3	57.47	4.52%
115u574	502	499	496.8	70.05	0.60%	502	485.1	143.24	0.00%	491	477.6	85.67	2.19%
131p654	606	606	606.0	2453.02	0.00%	606	606.0	435.87	0.00%	606	606.0	63.66	0.00%
132d657	518	513	506.0	119.41	0.97%	504	497.5	139.65	2.70%	518	501.9	103.09	0.00%
145u724	592	579	572.5	136.48	2.20%	592	572.7	226.57	0.00%	577	567.8	141.35	2.53%
157rat783	571	571	553.6	159.83	0.00%	563	543.0	187.23	1.40%	551	538.6	134.35	3.50%
201pr1002	856	856	838.3	336.22	0.00%	849	815.9	591.27	0.82%	839	809.5	353.71	1.99%
212u1060	947	940	919.3	530.15	0.74%	944	923.1	826.72	0.32%	887	876.3	431.72	6.34%
217vm1084	1045	1020	1016.8	407.08	2.39%	1045	1017.1	983.04	0.00%	1033	1020.2	589.06	1.15%
Avg				97.83	0.89%			85.78	0.28%			46.04	0.64%
#Best					38				37				37
Dev.st%			1.79%				1.17%				0.96%		

Table A.11: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with $\omega = 0.4$ and g_1 profit.

of profit, and this value is only by one lower than the #Best value of MASOP, when it is considered the g_1 profit. On the instances with g_2 profit the gap is more relevant. The most stable algorithm is BRKGA, with g_1 profit and MASOP, with g_2 profit. Finally, regarding the performance, BRKGA

Set2					ω	= 0.4	and g	2					
			MA	SOP			VNS	-SOP			BRF	GA	
Instance	Best	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$	Sol	Sol_{avg}	Time	Gap%
11 berlin 52	2584	2584	2584.0	7.61	0.00%	2584	2584.0	0.63	0.00%	2584	2584.0	1.95	0.00%
11eil51	1929	1929	1929.0	1.78	0.00%	1929	1929.0	0.48	0.00%	1929	1929.0	1.53	0.00%
14st70	2736	2736	2736.0	6.76	0.00%	2736	2736.0	0.85	0.00%	2736	2736.0	1.58	0.00%
16eil76	2518	2518	2518.0	2.44	0.00%	2518	2518.0	0.98	0.00%	2518	2518.0	1.90	0.00%
16pr76	3550	3550	3550.0	5.21	0.00%	3550	3550.0	1.30	0.00%	3550	3550.0	2.17	0.00%
20kroA100	3894	3434	3434.0	1.60	11.81%	3894	3894.0	1.69	0.00%	3894	3894.0	2.50	0.00%
20kroB100	4357	4357	4357.0	2.41	0.00%	4357	4357.0	2.14	0.00%	4357	4357.0	2.51	0.00%
20kroC100	3580	3586	3570.7	7.45	0.00%	3586	3560.8	1.74	0.00%	3586	3586.0	2.29	0.00%
20kroD100	3799	3799	3799.0 4614.0	11 19	0.00%	3799	3749.0 4614.0	2.01	0.00%	3799	3799.0 4614.0	2.40	0.00%
20kroE100	4014	4014	4014.0 3694.0	5.60	0.00%	4014	4014.0 3694.0	1.92	0.00%	4014	4014.0 3694.0	2.32	0.00%
201a155 20rd100	4181	4038	4038.0	5.00	3 42%	/181	4159.4	2.51	0.00%	4038	4038.0	2.08	3 49%
2010100 21eil101	4264	4264	4132.6	3.50	0.00%	4264	4264.0	1.84	0.00%	4264	4264.0	2.00	0.00%
21lin105	4814	4814	4814.0	9.69	0.00%	4814	4814.0	2.23	0.00%	4814	4814.0	2.35	0.00%
22pr107	4740	4740	4740.0	12.99	0.00%	4740	4740.0	2.92	0.00%	4740	4740.0	2.39	0.00%
25pr124	5035	5035	5028.0	8.33	0.00%	5035	5035.0	3.93	0.00%	5035	5031.5	3.12	0.00%
26bier127	6329	6329	6329.0	15.93	0.00%	6329	6329.0	6.46	0.00%	6329	6327.2	4.58	0.00%
26ch130	5630	5630	5297.9	4.18	0.00%	5630	5630.0	3.95	0.00%	5630	5630.0	3.64	0.00%
28pr136	6106	6106	6106.0	4.96	0.00%	6106	6106.0	4.42	0.00%	6106	6106.0	3.29	0.00%
29pr144	6848	6848	6848.0	15.34	0.00%	6848	6848.0	5.31	0.00%	6848	6848.0	3.82	0.00%
30ch150	6025	5896	5792.0	6.70	2.14%	6025	5765.8	4.73	0.00%	5896	5886.0	3.88	2.14%
30kro $A150$	5450	5399	5336.1	10.48	0.94%	5450	5413.3	3.69	0.00%	5450	5450.0	3.68	0.00%
30kroB150	6255	6255	6198.3	7.48	0.00%	6255	6128.4	4.42	0.00%	6255	6235.7	4.30	0.00%
31 pr 152	6928	6928	6928.0	14.55	0.00%	6928	6928.0	6.84	0.00%	6928	6928.0	3.65	0.00%
32u159	7507	7507	7507.0	13.62	0.00%	7507	7507.0	5.25	0.00%	7507	7507.0	3.84	0.00%
39rat195	6813	6813	6813.0	6.29	0.00%	6813	6803.1	7.13	0.00%	6813	6813.0	3.83	0.00%
40d198	7412	7412	7412.0	7.30	0.00%	7412	7412.0	0.15	0.00%	7412	7412.0	3.33	0.00%
40kroa200	9014	9014	9014.0 9004.6	11.90	0.00%	9014	9014.0	9.37	0.00%	9014	9014.0	0.47	0.00%
40Krob200 45ta995	8515 0825	08310	0560.2	12.05	0.00%	0825	0510.4	9.82	0.00%	0895	0825.0	0.81 7.50	0.00%
45tsp225	8373	9033 8373	9309.2 8373.0	10.02	0.00%	9033 8373	9519.4 8370-1	12.47	0.00%	9033 8373	9033.0 8373.0	5.44	0.00%
46pr226	10322	10322	10322.0	25.97	0.00%	10312	10312.0	16.54	0.00%	10312	10308.6	7.09	0.0070
53gil262	10309	10309	10022.0 10274.4	23.65	0.00%	10309	10309.0	11.69	0.00%	10309	10282.6	11.03	0.00%
53pr264	12304	12304	12297.4	36.70	0.00%	12304	12198.4	41.15	0.00%	12106	12106.0	6.19	1.61%
56a280	10285	10285	10275.5	15.99	0.00%	10274	10191.3	17.82	0.11%	10285	10168.6	8.03	0.00%
60pr299	12995	12995	12648.2	28.14	0.00%	12995	12744.5	24.63	0.00%	12995	12735.7	8.76	0.00%
64lin318	14743	14743	14721.1	38.27	0.00%	14704	14604.8	48.71	0.26%	14719	14587.0	24.14	0.16%
80rd400	17917	17917	17772.4	36.47	0.00%	17676	17245.5	61.83	1.35%	17521	17238.6	34.67	2.21%
84fl417	19107	19107	19107.0	281.52	0.00%	19107	19101.6	128.36	0.00%	19101	19101.0	26.79	0.03%
88pr439	21815	21815	21765.3	58.43	0.00%	21738	21598.9	117.49	0.35%	21565	21433.9	58.84	1.15%
89 pcb442	18908	18449	18244.4	32.77	2.43%	18702	18270.0	65.96	1.09%	18908	18579.5	45.69	0.00%
99d493	21030	20864	20610.8	58.98	0.79%	20722	20410.7	87.41	1.46%	21030	20548.9	51.27	0.00%
115rat575	21167	21167	20671.2	53.04	0.00%	20740	20145.5	82.91	2.02%	20972	20534.5	58.80	0.92%
115u574	25493	25493	25333.7	80.04	0.00%	25016	24365.2	151.24	1.87%	25451	24860.1	86.23	0.16%
131p654	30212	30212	30212.0	3208.31	0.00%	30212	30212.0	456.05	0.00%	30212	30212.0	60.46	0.00%
132d657	26772	26031	25657.6	113.91	2.77%	25859	25530.8	139.22	3.41%	26772	25825.5	102.82	0.00%
145u724	29997	29526	28946.1	179.53	1.57%	29888	29040.2	229.45	0.36%	29952	28776.4	139.95	0.15%
10/181/85 201pr1002	449907	449907 44990	29473.0 433999.0	260.60	0.00%	28314 49615	27033.1 49309.0	183.40 616.06	0.01% 1.9007	28992 49990	20033.0 49909 9	134.03	2.13%
201pr1002 212n1060	44229	44229	43322.8	309.09	0.00%	43015 47390	42392.9	010.90 841.09	1.39%	45520	42200.2	304.83 437.60	2.00%
21201000 217vm1084	52087	40401 52087	52831 5	301.01 740 58	0.00%	47000 59335	40040.0 51077 9	041.93	2.3770 1.930Z	40700 59594	40070.0 51640.4	407.09	0.85%
Δvg	92901	54901	92091.9	121.85	0.51%	02000	01311.2	87 97	0.44%	02004	01040.4	45 78	0.00%
#Best	 			121.00	12			01.01	9.4470 9.6			40.10	0/ 44-0 96
HDest Dev et%	 		1 1972		40		1 15%		30		1 14%		30
LCV.30/0	1		1.10/0				1.10/0				T.T.T./0		

Table A.12: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with $\omega = 0.4$ and g_2 profit.

remains the fastest algorithm even on Set2 instances with a computational time that is almost half the time of the other two algorithms. As for Set1 instances, the computational time of MASOP increases on the instances with g_2 profit and, in fact, BRKGA is 168% faster than MASOP on these instances. It is worth noting that the effectiveness of VNS-SOP is increased on Set2 instances with

Set2	$\omega = 0.6$ and g_1												
			MA	SOP			VNS	S-SOP			BR	KGA	
Instance	Best	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	Gap%
11 berlin 52	51	51	51.0	8.56	0.00%	51	51.0	0.78	0.00%	51	51.0	2.28	0.00%
11eil51	50	50	50.0	6.58	0.00%	50	50.0	0.66	0.00%	50	50.0	1.91	0.00%
14st70	64	64	64.0	8.14	0.00%	64	64.0	1.08	0.00%	64	64.0	1.87	0.00%
16eil76	74	74	73.9	5.32	0.00%	74	74.0	1.52	0.00%	74	73.9	2.69	0.00%
16pr76	74	74	74.0	11.00	0.00%	74	74.0	1.78	0.00%	74	74.0	2.42	0.00%
20kroA 100	98	98	97.3	10.53	0.00%	96	95.9	3.17	2.04%	96	96.0	3.38	2.04%
20kroB 100	98	98	96.8	10.52	0.00%	98	93.5	2.81	0.00%	98	96.5	3.38	0.00%
$20 \mathrm{kroC100}$	93	93	92.7	9.53	0.00%	93	90.8	2.83	0.00%	93	92.6	3.54	0.00%
20kroD 100	93	93	93.0	9.21	0.00%	93	93.0	2.58	0.00%	93	93.0	3.03	0.00%
20kro $E100$	97	97	97.0	13.22	0.00%	97	97.0	3.07	0.00%	97	97.0	2.90	0.00%
20rat99	87	87	87.0	7.47	0.00%	87	87.0	2.19	0.00%	87	87.0	2.71	0.00%
20rd100	99	99	98.5	11.69	0.00%	99	99.0	2.71	0.00%	99	99.0	3.27	0.00%
21eil101	97	97	96.8	5.98	0.00%	97	97.0	3.24	0.00%	97	96.7	3.62	0.00%
21lin105	104	104	104.0	13.84	0.00%	104	104.0	2.94	0.00%	104	104.0	2.30	0.00%
22pr107	106	106	106.0	14.34	0.00%	106	106.0	3.57	0.00%	106	106.0	2.30	0.00%
25pr124	119	119	119.0	11.65	0.00%	119	119.0	4.42	0.00%	119	118.6	4.23	0.00%
26 bier 127	126	126	126.0	20.85	0.00%	126	126.0	5.98	0.00%	126	126.0	3.14	0.00%
26ch130	127	127	125.9	10.40	0.00%	127	127.0	5.18	0.00%	127	126.8	4.60	0.00%
28pr136	132	132	131.7	12.94	0.00%	129	129.0	5.43	2.27%	129	129.0	4.22	2.27%
29pr144	141	141	141.0	17.22	0.00%	141	141.0	7.45	0.00%	141	141.0	4.79	0.00%
30ch150	145	145	144.7	11.69	0.00%	145	145.0	7.03	0.00%	145	144.5	5.85	0.00%
30kro $A150$	145	145	144.6	11.65	0.00%	143	142.7	6.81	1.38%	145	143.6	5.39	0.00%
30kroB 150	147	147	147.0	17.82	0.00%	147	147.0	7.60	0.00%	147	147.0	5.78	0.00%
31pr152	151	151	150.7	22.73	0.00%	151	151.0	7.85	0.00%	150	150.0	5.76	0.66%
32u159	156	156	156.0	15.30	0.00%	156	156.0	9.55	0.00%	156	155.2	6.83	0.00%
39rat195	178	178	175.6	10.90	0.00%	175	175.0	9.85	1.69%	178	174.6	7.01	0.00%
40d198	196	196	196.0	22.10	0.00%	196	196.0	17.07	0.00%	196	194.2	8.23	0.00%
40kroa200	198	198	198.0	22.94	0.00%	198	196.7	18.71	0.00%	198	195.2	11.76	0.00%
40krob200	198	198	197.5	25.28	0.00%	198	194.1	17.35	0.00%	197	194.9	12.31	0.51%
45 ts 225	224	224	224.0	28.02	0.00%	224	224.0	19.27	0.00%	224	223.7	13.41	0.00%
45 tsp 225	212	212	209.1	15.12	0.00%	212	209.6	21.52	0.00%	209	207.5	14.10	1.42%
46pr226	221	221	221.0	22.66	0.00%	221	221.0	20.23	0.00%	221	221.0	12.38	0.00%
53gil262	253	253	251.5	28.01	0.00%	253	246.4	28.56	0.00%	253	247.7	19.07	0.00%
53pr264	252	252	252.0	43.01	0.00%	252	252.0	52.00	0.00%	252	252.0	14.44	0.00%
56a280	256	256	255.3	21.09	0.00%	254	250.4	29.42	0.78%	253	248.8	20.12	1.17%
60pr299	286	286	286.0	28.40	0.00%	286	286.0	46.36	0.00%	286	285.7	25.25	0.00%
64lin318	316	316	315.5	45.22	0.00%	316	314.4	70.06	0.00%	313	311.3	30.94	0.95%
80rd400	396	396	394.4	60.50	0.00%	395	394.9	98.64	0.25%	392	386.6	40.21	1.01%
84fl417	407	407	407.0	239.85	0.00%	407	406.1	122.49	0.00%	407	406.4	51.70	0.00%
88pr439	438	438	438.0	144.75	0.00%	438	438.0	186.07	0.00%	436	435.6	57.88	0.46%
89pcb442	439	438	436.7	66.11	0.23%	433	428.8	107.14	1.37%	433	426.9	62.49	1.37%
99d493	488	488	485.7	128.56	0.00%	485	483.2	175.24	0.61%	482	479.3	88.33	1.23%
115rat575	542	542	534.7	71.61	0.00%	533	523.0	172.76	1.66%	520	506.6	94.99	4.06%
115u574	571	571	570.0	91.35	0.00%	571	566.1	266.10	0.00%	566	557.8	118.21	0.88%
131 p 654	642	642	639.1	499.22	0.00%	642	639.1	484.25	0.00%	638	630.5	142.12	0.62%
132d657	646	646	644.9	147.60	0.00%	636	631.2	346.31	1.55%	628	622.9	162.75	2.79%
145u724	707	706	704.2	135.62	0.14%	707	695.3	415.46	0.00%	697	677.4	200.15	1.41%
157rat783	744	744	740.6	198.45	0.00%	722	711.8	371.05	2.96%	721	696.5	203.43	3.09%
201pr1002	995	995	990.5	422.60	0.00%	979	969.0	1200.03	1.61%	965	951.0	505.41	3.02%
212u1060	1058	1058	1058.0	721.93	0.00%	1055	1050.4	1589.21	0.28%	1025	1015.7	582.64	3.12%
217vm1084	1083	1083	1083.0	769.31	0.00%	1083	1079.4	1538.52	0.00%	1079	1070.0	721.55	0.37%
Avg				84.48	0.01%			147.57	0.36%			64.96	0.64%
#Best					49				38				31
Dev.st%			0.38%				0.90%				0.83%		

Table A.13: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with $\omega = 0.6$ and g_1 profit.

respect of Set1 instances. This trend will be confirmed in the next tables.

In the instances with $\omega = 0.6$ the most effective algorithm is MASOP whatever is the profit

Set2						$\omega = 0.6$	and	g_2					
			MA	SOP			VNS	-SOP			BRF	BRKGA	
Instance	Best	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$
11berlin52	2608	2608	2608.0	8.36	0.00%	2608	2608.0	0.78	0.00%	2608	2608.0	2.36	0.00%
11eil51	2575	2575	2575.0	6.76	0.00%	2575	2575.0	0.62	0.00%	2575	2575.0	1.83	0.00%
14st70	3218	3218	3218.0	7.01	0.00%	3218	3218.0	1.14	0.00%	3218	3218.0	2.08	0.00%
16eil76	3728	3728	3712.1	5.84	0.00%	3728	3717.5	1.62	0.00%	3728	3721.1	3.07	0.00%
16pr76	3729	3729	3729.0	11.40	0.00%	3729	3729.0	1.73	0.00%	3729	3729.0	1.92	0.00%
20kroA100	4920	4920	4717.1	7.41	0.00%	4920	4808.6	3.44	0.00%	4920	4847.2	3.44	0.00%
20kroB100	4925	4925	4925.0	15.25	0.00%	4925	4925.0	3.83	0.00%	4925	4910.6	3.56	0.00%
20kroC100	4717	4717	4651.0	7.21	0.00%	4619	4619.0	2.89	2.08%	4717	4668.0	3.27	0.00%
20kroD100	4695	4695	4695.0	7.11	0.00%	4695	4695.0	2.62	0.00%	4695	4695.0	2.93	0.00%
20kroE100	4910	4910	4910.0	13.90	0.00%	4910	4910.0	2.80	0.00%	4910	4910.0	2.08	0.00%
20rat99	4010	4010	4010.0	19.51	0.00%	4310	4010.0	2.29	0.00%	4010	4010.0	2.01	0.00%
20rd100 21cil101	4033	2008	4032.2	12.01	0.00%	2008 4033	2008.0 4033.0	2.84	0.00%	2008	4020.8	3.23 3.48	0.00%
21lin105	4955 5228	4933	4932.2 5228 0	14.51	0.00%	4933	4933.0 5228 0	3.27	0.00%	4933	4929.0 5228 0	0.40 2.80	0.00%
22mr107	5363	5363	5363.0	13.29	0.00%	5363	5363.0	3.57	0.00%	5363	5363.0	2.05	0.00%
25pr124	5947	5947	5947.0	11 14	0.00%	5947	5947.0	4 81	0.00%	5947	5947.0	4 21	0.00%
26bier127	6333	6333	6333.0	20.92	0.00%	6333	6333.0	6 73	0.00%	6333	6333.0	2 45	0.00%
26ch130	6472	6472	6422.5	9.79	0.00%	6472	6408.8	5.51	0.00%	6393	6389.9	4.38	1.22%
28pr136	6692	6692	6592.6	7.04	0.00%	6692	6590.3	7.67	0.00%	6692	6530.8	4.74	0.00%
29pr144	7151	7151	7151.0	16.16	0.00%	7151	7151.0	8.24	0.00%	7151	7151.0	4.63	0.00%
30ch150	7382	7382	7305.2	14.51	0.00%	7286	7273.6	6.34	1.30%	7382	7334.0	6.14	0.00%
30kro $A150$	7315	7315	7291.3	13.72	0.00%	7236	7205.4	6.98	1.08%	7315	7275.5	5.39	0.00%
30kroB 150	7476	7476	7471.6	16.49	0.00%	7454	7454.0	8.08	0.29%	7476	7456.2	5.86	0.00%
31 pr 152	7658	7658	7644.5	21.74	0.00%	7658	7658.0	8.11	0.00%	7613	7613.0	5.32	0.59%
32u159	7942	7942	7942.0	11.80	0.00%	7942	7942.0	10.06	0.00%	7942	7866.4	6.56	0.00%
39rat195	9022	9022	8816.6	10.68	0.00%	8824	8816.8	11.32	2.19%	9022	8848.2	7.20	0.00%
40d198	9952	9952	9952.0	22.04	0.00%	9952	9952.0	18.40	0.00%	9952	9952.0	8.19	0.00%
40kroa200	10010	10010	10010.0	21.21	0.00%	10010	9965.4	19.35	0.00%	10010	9924.7	11.65	0.00%
40krob200	10011	10011	10004.5	25.18	0.00%	9946	9836.2	18.99	0.65%	10011	9913.3	12.57	0.00%
45ts225	11308	10715	11308.0	32.68	0.00%	11308	11308.0	20.68	0.00%	10749	11308.0	14.91	0.00%
45tsp225	11062	10715	10007.4	24.76	0.00%	10780	10050.0	21.87	0.00%	10742	10020.2	14.30	0.41%
40p1220 52m1262	19820	12020	12820.0	24.70	0.00%	10700	19470.8	22.02	0.0070	19780	19605.5	10.26	0.0070
53pr264	12658	12658	12629.0	50.29	0.00%	12658	12470.0	29.05	0.91%	12658	12005.5	19.50	0.40%
56a280	13252	13229	13080.7	23.25	0.00%	13252	12030.0	33.26	0.00%	13029	12816.6	20.01	1.68%
60pr299	14688	14688	14688.0	31 43	0.00%	14688	14688.0	49.92	0.00%	14688	14660.9	24 43	0.00%
64lin318	15993	15993	15993.0	55.08	0.00%	15955	15887.3	66.36	0.24%	15877	15844.3	30.84	0.73%
80rd400	20090	20090	20056.9	61.10	0.00%	20043	19938.9	96.18	0.23%	20015	19804.1	42.72	0.37%
84fl417	20642	20635	20628.2	249.82	0.03%	20642	20570.2	133.04	0.00%	20642	20532.2	50.25	0.00%
88pr439	22177	22177	22177.0	133.66	0.00%	22177	22177.0	180.12	0.00%	22046	22024.4	53.35	0.59%
89pcb442	22194	22194	22108.3	71.26	0.00%	22072	21723.6	120.17	0.55%	22064	21558.4	61.78	0.59%
99d493	24679	24679	24650.3	109.50	0.00%	24617	24444.8	164.74	0.25%	24551	24307.9	84.79	0.52%
115 rat 575	27170	27170	26959.0	85.82	0.00%	26958	26124.6	167.53	0.78%	26824	26203.3	95.75	1.27%
115u574	28937	28937	28880.6	96.28	0.00%	28829	28726.0	263.55	0.37%	28799	28595.9	117.83	0.48%
131 p 654	32442	32442	32340.4	459.26	0.00%	32442	32346.9	432.71	0.00%	32315	32069.2	155.08	0.39%
132d657	32805	32805	32786.3	179.19	0.00%	32205	32028.1	328.56	1.83%	32120	31759.9	156.55	2.09%
145u724	35888	35614	35467.9	163.81	0.76%	35888	35187.1	395.80	0.00%	35267	34609.8	200.40	1.73%
157rat783	37357	37357	37010.8	111.70	0.00%	36610	36017.3	377.99	2.00%	36518	35703.6	206.81	2.25%
201pr1002	50412	50412	50247.7	403.50	0.00%	49941	49135.5	1130.68	0.93%	49552	48575.7	496.69	1.71%
212u1060	53468	53468	53468.0	776.23	0.00%	53442	53126.9	1577.57	0.05%	52364	51371.1	564.76	2.06%
21 (vm1084	04/12	54712	54712.0	191.88	0.00%	54712	54480.9	1009.24	0.00%	54551	53752.0	86.000	0.29%
Avg #Post				84.90	0.03%			145.29	0.31%			03.30	0.38%
#Dest	 		0 7907		47		0.8707		54		0.7807		32
Dev.st70			0.1270				0.0170				0.1870		

Table A.14: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with $\omega = 0.6$ and g_2 profit.

used. In fact, its average gap is close to 0%, its #Best value is the highest one and it results the more stable algorithm. Moreover, it improves the best-known solution 14 times on the instances with g_1 profit and 17 times, on the instances with g_2 profit. Taking into account the average gap and #Best values, VNS-SOP is classified as second best algorithm. However, it results the less

stable algorithm and the slowest one, whatever is the profit used. In particular, its peak time on these instances is over 1500 seconds. BRKGA results less effective, in these instances, but its average gap is lower than 0.65%, in the worst case. Moreover, it remains the fastest algorithm. It is interesting to observe that, the performance gap between BRKGA and VNS-SOP increases from 84% to 130% changing the ω value from 0.4 to 0.6. This trend will be confirmed in the instances with $\omega = 0.8$.

The performance comparison between BRKGA and MASOP shows that, with $\omega = 0.6$, the gap is reduced with respect to the results with $\omega = 0.4$. In fact, with $\omega = 0.4$ BRKGA is around two or three times faster than MASOP whereas, with $\omega = 0.6$, the gap is much lower.

In the instances with $\omega = 0.8$, we observed that the T_{max} value is enough large to guarantee that all the clusters can be visited without violating this threshold. This is true for all the instances except one (40d198). This means that the optimal solution value for SOP on these instances is equal to the sum of the profit of all the clusters. Ruling out the instance 40d198, we verified that the values reported under the Best heading in Tables A.15 and A.16 coincide with $\sum_{g=1}^{l} p_g$ and then they are the optimal values for these instances. We can see that both MASOP and VNS-SOP obtain a #Best value equal to 51 while for BRKGA this value is equal to 43 and 44 on the instances with g_1 and g_2 profit, respectively. However, the average gap value of BRKGA is very low because it is at most equal to 0.07%. Even if BRKGA results lightly less effective than the other two algorithms, it is much faster. In particular, it is around two times faster than MASOP and almost four times faster than VNS-SOP. It is worth noting that, the effectiveness of MASOP and VNS-SOP on these instances is paid in terms of computational time since the highest time is equal to 677 seconds for BRKGA and it increases to 1327 and to 2827 seconds for MASOP and VNS-SOP, respectively. According to the performance of BRKGA and its very low percentage gap, it may be preferable to use this algorithm in contexts where it is necessary to have high-quality solutions in a shorten time.

Set2						$\omega = 0.8$	and	g_1					
	MASOP					VNS		BRKGA					
Instance	Best	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	Gap%	Sol	Sol_{avg}	Time	Gap%
11 berlin 52	51	51	51.0	8.50	0.00%	51	51.0	0.83	0.00%	51	51.0	2.36	0.00%
11eil51	50	50	50.0	7.24	0.00%	50	50.0	0.78	0.00%	50	50.0	1.49	0.00%
14st70	69	69	69.0	10.79	0.00%	69	69.0	1.31	0.00%	69	69.0	2.16	0.00%
16eil76	75	75	75.0	10.72	0.00%	75	75.0	1.68	0.00%	75	75.0	2.76	0.00%
16pr76	75	75	75.0	12.08	0.00%	75	75.0	1.80	0.00%	75	75.0	1.96	0.00%
20kroA100	99	99	99.0	13.24	0.00%	99	99.0	3.25	0.00%	99	99.0	3.41	0.00%
20kroB100	99	99	99.0	14.52	0.00%	99	99.0	3.34	0.00%	99	99.0	3.27	0.00%
$20 \mathrm{kroC100}$	99	99	99.0	15.10	0.00%	99	99.0	2.77	0.00%	99	99.0	3.35	0.00%
20kroD100	99	99	99.0	13.13	0.00%	99	99.0	3.71	0.00%	99	99.0	3.50	0.00%
20kroE100	99	99	99.0	13.73	0.00%	99	99.0	2.95	0.00%	99	99.0	3.12	0.00%
20rat99	98	98	98.0	14.05	0.00%	98	98.0	3.47	0.00%	98	98.0	3.15	0.00%
20rd100	99	99	99.0	13.60	0.00%	99	99.0	3.19	0.00%	99	99.0	2.57	0.00%
21eil101	100	100	100.0	14.59	0.00%	100	100.0	3.85	0.00%	100	100.0	3.31	0.00%
21lin105	104	104	104.0	13.57	0.00%	104	104.0	3.42	0.00%	104	104.0	3.28	0.00%
22pr107	106	106	106.0	14.53	0.00%	106	106.0	4.17	0.00%	106	106.0	3.26	0.00%
25 pr 124	123	123	123.0	14.85	0.00%	123	123.0	5.50	0.00%	123	122.6	4.21	0.00%
26 bier 127	126	126	126.0	20.75	0.00%	126	126.0	7.33	0.00%	126	126.0	5.91	0.00%
26ch130	129	129	129.0	17.96	0.00%	129	129.0	6.27	0.00%	129	129.0	4.50	0.00%
28pr136	135	135	135.0	16.04	0.00%	135	135.0	6.86	0.00%	135	134.9	5.66	0.00%
29pr144	143	143	143.0	21.09	0.00%	143	143.0	7.60	0.00%	143	143.0	4.72	0.00%
30ch150	149	149	149.0	20.14	0.00%	149	149.0	8.72	0.00%	149	149.0	5.73	0.00%
30kro $A150$	149	149	149.0	18.38	0.00%	149	149.0	8.39	0.00%	149	149.0	5.60	0.00%
$30 \mathrm{kroB150}$	149	149	149.0	19.66	0.00%	149	149.0	9.83	0.00%	149	149.0	6.29	0.00%
31pr152	151	151	151.0	23.03	0.00%	151	151.0	9.03	0.00%	151	151.0	5.08	0.00%
32u159	158	158	158.0	21.14	0.00%	158	158.0	9.47	0.00%	158	158.0	6.10	0.00%
39rat195	194	194	194.0	23.86	0.00%	194	193.0	15.90	0.00%	194	193.0	9.32	0.00%
40d198	196	196	196.0	32.73	0.00%	196	196.0	18.76	0.00%	196	196.0	6.55	0.00%
40kroa200	199	199	199.0	32.63	0.00%	199	199.0	22.97	0.00%	199	199.0	10.69	0.00%
40krob 200	199	199	199.0	32.61	0.00%	199	199.0	21.24	0.00%	199	199.0	10.74	0.00%
45 ts 225	224	224	224.0	34.58	0.00%	224	224.0	24.55	0.00%	224	224.0	11.94	0.00%
45 tsp 225	224	224	224.0	36.78	0.00%	224	224.0	24.78	0.00%	224	224.0	14.22	0.00%
46pr226	225	225	225.0	31.27	0.00%	225	225.0	21.91	0.00%	225	225.0	12.69	0.00%
53gil262	261	261	261.0	51.16	0.00%	261	261.0	51.35	0.00%	261	260.6	20.19	0.00%
53pr264	263	263	263.0	89.95	0.00%	263	262.6	57.10	0.00%	262	262.0	16.55	0.38%
56a280	279	279	279.0	35.49	0.00%	279	279.0	38.54	0.00%	279	276.6	22.93	0.00%
60pr299	298	298	298.0	55.32	0.00%	298	298.0	64.30	0.00%	298	295.8	27.52	0.00%
64lin318	317	317	317.0	57.59	0.00%	317	317.0	83.70	0.00%	317	316.8	31.85	0.00%
80rd400	399	399	399.0	102.15	0.00%	399	399.0	152.72	0.00%	399	398.1	40.54	0.00%
84fl417	416	416	416.0	436.19	0.00%	416	416.0	157.09	0.00%	416	415.4	51.57	0.00%
88pr439	438	438	438.0	145.14	0.00%	438	438.0	254.24	0.00%	438	438.0	48.15	0.00%
89pcb442	441	441	441.0	117.60	0.00%	441	441.0	187.48	0.00%	441	440.3	66.32	0.00%
99d493	492	492	492.0	216.12	0.00%	492	492.0	280.00	0.00%	491	491.0	84.30	0.20%
115rat575	574	574	574.0	177.18	0.00%	574	572.0	285.25	0.00%	568	564.7	118.68	1.05%
115u574	573	573	573.0	204.19	0.00%	573	573.0	436.19	0.00%	573	572.5	118.14	0.00%
131p654	653	653	653.0	930.05	0.00%	653	653.0	557.37	0.00%	653	653.0	139.04	0.00%
132d657	656	656	656.0	271.87	0.00%	656	655.6	501.77	0.00%	655	652.4	182.63	0.15%
145u724	723	723	723.0	300.99	0.00%	723	723.0	658.26	0.00%	721	712.2	228.41	0.28%
157rat783	782	782	782.0	459.64	0.00%	782	781.2	684.39	0.00%	773	761.0	261.05	1.15%
201pr1002	1001	1001	1001.0	836.03	0.00%	1001	1001.0	1858.81	0.00%	996	992.2	547.36	0.50%
212u1060	1059	1059	1059.0	907.05	0.00%	1059	1059.0	2496.95	0.00%	1058	1057.3	675.71	0.09%
$217 \mathrm{vm} 1084$	1083	1083	1083.0	946.07	0.00%	1083	1083.0	2693.35	0.00%	1083	1082.2	677.32	0.00%
Avg				136.21	0.00%			230.75	0.00%			69.24	0.07%
#Best					51				51				43
Dev.st%			0.00%				0.09%				0.32%		

Table A.15: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with $\omega = 0.8$ and g_1 profit.

Set2						$\omega = 0.8$	and g	92					
	MASOP						VNS-SOP			BRKGA			
Instance	\mathbf{Best}	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$	Sol	Sol_{avg}	Time	$\operatorname{Gap}\%$
11berlin52	2608	2608	2608.0	8.38	0.00%	2608	2608.0	0.82	0.00%	2608	2608.0	2.35	0.00%
11eil51	2575	2575	2575.0	7.35	0.00%	2575	2575.0	0.77	0.00%	2575	2575.0	1.90	0.00%
14st70	3513	3513	3513.0	10.68	0.00%	3513	3513.0	1.41	0.00%	3513	3513.0	1.64	0.00%
16eil76	3800	3800	3800.0	10.53	0.00%	3800	3800.0	1.72	0.00%	3800	3800.0	2.33	0.00%
16pr76	3800	3800	3800.0	12.10	0.00%	3800	3800.0	1.85	0.00%	3800	3800.0	2.01	0.00%
20kroA100	5008	5008	5008.0	13.84	0.00%	5008	5008.0	3.35	0.00%	5008	5008.0	3.15	0.00%
20kroB100	5008	5008	5008.0	14.61	0.00%	5008	5008.0	3.58	0.00%	5008	5008.0	3.33	0.00%
$20 \mathrm{kroC100}$	5008	5008	5008.0	14.54	0.00%	5008	5008.0	2.95	0.00%	5008	5008.0	3.24	0.00%
20kroD 100	5008	5008	5008.0	13.90	0.00%	5008	5008.0	3.50	0.00%	5008	5008.0	3.18	0.00%
20kro $E100$	5008	5008	5008.0	14.84	0.00%	5008	5008.0	3.15	0.00%	5008	5008.0	2.85	0.00%
20rat99	5007	5007	5007.0	14.50	0.00%	5007	5007.0	3.23	0.00%	5007	5007.0	3.12	0.00%
20rd100	5008	5008	5008.0	13.12	0.00%	5008	5008.0	3.25	0.00%	5008	5008.0	2.44	0.00%
21eil101	5050	5050	5050.0	13.86	0.00%	5050	5050.0	3.70	0.00%	5050	5050.0	3.24	0.00%
21 lin 105	5228	5228	5228.0	14.40	0.00%	5228	5228.0	3.52	0.00%	5228	5228.0	1.92	0.00%
22 pr 107	5363	5363	5363.0	13.44	0.00%	5363	5363.0	4.03	0.00%	5363	5363.0	2.82	0.00%
25pr124	6232	6232	6232.0	15.44	0.00%	6232	6232.0	5.52	0.00%	6232	6232.0	4.18	0.00%
26 bier 127	6333	6333	6333.0	21.26	0.00%	6333	6333.0	7.61	0.00%	6333	6333.0	5.19	0.00%
26ch130	6503	6503	6503.0	18.55	0.00%	6503	6503.0	6.55	0.00%	6503	6503.0	4.28	0.00%
28pr136	6850	6850	6850.0	16.64	0.00%	6850	6850.0	7.45	0.00%	6850	6850.0	5.79	0.00%
29pr144	7242	7242	7242.0	20.51	0.00%	7242	7242.0	9.49	0.00%	7242	7242.0	4.18	0.00%
30ch150	7533	7533	7533.0	20.71	0.00%	7533	7533.0	10.34	0.00%	7533	7533.0	5.42	0.00%
30kroA150	7533	7533	7533.0	19.23	0.00%	7533	7533.0	8.13	0.00%	7533	7533.0	5.30	0.00%
30kroB150	7533	7533	7533.0	19.51	0.00%	7533	7533.0	9.72	0.00%	7533	7533.0	5.35	0.00%
31 pr 152	7658	7658	7658.0	22.62	0.00%	7658	7658.0	9.83	0.00%	7658	7658.0	4.84	0.00%
32u159	8037	8037	8037.0	21.55	0.00%	8037	8037.0	10.31	0.00%	8037	8037.0	5.82	0.00%
39rat195	9863	9863	9863.0	23.17	0.00%	9863	9854.6	18.56	0.00%	9863	9837.8	9.29	0.00%
40d198	9952	9952	9952.0	33.04	0.00%	9952	9952.0	20.71	0.00%	9952	9952.0	5.90	0.00%
40kroa200	10058	10058	10058.0	32.32	0.00%	10058	10058.0	22.24	0.00%	10058	10058.0	10.19	0.00%
40krob200	10058	10058	10058.0	31.94	0.00%	10058	10058.0	17.47	0.00%	10058	10058.0	10.64	0.00%
45ts225	11308	11308	11308.0	39.18	0.00%	11308	11308.0	26.65	0.00%	11308	11308.0	12.70	0.00%
45 tsp 225	11308	11308	11308.0	38.65	0.00%	11308	11308.0	28.39	0.00%	11308	11308.0	13.56	0.00%
46pr226	11375	11375	11375.0	32.05	0.00%	11375	11375.0	22.06	0.00%	11375	11375.0	12.12	0.00%
53gil262	13193	13193	13193.0	57.50	0.00%	13193	13193.0	45.55	0.00%	13193	13179.2	19.44	0.00%
53pr264	13302	13302	13302.0	87.98	0.00%	13302	13274.4	59.36	0.00%	13210	13210.0	15.57	0.69%
56a280	14178	14178	14178.0	32.50	0.00%	14178	14162.1	47.97	0.00%	14178	14079.7	23.83	0.00%
60pr299	15107	15107	15107.0	55.19	0.00%	15107	15107.0	63.51	0.00%	15107	15092.5	27.95	0.00%
64lin318	16037	16037	16037.0	61.30	0.00%	16037	16037.0	80.12	0.00%	16037	16026.8	30.42	0.00%
80rd400	20158	20158	20158.0	107.21	0.00%	20158	20158.0	139.52	0.00%	20158	20135.5	38.28	0.00%
8411417	21048	21048	21048.0	454.93	0.00%	21048	21048.0	182.08	0.00%	21048	21044.7	54.20	0.00%
88pr439	22177	22177	22177.0	137.14	0.00%	22177	22177.0	233.59	0.00%	22177	22177.0	47.51	0.00%
89pcb442	22323	22323	22323.0	117.49	0.00%	22323	22323.0	165.29	0.00%	22323	22294.0	04.08	0.00%
990495 115+575	24802	24802	24802.0	232.23	0.00%	24802	24802.0	208.04	0.00%	24802	24652.0	84.30 115 GA	0.00%
115rat575	29033	29033	29033.0	154.57	0.00%	29033	28942.5	495.94	0.00%	28800	28545.5	110.04	0.01%
1100074	28997	28937	28997.0	211.40	0.00%	28957	28997.0	420.84	0.00%	28957	28950.8	141.25	0.00%
131p034 1224657	32997 33100	32997 99100	32997.0 32199.0	1527.59	0.00%	32997	32997.0 99101 9	510.40	0.00%	32997 22101	32997.0	141.50	0.00%
145,794	26522	26522	26522.0	203.19	0.00%	33100	26522.0	600 50	0.00%	26444	26274.0	220.06	0.2070
157rst789	30517	30517	30552.0	020.90 463.61	0.00%	30532	30403.0	647.08	0.00%	30444	38656 5	220.00	1.09%
201pr1009	50583	50589	50582.0	1010.01	0.00%	505517	50582.0	1850.51	0.00%	50406	50149.0	204.39 547.01	0.1707
201p11002	53540	59540	535400	830 06 1010:01	0.0070	50500	53540 0	1000.01	0.007	50490 59460	59490 1	649 67	0.17/0
21201000 217vm1084	54719	54719	54719 0	1038.00	0.00%	54719	54719 0	2002.20 9897 91	0.00%	54719	54719.0	653 10	0.13%
<u>4</u>	04/12	04114	04112.0	1 49 00	0.0070	54712	04112.0	2021.01	0.007	04/14	04112.0	055.10	0.00%
Avg				148.92	0.00%			233.42	0.00%			67.78	0.06%
#Best					51				51				44
$\mathrm{Dev.st}\%$			0.00%				0.06%				0.26%		

Table A.16: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with $\omega = 0.8$ and g_2 profit.