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Abstract

The seismic analysis of reinforced concrete (RC) structures generally requires
significant computational effort, which can be challenging or at least time-
consuming also for the modern computing systems. Particularly, huge com-
putational effort is required for running optimisation procedures intended at
selecting the the “best” retrofitting solution among the wide set of technical
feasible ones. Therefore, this paper proposes the use of Machine Learning in-
stead of the mechanistic analyses executed as part of an optimisation procedure
for seismic retrofitting of RC existing structures recently proposed by the au-
thors. Specifically, an Artificial Neural Network is trained and employed as a
possible substitute of finite element analysis for a rapid and accurate assessment
of the relevant performance exhibited by the enhanced configurations of an RC

existing building typology. The obtained results demonstrate the effectiveness
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of an artificial neural network as a computational model to approximate a finite
element analysis in seismic retrofitting of RC structures by considering several
structural configurations. The proposed methodology can be used to speed-up
the search of a viable RC strengthening configuration within the whole para-
metric field of relevance, which can be subsequently refined using more detailed
and computationally expensive FE methods.

Keywords: Computational Intelligence, Artificial Neural Networks, Seismic

retrofitting, Earthquake engineering.

1. Introduction

Performance-Based Design (PBD) [I] is a well-established approach intro-
duced to overcome the limitations of prescriptive seismic design procedures. It
allows engineers to check structures against several performance objectives, not
limited to, yet fundamental, human life safety requirement. The set of rele-
vant performance levels in a newly designed building is generally defined by
codes and standards [2, [3], but stakeholders (i.e. users, owners, manufactur-
ers) can further raise the design objectives based on various aspects, such as
“importance class”, economic considerations, and engineering judgment. Like-
wise, codes and standards [4] define procedures for assessing vulnerability and
designing retrofitting measures for existing buildings. In both cases, seismic
analyses have to be executed to estimate the expected structural performance
under earthquake actions of variable intensity for each performance level.

The most common structural analysis methods are based on rigorous pro-
cedures, based on both mechanical models and numerical methods, such as the
well-known Finite Element Method (FEM) [5]. These “mechanistic” simulations
of the seismic response of structures are often time consuming and computation-
ally expensive. Hence, when used in iterative design procedures for structural

optimisation, they are invoked at every step for the evaluation of the concerned
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candidate solution, considerably slowing down the design and validation pro-
cess. This is the case, for instance, of a recently proposed design procedure
to select the “cheapest” retrofitting solution on vulnerable reinforced concrete
(RC) framed structures [6]: a FEM-based evaluation is performed as fitness
function on retrofitting solutions iteratively proposed by a genetic algorithm.
In that case, the computation of the FEM algorithm solutions takes the largest
part of the computing time, being the bottleneck of the optimization process.

Computational methods have been recently developed to obtain approxi-
mate solutions of complex problems in several engineering fields [7], yet requir-
ing significantly shorter computational time than the FEM-based and exact
solutions [8]. This class of methods is generally referred at as Computational
Intelligence (CI) or Soft-Computing (SC) methods [9], as they are based on
heuristic approaches rather than on rigorous or exact physically-based models.
Despite an initial scepticism about their actual capability to solve mechanical
problems, they were demonstrated to be powerful and applicable to various areas
of applied sciences and engineering. A comprehensive review of the main ap-
plications of such techniques to relevant structural and earthquake engineering
problems has been recently presented [10].

The most popular SC methods are Artificial Neural Networks (ANNs) [11],
metaheuristics [12 [13] and fuzzy logic [14]. Recently, deep neural networks,
constructed by stacking multiple layers of basic computational units, so called
neurons, have reached high popularity. Their capabilities to disentangle highly
non-linear relationships in the data or to map complex input-output rules have
granted their application in several fields. They indeed became the de facto
standard to solve problems in computer vision and robotics [15] 16l 17] (e.g. for
place recognition [I8 [19], scene segmentation and understanding [20} 21], nav-

igation [22]), audio processing (e.g. for music [23] and speech [24] recognition,
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multimedia streaming [25]), emotion analysis [26] [27], solar photovoltaic power
forecasting [28], among others. Several architectures and types (e.g. multi layer
perceptron, convolutional networks, recurrent networks, generative adversarial
networks, among others) of neural networks, including deep learning models,
have been proposed. They have been recently surveyed in [29]. Besides the
comparisons among alternative types of artificial ANN [? |, extensive reviews
of the literature devoted to the use of ANNs to approach civil engineering prob-
lems are available [30, [3T]. For instance, they have been used in predicting the
linear response of the SDoF system [32], the nonlinear dynamic responses of
simple steel [33] or RC framed structures subjected to earthquakes [34], and the
simplified “capacity curve” of a given RC building typology [35].

ANNs and computational methods can replace time-consuming conven-
tional procedures employed in many types of problems, such as structural
health monitoring and damage identification [36, [37 B8, [39] [40], fragility anal-
ysis [41], 42] [43], [44], structural optimisation [? 45] or seismic reliability assess-
ment [46, 47]. However, these studies generally considered simple and newly
designed structure, but never the case of existing real-world RC structures in
their retrofitted configuration.

This paper is mainly intended at speeding-up the iterative search for the most
cost-effective seismic retrofitting solution in existing RC frames. It is based on a
neural network used to replace the computationally-intensive FEM-based opti-
mization and provides an approximate solution to the retrofitting optimization
problem of a given building, increasing the overall computational efficiency of
the design process. Therefore, the proposed network has been incorporated into
PBD optimization procedures [6]. It is worth noticing that the proposed network
is trained to provide solutions to the retrofitting intervention of a given building.

We thus show a prototypical use of the proposed method, which forms the basis
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for further development of approaches for design optimization based on efficient
computational intelligence techniques. This type of solutions can be deployed to
speed-up the exploration and evaluation of a large number of solutions, obtain-
ing an approximate sub-optimal indications for seismic intervention, which can
be further optimized with exact methods. The benefit of the proposed method
is that the computationally intensive exact methods (e.g. FEM optimization)
are used only on a very small sub-set of approximate solutions, thus reducing
the overall design time.

The paper is organized as follows. In Section [2| the existing methodology
for performance-based design for retrofitting interventions is presented, and in
Section [3] the procedures for seismic assessment. In Sections [] and [5 the basic
concepts of neural networks and the model designed for the proposed method-
ology, are respectively described. Furthermore, the results of experiments and
numerical simulations, showing the deployability of the proposed methodology
for optimization of the efficiency of the retrofitting intervention design process,

are presented. Finally, the authors draw conclusions in Section [0}

2. Outline of the Performance-Based Design approach

Unlike the prescriptive design approach, which evaluates the strength of
the structure at one single performance objective (life-safety), the Performance-
Based-Design (PBD) approach [I] takes into account the performances of the
building after the construction to ensure a reliable and predictable structural
response to seismic loading over its lifetime. Two main terms are involved in
this alternative approach: the “performance level” and the “performance objec-
tive”. The former can be described as the extent of damage to structural and/or
non-structural components and it relate to the cost of repairing/restoring the

building to pre-earthquake condition. The latter is the performance required for
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a given earthquake hazard level represented by the engineering characteristics
of the seismic shaking expected at the construction site (response spectrum, ac-
celerogram, and so on). The main part of a Performance-Based seismic design
procedure is the definition of the performance objectives: they are nothing more
than the combination of one performance level with a specific earthquake haz-
ard level. According to the Italian Technical Standards [2], the following four
Limit States (performance levels) are considered: i) Fully Operational Level
(the building does not suffer significant damage and interruption of use); ii)
Operational Level (the damage does not put at risk the users and does not
significantly affect the resistance and stiffness against the vertical and horizon-
tal actions); iii) Life Safety Level (the building is subject to serious damage
to structural components associated with a significant loss of stiffness against
horizontal actions but a residual strength for vertical actions); iv) Near Collapse
Level (the building is subject to very serious damage to structural components
with a very small safety margin against collapse for horizontal actions). The
ground-shaking hazard is defined using a hazard curve which indicates the prob-
ability that a measure of seismic intensity will be exceeded over a certain time.
Specifically, four seismic hazard levels are considered: i) Frequent Earthquake
with a probability of exceedance equal to 81% in the reference period; ii) Occa-
sional Earthquake with a probability of exceedance equal to 63% in the reference
period; iii) Rare Earthquake with a probability of exceedance equal to 10% in
the reference period; iv) Very Rare Earthquake with a probability of exceedance
equal to 5 in the reference period. It’s worth to add that the performance ob-
jectives depend on the “importance class” of the structure (see Figure [l)): i) for
a basic (standard occupancy) facility four performance objectives are accept-
able (B1, B2, B3, B4); ii) for an essential facility three performance objectives

are acceptable (E1, E2, E3); iii) for a safety-critical facility two performance
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objectives are acceptable (SC1, SC2).
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Figure 1: Performance objectives depending on the facility type and purpose [IJ.

3. Seismic assessment

Defined the performance objectives, the seismic analysis of the building has
to be executed to determine its performance level in a given earthquake scenario.
The PBD approach generally implies the use of displacement-based non-linear
(pushover) analysis able to accurately simulate the level of damage it is ex-
pected to occur as a result of the “excursion” in the non-linear range of the
response. The seismic structural performance point (PP) is usually obtained
through the Equivalent SDoF Method (or N2-Method) proposed by Fajfar [48],
which provides a clear graphical representation of how a building behaves under
an earthquake ground motion. It locates the PP at the intersection between the
Inelastic Demand Response Spectrum (IDRS) and the bilinear Capacity curve
of the structure obtained through a pushover analysis (Figure [2)).

Consistently with PBD framework, structural behaviour is assessed in multi-
ple hazard levels of increased intensity. Hence, engineers are called to carefully

examine the results of such analyses in order to take one of these decisions:
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Figure 2: Conceptual steps for the application of the N2-Method.

a) propose the repair and maintenance of the building; b) design a seismic
retrofitting intervention; ¢) declare the building unfit for use and to be demol-

ished.

3.1. Seismic retrofitting

It is highly likely that an existing building in a earthquake-prone area does
not meet the performance requirements mainly due to its high vulnerability,
namely the susceptibility to damage induced by an earthquake of a given magni-
tude. Regarding the RC structures, the vulnerability mainly depends on the de-
ficiencies that can be broadly classified as local (deficiencies in individual mem-
bers) and global (deficiencies which are observed in the structure as a whole).
The former typically include the poor detailing of single structural members or
connection between them, poor-quality materials, and so on. The latter control
the degradation of the lateral load-resisting mechanism of a building subjected

to an earthquake. A seismic retrofitting strategy aims at effectively reducing



160

165

170

175

180

these deficiencies and increasing the performance level of an existing building
to the desired objective. From a mathematical standpoint the purpose of a

retrofitting program is to meet the following inequality:

grs =Crs —Dps >0 VLS =1—nps (1)

where the term Cpg is the available Capacity of the structure at the npg
Limit States under consideration and the term Dpg is the corresponding De-
mand at the same Limit State. Capacity and Demand can be intended in terms
of both displacement (for ductile mechanisms of damaging) and forces (for brit-
tle mechanisms of damaging). An engineer can try to meet this inequality by
two main strategies: a) improving the dynamic capacity of the existing building
(increasing the strength, the stiffness, the deformation capacity of individual
members) or b) decreasing the seismic demand (increasing the period of vibra-
tion, increasing of damping factor, reducing the reactive mass, changing the
intended use).

On the one hand, when the building is found to be severely deficient under
seismic forces, the first attempt in a seismic retrofit program is usually a global
intervention intended at decreasing the displacement demand on the existing
structural and non-structural components [49]. The most common global in-
terventions are based on either base isolation system, installation of dissipative
devices, addition of RC walls, the addition of infill walls, or steel bracing sys-
tems. On the other hand, if the number of elements found to be inadequate to
their function is not excessive, the group of local interventions including repara-
tion, reinforcement, or replacement of individual structural elements is usually
preferred. However, they are inappropriate to significantly modify the overall

behaviour of the structure, meaning the lateral strength or the stiffness. The
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member-level techniques fall under three different types: concrete jacketing,
steel jacketing, and fiber-reinforced polymer (FRP) sheet wrapping [50]. Since
it is possible to obtain an high number of different retrofitting solutions, the
rational choice of the most suitable one needs to take into account a series of
concurrent criteria within the framework of a Multi-Criteria Decision process
[51]. Such criteria can be based on both strictly quantitative measures, such
as specific parameters related to the seismic response of the retrofitted struc-
tures [52] and the life-cycle cost [53], or qualitative measures, such as the users
opinion or aesthetical aspects [54]. Surely, an initial selection can be done by
distinguishing the technical solutions that satisfy the constraints given in the in-
equality (1) from the others: they can be labelled as “feasible” and “unfeasible”,

respectively.

4. Artificial Neural Networks

Artificial Neural Networks (ANNs) are Computational Intelligence method-
ologies, originally inspired by neuro-physiological findings about the structure
and functions of the human brain, composed of interconnected processing units
that implement capabilities such as learning from experience [I1], generalizing
from previous examples, and abstracting essential characteristics from sets of
inputs containing irrelevant data. In pattern recognition problems, ANNs are
used to classify input feature vectors into a set of target categories. In fitting
problems, they are used to find a mapping between a data set of numeric in-
puts and a set of numeric targets. The basic computational units are called
“artificial neurons” and transform the input via a weighted linear combination
operation [55]. It receives input a set of signals (21,2, ..., Zm) from m neurons
at the preceding layer of the network architecture and it transforms them into

an output signal (y) by weighted linear combination (with weights assigned

10
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to the input synapses) followed by an activation function f. The input signals
are introduced to neurons through their synapses, multiplied by the respective
synaptic weights (wg1, Wk2, . . . , Wkm ), and are added algebraically together with
the bias by an adder. Formally, the linear combination of the inputs of a neuron

is defined as:

ukzzukj‘xj-i-bk (2)

Jj=1

The activity uj becomes the argument of an activation function f(u) which
introduces non-linearity in the estimation of the model. Different types of ac-
tivation functions can be used, e.g. the sigmoid, hyperbolic tangent, softmax,

linear, threshold. The model of an artificial neuron is shown in (Figure [3).

Input

Bias
k Activation

function
X2

Output
f(ue) —> Yk

Uge

Figure 3: Model of a single artificial neuron [37].

The architecture of a ANN consists of a specific number of layers, each
one composed of several neurons and an activation function. One of the most
used architecture is the Multi-Layer Feed-Forward Neural Network (MLFFNN)
or Multi-Layer Perceptron (MLP), composed of an input layer, several hidden
layers, and an output layer. In these networks, the neurons in any layer are
connected to all neurons in the adjacent layer (fully connected networks, see

Figure 4| for an example of its topological structure).

11
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Figure 4: Typical Multilayer Feed-Forward perceptron ANN.

An ANN consists of nonlinear activation functions and a set of model param-
eters (synaptic weights w and biases b). The initial weights are set to a random
small value chosen between —0.5 and +0.5, and then they are adjusted to mini-
mize the difference between the ANN predictions and the targets, summed over
every training example. The aim of the learning algorithm is, hence, to deter-
mine an optimum set of the weight parameters w by minimizing a loss function
computed on the output. In the literature there are several learning algorithms:
Levenberg-Marquardt [56], Scaled Conjugate Gradient [57], Quasi-Newton [58],
Resilient Backpropagation [59], among others.

For the training and evaluation of the proposed network, a cross-validation
protocol is used, dividing the data set into 3 independent subsets: a) training
subset, which is used to determine the optimal weights w, that minimize the
error function of the model; b) validation subset, which supervises the training
process; ¢) test subset, which is used afterward to evaluate the generalization
capacity of the trained ANN model. The training automatically stops when the

generalization is no more improved, as indicated by an increase of the cross-

12



245

250

255

START

}

Dataset Architecture Training and | Test onnew

Preparing Definition Validation cases
A A

NO

Acceptable?

STOP

Figure 5: Flow-chart of the Neural Network scheme.

entropy error for classification problems, or of the mean square error of the

validation samples for problems.

5. The proposed neural network meta-model

This work mainly aims to propose a NN-based meta-model for the estima-
tion of the seismic response of real-world RC strengthen structural systems for
multiple hazard levels at an affordable computational time. More specifically,
the present study aims to propose a MLFFNN able to classify the input vectors
that describe the retrofitting intervention as “feasible” or “unfeasible”. The
procedure to train the ANN consists of the following steps: 1) preparation of
the data set; 2) definition of the NN architecture; 3) feature selection and nor-
malization; 4) ANN training and validation; 5) test of the trained ANN on new

retrofitting solutions. The flow-chart of the procedure is shown in Figure

5.1. Dataset pre-processing

ANNs are able to learn and generalize from examples belonging to an existing
dataset. In this section, the procedure followed to generate an adequate number
of [input—output] pairs, to be employed as examples for the ANN training,
is presented. This procedure consists of two steps: structure modelling and

numerical simulation.

13
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5.1.1. Structure modeling

The structure modelling consists of establishing a set of mathematical partial
differential equations to describe the mechanical behaviour of the underlying
model. In this paper, structural analyses are run in OpenSEES [60], but the
proposed procedure can ideally be implemented through whichever software for
seismic simulation of structures. The case study employed to demonstrate the
potential of the proposed ANN scheme refers to an RC residential building
obtained through simulated design according to the practices and techniques in
force in Italy during the 1970s. The selected four-storied structure is regular in
plan and elevation (according to the criteria set by EC8 [3]). The long side, the
short side, and the inter-story height are respectively equal to 25.00 m, 15.00
m, and 3.50 m. The permanent load is G = 5.00 kN/m? and the live load is
Q = 2.00 kN/m?. Gravity loads are applied to an effective area of 375 m2. The
seismic mass of the first three floors is W, = Wy = W3 = 3500 kN, while the
seismic mass on the fourth floor is Wy = 2900 kN.

The uniaxial Kent-Scott-Park model [61] with degraded linear unload-
ing/reloading stiffness and no tensile strength has been assumed for modelling
the behaviour of concrete in the as-built configuration. Reference has been made
to a resistance class C20/25. A bilinear stress-strain curve has been adopted
for describing the elastic-plastic behaviour of steel: the modulus of elasticity
of steel has been chosen equal to 210 GPa and the yield stress F,, is 220 MPa.
The cross-section of RC members has been discretized into fibers that comply
with beam kinematics and each follows its constitutive stress-strain response
whose integration defines the stress resultant force-deformation response at a
beam-column sample point. More specifically, the rectangular RC sections are
composed of patches (groups of fibers): 4 cover concrete patches, 1 core concrete

patch, and 3 reinforcing layers of longitudinal rebars (top, bottom, and interme-
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Figure 6: Plastic hinge model adopted in the FEM model of RC members under consideration.

diate skin reinforcement layers). The core concrete patch has been considered
to be not confined by the transversal stirrups (due to their wide spacing) and
it has been discretized into 100 fibers. The plasticity has been assigned at the
end element in the so-called “plastic-hinge” region with a finite length L,, while
the central part of the beam has been simulated by a linear elastic element as
shown in Figure @ In the present work, the plastic hinge length L, has been
chosen to be equal to the cross-section’s height of the element.

The floor, which is one of the most important elements for the distribution
of seismic actions, has been schematized with diagonals members made of a
linear elastic material (with Young Modulus E) because it cannot be considered
infinitely rigid in its plane. To this end, truss elastic elements hinged at the
ends have been used. In the present work, the axial stiffness of diagonal truss
is based on a reliable and widespread formula available in the literature [62].
The whole frame has been assumed to have rigid joints for simulating beam-to-
column connections. Foundation has not been simulated, but the building has

been considered to be fully fixed to the ground. Non-structural elements have
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not been included in the FE model. It is worth highlighting that this FE model
representing the as-built condition has been verified to not meet the inequality
in all the seismic scenarios described in the following Section. Hence the existing
structure requires a seismic retrofit intervention.

The intervention type considered in this work is a global intervention realized
by installing X-shape concentric steel bracings. In order to quickly generate
a large dataset of examples, a simple encoding rule has been established to
describe the retrofitting interventions. The steel bracings have been supposed
to be possibly realized between each couple of columns connected by a beam.
However, since the structure under consideration is regular in elevation and
with a symmetrical plan, it has been assumed that even the global interventions
are symmetrical, to not alter its regularity. As a consequence, the number
of design variables Xi (input parameters) strictly necessary for describing the
global stiffening intervention (10 variables) is less than the total number of
beams on the first floor (32 beams) shown in Figure [} As shown, the beams
involved for the symmetrical interventions have been highlighted with the same
color. This leads to having each bracing described by only one steel profile,
which is quite convenient to keep the cardinality of the input vector X as small
as possible.

The design variables X; point to a position in a commercial steel profile
table containing a list of available commercial H-shaped sections with their
relevant geometric properties. Each variable describes the section of diagonals
possibly installed at the first story in correspondence of a specific beam (Figure
: it can assume an integer value ranging between 0 (i.e. absence of bracing
system) and 7 which represent the row (label) in the table: the greater the
integer number, the larger the cross-section required for realizing the global

intervention. Such information has been employed for modifying the Finite
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Figure 7: First-floor plan of the existing structure.

Element Model of the as-built structure: a new lateral-force-resisting system
composed of bracing members, with a specific topology and section, is added to
the existing RC frame.

To this end, a force-based spread plasticity element has been used. Specifi-
cally, a “fiber section model” has been considered to distribute steel inelasticity
through the cross-sections and along the bracing member length [63]. Each
bracing element has been discretized into five H-shaped cross-sections located
at the Gauss-Lobatto quadrature integration points: two integration points at
the element edge and three in the middle (Figure E[) Each section has been
subdivided into a grid of “fiber”, each of them associated with the uniaxial
stress-strain constitutive law of the steel material. In particular, the web and
the flange have been considered discretized into 10 fibers.

Moreover, since the concentric X-shaped steel bracing has been modelled
with four elements whose length is one half of the diagonal, an accidental ec-
centricity has been assigned to the “middle point” (out of the plane where the

bracing system lies) according to EN 1993-1-1 [64] for simulating the buckling

17
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4 160 160 160 8.0 13,0 15 54,25

§ 180 180 180 8.5 14,0 15 65,25

6 200 200 200 9.0 15,0 18 78,08

7 220 220 220 95 16.0 18 91,04

Figure 8: Input variables describing the concentric steel bracings.

us effects in the compressed elements. The area of the cross-section of steel mem-
bers has been supposed to decrease with the height in the same way as the shear
plan. A consistent design relationship has been assumed between the section of
steel members at the first level and the section of steel bracing members at upper
levels. Nevertheless, the entire design space consists of 108 different global stiff-
0 ening solutions. To select input vectors representative of the multi-dimensional
design space, a random sampling has been chosen. It is worth noting that each
input vector can be ideally “replaced” by its mono-dimensional version. Each
vector can be associated with the numerical result of the summation operator

applied to its design variables, as shown in Figure

18
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355 A function has been implemented in Matlab [65] for the purpose: it takes
as input a summation value selected in the range [0-70] and it returns one
of the possible input vector characterized by that value. For each one of the
possible 70 summation values, 30 variables array have been randomly generated.
Therefore, a set of 2100 retrofitted configurations have been generated. Such

w0 configurations differ from each other in the topology and cross-section size of

the bracing systems added to the 3D frame.

19



365

375

380

385

5.1.2. Numerical simulation

The second step of the training data set preparation consists of a set of
numerical simulations necessary to determine a reliable target class of the
retrofitting intervention modelled in the previous step. The numerical reso-
lution method chosen in this work for simulating the building response is the
Finite Element Method [5]. For the present investigation, two seismic intensity
levels against which to evaluate the performance have been considered: occa-
sional (Figure with a return period of 50 years and rare earthquakes (Figure
12)) with a return period of 475 years, according the Italian standard code [2].
Moreover, three different construction sites have been taken into account to
cover a wide domain of real cases: Site 1 (low level of seismic hazard); Site 2
(middle level of seismic hazard), and Site 3 (very high level of seismic hazard).
The engineering characteristics of the seismic shaking expected at the construc-
tion site have been represented through the Elastic Response Demand Spectra
(ERDS). According to the Italian Code [2], the parameters needed to describe
the branches of the ERDS depend on the seismic hazard level which is based on
the geographical coordinates of the construction site, the nature of subsoil/soil
and nominal life of the building and its “importance class”.

The seismic parameter, selected in the present work to represent the magni-
tude of the seismic shaking, is the spectral acceleration at the plateau branch of
both EDRS. Such parameters have been included in the array of input variables
along with the design variables encoding the retrofitting intervention. Since the
2100 retrofitting interventions have been assumed to be installed on an existing
building supposed to be built in each of the three construction sites, a total of
6300 training examples have been obtained from this combination.

The target labels whereas must be defined with a good degree of approxi-

mation so that the resulting ANN-based meta-model could be reliable. Hence,
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the performance exhibited by the building in its retrofitted configurations have
30 been analysed through Nonlinear Static (Pushover) Analysis which nowadays

have widespread applicability in the field of assessment of existing first mode
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dominated building [66]. This type of analysis can accurately simulate the in-
elastic deformations (i.e. the damage status), although they require neither ac-
celerometric signals nor complex stress-strain relationships under cyclic actions.
Such a procedure is intended at determining a capacity curve which provides the
simplified trend of the equivalent lateral global force as a function of the lateral
displacement of the structure in a control node, when a system of inertial forces
is applied and increased proportionally until collapse. In this preliminary ap-
plication, only a lateral load distribution with an inverted triangle (first mode)
shape has been considered (Figure . This is intended at reproducing the so-
called “modal” distribution of lateral loads foreseen by EN 1998-1-1:2004, since
the first vibrating mode dominates in the dynamic of the considered structure
(regular in plan and in elevation). Moreover, the response has been investigated
in the main orthogonal stiffness directions: for each retrofitting solution, two
pushover analyses have been carried out and the response of the control node
was monitored both in X and Y direction. A target displacement equal to 3%
of the total height of the structure is sought while the displacement step of the

incremental analysis is set to 1% of the target displacement.

7] ez 7] 7] 6] 2] Z |22 7|
=X . . =Y .

Figure 13: Lateral load distribution assumed in the pushover analyses

Likewise, in the post-simulation phase the Limit State function gz.S has been
evaluated at two performance levels and two seismic directions in order to check

the technical feasibility of the seismic retrofitting intervention conceptually de-
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scribed in the inequality (1).

On the one hand, for the calculation of the seismic capacity Crg three as-
sumptions have been made: 1) the inter-story demand drifts 0p have been
considered herein as damage index; 2) the drift capacity d¢ of frame elements
at Operational Level (i.e., “SLD” according the Italian Code definition) and
Life Safety Level (i.e. “SLV” according the Italian Code’s definition) have been
defined in terms of chord rotation at yielding 6, and collapse conditions 6,
respectively [67] 3) a biaxial interaction domain of the drifts has been consid-
ered to take into account the deflections in both X and Y directions and to
find the pushover step at which the performance levels (the seismic Capacity
Crs,:) are achieved. On the other hand, the maximum displacement demand
Dy,s,; for the strengthening structure has been estimated with the N2-Method
[48]. The so-called “performance point” of the equivalent SDoF system has been
assumed as the intersection point between the bilinear Capacity Spectrum (ob-
tained from the pushover curve) and the Inelastic Response Demand Spectrum
(obtained from the Elastic Response Demand Spectrum scaled by the reduction
factor R, of the SDoF system). As the last step of N2-Method, in the post-
processing phase the inelastic displacement demand of the equivalent SDOF
system S*q maqz has been converted to the global inelastic displacement demand
of the original Multi-Degree-of-Freedom system through the modal participa-
tion factor. As both capacity and demand terms are known, the Limit State
function g g can be evaluated in both performance levels and seismic directions.

The training data set consists of: (a) 6300 training vectors x whose dimen-
sion is 1 x 12 (the 10 structural parameters chosen to describe the retrofitting
intervention and the 2 seismic variables representing both the rare and occa-
sional expected earthquake); (b) 6300 target vectors whose dimension is 1 x 4

(the 4 values of the g5, obtained from the pushover analyses conducted). For
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Figure 14: Definition of the target classes for each input vector

each input vector belonging to the training dataset, a binomial classification has
been done on the basis of the following classification rule: if the value of Limit
State function is positive the numeric class is 1, otherwise the numeric class is
0, as shown in Figure It is easy to see that only if the four values of grs
are greater than zero the corresponding seismic retrofitting intervention can be
labelled as feasible. On the contrary, even if only one of these values is negative,
the corresponding input vector has to be classified as unfeasible. The size of
the feasible and unfeasible sub-sets is equal to 52% and 48% of D, respectively.

Hence, a well-balanced dataset has been obtained.

5.2. MLP architecture

The adopted MLP model is composed by one input layer, one single hidden
layer and one output layer. We stress that this model has universal approxi-
mation properties avoiding in our experiments the use of deep NNs [68]. The
input layer is composed by 12 neurons: 10 neurons are fed with the informa-
tion about the retrofitting intervention and 2 nodes with the Elastic Design
Response Spectra. The input values have been normalized to the range [0, 1],
to guarantee that feature values deriving from different measurements can be
effectively compared and the network can weight the features properly, avoid-
ing dominating features [69] [70]. Normalization also contributes to speed-up
convergence of training.

A single hidden layer has been deployed, considering that the efficiency of
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w0 such an ANN architecture has been well-documented in numerous relevant stud-
ies (i.e., universal approximation) [71] [72] [73]. Furthermore, by deploying more
hidden layers, we did not observe substantial performance differences. Using a
single hidden layer thus contributes to achieve high performance while keeping
the computational load contained, which is one of the aims of the present work.

ws The selection of the number of neurons in the hidden layer, whereas, is a trial
and error process and it generally starts by choosing a network with a small
number of hidden layers and hidden neurons [74]. A grid search approach is
adopted for selecting the number of nodes in the hidden layer. The number of
hidden neurons has been assumed to range between 10 and 50 (Figure [15])(we

a0 used the Neural Net Pattern Recognition app of the Deep Learning Matlab
Toolbox [75]).
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Figure 15: General configuration of the proposed s.

Since the predictions of the Limit State function for each performance level
and each seismic direction can be seen as four “independent” problems, an equal
number of fully connected ANNs have been built (Figure .

a7s Hence, for each net, a single output node has been used to represent the
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Figure 16: Decoupling of the classification problem through four ANNs.

target class of the retrofitting intervention corresponding to a specific Limit
State and seismic loads direction. Moreover, a sigmoid (logistic) activation
function f; has been used for the hidden layer neurons. Instead, for the output
neuron a softmax activation function f,, used in most multi-class or binary
classification methods in which the output quantity attains a scalar value [0, 1],
has been chosen. It is worth say that this scalar corresponds to the calculated
probability of the class. Therefore, the normalized output values between [0, 0.5]
have been interpreted as 0 class (i.e. grs < 0), while the values between [0.5, 1]

have been interpreted as 1 class (i.e. grs > 0), as depicted in Figure

5.3. Training and validation

For the A training a cross-validation approach has been adopted. The par-
tition of the data set D is obtained by Neural Net Pattern Recognition app
at random [75] to ensure good generalization of networks and to avoid overfit-
ting during the training [76] [77]. For obtaining the generalization properties
of the model we considered a K-fold cross-validation approach (in particular
leave-one-out (K = 1)) [78] as described in Figure

For weights update four learning algorithms have been considered: the

Levenberg- Marquardt (LM) algorithm [50], the Scaled Conjugate Gradient al-
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Figure 17: Interpretation of the scalar output of the softmax activation function.
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Figure 18: K-fold validation approach.
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gorithm [57], the Quasi-Newton algorithm [58] and the Resilient Backpropaga-

tion algorithm [59]. The selection of the training algorithm and the definition of

the number of hidden neurons has been approached as an optimization problem:

the architecture and the algorithm that show the highest predictive accuracy

after the cross-validation have been chosen for the final metamodel, where the

accuracy is the ratio of number of correct predictions (i.e. the sum “true feasi-

ble” + “true unfeasible”) to the total number of input samples. Although the
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Figure 19: Influence of the training algorithm and hidden neurons on the accuracy for gsr.p, x .

Figures clearly show that the LM algorithm returns the best results in
the four cases, the influence of the hidden neurons on the accuracy appears less
clear. For simplicity, a unique hidden neurons number equal to 30 has been set

for the four neural networks.

5.4. Test

In order to assess the performance of the trained meta-model, a large set
of test examples has been considered. 1500 different retrofitting configurations
(with respect to the examples contained in the training dataset) of the same ex-
isting RC frame described in Section 5.1.1, assumed to be built in new construc-
tion site, have been generated with the aim to predict their technical feasibility
with the proposed artificial A-based classificator. What distinguishes the 1500
new examples from the 6300 already used is certainly their “vectoria” represen-
tation which is characterised by different values for both variables X1 and X;2.

The EDRS representative of the seismic intensity expected on the construction
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Figure 20: Influence of the training algorithm and hidden neurons on the accuracy for gsrv, x.
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Figure 21: Influence of the training algorithm and hidden neurons on the accuracy for gsr.p,y -

sis sites is depicted in Figures 23}24] It has been selected in the middle of two

EDRS, respectively of site 1 and site 2, with the aim of “distancin” as much as
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Figure 22: Influence of the training algorithm and hidden neurons on the accuracy for gsrv,y .

possible the cases used for the test from those already used for training.

For each of the 1500 retrofitting configuration the predicted and the true
class have been obtained respectively with the ANN-based classification and the
pushover analysis in OpenSees. The results achieved with the proposed meta-
model, compared with those of the FInite Element simulation, are shown in a
confusion matrix: the diagonal and off-diagonal cells correspond to correctly and
incorrectly classified observations, respectively. It is worth remembering that
the overall class of the generic intervention is the product of the four outputs
of the binomial classification (see Section 5.1.2). Since the overall error of the
artificial ANN-based meta-model is affected by the misclassification of the four
decoupled neural networks, the accuracy of the artificial classificator has be
investigated also in each load direction (X and Y) and each performance level
(SLD and SLV).

As can be seen in Figure [25] according to the OpenSees results the test

dataset includes 1192 technically feasible intervention and 308 unfeasible inter-
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ventions. The ANN has recognized 82,31% of the first group and 75,91% of the
second group. In this work the labels “feasible” and “unfeasible” have been be
used not only to classify the retrofitting intervention according the lowest val-
ues assumed by the limit state function ¢g;,¢ among the 4 combinations (SLD-X;
SLV-X; SLD-Y; SLV-Y) but also to categorize the intervention according the
minimum values of grg: a) in X direction (SLD-X; SLV-X), b) in Y direction
(SLD-Y; SLV-Y), ¢) at SLD limit state (SLD-X; SLD-Y), d) at SLV limit state
(SLV-X; SLV-Y). As can be seen in Figure the ANN has recognized 91, 12%
of the (1249 true cases) “feasible” interventions and 70,52% of the (251 true
cases) “unfeasible” ones in X direction. As regards the Y direction, whereas, the
ANN has “recognized” 82,31% of the (1431 true cases) “feasible” intervention
and 75,91% of the (69 true cases) “unfeasible” ones (see Figure 27).

As can be seen in Figure the ANN has “recognized” the 93,90% of
the (1331 true cases) “feasible” interventions and the 58,96% of the (169 true
cases) “unfeasible” ones at SLD limit state. As regards the SLV limit state,
whereas, the ANN has “recognize” the 84,47% of the (1205 true cases) “feasible”

intervention and the 66, 49% of the (295 true cases) “unfeasible” ones (see Figure

29).

5.5. Deploy of the ANN

To better appreciate the advantage of using such neural network, it has been
further tested within the context of a rational procedure shown in Figure
based on the application of Genetic Algorithms and intended at selecting the
“cheapest” retrofitting solution among the technically feasible ones [6]. More
specifically, the mapping capabilities of the proposed ANN-based meta-model
have been incorporated into an highly demanding PBD optimization procedure
whose computational cost is one of the main critical issues to be addressed in

order to become actually feasible in real applications.
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Figure 24: EDRS for a rare event expected at the site “test”.

The proposed ANN-based model is used as an approximate substitute of
sso a computationally expensive finite-element-based optimization procedure. The
configuration of the design pipeline is used with the proposed neural network

(see Figure

to explore the space of possible solutions in a time-efficient way
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Figure 25: Confusion matrix of the “overall” prediction
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Figure 26: Confusion matrix of the prediction only in X direction (SLD + SLV)

and obtain sub-optimal solutions to the retrofitting problem. These solutions

can be further optimized using a FE-based method. This allows for a faster
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Figure 28: Confusion matrix of the prediction only at SLD limit state (X + Y direction)

ss  design process and limits the use of computationally-expensive optimization

procedures only to further refine a restricted sub-set of approximate solutions.
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Figure 30: Flow-chart of the optimization procedure
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It is worth describing the steps of the flow-chat of Figure [30] followed by
such procedure. It starts by generating a matrix representing a population of
50 individuals (candidate solutions) encoded in a chromosome like-array of de-
sign variables (genotype) which describe the retrofit intervention (installation
of concentric X-shaped steel bracings), according to the same rule described in
Section 5.1.1. Starting from the FE model of the as-built structure, the second
subroutine reads the matrix row by row and automatically modifies the origi-
nal model for adding a new steel bracing system according to the information
contained in the i-th chromosome. Then, for the i-th solution the third sub-
routine executes a seismic analyses of the “updated” FE model by mean of the
OpenSEES program to estimate the performance of the strengthened structure
under the expected seismic actions. The fourth subroutine aims at evaluating
both the objective (initial costs) and the performance constraints by interpret-

ing the outcomes of the simulations. The fifth subroutine evaluates the fitness
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which measures the “quality” of the candidate solution according the optimiza-
tion criteria (minimum cost). Once the individuals are ranked from lowest to
highest fitness value, the worst individuals are replaced with new ones through
the triad of genetic operators selection-crossover-mutation. The selection ap-
plies the “survival of the fittest” principle by selecting more likely “parents”
characterized by higher fitness. The crossover operator “mixes” the genetic in-
formation of the selected parents into new “offspring” solutions. The mutation
modifies few, randomly selected, variables of the chromosomes achieving a local
“exploration” of the design space. The trio selection-crossover-mutation keeps
running until the desired number of offspring are created to replace the dis-
carded individuals. These 8 steps are iterated until the convergence criterion is
achieved. Such stopping condition is generally met after 21 hours. Specifically,
through the profiling of the code the duration of each subroutine calls has been
obtained: about 93% of the CPU time is used to execute the seismic analyses
in OpenSees as shown in Figure 32} In fact, the search for the “best” retrofit
configuration needs the execution of an huge number of seismic simulations.
This process could be prohibitive due to the computational time required to
perform such analyses. Since the results reported in Section confirm very good
recognition capability, a possible way to enhance the computational efficiency
of this procedure is the replacement of the pre-processing and processing steps
(subroutines n. 2 and 3) executed with OpenSEES with the Artificial Neural
Network-based meta-model able to immediately “classify” each seismic retrofit
solution as either technically “feasible” or “unfeasible” only on the basis of its
genotype.

This allows considerable time savings as seismic analysis is no longer nec-
essary to assess the seismic performance of the strengthen building. For the

existing building described in Section 5.1.1 a comparison has been then made
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Figure 32: Time profiling of the Matlab code

between the results obtained through the original optimization procedure and
the modified one with the integration of the artificial “classifier”. From the
analysis of the algorithm’s convergence shown in Figure it is possible to
note that the objective function (initial cost) reaches almost the same minimum
value (27,837€vs 27,369€). Moreover, during the entire evolutionary process
the ”integrated” procedure has generated 1823 different solutions (individuals):
1668 " feasible” solutions and 155 ”unfeasible” solutions. On these chromosomes
a double “labeling” based both on accurate seismic analyses and rapid classifi-
cation with neural network has been carried out. The result is that in 84.37%
of cases the NN has been able to correctly classify the “feasible” interventions,
while in 77.13% of cases it was able to recognize the class of “unfeasible” inter-
ventions. However, the time for simulations decreases from around 20 h required
by the original procedure to just 1h. Consequently, the CPU time for the post-
processing phase is also considerably reduced, from about 1h to 6 minutes. This,
more generally, could represent a big advantage in the applications of expen-

sive optimization procedures that require multiple “run” before accepting the
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Figure 33: Comparison of the convergence curves

6. Conclusion

An ANN-based meta-model, which approximates the solution of more com-
putationally expensive finite-element optimization procedure, has been proposed
for a quick prediction of the technical feasibility of seismic retrofitting interven-
tions on a RC existing building.

The proposed method can be used to speed-up the design process of
retrofitting intervention: a neural network replaces exact optimization methods
to more quickly explore the space of possible solutions and provides a sub-set of
approximate solutions to the retrofitting problems, which can be further checked
and optimized using exact methods. The observed benefit consists in avoiding
time-consuming computation for the evaluation of non-suitable solutions to the

retrofitting problem, while focusing only on those that are closer to an optimal
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solution. The proposed methodology thus exploits the ANN-based meta-model
as a quick pre-filter for sub-optimal solutions.

Based on the results of the test, the following conclusion can be drawn: the
use of ANN is a valid alternative to the time-consuming seismic analyses. The
results obtained in the present study have demonstrated that it is feasible to
use ANNS to classify seismic retrofitting intervention with a good accuracy. The
results confirm that the precision is very dependent on the amount of examples
included in the training data set that should be representative enough of the
problem domain. However, the advantage of replacing a FEM analysis with a
Neural Network, for instance within an optimization procedure that requires a
large number of simulations, justifies the time required to train the ANN-based

meta-model.
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