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Abstract

This paper addresses the Set Orienteering Problem which is a generalization of the Orienteering

Problem where the customers are grouped in clusters, and the profit associated with each cluster

is collected by visiting at least one of the customers in the respective cluster. The problem consists

of finding a tour that maximizes the collected profit but, since the cost of the tour is limited by

a threshold, only a subset of clusters can usually be visited. We propose a Biased Random-Key

Genetic Algorithm for solving the Set Orienteering Problem in which three local search procedures

are applied to improve the fitness of the chromosomes. In addition, we introduced three rules

useful to reduce the size of the instances and to speed up the resolution of the problem. Finally,

a hashtable is used to quickly retrieve the information that are required several times during

the computation. The computational results, carried out on benchmark instances, show that our

algorithm is significantly faster than the other algorithms, proposed in the literature, and it provides

solutions very close to the best-known ones.

Keywords: Metaheuristics; Biased Random-Key Genetic Algorithm; Orienteering problem;

Routing

1. Introduction

Routing problems with profits received significant attention in recent years, as witnessed by

the large literature surveyed in recent papers [3, 20]. The most widely known problem in this class

is the Orienteering Problem (OP) introduced in [37]. In the OP a profit is associated with each

customer and the objective is to find a single vehicle tour maximizing the profit collected from

visited customers and such that the duration of the tour does not exceed a maximum time limit.
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The profit of each customer can be collected at most once.

In this paper, we face the Set Orienteering Problem (SOP) which is a generalization of the OP

where customers are grouped in clusters and a profit is associated with each cluster. To gain the

profit associated with a cluster it is necessary to visit at least a customer of that cluster. The

problem consists of finding a tour over a subset of clusters such that i) the profit collected is

maximized and ii) the tour length is within a given threshold Tmax. The SOP is similar to another

routing problem with profits, named Clustered Orienteering Problem (COP) [1]. The difference

between these two problems lies in how the profit is gained because, in the COP, the profit of a

cluster is collected if and only if all the customers of that cluster are visited.

The SOP was introduced the first time in [2]. In this paper, the authors proposed a formulation

of the problem and a matheuristic algorithm named MASOP. MASOP is made by two phases:

the first one builds an initial solution and the second one invokes a Tabu Search metaheuristic

to improve this initial solution. The initial solution is found by a greedy algorithm that starts

from a tour containing only the depot and, at each iteration, it adds the closest vertex belonging

to the cluster with the highest profit and not yet visited. The greedy algorithm stops when

no more vertices can be added due to the cost limit. The tabu search uses three operators:

ExploreNeighborhood, MIPMove, and Shake. The first operator generates the neighborhood of the

solution by using the insert and swap operators while MIPMove generates a different neighborhood

obtained by solving a MILP model and neglecting the tabu list. Finally, the Shake procedure

partially destroys the current solution by removing randomly some clusters (diversification phase).

The authors defined two sets of benchmark instances, one by adapting the classical instances of the

Generalized Traveling Salesman Problem (GTSP) and another one by generating random instances.

In [27] the authors proposed an alternative formulation for the SOP and a Variable Neighborhood

Search metaheuristic that is used also for other two variants of the OP: the Orienteering Problem

with Neighborhoods [5, 15] and the Dubins Orienteering Problem [28, 29].

The SOP finds application in mass distribution products in which a different distribution plan

is sought. For instance, let us consider the case when customers are clustered in areas and the

service to each area is made by delivering the entire quantity required by all customers in that

area to a single customer, the one that is visited. This happens also when private customers group

together to reach large quantity orders, and thus hopefully a lower price. Typically, in this case,
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the delivery is made to a single location. There are even other applications of the SOP that are

far from the ones originally outlined in [2]. Indeed, the SOP can be used for any application of the

GTSP, discussed in [25], where the salesman has a limited budget, and cluster profits can be used

for prioritization like the travel guide problem.

In this work, we propose a Biased Random-Key Genetic Algorithm (BRKGA) for the SOP.

This method was chosen for its successful results obtained on a significant number of optimization

problems [17], such as scheduling problems [8, 9, 30, 34], container loading problems [18, 32], and

transportation problems [4, 22, 26, 33]. The main contributions of the paper are:

• the introduction of a BRKGA algorithm for the SOP,

• the introduction of three local search procedures used to improve the fitness of the chromo-

somes,

• the use of a hashtable and of a three-dimensional matrix to speed up the resolution of the

problem by avoiding redundant computations and

• the introduction of a set of rules to reduce the size of the instances.

More in detail, the chromosome defines i) the clusters to be visited in the tour and ii) the

visiting order of these clusters while the decoder function states the clusters that can be visited

according to the cost limit imposed by the problem. The three local search procedures try to

improve the fitness of the chromosomes either by introducing new clusters into the current solution

or by swapping clusters. In the hashtable, we save the information, concerning the chromosomes,

that is crucial to both reduce the number of invocations of the decoder function and to quickly

provide the input data required by local search procedures. Finally, we prove that there are rules

for the removal of useless vertices, arcs, and clusters, defined for the GTSP, that hold also for

the SOP. These rules are applied in a preprocessing phase of the algorithm. The application of

a hashtable, of the three-dimensional matrix and the reduction of the instance size significantly

impact on the performance of our algorithm. The computational results, carried out on benchmark

instances, show that the BRKGA is faster than the other algorithms, proposed in the literature,

and the solutions it provides are very close to the best-known solutions.
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The remainder of this paper is organized as follows. In Section 2, we introduce the terminology

and the notation used throughout the paper. In Section 3, we describe the preprocessing procedure

while, in Section 4, we present our new metaheuristic. Computational results as reported in

Section 5. Finally, conclusions are provided in Section 6.

2. Definitions and notation

The Set Orienteering Problem is defined on a directed and complete arc weighted graph G =

(V,A), where V = {v0} ∪ C is the set of vertices with |V | and A is the set of arcs with |A|. The

vertex v0 represents the depot from which the vehicle starts and ends its tour while C is the set of

customers. The vertices of G are grouped in clusters Cg with g = 1, ..., l, such that
⋃l
g=1Cg = V

and Cg∩Ch = ∅, ∀Cg, Ch ∈P, where P = {C1, ..., Cl} is the set of clusters. A profit pg is associated

with each cluster and it is collected if and only if at least a customer i ∈ Cg is visited in the tour.

The profit of each cluster can be collected at most once. The cluster C1 contains only the depot

v0 and its profit is equal to 0. A cost cij is associated with each arc (i, j) ∈ A and we assume that

costs cij satisfy the triangle inequality. The SOP consists of finding a tour that maximizes the

collected profit and such that its cost (or duration) does not exceed a maximum value Tmax. In the

following, we denote this last condition as cost constraint. Since the arc costs satisfy the triangle

inequality, an optimal tour always includes at most one vertex per cluster [2]. Let C : V → P be a

function that, given a vertex v ∈ V , returns the cluster containing v. For instance, C(v0) = C1.

Any solution of the SOP can be described by a permutation
∑

k = (σ1, ..., σk) of the cluster

indexes, with 1 ≤ σi ≤ l, σi 6= σj for i 6= j and σ1 = 1, defined according to the visiting sequence

of the clusters in the tour.

3. Preprocessing phase

In this section, we prove that there are rules for the removal of useless vertices, arcs, and

clusters, defined for the GTSP, that hold also for the SOP. These rules are useful to reduce the

size of the instances and to speed up the resolution of the SOP on them. To this aim, we take

advantage of the characteristics of the problem, as the grouping of the vertices in the clusters and

the Tmax cost limit of the tour. The main idea is to remove from G vertices, arcs, and clusters not
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necessary to build an optimal solution. In the following, we report how these removals are carried

out.

• Arcs and vertices removal

This procedure is based on the removal procedures proposed in [21] for the GTSP. However,

it is worth noting that the correctness of the procedures given in [21] is based on the cost

of the tour since the optimality of a solution for the GTSP depends only on its cost. For

the SOP this is not true because the cost of the tour states if a solution is feasible or not

but the optimality depends on the profit collected. For this reason, we provide a proof of

the uselessness of the edges and vertices removed by taking into account both the cost of

the tour and the profit collected. Finally, for the edge removal, we use the implementation

proposed in [11] and successfully applied also in [10, 12]. The removal procedure, named

Graph Reduction Algorithm (GRA), works as follows.

Given a cluster Cg, let us consider two customers u ∈ Ch and v ∈ Ck, such that h 6= k 6= g.

The GRA computes the shortest path between u and v, passing through Cg. Since triangle

inequality holds, this shortest path is composed of two arcs: (u,w) and (w, v), where w ∈ Cg.

The GRA marks as needed these two arcs of the shortest path and the vertex w crossed in

Cg. The algorithm repeats this operation for each cluster Cg ∈ P and for all possible couples

of customers u and v, with C(u) 6= C(v) 6= Cg. At the end of the computation, the GRA

removes all not-marked arcs and vertices from the graph. Proposition 1 ensures that there

always exists an optimal solution without not marked arcs.

Proposition 1. Given a cluster Cg ∈ P, let S be the set of the shortest paths from u ∈ Ch
to v ∈ Ck passing through Cg, with h 6= k 6= g. Moreover, let AS̄ be the set of arcs incident

to the vertices in Cg that do not belong to any shortest path of S. Then an optimal solution

of the SOP, not containing arcs in AS̄, always exists.

Proof. W.l.o.g. let us suppose that T ∗ is an optimal solution containing the arcs (u,w) and

(w, v), with u ∈ Ch, w ∈ Cg, v ∈ Ck and (u,w) ∈ AS̄ . Since (u,w) does not belong to any

shortest path in S, then there exists another customer w′ ∈ Cg such that the path {u,w′, v}

is shorter than {u,w, v}. By replacing {u,w, v} with {u,w′, v} in T ∗, we obtain a new tour

T ′ that is feasible and optimum because c(T ′) < c(T ∗) and p(T ′) = p(T ∗).
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Proposition 2. Given a cluster Cg ∈ P, let S be the set of the shortest paths from u ∈ Ch
to v ∈ Ck passing through Cg, for each Ch, Ck ∈ P\{Cg} with h 6= k. Moreover, let VS̄ be the

set of vertices in Cg that do not belong to any shortest path of S. Then an optimal solution

of the SOP, not containing vertices in VS̄, always exists.

Proof. Similar to Proposition 1.

• Clusters removal

Since the feasibility of a tour depends on the Tmax value, lower is this value lower is the

number of feasible solutions in G. To state if a cluster Ck is useless, it is sufficient to check

the distance between the depot v0 and each vertex vi ∈ Ck. More in detail, if the distance

between v0 and a vertex vi ∈ Ck is greater than Tmax
2 then any tour starting from v0 and

visiting vi is infeasible because violated the cost constraint. As a consequence, the vertex vi

is useless and then it is removed. This check is carried out for all the vertices in Ck and if,

at the end, the cluster is empty then it is removed from G. The procedure to find useless

clusters requires O(|E|) time, and as expected, its effectiveness increases as Tmax decreases.

A similar strategy was proposed in [13] for the Orienteering Problem where the aim was to

find a path from a starting vertex to an ending vertex maximizing the profit and satisfying

a maximum length Tmax. The authors used the starting and ending vertices as foci of an

ellipse having the length of the major axis equal to Tmax and they removed all the vertices

outside the ellipse because useless.

The application of the previous strategies improves the performance of our BRKGA algorithm

because the subgraph G′, obtained by applying the preprocessing phase on G, contains fewer

vertices, arcs, and clusters of G.

3.1 Insertion cost matrix

One of the most used operations in our algorithm is the insertion of a new cluster in the current

tour. To carry out this operation, it is necessary to choose the vertex w of the cluster Ck to insert

and the two consecutive vertices u and v, of the current tour, between which w will be inserted.

Because of the cost constraint, it is important to know how much the cost of the tour increases,

to state if the new tour is feasible or not. Instead of computing this information every time the
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algorithm performs an insertion operation, we compute it just one time, during the preprocessing

phase, and we save it in a three-dimensional matrix, named ICM, having size |V | × |V | × l. More

in detail, given a couple of vertices u and v and a cluster Ck, with C(u) 6= C(v) 6= Ck, we compute

the shortest path from u to v crossing Ck and we save the cost of this path and the vertex w ∈ Ck,

crossed by this shortest path, in the position [u,v,k] of the matrix. In this way, it is possible to

retrieve in constant time both the minimum insertion cost of a cluster Ck, between two vertices of

the tour, and the vertex of Ck to insert to have that insertion cost.

It is worth noting that the costs of ICM are locally optimal because they are computed according

to the vertices visited in the current tour T. As a consequence, if ICM states that the insertion

of a cluster Ck, in any position of T, violates the cost constraint, this is true only for the current

visited vertices in T. However, it could be possible to obtain a new feasible solution, by inserting

Ck in T, provided that some vertices of T are replaced by other ones of the same clusters.

4. Biased Random-Key Genetic Algorithm

In this section, we present the BRKGA concept, including a detailed description of the solution

encoding and decoding, the evolutionary process and the fitness function. We also describe three

operators used to intensify the search in promising communities and the hashing strategy used to

improve the performance of the algorithm.

4.1 The BRKGA framework

The BRKGA is a metaheuristic proposed in [17], in which chromosomes (solutions) are encoded

as vectors with n elements of real numbers in the interval [0,1]. These numbers are called random-

keys or allele. A decoding function associates to each chromosome a solution of the underlying

optimization problem, from which the objective function value or fitness can be computed. This

function is named decoder. The decoder function and the chromosome definition represent the main

aspects which define the BRKGA, since the other aspects are essentially problem-independent. The

BRKGA starts with and then evolves a population containing exactly p chromosomes, each having

n allele, for a number of generations until a stopping criterion is met. The population is partitioned

in two sets of chromosomes: the elite containing pe individuals with the best fitness values and

a non-elite set with the remaining individuals. The evolutionary process at generation i + 1 is

carried out as follows. The pe elite chromosomes of generation i are copied in the new population.
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Elite
chromosomes

Non-Elite
chromosomes

Generation i

Elite
chromosomes

Generation i+1

Offspring
chromosomes

Mutant 
chromosomes

Copy elite chromosomes

Generate mutant
chromosomes

Crossover

Figure 1: Generation of a new population in the BRKGA. The pe elite chromosomes are directly copied in the
new population in which pm mutant chromosomes are added. To complete the population, p − pe − pm offspring
chromosomes are generated by randomly selecting one elite and one non-elite chromosome and by applying on them
the parametrized uniform crossover operator.

Moreover, pm chromosomes are randomly generated and introduced in the new population. These

pm chromosomes are named mutants, and they are used in place of the mutation operator usually

found in evolutionary algorithms [6, 23]. The remaining p− pe − pm chromosomes (offspring) are

generated by randomly selecting one chromosome from the elite set and one chromosome from

the not-elite set and carrying out the parametrized uniform crossover [35]. More in detail, fixed

a probability ρe, this crossover defines the value of the j-th allele of offspring i by generating a

random number r in the interval [0,1); if r > ρe then the offspring i inherits the j-th allele of its

elite parent otherwise it inherits the j-th allele of the non-elite parent. Figure 1 shows how a new

generation is created from the previous one in BRKGA. In the following subsections, we describe

in detail how we designed BRKGA to solve SOP.

4.2 Chromosome representation and decoding

We defined the chromosome representation for the SOP by taking into account the following

proposition.

Proposition 3. [7] Given a clustered graph G = (V,E) and a visiting sequence
∑

k of clusters,
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C1 C2 C3 C4 C5 C6 C7 C8 C10C9 C11

1 0.23 0.51 0.89 0.46 0.71 0.62 0. 98 0.71 0.840.38

C1 C8 C4 C11 C6 C10 C7 C3 C9C5 C2

1 0.98 0.89 0.84 0.71 0.71 0.62 0.51 0.38 0.230.46

Sorting

Not visited

Decoding

(a)

(b)

C1 C8 C11 C6 C3 C5 C7 C9 C2C10 C4

1 0.98 0.84 0.71 0.51 0.46 0.38 0.38 0.23 0.110.29

Not visited

(c)

Feasible Solution

Figure 2: (a) Chromosome representation. (b) The sorting operation carried out to state the (possible) clusters to
visit and in which order. (c) Decoding operation.

the problem of finding the shortest tour, that visits the clusters according to this sequence, can be

solved in polynomial time by solving a shortest path problem.

The computation of the shortest tour of Proposition 3 is carried out on a graph G′ = (V ′, E′)

built as follows. The vertices in G′ are the vertices belonging to the clusters in
∑

k plus a dummy

vertex named v′0, which is V ′ =
⋃k
i=1Cσi∪v′0. The arcs in G′ connect vertices belonging to adjacent

clusters of
∑

k. More in detail, (u, v) ∈ E′ if u ∈ Cσi , v ∈ Cσi+1 , and (u, v) ∈ E. Moreover, any

vertex v ∈ Cσk is connected to the dummy vertex v′0 with an arc having cost equal to cv,v0 . The

shortest path from v0 to v′0 is the shortest tour we are looking for.

From Proposition 3, we derive that each chromosome has to report two information: i) the

visited clusters in the tour and ii) the visiting order of these clusters. For this reason, the chromo-

some in our BRKGA is a vector of random keys (real numbers between 0 and 1) having a number

of alleles equal to the number of clusters in G. Figure 2(a) shows a chromosome St, having eleven

clusters, and its alleles. In the following, we denote by ai the allele associated with the cluster Ci.

To state what clusters should be visited and their visiting order, the clusters are sorted according

to their alleles, in non-increasing order. In case of ties, the cluster with lower id is selected first
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(Figure 2(b)). The clusters candidate to be visited on the tour are the ones having the allele

greater than 0.5. In our example, clusters C2, C5, and C9 are discarded from the construction

of the tour because of their alleles (Figure 2(b)). The sorted list of clusters with allele greater

than 0.5 represents the visiting sequence
∑

k of the clusters. In our example this sequence is∑
8 = (1, 8, 4, 11, 6, 10, 7, 3). Since any feasible tour has to start from the depot, the allele of C1 is

set to 1 to assure that C1 is always the first visited cluster. Note that, the shortest tour, visiting

the clusters according to
∑

k, can be infeasible for the SOP if its cost is greater than Tmax. For

this reason, a deterministic procedure, named Decoder, has to be invoked on the sequence
∑

k to

produce a feasible solution.

The Decoder procedure starts with a visiting sequence
∑′ containing only C1. At iteration i,

the Decoder adds to
∑′ the i -th cluster of

∑
k and it finds the shortest tour T ′ visiting the clusters

according to
∑′. If c(T ′) ≤ Tmax then the i -th cluster of

∑
k is left in

∑′ otherwise it is removed.

The procedure proceeds with the next cluster in
∑

k and so on until no more clusters are available.

In Figure 2(b) the clusters selected by the Decoder to build the tour are highlighted. Since

clusters C4, C10 and C7 are not selected by the Decoder, their alleles have to be decreased to a value

lower than or equal to 0.5. To this end, the Decoder sets the alleles aσ4 = 1− aσ4 , aσ10 = 1− aσ10

and aσ7 = 1− aσ7 and it sorts again the clusters according to the new allele values (Figure 2(c)).

The final sequence produced by the Decoder is
∑

5 = (1, 8, 11, 6, 3) and the fitness associated to

this chromosome is given by the sum of the profits of clusters in
∑

5.

4.2.1 Hashtable

The decoding function should be invoked on all the chromosomes, generated during the evo-

lutionary process, to define the feasible solution associated with the chromosome and to compute

its fitness. However, since this operation is computationally expensive, and the decoder is a deter-

ministic procedure, the idea is to avoid its invocation on the chromosomes on which it has been

already invoked in the previous evolutionary steps. To this end, we use a hashtable in which, after

the invocation of the decoder on a chromosome, we save three information: i) the cost of the tour

found by Decoder, ii) the vertices of the tour and iii) the fitness of the chromosome. The hash

key associated with each chromosome is generated according to the sorted sequence of its alleles

greater than 0.5. For instance, given the chromosome in Figure 2(a), after the sorting of the alleles

(Figure 2(b)), the hash key of this chromosome is < 1, 8, 4, 11, 6, 10, 7, 3 >. Before invoking the
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decoder on a chromosome, we verify if its hash key is already present into the hashtable. If not,

Decoder is invoked on the chromosome otherwise all the information about the tour are directly

obtained from the hashtable.

4.3 Initial population

Each chromosome of the initial population is generated by assigning to its alleles a random

number chosen in the real interval [0,1]. The only exception is for the allele associated with

cluster C1 that is always set to 1 because any feasible tour has to start from the depot v0. The

number of chromosomes in each population is equal to p. We use two populations, not evolved in

parallel, that exchange their best chromosome every swap best iterations [18]. Finally, we apply

the idea proposed in [19] consisting of resetting the populations after popreset iterations without

improvement. This is to avoid the BRKGA staying trapped in local optimum regions.

4.4 Improvement heuristics

In this section, we describe three local search operators used to improve the fitness of a given

chromosome St. In the following, we suppose that
∑

k is the visiting sequence associated with St

by Decoder. Since we do not allow operators to change a visited vertex in
∑

k with another one of

the same cluster, then the insertion cost of a new cluster in
∑

k can be computed in constant time

thanks to ICM (see Section 3.1).

• Insert Operator

The Insert operator tries to insert new clusters in the current sequence
∑

k to increase the

fitness of the chromosome. First, the operator checks if St is in the hashtable and, if this is the

case, the operator stops because it has been already invoked on this chromosome. Otherwise,

Insert proceeds as follows.

The operator builds a list `v̄ of the not visited clusters that is sorted according to their allele,

in non-increasing order. Insert goes through the sorted list `v̄ by selecting the clusters, one

by one, as a possible candidate for the insertion in
∑

k. More in detail, given a Ch ∈ `v̄, the

operator finds the cheapest position j in
∑

k where to insert a vertex of Ch. If the cost of

this new tour is lower than or equal to Tmax, then Ch is inserted in position j of
∑

k and its

allele is set to (aσj−1 + aσj )/2. Otherwise, Ch is rejected, and Insert selects the next cluster
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in `v̄. The operator stops when all the clusters in `v̄ are checked for the insertion. Finally,

the operator generates the hash key of this new chromosome and inserts it into the hashtable,

if not yet present, with the other information.

Notice that, the insertion cost of Ch, in any position of
∑

k, is computed in constant time

thanks to ICM. This makes much faster the Insert operator.

• Swap Operator

The Swap operator tries to improve the fitness of St by replacing some visited clusters with

some other not visited ones. First, the operator checks the presence of St in the hashtable and,

if it is present, the operator stops because it has been already invoked on this chromosome.

Otherwise, Swap proceeds as follows.

According to the alleles of St, the operator builds a list `v of the visited clusters, and it sorts

this list according to the clusters’ profit, in non-decreasing order. Moreover, Swap builds a

list `v̄ of the not visited clusters, and it sorts this list according to the clusters’ profit, in

non-increasing order.

Swap goes through the sorted list `v by selecting a cluster in this list as a possible candidate

for the swap operation. Once selected a cluster Ci from `v, Swap goes through the sorted

list `v̄ to find a cluster Cj that could replace Ci in
∑

k. We state that a swap operation

between two clusters Ci and Cj can be done if and only if the following two conditions are

satisfied: i) pi < pj and ii) the cost of the new tour, crossing Cj instead of Ci, does not

exceed Tmax. Notice that the second condition can be quickly verified thanks to ICM that

returns, in constant time, the insertion cost of cluster Cj between the two clusters adjacent to

Ci in
∑

k. After the swap operation, the cluster Ci and Cj are removed from their respective

sorted lists and
∑

k is updated accordingly. The allele of Ci is set to 1 − aσi while for the

allele of Cj it is used the same policy applied by the Insert operator.

Swap starts a new iteration by selecting the next cluster in `v. The operator stops when the

profit pi of cluster Ci ∈ `v is greater than or equal to the profit pj of the first cluster Cj ∈ `v̄.

Indeed, if pi ≥ pj , the profit of any cluster in `v̄ is not greater than pi. This statement holds

because of the sorting, we carried out on `v and `v̄. Since the first condition for the swap

operation cannot be satisfied anymore, the operator stops. Finally, the operator generates
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the hash key of this new chromosome and inserts it into the hashtable, if not yet present,

with the other information.

Notice that, the Insert and Swap operators sort the clusters by using a different criterion: the

allele and the profit value, respectively. There is a reason behind this choice. After the decoding

operation, generally, the cost of the chromosomes is far enough away from the Tmax threshold to

allow the insertion of different clusters inside them. Since the profit of the clusters never changes,

using this criterion to establish the insertion order leds to the risk to insert always the same

clusters in the chromosomes. For this reason, we prefer to use the allele values to ensure that it is

the evolutionary process to establish this order of insertion according to the allele values assigned

to the chromosomes. The situation is different for the swap operator. This operator is invoked

after the insert operator and therefore it works on a chromosome whose cost is already close to

the Tmax threshold. Moreover, since the main aim of this operator is to increase the fitness of the

chromosome, all the swap operations that do not increase the profit are rejected. As a consequence,

the number of possible operations that the Swap operator can carry out is lower with respect to

the Insert operator. Having fewer operations available, we try to maximize the profit, gained by

each swap operation, by sorting the lists `v and `v̄, according to the profit, in non-decreasing order

and in non-increasing order, respectively.

• Mck operator

Given a sequence
∑

k, let `v̄ be the set of not visited clusters. Since the insertion of a new

cluster in
∑

k is carried out between two consecutive clusters of
∑

k, then there are exactly

k available positions to perform this insertion. Moreover, thanks to ICM, for each cluster

Ch ∈ `v̄ and for each position k in
∑

k, we already know the vertex v ∈ Ch which insertion

cost in position k is minimum.

By examining how our insertion operation works, we found out that we are facing a variant of

the Multiple-Choice Knapsack Problem (MCKP) [24, 31]. This problem is formally defined

as follows. Let N1, ..., Nm be a set of mutually disjoint classes of items to be packed into a

knapsack of capacity W . To each item i ∈ Nj a profit pij and a weight wij are associated.

MCKP consists of choosing one item from each class such that the profit sum is maximized

without exceeding the capacity W in the corresponding weight sum.
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C1 C8 C11 C6 C3

C2
C4
C5
C7
C9
C10

1 0.98 0.84 0.71 0.51

pos 1 pos 2 pos 3 pos 4 pos 5

C2
C4
C5
C7
C9
C10

C2
C4
C5
C7
C9
C10

C2
C4
C5
C7
C9
C10

C2
C4
C5
C7
C9
C10

Figure 3: The Mck operator framework.

For our insertion operation, the classes of the MCKP correspond with the k positions available

in
∑

k. Moreover, each class j has exactly one vertex vi ∈ Ch, ∀Ch ∈ `v̄, where vi is the vertex

that minimizes the insertion cost of cluster Ch in position j. The profit associated with vi

is equal to the profit of its cluster Ch while its weight is given by the insertion cost of vi in

position j of
∑

k. Since the vertex vi ∈ Ch to insert in j is unique, in the following we talk

about the insertion in position j of cluster Ch or of vertex vi interchangeably. By using the

information saved in ICM, we can quickly build the k classes with the appropriate vertices

and the right weights. Finally, the capacity W of the knapsack is equal to the difference

between Tmax and the cost of
∑

k.

Figure 3 shows how Mck works. We use the same chromosome and the same sequence reported

in Figure 2. This means that `v̄ = {C2, C4, C5, C7, C9, C10} and there are 5 positions of
∑

5

where Mck can introduce these clusters. Therefore, we have 5 classes, each one associated

with a different position j in
∑

5. For each Ch ∈ `v̄, the class associated with the position j

contains the vertex of Ch that minimizes the insertion cost of this cluster in position j.

There are three differences between the MCKP and the version we use for the SOP. The first

difference is that the classes are not mutually disjoint because the same vertex can belong to

several classes. The second one is that, when a vertex v ∈ Ch is inserted into a position j,

then no other vertex of Ch can be inserted in the other positions of
∑

k. The third difference

is that we can select at most one vertex for each class rather than exactly one as in the
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original problem. The formulation of our modified version of the MCKP is the following.

The decision variables are xij equal to 1 if cluster i is inserted in position j and 0 otherwise.

max
∑
i∈`v̄

k∑
j=1

pixij (1)

∑
i∈`v̄

k∑
j=1

wijxij ≤W (2)

k∑
j=1

xij ≤ 1 ∀i ∈ `v̄ (3)

∑
i∈`v̄

xij ≤ 1 j = 1, ..., k (4)

xij ∈ {0, 1} ∀i ∈ `v̄, j = 1, ..., k (5)

The objective function (1) maximizes the profit collected by the insertion of new clusters

in
∑

k. Constraint (2) ensures that the cost of the final tour does not exceed the limit

Tmax. Constraints (3) impose that each cluster can be inserted in at most one position of

the sequence
∑

k while Constraints (4) ensure that at most one cluster is inserted in each

position. Finally, (5) are variable definitions.

Our Mck operator solves the previous model to obtain the best possible insertion of the

clusters in the current sequence
∑

k. However, since this operator solves a MIP model, it

is much more expensive than the Insert operator. For this reason, we invoke it only on the

chromosomes of the last population generated by the BRKGA.

4.5 Termination criteria

The algorithm ends when maxit iterations have been executed, or when maxit/3 consecutive

iterations have failed to improve the incumbent solution and populations have been reset at least

once. The second criterion is often satisfied with the small instances where the algorithm usually

finds the best solution during the first iterations.

4.6 Pseudocode

The pseudocode of the BRGKA is listed in Algorithm 1. In this algorithm, the procedures

having the suffix POP are applied on all the chromosomes of the population. For instance, the
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Algorithm 1: The BRKGA pseudocode
Input: G,P, Tmax

Output: A feasible tour for the SOP

1 i← 1, resetDone← false;
2 Pi ← genPopulation(P), P ′′i ← genPopulation(P);
3 Pi ← decodePOP(Pi), P ′′i ← decodePOP(P ′′i );
4 Pi ← insertPOP(Pi), P ′′i ← insertPOP(P ′′i );
5 Pi ← swapPOP(Pi), P ′′i ← swapPOP(P ′′i );

6 while i ≤ maxit do
7 Pi+1 ← evolve(Pi), P ′′i+1 ← evolve(P ′′i );

// if the current iteration is not the last one

8 if i < maxit then
9 Pi+1 ← insertPOP(Pi+1), P ′′i+1 ← insertPOP(P ′′i+1);

10 Pi+1 ← swapPOP(Pi+1), P ′′i+1 ← swapPOP(P ′′i+1);

11 else
12 Pi+1 ← mckPOP(Pi+1), P ′′i+1 ← mckPOP(P ′′i+1);

// aspiration criterion

13 if ((i− iterBest) ≥ maxit/3 && resetDone = true) then
14 break;

// reset the populations after popreset iterations without improvements

15 if ((i− iterBest) % (popreset) = 0) then
16 Pi ← genPopulation(P), P ′′i ← genPopulation(P);
17 resetDone← true;

// best individual exchange every swapbest iterations

18 if (i % (swapbest) = 0) then
19 exchange best(Pi+1, P

′′
i+1);

20 i← i+ 1;

21 return the tour associated to the best individual found ;

procedure insertPOP (Pi) applies the insert operator on all the chromosomes of the population

Pi and it returns the population with the updated chromosomes.

The algorithm takes as input a graph G, a set of clusters P, and a threshold Tmax. To make

the pseudocode more readable, we avoid passing these three parameters to the procedures but

all of them, except genPopulation, use these parameters. The first step of the BRKGA is the

initialization of the iteration counter i to 1 and of the flag resetDone to false. The next step is

the generation of the starting populations Pi and P ′′i (line 2) according to the rules described in

Section 4.3. Then, the decodePOP , insertPOP and swapPOP procedures are invoked on Pi and

on P ′′i (line 3-5). The while loop (line 6) iterates until maxit iterations are carried out. The first

step of the loop is the generation of the next populations Pi+1 and P ′′i+1 by invoking the evolve

procedure on the current populations Pi and P ′′i (line 7), respectively. To this end, the evolve

procedure executes the steps reported in Sections 4.1 and summarized in Figure 1. If the current
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iteration i is not the last one, then the procedures insertPOP and swapPOP are invoked on Pi+1

and P ′′i+1 (lines 9-10), otherwise, the procedure mckPOP is invoked on these two populations (line

12). The aspiration criterion states that if maxit/3 iterations are carried out without improving the

incumbent solution, found at iteration iterbest, and if at least one reset of the population has been

carried out, then the algorithm stops (line 13-14). Every popreset iterations, without improvements

of the incumbent solution, a reset of the populations is carried out and the flag resetDone is set

to true (line15-17). Finally, every swapbest iterations the procedure exchange best is invoked to

exchange the best individuals between the populations (line 18-19). The last step of the while loop

increases by one the iteration counter i (line 20). The algorithm returns the best individual found

(line 21).

5. Computational Tests

In this section, we describe the results of BRKGA obtained during our computational test phase

carried out on the SOP benchmark instances. Our algorithm was coded in C++ using the LEMON

graph library [14] and the brkgaAPI [36]. All tests have been performed on an OSX platform (iMac

late 2012), running on an Intel Core i7 2.8 GHz processor with 16 GB of RAM. The mathematical

formulation was solved using the ILOG Concert Technology library and CPLEX 12.8.

The computational tests are carried out on 306 instances proposed in [2] and named Set1. This

set of 306 instances was obtained by adapting 51 instances for the Generalized Traveling Salesman

Problem proposed in [16]. These instances have a number of vertices ranging from 52 to 1084 and

a number of clusters equal to ∼ 20% of the number of vertices. Tmax is set to ω ×GTSP ∗, where

GTSP ∗ is the best-known solution value of the GTSP (taken from [16]) and ω has been set to 0.4,

0.6, and 0.8. Finally, the profit associated with each cluster is assigned by using two different rules.

The first rule sets the profit of each cluster Cg equal to |Cg|. The second rule sets the profit of a

vertex j equal to 1 + (7141j + 73)mod(100) in order to obtain pseudo-random profits. The profit

of a cluster is then obtained by summing up the profit of all the vertices belonging to it. In the

following we call g1 and g2 the first and the second rule, respectively.

In [2] the authors generated a new set of instances named Set2. This new set of instances is

equal to Set1 except for the generation of clusters. In particular, the number of clusters remains

the same of Set1 but the vertices are randomly assigned to these clusters. The computational
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Parameter Value Description

n |P| Number of alleles per chromosome
p 100 + 25α Number of chromosomes in the population (α = 1 if |V | ≥ 200 and zero otherwise)
pe 20% Size of the elite set in the population
pm 25% Number of mutants to be introduced in the population at each generation
ρe 0.8 Probability that an allele is inherited from the elite parent
maxit 150 + 0.3|V | Maximum number of iterations
popreset

maxit
3

number of iterations without improvement before resetting the populations
swapbest

maxit
6

number of iterations after which an exchange of best individuals among the popu-
lations is carried out

Table 1: The BRKGA parameters.

results of the three algorithms on Set2 are reported in Appendix A.

The values of the BRKGA parameters were chosen after a preliminary tuning phase carried

out on Set1 and they are reported in Table 1. According to the literature [9, 17, 18, 19], the

main parameters of BRKGA are usually chosen in the following sets: pe ∈ {15%, 20%, 25%} of p,

pm ∈ {15%, 20%, 25%} of p, and ρe ∈ {0.6, 0.7, 0.8}. Among all the possible combinations of these

values, we have chosen the ones that provided us the best results in terms of performance and

effectiveness.

Finally, before starting the description of the results, there are some observations, concerning

the instances with ω = 1, that have to be reported. As described above, Set1 was obtained by

adapting instances proposed in [16] for the GTSP. If an optimal solution T ∗ is known for GTSP,

then it is possible to visit all the clusters paying a cost equal to c(T ∗). However, in the GTSP

addressed in [16], the problem is solved without specifying a starting depot. On the contrary, for

the SOP instances, the first vertex of the instance is always selected as depot v0. This means that if

v0 does not belong to any optimal solution of GTSP, then the shortest tour visiting all the clusters

and containing v0 has a cost greater than c(T ∗). As a consequence, by setting Tmax = c(T ∗) (i.e.

ω = 1), it is not guarantee that all the clusters can be visited by a tour, containing v0, and then∑l
g=1 pg is not necessary the optimal solution value for SOP (as erroneously reported in [2]) but

it is surely an upper bound.

Moreover, for Set2 with ω = 0.8, the Tmax value is enough large to guarantee that, for all the

instances but one, all the clusters can be visited. For this reason, it is useless to further increase

to 1 the ω value and then no results will be reported in the following for this value.
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Hash Hits

ω = 0.4 ω = 0.6 ω = 0.8
Instance g1 g2 g1 g2 g1 g2

11berlin52 82.59% 82.93% 79.48% 79.84% 54.39% 89.09%
11eil51 81.94% 73.02% 62.50% 73.93% 56.02% 65.65%
14st70 65.60% 53.49% 53.18% 54.23% 55.48% 44.43%
16eil76 52.02% 84.47% 42.98% 44.30% 26.85% 39.28%
16pr76 52.51% 58.54% 41.24% 40.46% 34.18% 37.80%
20kroA100 46.95% 54.78% 37.20% 39.32% 27.75% 32.63%
20kroB100 49.70% 52.11% 38.52% 38.94% 32.28% 30.81%
20kroC100 59.26% 63.04% 37.36% 38.46% 32.29% 30.77%
20kroD100 51.76% 58.84% 21.44% 37.51% 31.04% 31.99%
20kroE100 65.75% 85.81% 39.19% 41.34% 27.73% 31.52%
20rat99 69.73% 65.94% 50.80% 57.83% 28.84% 36.95%
20rd100 48.62% 59.43% 36.56% 37.28% 32.23% 29.66%
21eil101 48.04% 53.23% 32.64% 33.98% 32.25% 22.93%
21lin105 67.68% 77.57% 45.90% 48.24% 30.52% 32.81%
22pr107 40.67% 53.17% 56.02% 74.44% 24.22% 39.21%
25pr124 39.72% 45.97% 34.29% 35.02% 26.67% 30.29%
26bier127 33.58% 37.24% 24.59% 24.56% 23.16% 19.95%
26ch130 43.78% 34.70% 29.73% 30.30% 23.54% 20.92%
28pr136 42.08% 47.36% 31.48% 29.94% 20.79% 23.08%
29pr144 41.31% 43.86% 26.45% 31.48% 23.97% 21.83%
30ch150 41.34% 41.59% 27.91% 21.99% 25.57% 22.83%
30kroA150 37.47% 38.93% 30.12% 23.31% 23.01% 19.57%
30kroB150 32.86% 36.98% 23.41% 29.70% 26.07% 21.80%
31pr152 47.60% 51.33% 27.85% 27.02% 27.10% 26.01%
32u159 30.63% 38.02% 27.03% 27.43% 19.09% 17.07%
39rat195 35.64% 34.82% 20.46% 25.84% 22.29% 23.48%
40d198 39.79% 44.08% 20.11% 24.09% 13.43% 17.81%
40kroa200 24.58% 24.73% 16.82% 16.31% 13.31% 13.62%
40krob200 21.18% 25.53% 18.54% 19.36% 15.73% 18.93%
45ts225 25.34% 23.91% 17.38% 16.19% 14.86% 15.94%
45tsp225 26.12% 26.90% 21.36% 25.30% 18.13% 17.71%
46pr226 24.65% 25.18% 30.03% 25.63% 18.21% 21.29%
53gil262 24.92% 28.89% 22.49% 18.50% 14.08% 15.58%
53pr264 18.12% 18.04% 25.59% 24.26% 16.84% 21.43%
56a280 19.72% 23.52% 21.88% 20.74% 16.16% 15.23%
60pr299 19.52% 19.80% 20.06% 23.06% 19.33% 16.49%
64lin318 22.55% 21.81% 18.68% 15.48% 12.17% 14.49%
80rd400 18.46% 18.12% 17.10% 16.60% 15.61% 14.86%
84fl417 13.93% 17.79% 16.36% 14.07% 9.37% 12.13%
88pr439 15.93% 18.04% 12.09% 14.33% 9.90% 13.43%
89pcb442 16.30% 17.69% 15.59% 14.69% 11.91% 13.80%
99d493 22.48% 24.54% 14.35% 16.77% 13.54% 13.05%
115rat575 17.97% 20.38% 14.33% 14.59% 12.06% 13.00%
115u574 20.14% 15.61% 12.58% 14.25% 10.79% 12.02%
131p654 10.31% 13.26% 13.23% 12.85% 6.51% 10.11%
132d657 20.71% 18.82% 14.10% 14.57% 11.01% 11.17%
145u724 15.73% 18.54% 11.81% 12.66% 11.50% 11.91%
157rat783 14.46% 15.70% 12.33% 12.14% 10.51% 10.92%
201pr1002 13.18% 14.06% 11.23% 11.40% 8.82% 9.35%
212u1060 12.04% 13.33% 10.02% 10.89% 8.58% 8.35%
217vm1084 12.27% 13.73% 8.81% 9.28% 7.74% 7.22%

Avg 35.28% 38.22% 27.36% 28.72% 21.71% 23.38%

Table 2: Number of times, in percentage, that a chromosome is found into the hashtable before invoking the decoder
functions.

5.1 Hashtable, graph reduction algorithm and ICM effectiveness

In this section, we evaluate the effectiveness of the hashtable, the reduction procedures, and

the ICM strategy introduced in Section 3.

As reported in Section 4.2.1, the hashtable avoids invoking the decoder procedure for the
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chromosomes that have been already met during the evolutionary process. It is worth noting that

the invocation of Decoder on a chromosome requires i) to build a number of graphs equal to the

number of alleles greater than 0.5 and ii) to solve a shortest path problem on each of these graphs.

Taking into account the number of chromosomes generated during the evolutionary process, it is

easy to see that Decoder is one of the most expensive operations carried out by BRKGA. For this

reason, the use of the hashtable is crucial to reduce as much as possible the number of invocations

of this procedure.

In Table 2 the number of avoided invocations of Decoder, because the chromosome is already

into the hashtable, is reported, in percentage. The results on each row of the table are the average

values obtained by performing 10 independent runs of the algorithm on each instance. This last

statement holds for the next tables too. The table is vertically divided according to the Tmax value

(ω) and the type of profit used (g1 and g2). Under the Instance heading, we report the instance

name. The percentage values are computed by using the formula: 100 × numCrom−hits
numCrom , where

numCrom is the number of chromosomes on which the decoder should be invoked and hits is the

number of times these chromosomes are already found into the hashtable. At the bottom, Avg

reports the average percentage.

From the Avg values the effectiveness of the hashtable is evident because it reduces the number of

invocations of Decoder from 20% to 38%. In particular, we observe that the lower is the ω value,

the higher are the percentages. This occurs because the number of feasible solutions depends on

the ω value and the lower is the number of feasible solutions the higher will be the number of

hits obtained. By analyzing the single results, we observe that, generally, the percentage value

decreases as the instance size increases because of a greater number of feasible solutions available.

It is worth noting that there are instances where the percentage is greater than 80% and that only

on 11 out of 306 instances this percentage is lower than 10%.

Regarding the graph reduction algorithm, in Figure 4 the percentage of vertices, arcs, and

clusters removed during the preprocessing phase is shown for the instances with ω = 0.4, ω = 0.6

and ω = 0.8, respectively.

The instance name is reported on the x-axis while on the y-axis the percentage of reduction is

shown. Three bars are associated with each instance representing the percentage of vertices (blue),
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Figure 4: Percentage of vertices, arcs and clusters removed by the preprocessing phase on the instances with (a)
ω = 0.4, (b) ω = 0.6 and (c) ω = 0.8, respectively.
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arcs (red) and clusters (black) removed for that instance.

On the instances with ω = 0.4, Figure 4(a), the number of vertices removed is greater than

20% on 30 out of 51 instances and this percentage of reduction is, in particular, observed on the

instances with up to 300 vertices (i.e. 60pr299). By considering all the instances, the average

percentage of vertices removed is around 27%. Even more interesting are the results obtained on

the removal of the arcs where an average of 48% is observed. On 39 out of 51 instances, this

percentage is greater than 20% while on 11 instances this percentage exceeds the 75% with a peak

equal to 90% on the instance 22pr107. Finally, the percentage of clusters removed is significantly

lower than the other two parameters but remains relevant with an average equal to 18% and 20

instances where this percentage is greater than 20%.

The bars in Figure 4(b) reveal that the percentages of removal on the instances with ω = 0.6

are lower with respect to the instances with ω = 0.4. This behaviour was expected because lower

is the Tmax value greater is the chance of the preprocessing phase to find vertices, arcs and clusters

useless. Anyway, on average, we observe a percentage of vertices, arcs and clusters removed equal

to 9.1%, 25.3% and 2.4%, respectively. The threshold of 20% is reached on 5 instances for the

vertex removal, and on 30 instances for the arc removal. Only in one case (20rat99) the percentage

of clusters removed is greater than 20%.

The results in Figure 4(c) certify the trend observed in the previous charts with a further

reduction of the removal percentages. On average, the percentage of vertices, arcs, and clusters

removed is equal to 6.3%, 21.1%, and 0.19%. There are 28 instances where the percentage of arcs

removed is greater than 20% while the percentage of vertices and clusters removed is always lower

than this threshold.

Summarizing, the results of Figure 4 highlights the effectiveness of the reduction procedures,

in particular, when ω = 0.4. It is worth noting that, whatever is the ω value, the percentage of

arcs removed remains relevant.

In order to evaluate the impact of the graph reduction procedures and of ICM strategy, on

the performance of BRKGA, we implemented a version of BRKGA without the reduction proce-

dures (noRed) and another version without the ICM matrix (noICM). The comparison of the

computational time of these three algorithms is reported in Table 3.
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BRKGA without reductions or without ICM

ω = 0.4 ω = 0.6 ω = 0.8
g1 g2 g1 g2 g1 g2

Instance BRKGA noRed noICM BRKGA noRed noICM BRKGA noRed noICM BRKGA noRed noICM BRKGA noRed noICM BRKGA noRed noICM

11berlin52 1.24 12.53% 7.19% 1.23 16.53% 8.55% 1.42 8.15% 10.68% 1.44 5.14% 5.14% 1.67 3.42% 4.98% 1.41 1.91% 3.68%
11eil51 1.26 5.38% 4.83% 1.34 6.92% 5.29% 1.51 1.92% 6.35% 1.45 1.73% 6.02% 1.65 1.94% 4.24% 1.58 1.27% 4.24%
14st70 1.40 9.05% 5.34% 1.48 9.78% 5.26% 1.72 3.14% 7.10% 1.70 3.24% 7.30% 2.02 3.47% 7.04% 1.99 2.01% 11.19%
16eil76 1.56 7.65% 12.60% 1.38 8.04% 11.15% 1.92 3.81% 7.99% 1.91 3.77% 8.49% 2.42 2.85% 6.87% 2.23 6.06% 9.16%
16pr76 1.62 7.24% 7.92% 1.58 5.52% 8.05% 2.04 1.18% 9.27% 2.05 1.07% 9.21% 2.49 1.20% 4.69% 2.42 6.57% 9.30%
20kroA100 1.74 14.04% 10.41% 1.68 14.42% 10.55% 2.12 3.54% 14.98% 2.11 3.46% 14.22% 2.62 6.87% 14.66% 2.45 2.21% 14.68%
20kroB100 1.70 10.21% 8.39% 1.68 10.46% 8.68% 2.11 3.41% 14.82% 2.11 3.23% 14.85% 2.50 1.64% 15.81% 2.53 1.54% 18.76%
20kroC100 1.59 13.77% 12.77% 1.57 13.00% 9.62% 2.14 3.60% 15.04% 2.12 2.79% 13.70% 2.46 3.90% 13.79% 2.47 2.99% 13.26%
20kroD100 1.61 14.13% 8.55% 1.58 12.74% 8.11% 2.29 5.60% 14.74% 2.11 4.88% 13.35% 2.43 4.60% 13.23% 2.45 9.02% 13.31%
20kroE100 1.52 20.68% 7.62% 1.42 15.88% 2.96% 2.03 11.08% 9.31% 2.01 8.81% 9.46% 2.45 5.02% 11.84% 2.51 4.38% 10.76%
20rat99 1.42 17.65% 4.15% 1.47 16.77% 4.28% 1.81 12.18% 10.31% 1.83 8.57% 5.78% 2.62 2.94% 8.93% 2.35 9.64% 20.43%
20rd100 1.70 14.20% 13.26% 1.63 13.29% 8.37% 2.23 3.46% 13.52% 2.23 1.75% 12.00% 2.86 0.00% 14.04% 2.79 0.00% 13.93%
21eil101 1.93 1.51% 14.13% 1.87 2.19% 15.31% 2.41 3.16% 12.29% 2.46 4.46% 14.29% 3.01 -1.46% 9.51% 2.83 11.11% 11.92%
21lin105 1.56 20.13% 5.83% 1.49 17.02% 5.16% 2.03 9.56% 9.41% 2.01 9.50% 9.25% 2.61 4.18% 13.72% 2.59 0.81% 12.40%
22pr107 1.76 28.47% 5.87% 1.65 27.87% 4.55% 1.87 8.67% 8.24% 1.72 7.69% 12.24% 2.41 2.16% 20.90% 2.24 1.88% 18.36%
25pr124 1.95 14.03% 11.62% 1.88 14.17% 11.20% 2.48 4.77% 16.97% 2.46 5.32% 17.80% 3.02 7.68% 17.72% 3.04 13.12% 19.92%
26bier127 2.95 4.33% 17.16% 3.15 0.35% 15.51% 3.70 6.93% 10.39% 3.95 0.68% 7.63% 4.32 -1.39% 8.68% 4.08 -2.63% 10.26%
26ch130 2.36 2.76% 26.41% 2.41 8.83% 21.96% 2.81 1.78% 28.61% 2.80 0.50% 25.70% 3.41 3.79% 21.65% 3.64 4.07% 20.71%
28pr136 1.96 12.23% 14.37% 1.91 12.17% 14.94% 2.71 4.14% 25.50% 2.76 3.27% 22.72% 3.56 9.94% 29.13% 3.43 6.45% 21.35%
29pr144 2.10 12.29% 17.62% 2.08 12.19% 16.32% 3.06 8.68% 35.46% 3.09 10.73% 31.48% 3.50 12.83% 21.21% 3.48 8.71% 22.26%
30ch150 2.05 12.73% 23.50% 2.11 13.06% 28.22% 2.94 3.37% 29.85% 3.32 1.87% 20.27% 3.76 7.68% 25.88% 3.54 8.34% 27.64%
30kroA150 2.23 9.37% 20.04% 2.27 9.36% 19.16% 2.90 4.55% 31.53% 2.97 2.60% 23.20% 3.69 0.35% 24.12% 3.71 10.96% 21.36%
30kroB150 2.43 6.67% 23.52% 2.38 6.02% 22.60% 3.49 0.77% 28.17% 3.58 6.36% 27.21% 3.91 2.84% 24.53% 3.92 6.60% 21.95%
31pr152 1.97 14.61% 16.34% 1.94 14.99% 15.40% 3.14 2.01% 22.18% 3.12 2.78% 24.01% 3.76 1.01% 20.55% 3.52 6.20% 26.67%
32u159 2.37 19.45% 19.11% 2.28 14.10% 17.14% 3.10 8.55% 25.97% 3.12 7.50% 23.72% 4.10 10.20% 20.36% 4.15 7.94% 19.16%
39rat195 2.45 26.15% 22.03% 2.42 27.91% 24.77% 3.71 8.17% 23.02% 3.95 8.19% 30.56% 5.00 0.98% 26.26% 5.08 0.67% 26.93%
40d198 1.94 31.56% 12.17% 1.90 30.98% 12.33% 4.46 23.75% 41.98% 4.92 10.84% 21.61% 5.24 3.49% 28.78% 5.03 4.51% 28.62%
40kroa200 3.12 29.53% 44.15% 3.11 31.28% 38.79% 4.72 40.40% 32.65% 4.83 27.62% 33.06% 6.16 20.30% 32.79% 6.39 32.15% 30.18%
40krob200 3.09 36.23% 32.57% 3.00 34.72% 31.29% 5.04 19.80% 35.47% 5.11 19.16% 37.39% 6.34 24.79% 40.01% 6.00 38.83% 32.91%
45ts225 3.15 37.54% 39.64% 3.49 42.41% 47.05% 5.09 39.34% 39.65% 5.28 36.74% 34.32% 6.44 39.03% 34.42% 6.78 40.21% 32.33%
45tsp225 2.71 50.13% 36.85% 2.72 50.33% 32.23% 5.95 6.74% 36.94% 5.49 3.72% 38.13% 8.15 0.42% 35.10% 8.59 3.35% 38.08%
46pr226 2.87 44.54% 29.05% 2.85 43.94% 28.94% 5.16 9.65% 52.86% 5.25 5.43% 45.30% 7.68 16.62% 36.23% 7.64 19.06% 39.63%
53gil262 5.06 8.48% 34.00% 5.03 10.04% 44.65% 8.01 2.73% 38.29% 8.15 8.41% 47.12% 10.80 11.82% 42.63% 11.59 6.28% 39.74%
53pr264 3.56 83.94% 18.48% 3.55 77.15% 18.54% 7.05 2.54% 47.03% 6.59 4.23% 51.34% 11.96 9.89% 33.19% 11.38 6.25% 43.48%
56a280 3.64 50.69% 44.42% 4.00 76.95% 41.21% 8.24 -8.52% 46.26% 8.01 2.56% 50.18% 12.48 -3.29% 33.90% 12.52 -0.68% 34.01%
60pr299 4.02 65.83% 36.11% 4.26 65.23% 33.40% 8.35 5.75% 70.05% 8.22 1.34% 48.10% 14.44 -0.88% 42.00% 14.27 2.40% 44.88%
64lin318 7.49 7.80% 60.06% 7.18 10.20% 55.59% 12.70 4.99% 52.40% 12.46 -2.15% 50.87% 16.95 2.77% 43.06% 16.23 10.79% 49.85%
80rd400 11.41 8.73% 96.31% 12.76 0.36% 79.84% 18.44 1.93% 63.61% 18.79 8.91% 48.92% 24.71 2.46% 47.86% 25.19 3.90% 47.24%
84fl417 11.10 21.54% 78.61% 12.43 12.00% 68.60% 15.60 12.25% 61.44% 16.42 17.38% 65.67% 24.36 16.77% 42.85% 26.48 17.62% 52.47%
88pr439 20.61 -0.81% 60.45% 22.85 -0.48% 45.49% 28.59 7.45% 51.50% 29.84 -0.12% 45.86% 33.66 3.30% 49.71% 34.51 -3.30% 44.93%
89pcb442 14.24 2.01% 88.53% 14.91 2.23% 79.51% 21.98 2.56% 66.28% 23.47 0.83% 53.57% 30.06 -3.43% 51.10% 29.84 6.25% 55.28%
99d493 16.12 4.12% 78.64% 15.21 12.20% 72.66% 36.15 -2.98% 50.09% 35.20 4.18% 49.53% 45.72 3.86% 48.27% 49.19 6.88% 42.43%
115rat575 20.56 7.31% 99.96% 21.88 5.48% 89.76% 34.82 3.68% 77.08% 36.29 3.01% 69.51% 47.94 4.44% 59.99% 48.88 2.90% 60.01%
115u574 22.66 2.51% 99.11% 23.32 -1.92% 110.97% 40.98 1.31% 69.41% 40.54 2.22% 67.64% 55.65 1.21% 54.79% 56.14 2.83% 51.51%
131p654 25.53 35.87% 78.31% 25.67 32.98% 76.62% 48.26 16.53% 65.81% 46.93 11.15% 56.75% 79.01 22.15% 61.67% 79.63 22.43% 60.25%
132d657 27.65 -0.33% 94.26% 27.51 2.56% 100.02% 51.98 2.45% 61.71% 50.31 4.61% 79.62% 72.99 3.13% 57.68% 72.91 5.36% 55.33%
145u724 35.69 2.79% 113.96% 36.05 -0.76% 108.15% 59.95 2.67% 80.33% 60.15 5.32% 79.86% 86.01 2.06% 57.49% 83.79 4.47% 61.19%
157rat783 42.93 -2.41% 121.86% 44.28 -1.77% 116.81% 69.64 0.33% 88.87% 70.60 0.06% 86.20% 100.67 -0.63% 61.21% 102.78 -2.06% 60.29%
201pr1002 88.97 -2.54% 122.66% 89.40 2.41% 125.17% 156.37 -0.09% 71.79% 155.51 4.33% 75.29% 213.96 1.56% 57.68% 216.35 0.68% 57.35%
212u1060 108.07 3.97% 114.95% 110.62 -0.01% 118.25% 185.13 4.23% 72.73% 184.72 5.39% 77.55% 247.62 2.99% 62.18% 248.01 5.83% 62.00%
217vm1084 97.41 35.01% 91.73% 95.07 42.02% 106.53% 144.19 51.32% 75.67% 146.62 57.00% 74.10% 195.57 53.25% 57.28% 186.99 50.76% 67.06%

Avg 17.55% 40.54% 17.73% 39.32% 7.59% 37.09% 7.10% 35.24% 6.60% 30.91% 8.23% 31.66%

Table 3: Impact on the BRKGA performance of the reduction procedures and ICM strategy. The gap percentage
reports how much slower is BRKGA without these components.

The table is vertically divided according to the Tmax value (ω) and the profit used (g1 and g2).

Under the Instance, we report the instance name while under the heading BRKGA it is reported

the computational time, in seconds, of this algorithm. The other two columns, noRed and noICM ,

report the percentage gap of their computational time with respect to the computational time of

BRKGA, respectively. The percentage gap is positive when BRKGA is faster and negative other-

wise. At the bottom, Avg reports the average percentage. The values of the Avg line show that,

with ω = 0.4, the version of BRKGA without the reduction procedures is 17.5% slower with the

g1 profit and 17.7% slower with g2 profit. There are instances where this gap is greater than 50%

but there are even instances where noRed results faster. This can happen because of the overhead

generated by the cost of the reduction procedures but even because of the aspiration criterion

that can significantly reduce the total number of iterations carried out by the algorithms if the
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best solution is found soon. Usually, the effectiveness of the reduction procedures decreases as the

ω value increases (Figure 4), and, indeed, the average percentage gaps are lower when ω = 0.6

and ω = 0.8. In particular, with ω = 0.6 the average percentage gap is equal to 7.5% and 7.1%,

respectively while, with ω = 0.8, the values are 6.6% and 8.2%.

Much more relevant is the impact of ICM strategy on the performance of BRKGA with respect to

the reduction procedures. Indeed, from the Avg line, we can see that whatever are the values of ω

and the type of profits considered, noICM is at least 30% slower than BRKGA and, in the worst

case, the average gap is 40.5%. The detailed results show that it is never faster than BRKGA

while on 192 out of 306 instances BRKGA results at least 20% faster than noICM and, in eleven

instances, the gap is greater than 100%. These results highlight that the idea to save information

rather than recompute them several times is effective and significantly reduces the computational

time of BRKGA.

The results of Table 3 have shown the effectiveness of the reduction procedures and ICM

strategy. However, it is interesting to know also the cost that we pay, in terms of computational

time, to apply these strategies. This information is reported in Table 4 where the percentage

computational time used for the reduction procedures and for the ICM strategy is shown. For

readability reasons, the table reports only the results for g1 profit because the results for g2 are

very similar. The table is vertically divided according to the Tmax value (ω). Under the Instance

heading, we report the instance name while under the BRKGA heading the computational time,

in seconds, of this algorithm is reported. The other two columns, Reductions and ICM, show the

percentage of time spent on the reduction procedures and to build the ICM matrix, respectively.

Finally, the last line of the table reports the average percentage (Avg). The values in this last

line show that, on average, the computational time required by the reduction procedures is lower

than 1%, with respect to the total computational time, while the time spent for building the ICM

matrix is lower than 2.14%. It is worth noting that, even analyzing the single results, the reduction

procedures appear cheap because they never exceed the 4.45% of the total computational time.

Much more time is, usually, required by ICM strategy that, in three cases, has required over 10%

of the total time. Anyway, on 140 out of 153 instances this percentage is lower than or equal to

5%. Summarizing, according to the results shown in Table 3, the computational cost paid for these
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Computational time of the reduction procedures and the ICM strategy

ω = 0.4 ω = 0.6 ω = 0.8
Instance BRKGA Reductions ICM BRKGA Reductions ICM BRKGA Reductions ICM

11berlin52 1.24 0.00% 0.00% 1.42 0.00% 0.00% 1.67 0.00% 0.00%
11eil51 1.26 0.00% 0.00% 1.51 0.00% 0.00% 1.65 0.00% 0.00%
14st70 1.40 0.00% 0.00% 1.72 0.00% 0.00% 2.02 0.00% 0.00%
16eil76 1.56 0.00% 0.00% 1.92 0.00% 0.00% 2.42 0.00% 0.00%
16pr76 1.62 0.00% 0.00% 2.04 0.00% 0.00% 2.49 0.00% 0.00%
20kroA100 1.74 0.00% 0.00% 2.12 0.00% 0.00% 2.62 0.00% 0.00%
20kroB100 1.70 0.00% 0.00% 2.11 0.00% 0.00% 2.50 0.00% 0.24%
20kroC100 1.59 0.00% 0.00% 2.14 0.00% 0.00% 2.46 0.00% 0.00%
20kroD100 1.61 0.00% 0.00% 2.29 0.00% 0.00% 2.43 0.00% 0.00%
20kroE100 1.52 0.00% 0.00% 2.03 0.00% 0.00% 2.45 0.00% 0.00%
20rat99 1.42 0.00% 0.00% 1.81 0.00% 0.00% 2.62 0.00% 0.00%
20rd100 1.70 0.00% 0.00% 2.23 0.00% 0.00% 2.86 0.00% 0.00%
21eil101 1.93 0.00% 0.10% 2.41 0.00% 0.25% 3.01 0.00% 0.03%
21lin105 1.56 0.00% 0.00% 2.03 0.00% 0.00% 2.61 0.00% 0.27%
22pr107 1.76 0.00% 0.00% 1.87 0.00% 0.00% 2.41 0.00% 0.00%
25pr124 1.95 0.00% 0.00% 2.48 0.00% 0.40% 3.02 0.33% 0.33%
26bier127 2.95 0.34% 0.34% 3.70 0.27% 0.27% 4.32 0.23% 0.23%
26ch130 2.36 0.42% 0.42% 2.81 0.36% 0.36% 3.41 0.29% 0.29%
28pr136 1.96 0.00% 0.51% 2.71 0.37% 0.37% 3.56 0.28% 0.28%
29pr144 2.10 0.00% 0.48% 3.06 0.33% 0.33% 3.50 0.29% 0.29%
30ch150 2.05 0.39% 0.49% 2.94 0.34% 0.68% 3.76 0.27% 0.45%
30kroA150 2.23 0.45% 0.45% 2.90 0.34% 0.65% 3.69 0.27% 0.52%
30kroB150 2.43 0.41% 0.41% 3.49 0.29% 0.54% 3.91 0.26% 0.51%
31pr152 1.97 0.00% 0.51% 3.14 0.32% 0.32% 3.76 0.27% 0.27%
32u159 2.37 0.00% 0.42% 3.10 0.32% 0.32% 4.10 0.24% 0.27%
39rat195 2.45 0.00% 0.41% 3.71 0.35% 0.57% 5.00 0.40% 0.60%
40d198 1.94 0.00% 0.52% 4.46 0.22% 0.45% 5.24 0.38% 0.57%
40kroa200 3.12 0.74% 0.99% 4.72 0.64% 0.85% 6.16 0.49% 0.65%
40krob200 3.09 0.65% 0.97% 5.04 0.60% 0.79% 6.34 0.47% 0.63%
45ts225 3.15 0.63% 0.98% 5.09 0.59% 0.79% 6.44 0.47% 0.62%
45tsp225 2.71 0.37% 0.74% 5.95 0.50% 0.84% 8.15 0.38% 0.61%
46pr226 2.87 0.35% 1.01% 5.16 0.58% 0.77% 7.68 0.39% 0.52%
53gil262 5.06 0.79% 1.27% 8.01 0.85% 1.19% 10.80 0.59% 0.87%
53pr264 3.56 0.28% 0.56% 7.05 0.71% 1.14% 11.96 0.42% 0.67%
56a280 3.64 0.55% 1.10% 8.24 0.73% 1.21% 12.48 0.52% 0.83%
60pr299 4.02 0.50% 1.02% 8.35 0.90% 1.54% 14.44 0.53% 0.90%
64lin318 7.49 1.07% 1.75% 12.70 0.72% 1.42% 16.95 0.54% 1.03%
80rd400 11.41 2.12% 3.87% 18.44 1.29% 2.37% 24.71 0.98% 1.76%
84fl417 11.10 1.54% 2.63% 15.60 1.35% 2.28% 24.36 0.84% 1.43%
88pr439 20.61 1.19% 2.61% 28.59 0.85% 1.84% 33.66 0.72% 1.57%
89pcb442 14.24 1.90% 4.03% 21.98 1.21% 2.66% 30.06 0.89% 1.98%
99d493 16.12 2.10% 4.67% 36.15 1.02% 2.53% 45.72 0.81% 2.01%
115rat575 20.56 2.38% 6.50% 34.82 1.63% 4.22% 47.94 1.18% 3.07%
115u574 22.66 2.40% 6.41% 40.98 1.33% 3.55% 55.65 0.99% 2.65%
131p654 25.53 1.59% 4.12% 48.26 1.60% 3.45% 79.01 0.97% 2.10%
132d657 27.65 3.00% 7.84% 51.98 1.67% 4.49% 72.99 1.19% 3.20%
145u724 35.69 3.27% 8.37% 59.95 1.95% 4.98% 86.01 1.35% 3.47%
157rat783 42.93 3.76% 9.48% 69.64 2.31% 5.84% 100.67 1.60% 4.05%
201pr1002 88.97 3.31% 11.77% 156.37 1.87% 6.67% 213.96 1.37% 4.87%
212u1060 108.07 3.14% 11.20% 185.13 1.83% 6.54% 247.62 1.37% 4.89%
217vm1084 97.41 4.45% 10.20% 144.19 2.97% 6.78% 195.57 2.19% 5.00%

Avg 0.86% 2.14% 0.65% 1.46% 0.49% 1.07%

Table 4: Percentage of computational time dedicated by BRKGA to the reduction procedures and the building of
ICM matrix.

reduction procedures and ICM strategy is widely repaid by the speed up gained by BRKGA.
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5.2 The BRKGA effectiveness and performance

In this section, we verify the effectiveness and the performance of BRKGA by comparing it

with the matheuristics MASOP proposed in [2], the VNS-SOP metaheuristic proposed in [27] and

the best-known solutions, available in the literature. All the algorithms run on the same machine

so that their CPU times are directly comparable. Obviously, the computational time of BRKGA

includes the time required by the removal procedures and the time spent to build the ICM matrix.

The results of this comparison, when ω = 0.4 and the profit is g1, are shown in Table 5.

In order to verify the stability of the algorithms, the results on each row of the table are obtained

by performing 10 independent runs of the algorithms on each instance. We report the instance

name under the Instance heading and the best solution value, obtained by selecting the maximum

value between the best value provided by the three algorithms and the best-known solution value,

available in the literature, under the Best heading. The Best value is reported in bold whenever the

best-known solution value is improved by one of the three algorithms. The next twelve headings

report the best solution value (Sol), the average solution value (Solavg), the average computational

time (Time), in seconds, and the percentage gap (Gap) between the Best value and Sol value of

MASOP, VNS-SOP and BRKGA, respectively. More in detail, this gap is computed by using

the formula: 100 × Best−Sol
Best . The Sol values are in bold whenever they coincide with the Best

values. At the bottom, Avg reports the average computational time and the average gap of the

algorithms. #Best reports the number of times that an algorithm finds the Best solution value

and Dev.st% reports the percentage standard deviation computed on the percentage gap between

Sol and Solavg.

From the values of #Best line, we note that MASOP finds 40 times the best solution and one

of these times it provides a new best solution for the instance 115u574. Instead, the best solution

is found 41 times by VNS-SOP that, in three cases (40d198, 80rd400, and 115rat575), improves

the best-known solution. The best results are obtained by BRKGA with 42 best-known solutions

found, and two of them (115rat575 and 157rat783) are new ones. Moreover, BRKGA shows the

lowest average gap value equal to 0.19% but MASOP is very close with a value equal to 0.20%.

These gap values show that these two algorithms provide solutions very close to the best-known

ones. VNS-SOP is less effective with respect to the other algorithms because its average gap value

is equal to 0.65%. Regarding the performance, we observe a significant difference between the
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Set1 ω = 0.4 and g1

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 37 37 37.0 1.86 0.00% 37 37.0 0.28 0.00% 37 37.0 1.24 0.00%
11eil51 24 24 24.0 1.98 0.00% 24 24.0 0.26 0.00% 24 24.0 1.26 0.00%
14st70 33 33 33.0 4.46 0.00% 33 33.0 0.36 0.00% 33 33.0 1.40 0.00%
16eil76 40 40 40.0 3.48 0.00% 40 40.0 0.49 0.00% 40 40.0 1.56 0.00%
16pr76 47 47 47.0 6.06 0.00% 47 47.0 0.55 0.00% 47 47.0 1.62 0.00%
20kroA100 42 42 42.0 6.29 0.00% 42 41.6 0.81 0.00% 42 42.0 1.74 0.00%
20kroB100 49 49 49.0 5.42 0.00% 49 49.0 0.68 0.00% 49 49.0 1.70 0.00%
20kroC100 42 42 42.0 5.80 0.00% 42 42.0 0.68 0.00% 42 42.0 1.59 0.00%
20kroD100 39 39 39.0 6.42 0.00% 39 39.0 0.63 0.00% 39 39.0 1.61 0.00%
20kroE100 52 52 52.0 7.77 0.00% 52 52.0 0.69 0.00% 52 52.0 1.52 0.00%
20rat99 37 37 37.0 4.70 0.00% 37 37.0 0.57 0.00% 37 37.0 1.42 0.00%
20rd100 45 45 45.0 6.82 0.00% 45 45.0 0.68 0.00% 45 45.0 1.70 0.00%
21eil101 67 67 67.0 6.41 0.00% 67 67.0 0.95 0.00% 67 67.0 1.93 0.00%
21lin105 50 50 50.0 7.62 0.00% 50 50.0 0.71 0.00% 50 50.0 1.56 0.00%
22pr107 41 41 41.0 8.73 0.00% 41 41.0 0.61 0.00% 41 41.0 1.76 0.00%
25pr124 46 46 46.0 9.00 0.00% 46 46.0 1.00 0.00% 46 46.0 1.95 0.00%
26bier127 110 110 110.0 8.53 0.00% 110 110.0 1.93 0.00% 110 110.0 2.95 0.00%
26ch130 70 70 69.8 9.76 0.00% 70 70.0 1.22 0.00% 70 70.0 2.36 0.00%
28pr136 53 53 53.0 7.61 0.00% 53 53.0 1.34 0.00% 53 53.0 1.96 0.00%
29pr144 60 60 60.0 9.47 0.00% 60 60.0 1.20 0.00% 60 60.0 2.10 0.00%
30ch150 61 61 59.8 2.35 0.00% 61 61.0 1.60 0.00% 61 61.0 2.05 0.00%
30kroA150 58 58 58.0 9.02 0.00% 58 58.0 1.67 0.00% 58 58.0 2.23 0.00%
30kroB150 66 66 66.0 7.88 0.00% 66 65.9 1.58 0.00% 66 66.0 2.43 0.00%
31pr152 57 57 57.0 8.95 0.00% 57 57.0 1.11 0.00% 57 57.0 1.97 0.00%
32u159 76 76 76.0 11.93 0.00% 76 76.0 2.07 0.00% 76 76.0 2.37 0.00%
39rat195 71 71 71.0 13.53 0.00% 71 71.0 2.32 0.00% 71 71.0 2.45 0.00%
40d198 70 67 67.0 9.99 4.29% 70 70.0 1.88 0.00% 67 67.0 1.94 4.29%
40kroa200 92 92 92.0 14.36 0.00% 92 92.0 2.93 0.00% 92 92.0 3.12 0.00%
40krob200 87 87 87.0 10.79 0.00% 87 87.0 3.00 0.00% 87 87.0 3.09 0.00%
45ts225 101 101 101.0 11.76 0.00% 101 101.0 4.20 0.00% 101 101.0 3.15 0.00%
45tsp225 80 80 80.0 12.86 0.00% 80 80.0 3.25 0.00% 80 80.0 2.71 0.00%
46pr226 86 86 85.4 15.04 0.00% 86 86.0 2.82 0.00% 86 86.0 2.87 0.00%
53gil262 105 105 104.8 19.42 0.00% 105 104.2 5.54 0.00% 105 104.7 5.06 0.00%
53pr264 128 128 128.0 36.52 0.00% 128 128.0 5.21 0.00% 127 127.0 3.56 0.78%
56a280 107 107 107.0 19.05 0.00% 106 105.1 5.59 0.93% 107 107.0 3.64 0.00%
60pr299 131 131 131.0 29.18 0.00% 131 130.6 6.72 0.00% 131 131.0 4.02 0.00%
64lin318 169 169 169.0 28.91 0.00% 169 168.8 9.28 0.00% 169 169.0 7.49 0.00%
80rd400 209 208 206.5 65.05 0.48% 209 208.2 16.41 0.00% 208 207.6 11.41 0.48%
84fl417 201 201 175.5 48.04 0.00% 201 201.0 14.48 0.00% 201 200.6 11.10 0.00%
88pr439 335 334 333.9 72.11 0.30% 333 332.4 33.97 0.60% 334 329.0 20.61 0.30%
89pcb442 224 223 222.2 65.88 0.45% 223 220.9 24.85 0.45% 224 221.9 14.24 0.00%
99d493 278 278 277.7 92.11 0.00% 278 275.9 25.43 0.00% 278 278.0 16.12 0.00%
115rat575 264 262 259.5 191.49 0.76% 264 258.9 36.52 0.00% 264 260.9 20.56 0.00%
115u574 275 275 270.2 122.31 0.00% 270 265.1 39.34 1.82% 274 269.7 22.66 0.36%
131p654 315 315 315.0 193.36 0.00% 315 315.0 39.78 0.00% 315 313.0 25.53 0.00%
132d657 308 304 303.0 246.39 1.30% 300 295.0 46.75 2.60% 305 299.3 27.65 0.97%
145u724 326 324 321.8 173.22 0.61% 315 303.1 64.94 3.37% 323 317.0 35.69 0.92%
157rat783 349 348 344.9 225.44 0.29% 346 331.2 80.92 0.86% 349 342.8 42.93 0.00%
201pr1002 536 535 532.6 652.11 0.19% 519 491.4 149.37 3.17% 535 507.2 88.97 0.19%
212u1060 563 559 532.8 723.77 0.71% 535 521.2 187.21 4.97% 563 538.0 108.07 0.00%
217vm1084 672 666 656.9 463.80 0.89% 574 551.9 227.34 14.58% 663 655.6 97.41 1.34%

Avg 73.04 0.20% 20.86 0.65% 12.39 0.19%

#Best 40 41 42

Dev.st% 1.90% 1.25% 1.05%

Table 5: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with ω = 0.4 and g1 profit.

average computational time of MASOP and of BRKGA: the former algorithm requires 73 seconds,

while the latter only 12 seconds. Moreover, in the worst case, MASOP needs 723 seconds while
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Set1 ω = 0.4 and g2

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 1829 1829 1829.0 1.87 0.00% 1829 1829.0 0.29 0.00% 1829 1829.0 1.23 0.00%
11eil51 1279 1279 1279.0 2.09 0.00% 1279 1279.0 0.26 0.00% 1279 1279.0 1.34 0.00%
14st70 1672 1672 1672.0 4.39 0.00% 1672 1672.0 0.40 0.00% 1672 1672.0 1.48 0.00%
16eil76 2223 2223 2223.0 4.92 0.00% 2223 2223.0 0.51 0.00% 2223 2223.0 1.38 0.00%
16pr76 2449 2449 2449.0 5.96 0.00% 2449 2449.0 0.56 0.00% 2449 2449.0 1.58 0.00%
20kroA100 2151 2151 2151.0 6.42 0.00% 2151 2151.0 0.66 0.00% 2151 2151.0 1.68 0.00%
20kroB100 2431 2202 2202.0 2.14 9.42% 2431 2431.0 0.66 0.00% 2431 2431.0 1.68 0.00%
20kroC100 2174 2174 2174.0 5.57 0.00% 2174 2174.0 0.67 0.00% 2174 2174.0 1.57 0.00%
20kroD100 1740 1740 1740.0 6.07 0.00% 1740 1740.0 0.63 0.00% 1740 1740.0 1.58 0.00%
20kroE100 2415 2415 2415.0 7.62 0.00% 2415 2415.0 0.69 0.00% 2415 2415.0 1.42 0.00%
20rat99 1905 1905 1905.0 4.76 0.00% 1905 1905.0 0.56 0.00% 1905 1905.0 1.47 0.00%
20rd100 2228 2228 2228.0 6.54 0.00% 2228 2228.0 0.69 0.00% 2228 2228.0 1.63 0.00%
21eil101 3365 3365 3365.0 7.10 0.00% 3365 3365.0 0.99 0.00% 3365 3365.0 1.87 0.00%
21lin105 2489 2489 2489.0 7.94 0.00% 2489 2489.0 0.72 0.00% 2489 2489.0 1.49 0.00%
22pr107 2123 2123 2123.0 8.42 0.00% 2123 2123.0 0.63 0.00% 2123 2123.0 1.65 0.00%
25pr124 2302 2302 2302.0 7.29 0.00% 2302 2302.0 1.08 0.00% 2302 2302.0 1.88 0.00%
26bier127 5420 5420 5420.0 10.35 0.00% 5420 5420.0 1.94 0.00% 5420 5420.0 3.15 0.00%
26ch130 3423 3423 3412.2 6.84 0.00% 3423 3423.0 1.36 0.00% 3423 3419.4 2.41 0.00%
28pr136 2699 2699 2699.0 7.80 0.00% 2699 2691.6 1.38 0.00% 2699 2699.0 1.91 0.00%
29pr144 3055 3055 3055.0 10.13 0.00% 3055 3055.0 1.22 0.00% 3055 3055.0 2.08 0.00%
30ch150 3131 3078 3076.1 9.89 1.69% 3131 3131.0 1.54 0.00% 3078 3078.0 2.11 1.69%
30kroA150 3039 3039 3039.0 10.01 0.00% 3039 3039.0 1.61 0.00% 3039 3039.0 2.27 0.00%
30kroB150 3172 3172 3172.0 9.02 0.00% 3172 3172.0 1.67 0.00% 3172 3172.0 2.38 0.00%
31pr152 2915 2915 2915.0 9.15 0.00% 2915 2915.0 1.12 0.00% 2915 2915.0 1.94 0.00%
32u159 4002 4002 4002.0 10.41 0.00% 4002 4000.8 1.95 0.00% 4002 4002.0 2.28 0.00%
39rat195 3656 3656 3656.0 14.73 0.00% 3656 3656.0 2.33 0.00% 3656 3656.0 2.42 0.00%
40d198 3595 3400 3400.0 10.30 5.42% 3595 3595.0 1.96 0.00% 3400 3400.0 1.90 5.42%
40kroa200 4550 4550 4550.0 15.76 0.00% 4550 4550.0 3.05 0.00% 4550 4550.0 3.11 0.00%
40krob200 4348 4348 4348.0 12.58 0.00% 4348 4348.0 3.07 0.00% 4348 4348.0 3.00 0.00%
45ts225 5037 5037 5037.0 18.16 0.00% 5037 4945.0 4.63 0.00% 5037 5037.0 3.49 0.00%
45tsp225 4297 4297 4297.0 16.11 0.00% 4297 4297.0 3.16 0.00% 4297 4297.0 2.72 0.00%
46pr226 4403 4403 4394.6 14.74 0.00% 4403 4403.0 2.68 0.00% 4403 4403.0 2.85 0.00%
53gil262 5330 5330 5330.0 20.92 0.00% 5330 5284.9 5.76 0.00% 5330 5330.0 5.03 0.00%
53pr264 6423 6423 6423.0 38.43 0.00% 6423 6423.0 5.35 0.00% 6397 6383.5 3.55 0.40%
56a280 5630 5630 5611.3 23.15 0.00% 5630 5605.0 6.30 0.00% 5630 5606.3 4.00 0.00%
60pr299 6600 6600 6600.0 31.91 0.00% 6600 6600.0 6.91 0.00% 6600 6600.0 4.26 0.00%
64lin318 8600 8600 8600.0 35.88 0.00% 8600 8593.1 7.19 0.00% 8600 8600.0 7.18 0.00%
80rd400 10966 10825 10752.3 59.59 1.29% 10966 10858.8 16.91 0.00% 10874 10816.6 12.76 0.84%
84fl417 10163 10133 9375.4 46.73 0.30% 10163 10119.6 14.93 0.00% 10133 10123.4 12.43 0.30%
88pr439 17082 17037 17013.5 121.16 0.26% 17022 16804.6 31.13 0.35% 17082 16944.6 22.85 0.00%
89pcb442 11627 11565 11546.3 79.99 0.53% 11627 11502.1 22.27 0.00% 11627 11587.6 14.91 0.00%
99d493 14131 14131 14083.3 83.23 0.00% 13992 13992.0 25.16 0.98% 14131 14131.0 15.21 0.00%
115rat575 13367 13300 13203.0 296.66 0.50% 13203 12950.8 41.04 1.23% 13367 13293.0 21.88 0.00%
115u574 14046 13969 13739.6 124.07 0.55% 13782 13407.2 37.37 1.88% 14046 13823.3 23.32 0.00%
131p654 16003 16003 16003.0 260.42 0.00% 15983 15958.9 35.53 0.12% 16003 15902.5 25.67 0.00%
132d657 15903 15855 15790.2 311.43 0.30% 15141 14633.2 46.81 4.79% 15903 15738.4 27.51 0.00%
145u724 17230 17230 17127.2 216.07 0.00% 16616 15998.6 69.03 3.56% 17094 16974.3 36.05 0.79%
157rat783 18216 18018 17720.8 315.26 1.09% 17889 17088.8 73.92 1.80% 18216 17838.8 44.28 0.00%
201pr1002 27275 26239 26086.2 766.51 3.80% 25357 24632.4 149.33 7.03% 27189 26369.8 89.40 0.32%
212u1060 28221 27348 26638.9 771.67 3.09% 26463 25952.5 181.95 6.23% 28221 27458.3 110.62 0.00%
217vm1084 34398 34291 33818.5 710.76 0.31% 31473 27875.1 217.37 8.50% 34398 33799.6 95.07 0.00%

Avg 89.98 0.56% 20.37 0.72% 12.57 0.19%

#Best 37 40 44

Dev.st% 1.14% 1.88% 0.70%

Table 6: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with ω = 0.4 and g2 profit.

BRKGA never requires more than 108 seconds. With an average time of 20 seconds, also VNS-SOP

results much faster than MASOP but slower than BRKGA. Finally, BRKGA is the more stable

algorithm on these instances with a Dev.st% value equal to 1.05%, followed by VNS-SOP with

1.25%, and MASOP with 1.90%.
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In Table 6 the results with ω = 0.4 and g2 profit are reported. In these instances, we observe

a better behaviour of BRKGA with respect to the other two algorithms. The #Best value of

BRKGA is equal to 44, whereas for VNS-SOP and MASOP it is equal to 40 and 37. Moreover,

the best-known solutions are improved 8, 5, and 4 times by BRKGA, MASOP and VNS-SOP,

respectively. It is worth noting that, in these instances, the average gap value of BRKGA is equal

to 0.19% and that only in two cases its percentage gap is over 1%. Less effective are MASOP and

VNS-SOP that show an average gap value equal to 0.56% and 0.72%, respectively. Moreover, the

Gap% value is greater than 1% seven times for MASOP and 8 times for VNS-SOP. Regarding the

performance, it is interesting to observe that the computational time of BRKGA and VNS-SOP

are very similar to the values reported in Table 5. This means that the performance of these two

algorithms is not affected by profit considered. We will see that this trend will be confirmed even in

the other tables. On the contrary, with g2 profit, the computational time of MASOP significantly

increases, passing from 73 to 89.9 seconds with a peak of 771 seconds. The most stable algorithm

results again BRKGA with a Dev.st% value equal to 0.70% while for MASOP and VNS-SOP this

value is equal to 1.14% and 1.88%, respectively.

From the results of Tables 5 and 6, we can conclude that BRKGA is the best algorithm in terms

of solution quality, performance and stability when ω = 0.4. Regarding the other two algorithms,

VNS-SOP is much faster than MASOP, but less effective.

Table 7 shows the results of the three algorithms with ω = 0.6 and g1 profit. Here, the most

effective algorithm is MASOP with a #Best value equal to 45 and an average gap equal to 0.09%.

Moreover, MASOP finds six times a solution better than the best-known one, and it is the most

stable algorithm. The second place is obtained by BRKGA with an average gap equal to 0.28%

and a #Best value equal to 38. The #Best value of VNS-SOP is similar to the one of BRKGA,

however, its average gap is higher with a value equal to 0.87%. Moreover, VNS-SOP appears less

stable on these instances with a Dev.st% value close to 2%.

Regarding the performance, BRKGA is the fastest algorithm with an average time of 20 seconds

and a peak of 185 seconds. The average time of MASOP and VNS-SOP is equal to 45 and 35

seconds, with a peak equal to 285 and 410 seconds, respectively. These values show that BRKGA

is 120% faster than MASOP and 70% faster than VNS-SOP. Moreover, from the computational
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Set1 ω = 0.6 and g1

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 43 43 43.0 2.40 0.00% 43 43.0 0.37 0.00% 43 43.0 1.42 0.00%
11eil51 39 39 39.0 5.41 0.00% 39 39.0 0.34 0.00% 39 39.0 1.51 0.00%
14st70 50 50 50.0 4.68 0.00% 50 50.0 0.53 0.00% 50 50.0 1.72 0.00%
16eil76 59 59 58.8 3.60 0.00% 59 59.0 0.67 0.00% 59 59.0 1.92 0.00%
16pr76 65 65 65.0 7.89 0.00% 65 65.0 0.78 0.00% 65 65.0 2.04 0.00%
20kroA100 65 65 65.0 7.87 0.00% 65 65.0 0.90 0.00% 65 65.0 2.12 0.00%
20kroB100 66 66 66.0 8.51 0.00% 66 66.0 0.90 0.00% 66 66.0 2.11 0.00%
20kroC100 62 62 62.0 6.63 0.00% 62 62.0 1.01 0.00% 62 62.0 2.14 0.00%
20kroD100 64 64 64.0 10.15 0.00% 64 64.0 0.89 0.00% 64 64.0 2.29 0.00%
20kroE100 63 63 63.0 7.36 0.00% 63 63.0 0.95 0.00% 63 63.0 2.03 0.00%
20rat99 52 52 52.0 8.71 0.00% 52 52.0 0.84 0.00% 52 52.0 1.81 0.00%
20rd100 72 72 72.0 2.49 0.00% 72 72.0 1.05 0.00% 72 72.0 2.23 0.00%
21eil101 82 82 82.0 7.62 0.00% 82 82.0 1.29 0.00% 82 82.0 2.41 0.00%
21lin105 78 78 78.0 9.84 0.00% 78 78.0 1.04 0.00% 78 78.0 2.03 0.00%
22pr107 53 53 53.0 12.74 0.00% 53 53.0 0.94 0.00% 53 53.0 1.87 0.00%
25pr124 75 75 75.0 12.14 0.00% 75 75.0 1.43 0.00% 75 75.0 2.48 0.00%
26bier127 118 118 117.8 5.30 0.00% 118 118.0 2.90 0.00% 118 117.8 3.70 0.00%
26ch130 99 98 98.0 5.95 1.01% 99 99.0 2.60 0.00% 98 98.0 2.81 1.01%
28pr136 89 89 89.0 8.51 0.00% 89 89.0 1.93 0.00% 89 89.0 2.71 0.00%
29pr144 98 98 98.0 7.31 0.00% 98 97.9 1.70 0.00% 98 98.0 3.06 0.00%
30ch150 96 96 96.0 8.96 0.00% 96 95.4 2.28 0.00% 96 96.0 2.94 0.00%
30kroA150 90 90 90.0 10.45 0.00% 90 89.0 2.19 0.00% 90 90.0 2.90 0.00%
30kroB150 105 105 105.0 8.31 0.00% 105 103.7 2.89 0.00% 105 103.9 3.49 0.00%
31pr152 105 105 105.0 12.17 0.00% 105 105.0 1.44 0.00% 105 105.0 3.14 0.00%
32u159 114 114 114.0 10.97 0.00% 114 114.0 2.48 0.00% 114 114.0 3.10 0.00%
39rat195 118 118 117.8 18.24 0.00% 118 117.3 3.57 0.00% 118 117.4 3.71 0.00%
40d198 160 160 160.0 17.41 0.00% 160 160.0 5.23 0.00% 160 159.6 4.46 0.00%
40kroa200 142 142 141.7 18.08 0.00% 142 141.1 5.06 0.00% 142 141.4 4.72 0.00%
40krob200 138 138 137.3 15.13 0.00% 138 137.1 6.03 0.00% 138 137.4 5.04 0.00%
45ts225 152 152 151.1 6.40 0.00% 152 151.0 7.82 0.00% 152 151.2 5.09 0.00%
45tsp225 147 146 146.0 21.47 0.68% 147 146.3 4.90 0.00% 146 145.7 5.95 0.68%
46pr226 162 162 162.0 10.20 0.00% 162 161.4 5.69 0.00% 162 162.0 5.16 0.00%
53gil262 177 176 176.0 17.56 0.56% 176 173.3 8.63 0.56% 177 175.9 8.01 0.00%
53pr264 162 162 161.5 29.49 0.00% 162 160.4 7.40 0.00% 162 161.4 7.05 0.00%
56a280 164 164 163.5 23.80 0.00% 164 163.8 9.33 0.00% 164 161.9 8.24 0.00%
60pr299 187 187 187.0 25.48 0.00% 177 175.0 9.39 5.35% 187 187.0 8.35 0.00%
64lin318 256 256 255.1 21.96 0.00% 256 249.4 15.80 0.00% 256 255.1 12.70 0.00%
80rd400 295 291 288.5 41.04 1.36% 294 287.5 24.83 0.34% 295 286.4 18.44 0.00%
84fl417 288 288 285.9 35.30 0.00% 286 254.3 17.73 0.69% 288 284.9 15.60 0.00%
88pr439 385 385 384.1 47.22 0.00% 385 383.5 36.33 0.00% 384 382.7 28.59 0.26%
89pcb442 327 325 322.8 58.24 0.61% 326 314.1 34.08 0.31% 323 319.0 21.98 1.22%
99d493 406 406 404.1 82.79 0.00% 402 399.1 67.96 0.99% 405 399.6 36.15 0.25%
115rat575 396 396 391.6 102.67 0.00% 392 377.9 59.25 1.01% 394 383.2 34.82 0.51%
115u574 444 442 441.0 77.04 0.45% 435 427.2 69.96 2.03% 440 434.1 40.98 0.90%
131p654 529 529 528.9 118.69 0.00% 476 470.4 40.17 10.02% 529 518.1 48.26 0.00%
132d657 478 478 474.1 145.54 0.00% 463 456.6 91.08 3.14% 468 459.3 51.98 2.09%
145u724 514 514 510.9 120.72 0.00% 494 476.6 114.56 3.89% 508 502.2 59.95 1.17%
157rat783 524 524 517.4 257.50 0.00% 515 495.4 130.95 1.72% 521 503.5 69.64 0.57%
201pr1002 770 770 762.6 249.39 0.00% 736 716.3 268.70 4.42% 751 740.5 156.37 2.47%
212u1060 827 827 821.8 285.05 0.00% 790 753.6 305.65 4.47% 812 790.9 185.13 1.81%
217vm1084 871 871 867.3 269.00 0.00% 822 779.0 410.45 5.63% 860 834.8 144.19 1.26%

Avg 45.32 0.09% 35.19 0.87% 20.60 0.28%

#Best 45 36 38

Dev.st % 0.34% 1.96% 0.93%

Table 7: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with ω = 0.6 and g1 profit.

times of VNS-SOP, it is evident that the performance of this algorithm is affected by the increment

of the ω value. In fact, its average time is almost doubled with respect to the previous tables.
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Set1 ω = 0.6 and g2

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 2190 2190 2190.0 3.03 0.00% 2190 2190.0 0.37 0.00% 2190 2190.0 1.44 0.00%
11eil51 1911 1911 1911.0 5.14 0.00% 1911 1911.0 0.35 0.00% 1911 1911.0 1.45 0.00%
14st70 2589 2589 2589.0 7.02 0.00% 2589 2589.0 0.53 0.00% 2589 2589.0 1.70 0.00%
16eil76 3119 3119 3119.0 5.30 0.00% 3119 3119.0 0.68 0.00% 3119 3119.0 1.91 0.00%
16pr76 3275 3275 3275.0 8.22 0.00% 3275 3275.0 0.80 0.00% 3275 3275.0 2.05 0.00%
20kroA100 3192 3192 3192.0 6.36 0.00% 3192 3192.0 0.94 0.00% 3192 3192.0 2.11 0.00%
20kroB100 3203 3203 3203.0 7.80 0.00% 3203 3203.0 0.92 0.00% 3203 3203.0 2.11 0.00%
20kroC100 3110 3110 3110.0 6.20 0.00% 3110 3110.0 0.96 0.00% 3110 3110.0 2.12 0.00%
20kroD100 3133 3133 3133.0 10.74 0.00% 3133 3133.0 0.90 0.00% 3133 3133.0 2.11 0.00%
20kroE100 2950 2950 2950.0 8.08 0.00% 2950 2950.0 0.97 0.00% 2950 2950.0 2.01 0.00%
20rat99 2643 2643 2643.0 8.01 0.00% 2643 2643.0 0.87 0.00% 2643 2643.0 1.83 0.00%
20rd100 3591 3585 3585.0 5.22 0.17% 3591 3588.0 1.33 0.00% 3585 3585.0 2.23 0.17%
21eil101 4187 4187 4186.2 8.81 0.00% 4187 4185.0 1.50 0.00% 4187 4187.0 2.46 0.00%
21lin105 3955 3955 3955.0 9.33 0.00% 3955 3955.0 1.05 0.00% 3955 3955.0 2.01 0.00%
22pr107 2697 2697 2697.0 12.51 0.00% 2697 2697.0 0.96 0.00% 2697 2697.0 1.72 0.00%
25pr124 3763 3763 3763.0 11.44 0.00% 3763 3763.0 1.49 0.00% 3763 3763.0 2.46 0.00%
26bier127 5882 5882 5882.0 9.54 0.00% 5882 5882.0 2.82 0.00% 5882 5882.0 3.95 0.00%
26ch130 5123 5123 5123.0 4.98 0.00% 5123 5123.0 1.62 0.00% 5123 5123.0 2.80 0.00%
28pr136 4579 4579 4579.0 9.18 0.00% 4579 4579.0 1.85 0.00% 4579 4579.0 2.76 0.00%
29pr144 4947 4947 4947.0 7.57 0.00% 4947 4916.4 1.65 0.00% 4947 4947.0 3.09 0.00%
30ch150 4825 4825 4825.0 9.17 0.00% 4825 4819.0 2.40 0.00% 4825 4825.0 3.32 0.00%
30kroA150 4542 4542 4542.0 10.79 0.00% 4542 4469.4 2.20 0.00% 4542 4542.0 2.97 0.00%
30kroB150 5123 5123 5123.0 9.58 0.00% 5120 5079.6 3.14 0.06% 5123 5121.5 3.58 0.00%
31pr152 5235 5235 5235.0 11.98 0.00% 5235 5235.0 1.49 0.00% 5235 5235.0 3.12 0.00%
32u159 5906 5906 5906.0 11.04 0.00% 5906 5906.0 2.54 0.00% 5906 5906.0 3.12 0.00%
39rat195 5846 5846 5839.1 18.88 0.00% 5846 5829.2 4.60 0.00% 5846 5846.0 3.95 0.00%
40d198 8102 8102 8102.0 17.41 0.00% 8102 8102.0 5.84 0.00% 8102 8102.0 4.92 0.00%
40kroa200 7105 7105 7104.6 17.36 0.00% 7105 7062.4 4.90 0.00% 7105 7104.6 4.83 0.00%
40krob200 6943 6943 6943.0 14.57 0.00% 6943 6884.8 6.01 0.00% 6943 6940.0 5.11 0.00%
45ts225 7948 7948 7896.7 8.89 0.00% 7948 7853.5 7.26 0.00% 7948 7918.2 5.28 0.00%
45tsp225 7603 7603 7603.0 19.03 0.00% 7603 7584.0 4.94 0.00% 7603 7603.0 5.49 0.00%
46pr226 8280 8280 8280.0 12.60 0.00% 8280 8233.0 4.82 0.00% 8280 8280.0 5.25 0.00%
53gil262 8864 8864 8854.6 34.77 0.00% 8864 8862.4 8.60 0.00% 8864 8863.4 8.15 0.00%
53pr264 8404 8404 8404.0 30.08 0.00% 8404 8397.0 7.24 0.00% 8404 8404.0 6.59 0.00%
56a280 8470 8470 8468.1 25.79 0.00% 8470 8330.7 9.65 0.00% 8470 8468.1 8.01 0.00%
60pr299 9544 9544 9544.0 23.69 0.00% 9495 8939.9 10.58 0.51% 9544 9496.3 8.22 0.00%
64lin318 13188 13188 13188.0 21.22 0.00% 13185 13038.3 14.97 0.02% 13188 13188.0 12.46 0.00%
80rd400 15147 15051 14983.9 38.14 0.63% 15147 15009.8 21.94 0.00% 15118 14901.9 18.79 0.19%
84fl417 14937 14937 14937.0 43.20 0.00% 14812 12890.8 16.79 0.84% 14937 14826.8 16.42 0.00%
88pr439 19642 19640 19613.2 82.12 0.01% 19601 19489.7 40.23 0.21% 19642 19516.9 29.84 0.00%
89pcb442 16644 16523 16455.4 61.87 0.73% 16341 16099.6 35.83 1.82% 16644 16463.7 23.47 0.00%
99d493 20584 20574 20481.5 74.17 0.05% 20348 20060.5 61.42 1.15% 20376 20216.1 35.20 1.01%
115rat575 20062 19962 19817.6 103.39 0.50% 19811 18977.7 63.52 1.25% 19933 19530.3 36.29 0.64%
115u574 22685 22606 22149.3 75.50 0.35% 21688 20976.8 63.78 4.39% 22542 22032.8 40.54 0.63%
131p654 26905 26905 26904.4 134.53 0.00% 26636 24064.8 49.55 1.00% 26905 25828.1 46.93 0.00%
132d657 24186 24132 24013.7 146.78 0.22% 23867 23225.9 91.32 1.32% 24135 23644.3 50.31 0.21%
145u724 26564 26510 26302.3 173.86 0.20% 25459 24562.6 111.10 4.16% 26564 25945.0 60.15 0.00%
157rat783 26883 26740 26516.8 210.35 0.53% 25512 25076.3 138.19 5.10% 26739 25794.7 70.60 0.54%
201pr1002 39262 39123 38537.7 231.66 0.35% 37133 36207.1 264.15 5.42% 38336 37611.0 155.51 2.36%
212u1060 41533 41362 41042.7 434.21 0.41% 38921 37879.5 348.27 6.29% 40311 39577.9 184.72 2.94%
217vm1084 44641 44573 44325.9 341.70 0.15% 41730 40052.2 365.50 6.52% 43938 42925.3 146.62 1.57%

Avg 51.03 0.08% 35.20 0.79% 20.67 0.20%

#Best 38 35 41

Dev.st % 0.41% 2.46% 0.99%

Table 8: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with ω = 0.6 and g2 profit.

The results of the three algorithms with profit type g2 are reported in Table 8. This time

BRKGA reports the highest #Best value equal to 41, whereas for MASOP and VNS-SOP this

value is equal to 38 and 35. Moreover, four times BRKGA improves the best-known solution while

MASOP does it one time and VNS-SOP three times. The best average gap is shown by MASOP
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that remains even the most stable algorithm. With a value equal to 0.20% the average gap of

BRKGA is close to the one of MASOP while for VNS-SOP this value is around 0.80%. Finally, the

computational time of BRKGA and VNS-SOP are very similar to the ones shown in the previous

table, certifying that the profit type does not affect their performance. On the contrary, we again

observe that, with g2 profit, the computational time of MASOP increases. In particular, its peak

here is equal to 434 seconds, while in Table 7 it was equal to 285. For BRKGA this peak remains

around 185 seconds while for VNS-SOP is equal to 365 seconds.

Summarizing the results of Tables 7 and 8, we can conclude that MASOP shows the best av-

erage gaps and stability and the highest #Best value with g1 profit. BRKGA has a better #Best

value with g2 profit and its average gap from MASOP is always lower than 0.20%. Moreover,

BRKGA remains the fastest algorithm. The results of VNS-SOP show that, with ω = 0.6, the

algorithm is slower and less effective than the other two algorithms and it Dev.st% is close to 2.5%

on the instances with g2 profit.

The results of the three algorithms on the instances with ω = 0.8 and g1 profit are shown in

Table 9. The best results are obtained by MASOP that is surely the best algorithm in terms of the

quality of the solution and stability. The results of BRKGA and VNS-SOP are very similar but

worse than the ones of MASOP. However, it is worth noting that VNS-SOP improves three times

the best-known solution while the other two algorithms just one time. It is interesting to notice

that the computational time of MASOP is decreased on these instances with respect to Table 7

but it remains slower than BRKGA even if it has a lower peak equal to 228 seconds. Moreover,

it is worth noting the increment of VNS-SOP computational time: it requires now 52 seconds, on

average, and 688 seconds, in the worst case, because of the increment of ω value.

Finally, the results of the algorithms when ω = 0.8 and g2 profit are shown in Table 10.

The values of Avg, #Best and Dev.st% lines confirm that, for ω = 0.8, the most effective and

stable algorithm is MASOP that reaches to improve the best solution six times. The average gap

of BRKGA remains lower than 0.55% and a similar result is obtained by VNS-SOP too. The

computational times certify that BRKGA remains the fastest algorithm and that MASOP is the

only algorithm which computational time is affected by the type of profit used.
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Set1 ω = 0.8 and g1

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 47 47 47.0 7.76 0.00% 47 47.0 0.42 0.00% 47 47.0 1.67 0.00%
11eil51 43 43 43.0 2.93 0.00% 43 43.0 0.42 0.00% 43 43.0 1.65 0.00%
14st70 65 65 65.0 9.24 0.00% 65 65.0 0.64 0.00% 65 64.8 2.02 0.00%
16eil76 69 69 69.0 4.03 0.00% 69 69.0 0.81 0.00% 69 69.0 2.42 0.00%
16pr76 72 71 71.0 3.71 1.39% 72 71.7 1.12 0.00% 72 72.0 2.49 0.00%
20kroA100 79 79 79.0 7.81 0.00% 79 78.6 1.50 0.00% 79 78.9 2.62 0.00%
20kroB100 86 86 86.0 7.72 0.00% 86 86.0 1.10 0.00% 86 86.0 2.50 0.00%
20kroC100 83 83 83.0 8.58 0.00% 83 83.0 1.25 0.00% 83 83.0 2.46 0.00%
20kroD100 85 85 85.0 9.56 0.00% 85 85.0 1.28 0.00% 85 85.0 2.43 0.00%
20kroE100 80 80 80.0 3.32 0.00% 80 80.0 1.38 0.00% 80 80.0 2.45 0.00%
20rat99 79 79 79.0 9.88 0.00% 79 79.0 1.19 0.00% 79 78.4 2.62 0.00%
20rd100 91 91 91.0 10.74 0.00% 91 91.0 1.42 0.00% 91 91.0 2.86 0.00%
21eil101 91 91 91.0 7.71 0.00% 91 91.0 1.44 0.00% 91 91.0 3.01 0.00%
21lin105 90 90 90.0 9.88 0.00% 90 90.0 1.19 0.00% 90 90.0 2.61 0.00%
22pr107 65 65 65.0 4.04 0.00% 65 65.0 0.86 0.00% 65 65.0 2.41 0.00%
25pr124 99 99 99.0 10.63 0.00% 99 99.0 1.66 0.00% 99 99.0 3.02 0.00%
26bier127 123 123 123.0 7.64 0.00% 123 123.0 3.05 0.00% 123 122.8 4.32 0.00%
26ch130 117 115 114.7 4.87 1.71% 117 116.8 2.21 0.00% 115 115.0 3.41 1.71%
28pr136 123 123 122.7 7.03 0.00% 123 123.0 2.77 0.00% 123 123.0 3.56 0.00%
29pr144 125 125 125.0 4.86 0.00% 125 124.1 2.29 0.00% 125 125.0 3.50 0.00%
30ch150 127 127 126.8 7.85 0.00% 127 126.9 3.58 0.00% 127 127.0 3.76 0.00%
30kroA150 120 120 120.0 9.44 0.00% 120 119.6 2.99 0.00% 120 120.0 3.69 0.00%
30kroB150 138 138 138.0 6.69 0.00% 138 137.8 3.48 0.00% 138 138.0 3.91 0.00%
31pr152 118 118 118.0 10.44 0.00% 115 115.0 1.83 2.54% 118 116.5 3.76 0.00%
32u159 140 140 140.0 9.90 0.00% 140 140.0 3.76 0.00% 140 140.0 4.10 0.00%
39rat195 167 167 167.0 12.44 0.00% 167 167.0 6.40 0.00% 167 167.0 5.00 0.00%
40d198 171 171 171.0 32.96 0.00% 171 171.0 7.84 0.00% 171 171.0 5.24 0.00%
40kroa200 184 184 184.0 13.24 0.00% 184 183.7 5.14 0.00% 184 184.0 6.16 0.00%
40krob200 179 179 178.1 16.74 0.00% 179 177.1 7.45 0.00% 179 177.3 6.34 0.00%
45ts225 193 188 187.1 4.80 2.59% 192 188.5 9.21 0.52% 193 188.5 6.44 0.00%
45tsp225 198 196 195.9 19.04 1.01% 198 197.9 7.48 0.00% 196 195.8 8.15 1.01%
46pr226 213 213 213.0 12.86 0.00% 213 213.0 5.13 0.00% 213 213.0 7.68 0.00%
53gil262 226 226 225.0 17.39 0.00% 226 225.0 10.69 0.00% 226 224.5 10.80 0.00%
53pr264 238 238 238.0 23.72 0.00% 233 233.0 5.96 2.10% 238 237.5 11.96 0.00%
56a280 232 232 231.8 23.05 0.00% 232 228.7 12.27 0.00% 232 231.3 12.48 0.00%
60pr299 270 270 269.5 26.29 0.00% 269 267.3 15.83 0.37% 270 269.2 14.44 0.00%
64lin318 295 295 294.1 22.17 0.00% 295 291.5 17.79 0.00% 295 291.8 16.95 0.00%
80rd400 364 363 360.7 37.22 0.27% 359 354.3 36.63 1.37% 356 350.6 24.71 2.20%
84fl417 399 399 398.8 67.36 0.00% 399 395.1 20.87 0.00% 398 397.4 24.36 0.25%
88pr439 419 419 418.9 80.23 0.00% 415 412.5 38.09 0.95% 414 412.1 33.66 1.19%
89pcb442 402 401 399.2 53.78 0.25% 394 385.4 44.48 1.99% 399 389.5 30.06 0.75%
99d493 468 468 467.0 44.04 0.00% 467 458.6 74.60 0.21% 466 462.1 45.72 0.43%
115rat575 498 495 493.0 79.36 0.60% 487 478.1 80.53 2.21% 486 478.2 47.94 2.41%
115u574 540 539 537.4 87.25 0.19% 533 527.2 102.86 1.30% 532 521.5 55.65 1.48%
131p654 637 636 636.0 95.31 0.16% 636 632.0 45.60 0.16% 636 633.0 79.01 0.16%
132d657 594 592 589.3 97.33 0.34% 575 561.1 122.89 3.20% 575 565.1 72.99 3.20%
145u724 649 645 639.4 84.98 0.62% 626 603.1 170.54 3.54% 634 621.1 86.01 2.31%
157rat783 663 661 653.8 149.52 0.30% 652 643.3 188.87 1.66% 641 632.1 100.67 3.32%
201pr1002 928 928 925.1 184.13 0.00% 896 884.4 403.31 3.45% 909 874.5 213.96 2.05%
212u1060 1001 1001 994.5 228.23 0.00% 967 958.3 476.64 3.40% 960 945.0 247.62 4.10%
217vm1084 1006 1004 1001.8 119.15 0.20% 979 968.4 688.76 2.68% 979 965.3 195.57 2.68%

Avg 35.66 0.19% 51.95 0.62% 28.29 0.57%

#Best 38 34 35

Dev.st % 0.25% 0.80% 0.85%

Table 9: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with ω = 0.8 and g1 profit.

6. Conclusion

In this paper, we developed a Biased Random-Key Genetic Algorithm to solve the Set Ori-

enteering Problem. This algorithm uses the alleles of the chromosomes to state the clusters to
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Set1 ω = 0.8 and g2

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 2384 2384 2384.0 7.16 0.00% 2384 2384.0 0.42 0.00% 2384 2384.0 1.41 0.00%

11eil51 2114 2114 2114.0 3.26 0.00% 2114 2114.0 0.44 0.00% 2114 2114.0 1.58 0.00%
14st70 3355 3355 3355.0 8.49 0.00% 3355 3355.0 0.68 0.00% 3355 3355.0 1.99 0.00%
16eil76 3573 3573 3568.2 6.03 0.00% 3573 3573.0 0.82 0.00% 3573 3573.0 2.23 0.00%
16pr76 3611 3611 3608.0 3.25 0.00% 3611 3607.0 1.10 0.00% 3611 3611.0 2.42 0.00%
20kroA100 4115 4115 4115.0 7.87 0.00% 4115 4115.0 1.21 0.00% 4115 4115.0 2.45 0.00%
20kroB100 4188 4188 4188.0 5.49 0.00% 4188 4169.2 1.34 0.00% 4188 4188.0 2.53 0.00%
20kroC100 3999 3999 3999.0 7.56 0.00% 3999 3999.0 1.14 0.00% 3999 3999.0 2.47 0.00%
20kroD100 4267 4267 4267.0 9.31 0.00% 4267 4267.0 1.25 0.00% 4267 4267.0 2.45 0.00%
20kroE100 4002 4002 4002.0 4.83 0.00% 4002 3974.4 1.37 0.00% 4002 4002.0 2.51 0.00%
20rat99 3992 3992 3992.0 9.85 0.00% 3992 3992.0 1.21 0.00% 3992 3992.0 2.35 0.00%
20rd100 4640 4640 4640.0 10.30 0.00% 4640 4640.0 1.27 0.00% 4640 4640.0 2.79 0.00%
21eil101 4717 4717 4705.3 9.04 0.00% 4717 4717.0 1.45 0.00% 4717 4707.9 2.83 0.00%
21lin105 4561 4561 4561.0 9.92 0.00% 4561 4561.0 1.21 0.00% 4561 4561.0 2.59 0.00%
22pr107 3275 3275 3275.0 7.59 0.00% 3275 3275.0 0.99 0.00% 3275 3275.0 2.24 0.00%
25pr124 4947 4947 4932.2 4.88 0.00% 4947 4947.0 1.63 0.00% 4947 4947.0 3.04 0.00%
26bier127 6218 6218 6218.0 8.64 0.00% 6218 6218.0 2.98 0.00% 6218 6211.5 4.08 0.00%
26ch130 5967 5895 5882.1 7.43 1.21% 5967 5920.2 3.09 0.00% 5895 5895.0 3.64 1.21%
28pr136 6330 6330 6330.0 8.21 0.00% 6330 6330.0 2.53 0.00% 6330 6330.0 3.43 0.00%
29pr144 6356 6356 6356.0 6.38 0.00% 6356 6356.0 2.30 0.00% 6356 6356.0 3.48 0.00%
30ch150 6382 6331 6331.0 8.84 0.80% 6382 6373.5 3.10 0.00% 6331 6331.0 3.54 0.80%
30kroA150 6081 6081 6081.0 10.70 0.00% 6081 5974.8 3.15 0.00% 6081 6081.0 3.71 0.00%
30kroB150 6880 6880 6880.0 7.67 0.00% 6880 6880.0 3.49 0.00% 6880 6880.0 3.92 0.00%
31pr152 5928 5928 5916.8 13.17 0.00% 5800 5800.0 1.84 2.16% 5928 5825.6 3.52 0.00%
32u159 7164 7164 7164.0 10.19 0.00% 7164 7164.0 4.35 0.00% 7164 7164.0 4.15 0.00%
39rat195 8522 8522 8522.0 11.59 0.00% 8522 8522.0 5.87 0.00% 8522 8522.0 5.08 0.00%
40d198 8628 8628 8628.0 32.84 0.00% 8628 8628.0 8.52 0.00% 8628 8628.0 5.03 0.00%
40kroa200 9338 9338 9338.0 15.44 0.00% 9338 9331.8 5.53 0.00% 9338 9338.0 6.39 0.00%
40krob200 9077 9077 9077.0 15.18 0.00% 9077 8876.9 5.42 0.00% 9077 9066.4 6.00 0.00%
45ts225 9888 9888 9752.4 6.72 0.00% 9888 9785.2 10.11 0.00% 9888 9748.4 6.78 0.00%
45tsp225 10030 9934 9921.4 20.41 0.96% 10030 10024.4 6.94 0.00% 9934 9927.4 8.59 0.96%
46pr226 10770 10770 10770.0 10.03 0.00% 10770 10734.6 5.57 0.00% 10770 10770.0 7.64 0.00%
53gil262 11606 11606 11586.6 20.67 0.00% 11606 11439.0 11.43 0.00% 11606 11586.6 11.59 0.00%
53pr264 12048 12048 12048.0 30.97 0.00% 12048 11824.5 6.55 0.00% 12048 12022.7 11.38 0.00%
56a280 11984 11984 11898.5 21.60 0.00% 11984 11911.4 12.68 0.00% 11952 11925.6 12.52 0.27%
60pr299 13653 13653 13619.2 30.09 0.00% 13653 13533.8 16.36 0.00% 13653 13649.5 14.27 0.00%
64lin318 15103 15103 15055.9 32.56 0.00% 15103 14981.5 19.13 0.00% 15103 15012.9 16.23 0.00%
80rd400 18529 18529 18438.3 40.62 0.00% 18239 18040.7 37.51 1.57% 18519 18225.9 25.19 0.05%
84fl417 20248 20248 20245.2 54.45 0.00% 20220 19885.6 21.94 0.14% 20220 20152.2 26.48 0.14%
88pr439 21134 21134 21094.3 77.32 0.00% 21068 21017.6 43.80 0.31% 21068 20951.4 34.51 0.31%
89pcb442 20243 20214 20159.4 55.84 0.14% 20099 19693.5 42.32 0.71% 20120 19688.9 29.84 0.61%
99d493 23726 23726 23645.9 51.99 0.00% 23646 23233.3 78.87 0.34% 23511 23361.6 49.19 0.91%
115rat575 25145 25072 24891.3 95.12 0.29% 24875 24434.6 76.20 1.07% 24779 24498.0 48.88 1.46%
115u574 27389 27389 27293.9 112.68 0.00% 26828 26308.3 97.57 2.05% 27077 26586.6 56.14 1.14%
131p654 32335 32335 32331.6 107.37 0.00% 32216 32030.2 49.79 0.37% 32227 32074.9 79.63 0.33%
132d657 30642 30497 30372.7 110.93 0.47% 30123 29311.8 110.47 1.69% 29962 29437.6 72.91 2.22%
145u724 33050 32935 32768.9 116.67 0.35% 31863 31633.2 165.53 3.59% 32357 31830.0 83.79 2.10%
157rat783 34081 34081 33731.1 170.03 0.00% 32613 31793.5 202.87 4.31% 32972 32383.5 102.78 3.25%
201pr1002 46972 46800 46719.9 146.77 0.37% 45394 44801.6 420.85 3.36% 45404 44720.2 216.35 3.34%
212u1060 50704 50704 50152.4 233.12 0.00% 48879 47680.8 566.02 3.60% 48602 47784.1 248.01 4.15%
217vm1084 51539 51485 51323.3 185.85 0.10% 49635 48736.8 605.05 3.69% 49233 48523.5 186.99 4.47%

Avg 39.27 0.09% 52.50 0.57% 28.30 0.54%

#Best 42 36 33

Dev.st % 0.31% 0.85% 0.69%

Table 10: Comparison among MASOP, VNS-SOP and BRKGA on Set1 instances with ω = 0.8 and g2 profit.

visit and visiting sequence of these clusters. Three local search procedures are applied during the

evolutionary process to improve the fitness of the chromosomes. To improve the performance of

the algorithm, we proposed a preprocessing phase that removes from the instances the useless

vertices, arcs, and clusters. Moreover, we implemented a hashtable to avoid the invocation of
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the decoder function on the chromosomes already decoded in a previous step of the evolutionary

process. Finally, we used a three-dimensional matrix to save and to quickly retrieve information

required several times during the computation. Thanks to this idea, the same information is not

re-computed more and more times avoiding waste of the computational time and, significantly,

improving the performance of the algorithm. The computational results show that BRKGA is the

fastest algorithm, on average, on all the tested instances. Moreover, it is the best algorithm in

terms of solution quality and stability on the Set1 with ω = 0.4. Finally, with an average gap from

the best-known solution always lower than 0.65% on all tested instances, it results able to quickly

produce high-quality solutions.
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[18] J.F. Gonçalves and M.G.C. Resende. A parallel multi-population biased random-key genetic algorithm for a

container loading problem. Computers and Operations Research, 39(2):179–190, 2012.
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Appendix A. Computational Results on Set2 instances

In this section, we report the computational results of MASOP, VNS-SOP and BRKGA on

Set2 instances proposed in [2]. The only difference between Set1 and Set2 instances concerns the

clusters generation. More in detail, the number of clusters in each instance remains the same of

Set1 but the vertices are randomly assigned to these clusters.

From the results of Tables A.11 and A.12 we observe that the best average gap is obtained by

VNS-SOP, with g1 profit, and BRKGA, with g2 profit. MASOP shows the highest #Best value

whatever is the profit used. BRKGA and VNS-SOP obtain the same #Best values for both types
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Set2 ω = 0.4 and g1

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 50 50 50.0 8.17 0.00% 50 50.0 0.63 0.00% 50 50.0 1.99 0.00%
11eil51 37 34 34.0 1.01 8.11% 37 37.0 0.44 0.00% 37 37.0 1.60 0.00%
14st70 56 56 56.0 6.81 0.00% 56 56.0 0.76 0.00% 56 56.0 1.72 0.00%
16eil76 51 51 51.0 4.11 0.00% 51 51.0 0.88 0.00% 51 51.0 1.91 0.00%
16pr76 70 70 69.7 4.68 0.00% 70 70.0 1.17 0.00% 70 70.0 2.24 0.00%
20kroA100 80 74 74.0 1.12 7.50% 80 80.0 1.74 0.00% 80 80.0 2.51 0.00%
20kroB100 86 86 85.7 2.85 0.00% 86 86.0 2.28 0.00% 86 86.0 2.51 0.00%
20kroC100 72 72 71.3 6.12 0.00% 72 71.2 1.69 0.00% 72 72.0 2.47 0.00%
20kroD100 78 78 78.0 7.95 0.00% 78 76.4 2.45 0.00% 78 78.0 2.44 0.00%
20kroE100 90 90 90.0 9.95 0.00% 90 90.0 2.37 0.00% 90 90.0 2.48 0.00%
20rat99 73 73 73.0 6.58 0.00% 73 73.0 1.46 0.00% 73 73.0 2.06 0.00%
20rd100 82 80 80.0 7.37 2.44% 82 81.6 2.18 0.00% 80 80.0 2.21 2.44%
21eil101 83 76 76.0 4.62 8.43% 83 83.0 1.71 0.00% 83 83.0 2.70 0.00%
21lin105 95 95 95.0 9.20 0.00% 95 95.0 2.17 0.00% 95 95.0 2.40 0.00%
22pr107 94 94 94.0 13.77 0.00% 94 94.0 3.21 0.00% 94 94.0 2.36 0.00%
25pr124 101 101 101.0 6.59 0.00% 101 101.0 3.27 0.00% 101 101.0 2.90 0.00%
26bier127 125 125 125.0 15.17 0.00% 125 125.0 5.24 0.00% 125 125.0 3.44 0.00%
26ch130 111 111 107.2 6.46 0.00% 111 110.3 3.98 0.00% 111 111.0 3.65 0.00%
28pr136 120 120 119.1 5.52 0.00% 120 120.0 4.44 0.00% 120 120.0 3.10 0.00%
29pr144 137 137 137.0 16.08 0.00% 137 137.0 5.28 0.00% 137 137.0 3.89 0.00%
30ch150 114 111 111.0 5.50 2.63% 114 112.7 5.15 0.00% 111 111.0 3.58 2.63%
30kroA150 110 104 103.0 2.89 5.45% 109 106.4 4.17 0.91% 110 109.8 3.75 0.00%
30kroB150 120 120 119.4 8.20 0.00% 120 118.9 6.16 0.00% 120 119.9 4.22 0.00%
31pr152 136 136 136.0 14.90 0.00% 136 136.0 7.11 0.00% 136 136.0 3.61 0.00%
32u159 143 143 143.0 11.10 0.00% 143 143.0 5.21 0.00% 143 143.0 4.08 0.00%
39rat195 135 135 135.0 7.19 0.00% 135 133.8 7.70 0.00% 135 135.0 4.03 0.00%
40d198 149 148 148.0 7.57 0.67% 149 148.1 6.61 0.00% 148 148.0 3.21 0.67%
40kroa200 173 173 173.0 13.06 0.00% 173 173.0 8.55 0.00% 173 173.0 6.31 0.00%
40krob200 162 162 161.3 15.78 0.00% 161 160.4 10.99 0.62% 162 160.7 5.76 0.00%
45ts225 198 198 193.1 11.18 0.00% 198 195.2 13.42 0.00% 198 197.2 7.71 0.00%
45tsp225 167 167 148.6 16.33 0.00% 167 166.1 10.31 0.00% 167 166.5 5.61 0.00%
46pr226 207 207 207.0 18.34 0.00% 207 207.0 14.76 0.00% 207 207.0 5.88 0.00%
53gil262 204 204 203.3 20.99 0.00% 204 203.8 18.25 0.00% 204 202.9 11.76 0.00%
53pr264 245 245 244.8 28.76 0.00% 245 242.9 35.03 0.00% 242 242.0 6.19 1.22%
56a280 204 204 203.3 19.16 0.00% 203 201.9 15.14 0.49% 204 202.9 7.65 0.00%
60pr299 254 254 242.9 25.43 0.00% 253 247.2 22.91 0.39% 254 248.4 8.83 0.00%
64lin318 289 289 288.9 40.11 0.00% 285 284.5 42.49 1.38% 289 286.4 24.58 0.00%
80rd400 351 351 345.8 42.29 0.00% 348 344.2 59.68 0.85% 346 340.8 34.11 1.42%
84fl417 375 375 375.0 114.40 0.00% 371 371.0 119.42 1.07% 371 371.0 27.32 1.07%
88pr439 431 431 430.7 59.92 0.00% 431 427.2 120.91 0.00% 427 423.4 61.74 0.93%
89pcb442 376 364 354.5 19.33 3.19% 372 365.1 69.50 1.06% 376 365.7 46.41 0.00%
99d493 412 412 408.3 53.68 0.00% 409 402.2 93.55 0.73% 412 405.1 51.05 0.00%
115rat575 420 420 410.7 76.79 0.00% 413 397.4 96.66 1.67% 401 394.3 57.47 4.52%
115u574 502 499 496.8 70.05 0.60% 502 485.1 143.24 0.00% 491 477.6 85.67 2.19%
131p654 606 606 606.0 2453.02 0.00% 606 606.0 435.87 0.00% 606 606.0 63.66 0.00%
132d657 518 513 506.0 119.41 0.97% 504 497.5 139.65 2.70% 518 501.9 103.09 0.00%
145u724 592 579 572.5 136.48 2.20% 592 572.7 226.57 0.00% 577 567.8 141.35 2.53%
157rat783 571 571 553.6 159.83 0.00% 563 543.0 187.23 1.40% 551 538.6 134.35 3.50%
201pr1002 856 856 838.3 336.22 0.00% 849 815.9 591.27 0.82% 839 809.5 353.71 1.99%
212u1060 947 940 919.3 530.15 0.74% 944 923.1 826.72 0.32% 887 876.3 431.72 6.34%
217vm1084 1045 1020 1016.8 407.08 2.39% 1045 1017.1 983.04 0.00% 1033 1020.2 589.06 1.15%

Avg 97.83 0.89% 85.78 0.28% 46.04 0.64%

#Best 38 37 37

Dev.st% 1.79% 1.17% 0.96%

Table A.11: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with ω = 0.4 and g1 profit.

of profit, and this value is only by one lower than the #Best value of MASOP, when it is considered

the g1 profit. On the instances with g2 profit the gap is more relevant. The most stable algorithm is

BRKGA, with g1 profit and MASOP, with g2 profit. Finally, regarding the performance, BRKGA
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Set2 ω = 0.4 and g2

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 2584 2584 2584.0 7.61 0.00% 2584 2584.0 0.63 0.00% 2584 2584.0 1.95 0.00%
11eil51 1929 1929 1929.0 1.78 0.00% 1929 1929.0 0.48 0.00% 1929 1929.0 1.53 0.00%
14st70 2736 2736 2736.0 6.76 0.00% 2736 2736.0 0.85 0.00% 2736 2736.0 1.58 0.00%
16eil76 2518 2518 2518.0 2.44 0.00% 2518 2518.0 0.98 0.00% 2518 2518.0 1.90 0.00%
16pr76 3550 3550 3550.0 5.21 0.00% 3550 3550.0 1.30 0.00% 3550 3550.0 2.17 0.00%
20kroA100 3894 3434 3434.0 1.60 11.81% 3894 3894.0 1.69 0.00% 3894 3894.0 2.50 0.00%
20kroB100 4357 4357 4357.0 2.41 0.00% 4357 4357.0 2.14 0.00% 4357 4357.0 2.51 0.00%
20kroC100 3586 3586 3570.7 7.45 0.00% 3586 3560.8 1.74 0.00% 3586 3586.0 2.29 0.00%
20kroD100 3799 3799 3799.0 7.43 0.00% 3799 3749.0 2.51 0.00% 3799 3799.0 2.40 0.00%
20kroE100 4614 4614 4614.0 11.12 0.00% 4614 4614.0 1.92 0.00% 4614 4614.0 2.32 0.00%
20rat99 3624 3624 3624.0 5.60 0.00% 3624 3624.0 1.43 0.00% 3624 3624.0 2.08 0.00%
20rd100 4181 4038 4038.0 5.96 3.42% 4181 4152.4 2.51 0.00% 4038 4038.0 2.06 3.42%
21eil101 4264 4264 4132.6 3.50 0.00% 4264 4264.0 1.84 0.00% 4264 4264.0 2.60 0.00%
21lin105 4814 4814 4814.0 9.69 0.00% 4814 4814.0 2.23 0.00% 4814 4814.0 2.35 0.00%
22pr107 4740 4740 4740.0 12.99 0.00% 4740 4740.0 2.92 0.00% 4740 4740.0 2.39 0.00%
25pr124 5035 5035 5028.0 8.33 0.00% 5035 5035.0 3.93 0.00% 5035 5031.5 3.12 0.00%
26bier127 6329 6329 6329.0 15.93 0.00% 6329 6329.0 6.46 0.00% 6329 6327.2 4.58 0.00%
26ch130 5630 5630 5297.9 4.18 0.00% 5630 5630.0 3.95 0.00% 5630 5630.0 3.64 0.00%
28pr136 6106 6106 6106.0 4.96 0.00% 6106 6106.0 4.42 0.00% 6106 6106.0 3.29 0.00%
29pr144 6848 6848 6848.0 15.34 0.00% 6848 6848.0 5.31 0.00% 6848 6848.0 3.82 0.00%
30ch150 6025 5896 5792.0 6.70 2.14% 6025 5765.8 4.73 0.00% 5896 5886.0 3.88 2.14%
30kroA150 5450 5399 5336.1 10.48 0.94% 5450 5413.3 3.69 0.00% 5450 5450.0 3.68 0.00%
30kroB150 6255 6255 6198.3 7.48 0.00% 6255 6128.4 4.42 0.00% 6255 6235.7 4.30 0.00%
31pr152 6928 6928 6928.0 14.55 0.00% 6928 6928.0 6.84 0.00% 6928 6928.0 3.65 0.00%
32u159 7507 7507 7507.0 13.62 0.00% 7507 7507.0 5.25 0.00% 7507 7507.0 3.84 0.00%
39rat195 6813 6813 6813.0 6.29 0.00% 6813 6803.1 7.13 0.00% 6813 6813.0 3.83 0.00%
40d198 7412 7412 7412.0 7.30 0.00% 7412 7412.0 6.15 0.00% 7412 7412.0 3.33 0.00%
40kroa200 9014 9014 9014.0 11.96 0.00% 9014 9014.0 9.37 0.00% 9014 9014.0 6.47 0.00%
40krob200 8315 8315 8224.6 12.05 0.00% 8315 8132.1 9.82 0.00% 8315 8186.3 5.81 0.00%
45ts225 9835 9835 9569.2 11.02 0.00% 9835 9519.4 12.47 0.00% 9835 9835.0 7.50 0.00%
45tsp225 8373 8373 8373.0 10.93 0.00% 8373 8370.1 12.46 0.00% 8373 8373.0 5.44 0.00%
46pr226 10322 10322 10322.0 25.97 0.00% 10312 10312.0 16.54 0.10% 10312 10308.6 7.09 0.10%
53gil262 10309 10309 10274.4 23.65 0.00% 10309 10309.0 11.69 0.00% 10309 10282.6 11.93 0.00%
53pr264 12304 12304 12297.4 36.70 0.00% 12304 12198.4 41.15 0.00% 12106 12106.0 6.19 1.61%
56a280 10285 10285 10275.5 15.99 0.00% 10274 10191.3 17.82 0.11% 10285 10168.6 8.03 0.00%
60pr299 12995 12995 12648.2 28.14 0.00% 12995 12744.5 24.63 0.00% 12995 12735.7 8.76 0.00%
64lin318 14743 14743 14721.1 38.27 0.00% 14704 14604.8 48.71 0.26% 14719 14587.0 24.14 0.16%
80rd400 17917 17917 17772.4 36.47 0.00% 17676 17245.5 61.83 1.35% 17521 17238.6 34.67 2.21%
84fl417 19107 19107 19107.0 281.52 0.00% 19107 19101.6 128.36 0.00% 19101 19101.0 26.79 0.03%
88pr439 21815 21815 21765.3 58.43 0.00% 21738 21598.9 117.49 0.35% 21565 21433.9 58.84 1.15%
89pcb442 18908 18449 18244.4 32.77 2.43% 18702 18270.0 65.96 1.09% 18908 18579.5 45.69 0.00%
99d493 21030 20864 20610.8 58.98 0.79% 20722 20410.7 87.41 1.46% 21030 20548.9 51.27 0.00%
115rat575 21167 21167 20671.2 53.04 0.00% 20740 20145.5 82.91 2.02% 20972 20534.5 58.80 0.92%
115u574 25493 25493 25333.7 80.04 0.00% 25016 24365.2 151.24 1.87% 25451 24860.1 86.23 0.16%
131p654 30212 30212 30212.0 3208.31 0.00% 30212 30212.0 456.05 0.00% 30212 30212.0 60.46 0.00%
132d657 26772 26031 25657.6 113.91 2.77% 25859 25530.8 139.22 3.41% 26772 25825.5 102.82 0.00%
145u724 29997 29526 28946.1 179.53 1.57% 29888 29040.2 229.45 0.36% 29952 28776.4 139.95 0.15%
157rat783 29807 29807 29473.0 182.79 0.00% 28314 27533.1 183.40 5.01% 28992 28033.5 134.63 2.73%
201pr1002 44229 44229 43322.8 369.69 0.00% 43615 42392.9 616.96 1.39% 43320 42283.2 364.83 2.06%
212u1060 48481 48481 48016.7 387.87 0.00% 47330 46540.3 841.93 2.37% 46705 45073.5 437.69 3.66%
217vm1084 52987 52987 52831.5 749.58 0.00% 52335 51977.2 1001.42 1.23% 52534 51640.4 563.33 0.85%

Avg 121.85 0.51% 87.37 0.44% 45.78 0.42%

#Best 43 36 36

Dev.st% 1.13% 1.15% 1.14%

Table A.12: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with ω = 0.4 and g2 profit.

remains the fastest algorithm even on Set2 instances with a computational time that is almost half

the time of the other two algorithms. As for Set1 instances, the computational time of MASOP

increases on the instances with g2 profit and, in fact, BRKGA is 168% faster than MASOP on these

instances. It is worth noting that the effectiveness of VNS-SOP is increased on Set2 instances with
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Set2 ω = 0.6 and g1

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 51 51 51.0 8.56 0.00% 51 51.0 0.78 0.00% 51 51.0 2.28 0.00%
11eil51 50 50 50.0 6.58 0.00% 50 50.0 0.66 0.00% 50 50.0 1.91 0.00%
14st70 64 64 64.0 8.14 0.00% 64 64.0 1.08 0.00% 64 64.0 1.87 0.00%
16eil76 74 74 73.9 5.32 0.00% 74 74.0 1.52 0.00% 74 73.9 2.69 0.00%
16pr76 74 74 74.0 11.00 0.00% 74 74.0 1.78 0.00% 74 74.0 2.42 0.00%
20kroA100 98 98 97.3 10.53 0.00% 96 95.9 3.17 2.04% 96 96.0 3.38 2.04%
20kroB100 98 98 96.8 10.52 0.00% 98 93.5 2.81 0.00% 98 96.5 3.38 0.00%
20kroC100 93 93 92.7 9.53 0.00% 93 90.8 2.83 0.00% 93 92.6 3.54 0.00%
20kroD100 93 93 93.0 9.21 0.00% 93 93.0 2.58 0.00% 93 93.0 3.03 0.00%
20kroE100 97 97 97.0 13.22 0.00% 97 97.0 3.07 0.00% 97 97.0 2.90 0.00%
20rat99 87 87 87.0 7.47 0.00% 87 87.0 2.19 0.00% 87 87.0 2.71 0.00%
20rd100 99 99 98.5 11.69 0.00% 99 99.0 2.71 0.00% 99 99.0 3.27 0.00%
21eil101 97 97 96.8 5.98 0.00% 97 97.0 3.24 0.00% 97 96.7 3.62 0.00%
21lin105 104 104 104.0 13.84 0.00% 104 104.0 2.94 0.00% 104 104.0 2.30 0.00%
22pr107 106 106 106.0 14.34 0.00% 106 106.0 3.57 0.00% 106 106.0 2.30 0.00%
25pr124 119 119 119.0 11.65 0.00% 119 119.0 4.42 0.00% 119 118.6 4.23 0.00%
26bier127 126 126 126.0 20.85 0.00% 126 126.0 5.98 0.00% 126 126.0 3.14 0.00%
26ch130 127 127 125.9 10.40 0.00% 127 127.0 5.18 0.00% 127 126.8 4.60 0.00%
28pr136 132 132 131.7 12.94 0.00% 129 129.0 5.43 2.27% 129 129.0 4.22 2.27%
29pr144 141 141 141.0 17.22 0.00% 141 141.0 7.45 0.00% 141 141.0 4.79 0.00%
30ch150 145 145 144.7 11.69 0.00% 145 145.0 7.03 0.00% 145 144.5 5.85 0.00%
30kroA150 145 145 144.6 11.65 0.00% 143 142.7 6.81 1.38% 145 143.6 5.39 0.00%
30kroB150 147 147 147.0 17.82 0.00% 147 147.0 7.60 0.00% 147 147.0 5.78 0.00%
31pr152 151 151 150.7 22.73 0.00% 151 151.0 7.85 0.00% 150 150.0 5.76 0.66%
32u159 156 156 156.0 15.30 0.00% 156 156.0 9.55 0.00% 156 155.2 6.83 0.00%
39rat195 178 178 175.6 10.90 0.00% 175 175.0 9.85 1.69% 178 174.6 7.01 0.00%
40d198 196 196 196.0 22.10 0.00% 196 196.0 17.07 0.00% 196 194.2 8.23 0.00%
40kroa200 198 198 198.0 22.94 0.00% 198 196.7 18.71 0.00% 198 195.2 11.76 0.00%
40krob200 198 198 197.5 25.28 0.00% 198 194.1 17.35 0.00% 197 194.9 12.31 0.51%
45ts225 224 224 224.0 28.02 0.00% 224 224.0 19.27 0.00% 224 223.7 13.41 0.00%
45tsp225 212 212 209.1 15.12 0.00% 212 209.6 21.52 0.00% 209 207.5 14.10 1.42%
46pr226 221 221 221.0 22.66 0.00% 221 221.0 20.23 0.00% 221 221.0 12.38 0.00%
53gil262 253 253 251.5 28.01 0.00% 253 246.4 28.56 0.00% 253 247.7 19.07 0.00%
53pr264 252 252 252.0 43.01 0.00% 252 252.0 52.00 0.00% 252 252.0 14.44 0.00%
56a280 256 256 255.3 21.09 0.00% 254 250.4 29.42 0.78% 253 248.8 20.12 1.17%
60pr299 286 286 286.0 28.40 0.00% 286 286.0 46.36 0.00% 286 285.7 25.25 0.00%
64lin318 316 316 315.5 45.22 0.00% 316 314.4 70.06 0.00% 313 311.3 30.94 0.95%
80rd400 396 396 394.4 60.50 0.00% 395 394.9 98.64 0.25% 392 386.6 40.21 1.01%
84fl417 407 407 407.0 239.85 0.00% 407 406.1 122.49 0.00% 407 406.4 51.70 0.00%
88pr439 438 438 438.0 144.75 0.00% 438 438.0 186.07 0.00% 436 435.6 57.88 0.46%
89pcb442 439 438 436.7 66.11 0.23% 433 428.8 107.14 1.37% 433 426.9 62.49 1.37%
99d493 488 488 485.7 128.56 0.00% 485 483.2 175.24 0.61% 482 479.3 88.33 1.23%
115rat575 542 542 534.7 71.61 0.00% 533 523.0 172.76 1.66% 520 506.6 94.99 4.06%
115u574 571 571 570.0 91.35 0.00% 571 566.1 266.10 0.00% 566 557.8 118.21 0.88%
131p654 642 642 639.1 499.22 0.00% 642 639.1 484.25 0.00% 638 630.5 142.12 0.62%
132d657 646 646 644.9 147.60 0.00% 636 631.2 346.31 1.55% 628 622.9 162.75 2.79%
145u724 707 706 704.2 135.62 0.14% 707 695.3 415.46 0.00% 697 677.4 200.15 1.41%
157rat783 744 744 740.6 198.45 0.00% 722 711.8 371.05 2.96% 721 696.5 203.43 3.09%
201pr1002 995 995 990.5 422.60 0.00% 979 969.0 1200.03 1.61% 965 951.0 505.41 3.02%
212u1060 1058 1058 1058.0 721.93 0.00% 1055 1050.4 1589.21 0.28% 1025 1015.7 582.64 3.12%
217vm1084 1083 1083 1083.0 769.31 0.00% 1083 1079.4 1538.52 0.00% 1079 1070.0 721.55 0.37%

Avg 84.48 0.01% 147.57 0.36% 64.96 0.64%

#Best 49 38 31

Dev.st% 0.38% 0.90% 0.83%

Table A.13: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with ω = 0.6 and g1 profit.

respect of Set1 instances. This trend will be confirmed in the next tables.

In the instances with ω = 0.6 the most effective algorithm is MASOP whatever is the profit
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Set2 ω = 0.6 and g2

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 2608 2608 2608.0 8.36 0.00% 2608 2608.0 0.78 0.00% 2608 2608.0 2.36 0.00%
11eil51 2575 2575 2575.0 6.76 0.00% 2575 2575.0 0.62 0.00% 2575 2575.0 1.83 0.00%
14st70 3218 3218 3218.0 7.01 0.00% 3218 3218.0 1.14 0.00% 3218 3218.0 2.08 0.00%
16eil76 3728 3728 3712.1 5.84 0.00% 3728 3717.5 1.62 0.00% 3728 3721.1 3.07 0.00%
16pr76 3729 3729 3729.0 11.40 0.00% 3729 3729.0 1.73 0.00% 3729 3729.0 1.92 0.00%
20kroA100 4920 4920 4717.1 7.41 0.00% 4920 4808.6 3.44 0.00% 4920 4847.2 3.44 0.00%
20kroB100 4925 4925 4925.0 15.25 0.00% 4925 4925.0 3.83 0.00% 4925 4910.6 3.56 0.00%
20kroC100 4717 4717 4651.0 7.21 0.00% 4619 4619.0 2.89 2.08% 4717 4668.0 3.27 0.00%
20kroD100 4695 4695 4695.0 7.11 0.00% 4695 4695.0 2.62 0.00% 4695 4695.0 2.93 0.00%
20kroE100 4910 4910 4910.0 13.90 0.00% 4910 4910.0 2.86 0.00% 4910 4910.0 2.68 0.00%
20rat99 4516 4516 4516.0 6.97 0.00% 4516 4516.0 2.29 0.00% 4516 4516.0 2.51 0.00%
20rd100 5008 5008 5008.0 12.51 0.00% 5008 5008.0 2.84 0.00% 5008 5008.0 3.23 0.00%
21eil101 4933 4933 4932.2 5.82 0.00% 4933 4933.0 3.27 0.00% 4933 4929.8 3.48 0.00%
21lin105 5228 5228 5228.0 14.51 0.00% 5228 5228.0 3.13 0.00% 5228 5228.0 2.89 0.00%
22pr107 5363 5363 5363.0 13.29 0.00% 5363 5363.0 3.57 0.00% 5363 5363.0 2.40 0.00%
25pr124 5947 5947 5947.0 11.14 0.00% 5947 5947.0 4.81 0.00% 5947 5947.0 4.21 0.00%
26bier127 6333 6333 6333.0 20.92 0.00% 6333 6333.0 6.73 0.00% 6333 6333.0 2.45 0.00%
26ch130 6472 6472 6422.5 9.79 0.00% 6472 6408.8 5.51 0.00% 6393 6389.9 4.38 1.22%
28pr136 6692 6692 6592.6 7.04 0.00% 6692 6590.3 7.67 0.00% 6692 6530.8 4.74 0.00%
29pr144 7151 7151 7151.0 16.16 0.00% 7151 7151.0 8.24 0.00% 7151 7151.0 4.63 0.00%
30ch150 7382 7382 7305.2 14.51 0.00% 7286 7273.6 6.34 1.30% 7382 7334.0 6.14 0.00%
30kroA150 7315 7315 7291.3 13.72 0.00% 7236 7205.4 6.98 1.08% 7315 7275.5 5.39 0.00%
30kroB150 7476 7476 7471.6 16.49 0.00% 7454 7454.0 8.08 0.29% 7476 7456.2 5.86 0.00%
31pr152 7658 7658 7644.5 21.74 0.00% 7658 7658.0 8.11 0.00% 7613 7613.0 5.32 0.59%
32u159 7942 7942 7942.0 11.80 0.00% 7942 7942.0 10.06 0.00% 7942 7866.4 6.56 0.00%
39rat195 9022 9022 8816.6 10.68 0.00% 8824 8816.8 11.32 2.19% 9022 8848.2 7.20 0.00%
40d198 9952 9952 9952.0 22.04 0.00% 9952 9952.0 18.40 0.00% 9952 9952.0 8.19 0.00%
40kroa200 10010 10010 10010.0 21.21 0.00% 10010 9965.4 19.35 0.00% 10010 9924.7 11.65 0.00%
40krob200 10011 10011 10004.5 25.18 0.00% 9946 9836.2 18.99 0.65% 10011 9913.3 12.57 0.00%
45ts225 11308 11308 11308.0 32.68 0.00% 11308 11308.0 20.68 0.00% 11308 11308.0 14.91 0.00%
45tsp225 10786 10715 10667.4 11.68 0.66% 10786 10650.6 21.87 0.00% 10742 10626.2 14.30 0.41%
46pr226 11063 11063 11063.0 24.76 0.00% 11063 11063.0 22.62 0.00% 11063 11063.0 11.64 0.00%
53gil262 12839 12839 12829.0 38.29 0.00% 12722 12470.8 29.65 0.91% 12780 12605.5 19.36 0.46%
53pr264 12658 12658 12658.0 50.94 0.00% 12658 12658.0 50.45 0.00% 12658 12658.0 14.68 0.00%
56a280 13252 13229 13080.7 23.25 0.17% 13252 12739.1 33.26 0.00% 13029 12816.6 20.01 1.68%
60pr299 14688 14688 14688.0 31.43 0.00% 14688 14688.0 49.92 0.00% 14688 14660.9 24.43 0.00%
64lin318 15993 15993 15993.0 55.08 0.00% 15955 15887.3 66.36 0.24% 15877 15844.3 30.84 0.73%
80rd400 20090 20090 20056.9 61.10 0.00% 20043 19938.9 96.18 0.23% 20015 19804.1 42.72 0.37%
84fl417 20642 20635 20628.2 249.82 0.03% 20642 20570.2 133.04 0.00% 20642 20532.2 50.25 0.00%
88pr439 22177 22177 22177.0 133.66 0.00% 22177 22177.0 180.12 0.00% 22046 22024.4 53.35 0.59%
89pcb442 22194 22194 22108.3 71.26 0.00% 22072 21723.6 120.17 0.55% 22064 21558.4 61.78 0.59%
99d493 24679 24679 24650.3 109.50 0.00% 24617 24444.8 164.74 0.25% 24551 24307.9 84.79 0.52%
115rat575 27170 27170 26959.0 85.82 0.00% 26958 26124.6 167.53 0.78% 26824 26203.3 95.75 1.27%
115u574 28937 28937 28880.6 96.28 0.00% 28829 28726.0 263.55 0.37% 28799 28595.9 117.83 0.48%
131p654 32442 32442 32340.4 459.26 0.00% 32442 32346.9 432.71 0.00% 32315 32069.2 155.08 0.39%
132d657 32805 32805 32786.3 179.19 0.00% 32205 32028.1 328.56 1.83% 32120 31759.9 156.55 2.09%
145u724 35888 35614 35467.9 163.81 0.76% 35888 35187.1 395.80 0.00% 35267 34609.8 200.40 1.73%
157rat783 37357 37357 37010.8 111.70 0.00% 36610 36017.3 377.99 2.00% 36518 35703.6 206.81 2.25%
201pr1002 50412 50412 50247.7 403.50 0.00% 49941 49135.5 1130.68 0.93% 49552 48575.7 496.69 1.71%
212u1060 53468 53468 53468.0 776.23 0.00% 53442 53126.9 1577.57 0.05% 52364 51371.1 564.76 2.06%
217vm1084 54712 54712 54712.0 797.88 0.00% 54712 54480.9 1569.24 0.00% 54551 53752.0 660.58 0.29%

Avg 84.96 0.03% 145.29 0.31% 63.30 0.38%

#Best 47 34 32

Dev.st% 0.72% 0.87% 0.78%

Table A.14: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with ω = 0.6 and g2 profit.

used. In fact, its average gap is close to 0%, its #Best value is the highest one and it results the

more stable algorithm. Moreover, it improves the best-known solution 14 times on the instances

with g1 profit and 17 times, on the instances with g2 profit. Taking into account the average gap

and #Best values, VNS-SOP is classified as second best algorithm. However, it results the less
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stable algorithm and the slowest one, whatever is the profit used. In particular, its peak time

on these instances is over 1500 seconds. BRKGA results less effective, in these instances, but its

average gap is lower than 0.65%, in the worst case. Moreover, it remains the fastest algorithm. It

is interesting to observe that, the performance gap between BRKGA and VNS-SOP increases from

84% to 130% changing the ω value from 0.4 to 0.6. This trend will be confirmed in the instances

with ω = 0.8.

The performance comparison between BRKGA and MASOP shows that, with ω = 0.6, the gap

is reduced with respect to the results with ω = 0.4. In fact, with ω = 0.4 BRKGA is around two

or three times faster than MASOP whereas, with ω = 0.6, the gap is much lower.

In the instances with ω = 0.8, we observed that the Tmax value is enough large to guarantee

that all the clusters can be visited without violating this threshold. This is true for all the instances

except one (40d198). This means that the optimal solution value for SOP on these instances is

equal to the sum of the profit of all the clusters. Ruling out the instance 40d198, we verified that

the values reported under the Best heading in Tables A.15 and A.16 coincide with
∑l

g=1 pg and

then they are the optimal values for these instances. We can see that both MASOP and VNS-

SOP obtain a #Best value equal to 51 while for BRKGA this value is equal to 43 and 44 on the

instances with g1 and g2 profit, respectively. However, the average gap value of BRKGA is very

low because it is at most equal to 0.07%. Even if BRKGA results lightly less effective than the

other two algorithms, it is much faster. In particular, it is around two times faster than MASOP

and almost four times faster than VNS-SOP. It is worth noting that, the effectiveness of MASOP

and VNS-SOP on these instances is paid in terms of computational time since the highest time is

equal to 677 seconds for BRKGA and it increases to 1327 and to 2827 seconds for MASOP and

VNS-SOP, respectively. According to the performance of BRKGA and its very low percentage gap,

it may be preferable to use this algorithm in contexts where it is necessary to have high-quality

solutions in a shorten time.

42



Set2 ω = 0.8 and g1

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 51 51 51.0 8.50 0.00% 51 51.0 0.83 0.00% 51 51.0 2.36 0.00%
11eil51 50 50 50.0 7.24 0.00% 50 50.0 0.78 0.00% 50 50.0 1.49 0.00%
14st70 69 69 69.0 10.79 0.00% 69 69.0 1.31 0.00% 69 69.0 2.16 0.00%
16eil76 75 75 75.0 10.72 0.00% 75 75.0 1.68 0.00% 75 75.0 2.76 0.00%
16pr76 75 75 75.0 12.08 0.00% 75 75.0 1.80 0.00% 75 75.0 1.96 0.00%
20kroA100 99 99 99.0 13.24 0.00% 99 99.0 3.25 0.00% 99 99.0 3.41 0.00%
20kroB100 99 99 99.0 14.52 0.00% 99 99.0 3.34 0.00% 99 99.0 3.27 0.00%
20kroC100 99 99 99.0 15.10 0.00% 99 99.0 2.77 0.00% 99 99.0 3.35 0.00%
20kroD100 99 99 99.0 13.13 0.00% 99 99.0 3.71 0.00% 99 99.0 3.50 0.00%
20kroE100 99 99 99.0 13.73 0.00% 99 99.0 2.95 0.00% 99 99.0 3.12 0.00%
20rat99 98 98 98.0 14.05 0.00% 98 98.0 3.47 0.00% 98 98.0 3.15 0.00%
20rd100 99 99 99.0 13.60 0.00% 99 99.0 3.19 0.00% 99 99.0 2.57 0.00%
21eil101 100 100 100.0 14.59 0.00% 100 100.0 3.85 0.00% 100 100.0 3.31 0.00%
21lin105 104 104 104.0 13.57 0.00% 104 104.0 3.42 0.00% 104 104.0 3.28 0.00%
22pr107 106 106 106.0 14.53 0.00% 106 106.0 4.17 0.00% 106 106.0 3.26 0.00%
25pr124 123 123 123.0 14.85 0.00% 123 123.0 5.50 0.00% 123 122.6 4.21 0.00%
26bier127 126 126 126.0 20.75 0.00% 126 126.0 7.33 0.00% 126 126.0 5.91 0.00%
26ch130 129 129 129.0 17.96 0.00% 129 129.0 6.27 0.00% 129 129.0 4.50 0.00%
28pr136 135 135 135.0 16.04 0.00% 135 135.0 6.86 0.00% 135 134.9 5.66 0.00%
29pr144 143 143 143.0 21.09 0.00% 143 143.0 7.60 0.00% 143 143.0 4.72 0.00%
30ch150 149 149 149.0 20.14 0.00% 149 149.0 8.72 0.00% 149 149.0 5.73 0.00%
30kroA150 149 149 149.0 18.38 0.00% 149 149.0 8.39 0.00% 149 149.0 5.60 0.00%
30kroB150 149 149 149.0 19.66 0.00% 149 149.0 9.83 0.00% 149 149.0 6.29 0.00%
31pr152 151 151 151.0 23.03 0.00% 151 151.0 9.03 0.00% 151 151.0 5.08 0.00%
32u159 158 158 158.0 21.14 0.00% 158 158.0 9.47 0.00% 158 158.0 6.10 0.00%
39rat195 194 194 194.0 23.86 0.00% 194 193.0 15.90 0.00% 194 193.0 9.32 0.00%
40d198 196 196 196.0 32.73 0.00% 196 196.0 18.76 0.00% 196 196.0 6.55 0.00%
40kroa200 199 199 199.0 32.63 0.00% 199 199.0 22.97 0.00% 199 199.0 10.69 0.00%
40krob200 199 199 199.0 32.61 0.00% 199 199.0 21.24 0.00% 199 199.0 10.74 0.00%
45ts225 224 224 224.0 34.58 0.00% 224 224.0 24.55 0.00% 224 224.0 11.94 0.00%
45tsp225 224 224 224.0 36.78 0.00% 224 224.0 24.78 0.00% 224 224.0 14.22 0.00%
46pr226 225 225 225.0 31.27 0.00% 225 225.0 21.91 0.00% 225 225.0 12.69 0.00%
53gil262 261 261 261.0 51.16 0.00% 261 261.0 51.35 0.00% 261 260.6 20.19 0.00%
53pr264 263 263 263.0 89.95 0.00% 263 262.6 57.10 0.00% 262 262.0 16.55 0.38%
56a280 279 279 279.0 35.49 0.00% 279 279.0 38.54 0.00% 279 276.6 22.93 0.00%
60pr299 298 298 298.0 55.32 0.00% 298 298.0 64.30 0.00% 298 295.8 27.52 0.00%
64lin318 317 317 317.0 57.59 0.00% 317 317.0 83.70 0.00% 317 316.8 31.85 0.00%
80rd400 399 399 399.0 102.15 0.00% 399 399.0 152.72 0.00% 399 398.1 40.54 0.00%
84fl417 416 416 416.0 436.19 0.00% 416 416.0 157.09 0.00% 416 415.4 51.57 0.00%
88pr439 438 438 438.0 145.14 0.00% 438 438.0 254.24 0.00% 438 438.0 48.15 0.00%
89pcb442 441 441 441.0 117.60 0.00% 441 441.0 187.48 0.00% 441 440.3 66.32 0.00%
99d493 492 492 492.0 216.12 0.00% 492 492.0 280.00 0.00% 491 491.0 84.30 0.20%
115rat575 574 574 574.0 177.18 0.00% 574 572.0 285.25 0.00% 568 564.7 118.68 1.05%
115u574 573 573 573.0 204.19 0.00% 573 573.0 436.19 0.00% 573 572.5 118.14 0.00%
131p654 653 653 653.0 930.05 0.00% 653 653.0 557.37 0.00% 653 653.0 139.04 0.00%
132d657 656 656 656.0 271.87 0.00% 656 655.6 501.77 0.00% 655 652.4 182.63 0.15%
145u724 723 723 723.0 300.99 0.00% 723 723.0 658.26 0.00% 721 712.2 228.41 0.28%
157rat783 782 782 782.0 459.64 0.00% 782 781.2 684.39 0.00% 773 761.0 261.05 1.15%
201pr1002 1001 1001 1001.0 836.03 0.00% 1001 1001.0 1858.81 0.00% 996 992.2 547.36 0.50%
212u1060 1059 1059 1059.0 907.05 0.00% 1059 1059.0 2496.95 0.00% 1058 1057.3 675.71 0.09%
217vm1084 1083 1083 1083.0 946.07 0.00% 1083 1083.0 2693.35 0.00% 1083 1082.2 677.32 0.00%

Avg 136.21 0.00% 230.75 0.00% 69.24 0.07%

#Best 51 51 43

Dev.st% 0.00% 0.09% 0.32%

Table A.15: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with ω = 0.8 and g1 profit.
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Set2 ω = 0.8 and g2

MASOP VNS-SOP BRKGA
Instance Best Sol Solavg Time Gap% Sol Solavg Time Gap% Sol Solavg Time Gap%

11berlin52 2608 2608 2608.0 8.38 0.00% 2608 2608.0 0.82 0.00% 2608 2608.0 2.35 0.00%
11eil51 2575 2575 2575.0 7.35 0.00% 2575 2575.0 0.77 0.00% 2575 2575.0 1.90 0.00%
14st70 3513 3513 3513.0 10.68 0.00% 3513 3513.0 1.41 0.00% 3513 3513.0 1.64 0.00%
16eil76 3800 3800 3800.0 10.53 0.00% 3800 3800.0 1.72 0.00% 3800 3800.0 2.33 0.00%
16pr76 3800 3800 3800.0 12.10 0.00% 3800 3800.0 1.85 0.00% 3800 3800.0 2.01 0.00%
20kroA100 5008 5008 5008.0 13.84 0.00% 5008 5008.0 3.35 0.00% 5008 5008.0 3.15 0.00%
20kroB100 5008 5008 5008.0 14.61 0.00% 5008 5008.0 3.58 0.00% 5008 5008.0 3.33 0.00%
20kroC100 5008 5008 5008.0 14.54 0.00% 5008 5008.0 2.95 0.00% 5008 5008.0 3.24 0.00%
20kroD100 5008 5008 5008.0 13.90 0.00% 5008 5008.0 3.50 0.00% 5008 5008.0 3.18 0.00%
20kroE100 5008 5008 5008.0 14.84 0.00% 5008 5008.0 3.15 0.00% 5008 5008.0 2.85 0.00%
20rat99 5007 5007 5007.0 14.50 0.00% 5007 5007.0 3.23 0.00% 5007 5007.0 3.12 0.00%
20rd100 5008 5008 5008.0 13.12 0.00% 5008 5008.0 3.25 0.00% 5008 5008.0 2.44 0.00%
21eil101 5050 5050 5050.0 13.86 0.00% 5050 5050.0 3.70 0.00% 5050 5050.0 3.24 0.00%
21lin105 5228 5228 5228.0 14.40 0.00% 5228 5228.0 3.52 0.00% 5228 5228.0 1.92 0.00%
22pr107 5363 5363 5363.0 13.44 0.00% 5363 5363.0 4.03 0.00% 5363 5363.0 2.82 0.00%
25pr124 6232 6232 6232.0 15.44 0.00% 6232 6232.0 5.52 0.00% 6232 6232.0 4.18 0.00%
26bier127 6333 6333 6333.0 21.26 0.00% 6333 6333.0 7.61 0.00% 6333 6333.0 5.19 0.00%
26ch130 6503 6503 6503.0 18.55 0.00% 6503 6503.0 6.55 0.00% 6503 6503.0 4.28 0.00%
28pr136 6850 6850 6850.0 16.64 0.00% 6850 6850.0 7.45 0.00% 6850 6850.0 5.79 0.00%
29pr144 7242 7242 7242.0 20.51 0.00% 7242 7242.0 9.49 0.00% 7242 7242.0 4.18 0.00%
30ch150 7533 7533 7533.0 20.71 0.00% 7533 7533.0 10.34 0.00% 7533 7533.0 5.42 0.00%
30kroA150 7533 7533 7533.0 19.23 0.00% 7533 7533.0 8.13 0.00% 7533 7533.0 5.30 0.00%
30kroB150 7533 7533 7533.0 19.51 0.00% 7533 7533.0 9.72 0.00% 7533 7533.0 5.35 0.00%
31pr152 7658 7658 7658.0 22.62 0.00% 7658 7658.0 9.83 0.00% 7658 7658.0 4.84 0.00%
32u159 8037 8037 8037.0 21.55 0.00% 8037 8037.0 10.31 0.00% 8037 8037.0 5.82 0.00%
39rat195 9863 9863 9863.0 23.17 0.00% 9863 9854.6 18.56 0.00% 9863 9837.8 9.29 0.00%
40d198 9952 9952 9952.0 33.04 0.00% 9952 9952.0 20.71 0.00% 9952 9952.0 5.90 0.00%
40kroa200 10058 10058 10058.0 32.32 0.00% 10058 10058.0 22.24 0.00% 10058 10058.0 10.19 0.00%
40krob200 10058 10058 10058.0 31.94 0.00% 10058 10058.0 17.47 0.00% 10058 10058.0 10.64 0.00%
45ts225 11308 11308 11308.0 39.18 0.00% 11308 11308.0 26.65 0.00% 11308 11308.0 12.70 0.00%
45tsp225 11308 11308 11308.0 38.65 0.00% 11308 11308.0 28.39 0.00% 11308 11308.0 13.56 0.00%
46pr226 11375 11375 11375.0 32.05 0.00% 11375 11375.0 22.06 0.00% 11375 11375.0 12.12 0.00%
53gil262 13193 13193 13193.0 57.50 0.00% 13193 13193.0 45.55 0.00% 13193 13179.2 19.44 0.00%
53pr264 13302 13302 13302.0 87.98 0.00% 13302 13274.4 59.36 0.00% 13210 13210.0 15.57 0.69%
56a280 14178 14178 14178.0 32.50 0.00% 14178 14162.1 47.97 0.00% 14178 14079.7 23.83 0.00%
60pr299 15107 15107 15107.0 55.19 0.00% 15107 15107.0 63.51 0.00% 15107 15092.5 27.95 0.00%
64lin318 16037 16037 16037.0 61.30 0.00% 16037 16037.0 80.12 0.00% 16037 16026.8 30.42 0.00%
80rd400 20158 20158 20158.0 107.21 0.00% 20158 20158.0 139.52 0.00% 20158 20135.5 38.28 0.00%
84fl417 21048 21048 21048.0 454.93 0.00% 21048 21048.0 182.68 0.00% 21048 21044.7 54.20 0.00%
88pr439 22177 22177 22177.0 137.14 0.00% 22177 22177.0 233.59 0.00% 22177 22177.0 47.51 0.00%
89pcb442 22323 22323 22323.0 117.49 0.00% 22323 22323.0 183.29 0.00% 22323 22294.5 64.08 0.00%
99d493 24862 24862 24862.0 232.25 0.00% 24862 24862.0 268.64 0.00% 24862 24832.5 84.35 0.00%
115rat575 29033 29033 29033.0 154.57 0.00% 29033 28942.5 270.31 0.00% 28856 28545.3 115.64 0.61%
115u574 28957 28957 28957.0 211.46 0.00% 28957 28957.0 425.84 0.00% 28957 28950.8 122.48 0.00%
131p654 32997 32997 32997.0 1327.59 0.00% 32997 32997.0 534.84 0.00% 32997 32997.0 141.35 0.00%
132d657 33188 33188 33188.0 263.79 0.00% 33188 33181.3 519.49 0.00% 33121 33005.2 173.52 0.20%
145u724 36532 36532 36532.0 325.98 0.00% 36532 36532.0 690.59 0.00% 36444 36274.9 220.06 0.24%
157rat783 39517 39517 39517.0 463.61 0.00% 39517 39493.9 647.08 0.00% 39113 38656.5 264.39 1.02%
201pr1002 50583 50583 50583.0 1010.01 0.00% 50583 50583.0 1850.51 0.00% 50496 50148.9 547.91 0.17%
212u1060 53548 53548 53548.0 839.06 0.00% 53548 53548.0 2552.23 0.00% 53468 53430.1 648.67 0.15%
217vm1084 54712 54712 54712.0 1038.93 0.00% 54712 54712.0 2827.31 0.00% 54712 54712.0 653.10 0.00%

Avg 148.92 0.00% 233.42 0.00% 67.78 0.06%

#Best 51 51 44

Dev.st% 0.00% 0.06% 0.26%

Table A.16: Comparison among MASOP, VNS-SOP and BRKGA on Set2 instances with ω = 0.8 and g2 profit.
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