
S P EC I A L I S S U E A RT I C L E
Netwo rk s

A Genetic Approach for the 2-Edge-Connected
Minimum Branch Vertices Problem

Francesco Carrabs1 | Raffaele Cerulli1 | Federica
Laureana1 | Domenico Serra1 | Carmine Sorgente1

1Department of Mathematics, University of
Salerno, Fisciano SA, Italy
Correspondence
Domenico Serra, Department of
Mathematics, University of Salerno,
Fisciano SA, Italy
Email: dserra@unisa.it

This paper addresses the 2-Edge-ConnectedMinimumBranch Ver-
tices problem, a variant of the Minimum Branch Vertices problem
inwhich the spanning subgraph is required to be 2-edge-connected
for survivability reasons. The problemhas been recently introduced
and finds application in optical networks design scenarios, where
branch vertices are associated to switch devices that allow to split
the entering light signals and send them to several adjacent ver-
tices. An exact approach to the problem has been proposed in the
literature. In this paper, we formally prove its NP-completeness
and propose a genetic algorithm, which exploits some literature-
provided procedures for efficiently checking and restoring solu-
tions feasibility, and makes use of novel ad-hoc designed opera-
tors aiming to improve their values, reducing the number of branch
vertices. The computational tests show that, on the benchmark in-
stances, the genetic algorithm very often finds the optimal solution.
Moreover, in order to further investigate the effectiveness and the
performance of our algorithm, we generated a new set of random
instances where the optimal solution is known a priori.
K E YWORD S

Network Optimization, Network Design, Optical Networks,
Branch Vertices, 2-edge-connectivity, Genetic Algorithms

1 | INTRODUCTION

In this paper, we study the 2-Edge-Connected Minimum Branch Vertices (2ECMBV) problem introduced by Laureana
[10]. The 2ECMBV is a variant of the Minimum Branch Vertices (MBV) problem which looks for a spanning 2-edge-
connected subgraph having minimum number of vertices with degree strictly greater than two.

1

2 Carrabs et al.

The MBV problem was introduced by Gargano et al. [7] and consists in finding a spanning tree of a given graph,
containing the minimum number of branch vertices, namely vertices having a degree greater than two in the tree.
Carrabs et al. [2] introduced four IP formulations for the MBV problem, Silva et al. [17] proposed an edge-swap
heuristic algorithm, while Marín [12] experimented both exact and heuristic solutions. A further contribution on the
MBV problem has been provided by Silvestri et al. [18], who introduced some valid inequalities and a Branch and
Cut approach. Furthermore, Cerulli et al. [3] presented some heuristic approaches able to quickly find high-quality
solutions.

Variants of the problem have been considered by several authors: Moreno et al. [13] proposed a Miller–Tucker-
Zemlin based formulation with valid inequalities and a heuristic approach for the d -MinimumBranch Vertices problem.
In this problem the aim is to minimize the number of vertices with degree strictly greater than d . Carrabs et al. [1]
introduced the Generalized Minimum Branch Vertices Problem, which partitions the starting graph into clusters and
identifies a spanning tree that covers exactly one vertex per cluster, minimizing the number of branch vertices.

The MBV problem arises in the field of optical networks design problems where it is required to connect the
vertices in a way such that the number of connections of each vertex is limited. More in detail, in an optical network,
the wave division multiplexing technology allows sending, on the same optical fiber, several light beams having a
different fixed wavelength. Multicast technology on an optical network allows replicating the optical signal from one
source to many destination vertices by means of a network device (switch) that permits to split an entering light signal
and to send it to more adjacent vertices. A light-tree connects the vertices of the network allowing multicasting
communications. The vertices of the tree having degree greater than two are named branch vertices and they require
a switch to split and propagate the light signal to the adjacent vertices. Due to budget constraints, the number of
switches should be limited, hence the aim of the problem consists of finding a spanning tree of the network with the
minimum number of branch vertices. In the 2ECMBV problem, it is added a survivability constraint that requires to
find a 2-edge-connected spanning subgraph of the network with the minimum number of branch vertices. This new
constraint guarantees the restoring of the network services in case of edges failures.

In this paper, we prove that 2ECMBV is NP-complete by showing that it is in NP and by providing a polynomial
reduction of the MBV problem to it. Moreover, we developed an algorithm, based on 2-edge-connectivity, branch
vertices and bridge edges properties, that finds and removes redundant edges from a solution to decrease the number
of its branch vertices. Finally, we propose a genetic algorithm based on ad-hoc operators designed to widely explore
the solution space. The computational results carried out on benchmark and new instances, show that our algorithm is
fast and effective because, in the worst case, it returns solutions having one branch vertex more than the optimal/best
ones.

The remainder of the paper is organized as follows. Section 2 introduces the definitions and the notations that
are used throughout the paper, while Section 3 provides a proof of NP-completeness of the 2ECMBV problem. In
Section 4, existing procedures for checking and restoring the 2-edge-connectivity of a graph are detailed, while in
Section 5 a procedure to decrease the number of branch vertices, based on some theoretical results, is presented.
Section 6 describes a randomized algorithm designed to quickly find starting feasible solutions for the 2ECMBV prob-
lem. Our genetic algorithm is presented in Section 7. Finally, the computational results are reported in Section 8,
followed by the conclusions in Section 9.

Carrabs et al. 3

2 | NOTATIONS AND DEFINITIONS

Let G = (V , E) be an undirected, unweighted, connected graph, whereV is the set of vertices, E is the set of edges,
|V | = n and |E | = m. Given a vertex v ∈ V , we denote by dG (v) the degree of v in G and by δG (v) the set of edges
incident to v in G . Furthermore, given a set of vertices W ⊂ V , we denote by δG (W) the set of edges of G that
connect any vertex inW with a vertex in V \W , and by G [W] the subgraph of G induced by the vertices inW . A
vertex v ∈ V is a branch vertex if its degree is strictly greater than two. Moreover, G is 2-edge-connected if and only if,
by removing one edge, the resulting subgraph is connected. The edge connectivity version of Menger’s theorem [14]
leads to a further characterization of the 2-edge-connectivity property: a graph results to be 2-edge-connected if at
least two edge-disjoint paths between each pair of vertices exist. In the following, we only consider simple paths, i.e.,
paths without repeated vertices. Lastly, a 2-edge-connected spanning subgraph of G is a graph G ′ = (V ′, E ′) where
V ′ =V , E ′ ⊆ E and every pair of vertices is connected by at least two edge-disjoint paths in G ′.

The 2-Edge-Connected Minimum Branch Vertices (2ECMBV) problem consists in finding a 2-edge-connected span-
ning subgraphG ′ ofG having the minimum number of branch vertices. It is easy to see that the optimal solution value
of the 2ECMBV is always equal to zero for any Hamiltonian graph, namely a graph G that contains a Hamiltonian
cycle. Indeed, a Hamiltonian cycle visits every vertex ofG exactly once and constitutes a 2-edge-connected spanning
subgraph of G with no branch vertices. On the contrary, if G is 2-edge-connected and non-Hamiltonian, the optimal
solution value of the 2ECMBV is strictly greater than zero, as proved by Proposition 1
Proposition 1 Let G (V , E) be a 2-edge-connected and non-Hamiltonian graph. Then, the optimal solution value of the
2ECMBV problem on G is strictly greater than zero (i.e., the optimal solution contains at least one branch vertex).

Proof By contradiction, let us suppose that there exists a spanning subgraph G ′ in G that is 2-edge-connected and
without branch vertices. The 2-edge-connectivity and the absence of branch vertices imply that the degree of each
node in G ′ is equal to 2. Moreover, since G ′ is spanning, it is a Hamiltonian cycle of G , contradicting the hypothesis
that G is non-Hamiltonian.

F IGURE 1 (a) A connected, undirected and unweighted graph G . The branch vertices are shown in red. (b) A
2-edge-connected spanning subgraph of G with two branch vertices. (c) A 2-edge-connected spanning subgraph of
G with one branch vertex. (c) A 2-edge-connected spanning subgraph of G with no branch vertices.

For instance, given the graph G in Figure 1(a), three feasible solutions for the 2ECMBV are shown in Figures 1(b),
1(c) and 1(d). In particular, the subgraph in Figure 1(c) is better than the one in Figure 1(b) because it contains one
branch vertex less, while Figure 1(d) shows an optimal solution for the 2ECMBV, that is a Hamiltonian cycle of G .

4 Carrabs et al.

3 | COMPLEXITY RESULTS

In this section we prove that the 2ECMBV problem is NP-complete. To this end, we consider the corresponding de-
cision version of the problem and, after showing that it is in NP, we provide a polynomial reduction from the MBV
problem, which is known to be NP-complete [7].
The decision version of the 2ECMBV and MBV problems are the following:
MBVd: Given a connected, undirected and unweighted graph G , is there a spanning tree T of G , having at most b branch
vertices?

2ECMBVd: Given a connected, undirected and unweighted graph G = (V , E) , is there a 2-edge-connected spanning sub-
graph G ′ = (V , E ′) , with at most b branch vertices?

The 2ECMBVd is clearly in NP because verifying the feasibility of a given solution of the problem can be done in
polynomial time. Indeed, to certify the feasibility of a solution we have to: i) check the subgraph 2-edge-connectivity;
ii) check the subgraph spanning property; and iii) count the number of branch vertices in the subgraph. Step i) can
be carried out in O (m + n) using Tarjan algorithm [20] to find bridges in a graph, step ii) can be done with a simple
breadth-first search of the subgraph, while step iii) is linear in the number of vertices.

To show the reduction, we transform in polynomial time an instance of MBVd into an instance of 2ECMBVd. The
answer of the 2ECMBVd problem on this last instance is Yes if and only if the answer of the MBVd problem is Yes on
the original instance.

F IGURE 2 (a) Instance graph G of the MBVd problem. (b) Instance graph G ′ of the 2ECMBVd problem built from
G , in the context of the MBVd ≤p 2ECMBVd reduction. The vertices v1,v2 and v3 are used to connect three copies
of G .

Proposition 2 Given an instance (G , b) of MBVd, such that G contains at least two vertices, MBVd ≤p 2ECMBVd.

Carrabs et al. 5

Proof Let (G , b) be an instance of MBVd. From this instance, we build an instance (G ′, b ′) of 2ECMBVd as follows.
G ′ contains three copies of G: G1 = (V1, E1) , G2 = (V2, E2) and G3 = (V3, E3) . Furthermore, three vertices, directly
connected to each other, are added to G ′: one for each copy of G . Each vertex of Gi is connected, through an
additional edge, to the corresponding vertex vi . The value of b ′ is set to 3b +3. An example of the described procedure
is showed in Figure 2.

Let us suppose that T is a spanning tree of G having at most b branch vertices and let T1,T2 and T3 be the three
copies of T in G1,G2 and G3, respectively. By construction, each Ti has at most b branch vertices. By connecting
each leaf ofTi with the corresponding vertex vi , the subgraph induced byTi ∪ {vi } is 2-edge-connected with at most
b + 1 branch vertices because the selected edges from vi to the leaves do not transform these last vertices in branch
vertices. It is easy to see that the subgraph induced by T1 ∪T2 ∪T3 ∪ {v1,v2,v3} is a 2-edge-connected subgraph of
G ′ and has 3b + 3 branch vertices, at most.

On the other hand, let T = (VT , ET) be a 2-edge-connected spanning subgraph of G ′ having at most b ′ branch
vertices. It is easy to see that v1, v2 and v3 are branch vertices in T . This means that the number of branch vertices
in the subgraph ofT induced by⋃3

i=1Vi is at most equal to (b ′ − 3) . As a consequence, among the set of verticesV1,
V2 and V3, there must be at least one of them, w.l.o.g let us suppose V1, such that the subgraph of T induced by V1

contains at most (b ′ − 3)/3 branch vertices.

4 | 2-EDGE-CONNECTIVITY OPERATORS

In this section, we describe two operators used in our genetic algorithm to assure the feasibility of the chromosomes.
The first operator verifies the 2-edge-connectivity of a subgraph, while the second one restores this property, when
needed.

4.1 | 2-Edge-Connectivity Checker Operator

In the literature, there exist several algorithms to verify whether a graph is 2-edge-connected. Tarjan [19] proposed
the biconnectivity algorithm to find biconnected components of a graph in O (m + n) time. This algorithm can be
used to determine if a graph is 2-vertex-connected. Galil et al. [6] polynomially reduced edge-connectivity to vertex-
connectivity, thus every known algorithm for checking the 2-vertex-connectivity, including the biconnectivity algo-
rithm, can be used to verify the 2-edge-connectivity. Tarjan [20] also provided a O (m + n) algorithm to determine
bridges in a graph. An edge e ∈ E is a bridge in G = (V , E) if the number of connected components in (V , E \ {e }) is
strictly greater than the number of connected components in G . Since a connected graph with at least two vertices
is 2-edge-connected if and only if it has no bridges, this algorithm can be used to check 2-edge-connectivity, too. Fi-
nally, 2-connectivity and 2-edge-connectivity can also be checked in O (m + n) time using the Schmidt [16] algorithm,
which relies on chain decomposition to identify bridges and cut vertices of a graph. More in detail, after conducting
a depth-first search, the fundamental cycles in the resulting depth-first search tree are considered, and each of them
is added to the chain decomposition if it does not overlap with any previously added cycle; otherwise, only the ini-
tial non-overlapping segment is added. An edge is a bridge if it is not contained in any chain of the decomposition;
accordingly, a connected graph with at least two vertices is 2-edge-connected if its chain decomposition partitions
its set of edges. In the implementation of our genetic algorithm, we check the 2-edge-connectivity of subgraphs by
using the Schmidt algorithm.

6 Carrabs et al.

4.2 | 2-Edge-Connectivity Restorer Operator

When the 2-edge-connectivity property does not hold for a subgraph G ′ = (V , E ′) of G = (V , E) , we restore this
property by adding to E ′ edges from E \ E ′. Eswaran et al. [5] showed that the minimum number of edges to be
added to E ′, in order to make 2-edge-connected the subgraph G ′, can be determined inO (m + n) if every edge in the
complement graph of G ′ is available. This last condition does not hold in our case and then, to prevent the selection
of non-existing edges in the original graph G , we have to solve the edge-weighted version of this problem, which is
NP-hard [5]. Moreover, since we also aim tominimize the number of branch vertices in the new subgraph, the weights’
assignment is carried out according to this purpose.

More in detail, we assign aweightwe to every edge e ∈ E as follows: (i)we = ∞ if e < E \E ′; (ii)we = 1+β otherwise,
where β ∈ {0, 1, 2} is the number of no branch vertices incident on e . By doing so, we encourage the selection of
edges incident on already branch vertices, which do not increment the cost of a solution. In order to quickly select
good quality edge augmentations for G ′, we adopt an implementation of the 2-approximation algorithm proposed by
Khuller et al. [15], that runs in O (m + n log n) time. In the remaining of the paper, we refer to the invocation of such
procedure as the restorer operator, and denote it by Restore2EC.

5 | REDUCING BRANCH VERTICES

In this section, we introduce a procedure, named BranchReduction, which aims to reduce the number of branch
vertices in the subgraph. Given a 2-edge-connected graph G = (V , E) , an edge subset Ē ⊂ E is considered redundant
if the graph (V , E \ Ē) is 2-edge-connected. BranchReduction removes the redundant edges that are incident to
the branch vertices of G . The procedure is based on some 2-edge-connected subgraph properties, introduced by
Laureana [10], whose statements and proofs are reported below for ease of reading.

By removing a branch vertex v from G , we obtain a graph G ′ = (V ′, E ′) , where V ′ = V \ {v } and E ′ = E \ {e :
e ∈ δG (v) }, for which one of the following three cases occurs:

(1) G ′ is not connected;
(2) G ′ is 2-edge-connected;
(3) G ′ is connected but not 2-edge-connected.

Moreover, since in case (3) the set of bridges B (G ′) in G ′ is not empty, we can distinguish two further cases by
removing all the bridges from G ′ and investigating the connected components C1, . . . ,Ct left in the subgraph of G ′
obtained by removing the bridges B (G ′) from G ′:

(3a) |δG (Ci) ∩ B (G ′)) | ≤ 2, for any i ∈ {1, . . . , t };
(3b) there exists i ∈ {1, . . . , t }, such that |δG (Ci) ∩ B (G ′)) | ≥ 3.

In case (1), v is said to be a cut vertex in G and, by Lemma 3, it is necessarily branch in any feasible solution to the
2ECMBV problem. In case (2), (3a) and (3b), Lemma 4, Lemma 5 and Lemma 6 hold, respectively.
Lemma 3 Given a 2-edge-connected graphG = (V , E) and a vertex v ∈ V , if v is a cut vertex inG , then it is branch in any
2-edge-connected spanning subgraph of G .

Proof By definition of cut vertex,G [V \{v }] consists of several connected componentsC1, . . . ,Cℓ , ℓ ≥ 2. At least two

Carrabs et al. 7

of the edges in δG (v) having one endpoint inCi belong to any spanning 2-edge-connected subgraph Ḡ ofG , otherwise
the subset of vertices Ci ∪ {v } would not be 2-edge-connected in Ḡ . Since this holds for every i ∈ {1, . . . , ℓ }, the
number of edges in δḠ (v) is at least equal to 2ℓ , which implies that v is a branch vertex in Ḡ .
Lemma 4 ([10]) Given a 2-edge-connected graphG = (V , E) and a branch vertexv ∈ V , ifG [V \{v }] is 2-edge-connected,
then there exists a 2-edge-connected spanning subgraph Gv of G , such that v is not branch in Gv .

Proof Since G [V \ {v }] is 2-edge-connected, the subgraph Gv = (V , (E \ δG (v)) ∪ {e, f }) is 2-edge-connected for
any e, f ∈ δG (v) . Moreover, v is not branch in Gv , as it has degree two in it.
Let us denote by CG (G ′) the component graph associated to G ′, defined as follows. The set of vertices of CG (G ′)
contains a vertex for each connected component Ci in the subgraph obtained by removing fromG ′ the bridges B (G ′) .
Furthermore, two vertices of CG (G ′) are connected by an edge if and only if the associated components Ci and Cj

are connected by a bridge in G ′. By construction, the edges incident on Ci are the edges in δG (Ci) ∩ B (G ′) , and
CG (G ′) is a tree.
Lemma 5 ([10]) If (3a) holds, then there exists a 2-edge-connected spanning subgraph Gv of G , such that v is not branch
in Gv .

Proof If (3a) holds, the graphCG (G ′) is a path, then there are exactly two leaves in it, namely there are two connected
components Ci and Cj with i , j ∈ {1, . . . , t }, such that |δG (Ci) ∩ B (G ′) | = |δG (Cj) ∩ B (G ′) | = 1, while |δG (Ck) ∩
B (G ′) | = 2, for any k , i , j . Since G is 2-edge-connected, there exist e ∈ δG (v) ∩ δG (Ci) and f ∈ δG (v) ∩ δG (Cj) .
The subgraph Gv = (V , Ev) , where Ev = E \ δG (v) ∪ {e, f }, is 2-edge-connected and v is not branch in it.
Lemma 6 ([10]) If (3b) holds, vertex v is branch in any feasible solution to the 2ECMBV problem.

Proof When (3b) holds, in the graph CG (G ′) there exists at least a vertex with degree three then there are at least
three leaves, namely there are three connected components Ci ,Cj and Ck such that |δG (Ci) ∩ B (G ′) | = |δG (Cj) ∩
B (G ′) | = |δG (Ck) ∩ B (G ′) | = 1. Since G is 2-edge-connected, there exist e ∈ δG (v) ∩ δG (Ci) , f ∈ δG (v) ∩ δG (Cj)
and g ∈ δG (v) ∩ δG (Ck) . To ensure 2-edge-connectivity e, f and g must be selected in any feasible solution, thus v
is branch in any feasible 2ECMBV solution.

The pseudocode of the BranchReduction procedure is given in Algorithm 1. The algorithm takes as input a 2-
edge-connected subgraph G ′ of G from which redundant edges are removed, trying to reduce the number of branch
vertices. Using a priority queue Q , the procedure processes the branch vertices in G ′ one by one, according to their
degree, in ascending order (lines 1-4). Since, at each iteration, the algorithm updates G ′, for each vertex v extracted
from the queue, it is necessary to check whether v is still a branch vertex (line 5). If this is the case, the number of
connected components in the graphG ′′ obtained by removing v fromG ′ is computed. If more than a single connected
component exist, v is a cut vertex in G ′ and, by Lemma 3, it is not possible to obtain a 2-edge-connected subgraph
where it is not branch; thus, no more action is performed in this iteration (lines 6-8). Otherwise, bridges B in G ′′ are
computed (line 9). If no bridge exists, we can use Lemma 4 and remove fromG ′ all the edges in δG ′ (v) , except for the
two edges whose other endpoints have highest degree (lines 10-11); in addition to making v not branch, this choice
potentially reduces the number of branch vertices in the neighborhood of v . Otherwise, we remove existing bridges
from G ′′ and recompute the connected components in G ′′: for each found component Ci such that a single bridge
in B is incident on Ci , we remove all the edges in δG ′ (v) except the edge (v , z) which maximizes the degree of z

8 Carrabs et al.

(lines 13-20). This means reducing the number of edges incident on v : when every found component has at most
two incident bridges, Lemma 5 holds and only two edges in δG ′ (v) are selected; otherwise, we know from Lemma
6 that v is necessarily a branch vertex, thus at least three edges in δG ′ (v) are selected. The algorithm performs
at most one iteration for each branch vertex in the input subgraph G ′. In each iteration, computing the connected
components of G ′′ is the most expensive operation and it is carried out at most two times. Connected components
are identified through a breadth-first search of the subgraph, thus the time complexity of the algorithm in the worst
case is O (b (n +m)) , where b is the number of branch vertices in the subgraph.
Algorithm 1: BranchReduction
Input :A 2-edge-connected graph G ′ = (V ′, E ′)

1 Q ← {v : dG ′ (v) > 2}
2 while |Q | > 0 do
3 v ← v ∈ Q : dG ′ (v) ≤ dG ′ (u), [u ∈ Q
4 Q ← Q \ {v }
5 if dG ′ (v) > 2 then
6 G ′′ = (V ′′, E ′′) ← (V ′ \ {v }, E ′ \ {e : e ∈ δG ′ (v) })
7 C ← connected components of G ′′
8 if |C | ≤ 1 then
9 B ← bridges in G ′′

10 if |B | == 0 then
11 G ′ ← (V ′, E ′′ ∪ argmax(v ,x) ,(v ,y) ∈δG ′ (v) {min (dG ′′ (x), dG ′′ (y)) })
12 else
13 G ′′ ← (V ′′, E ′′ \ B)
14 C1,C2, . . . ,Ck ← connected components of G ′′
15 F = ∅

16 for i = 1 . . . k do
17 if | { (x , y) ∈ B : x ∈ Ci xor y ∈ Ci } | == 1 then
18 e = argmaxe=(v ,z) ∈δG ′ (v) {dG ′′ (z) }
19 F ← F ∪ {e }

20 G ′ ← (V ′, E ′′ ∪ F)

21 else
22 break

23 return G ′

6 | FINDING FEASIBLE SOLUTIONS

In this section we present a randomized procedure, named BuildSolution, designed to quickly find feasible and
highly diversified solutions for the 2ECMBV problem. A set of so generated solutions constitutes a heterogeneous
starting population for our genetic algorithm. The procedure is based on the following 2-edge-connectivity property.

Carrabs et al. 9

Proposition 7 Given a graphG = (V , E) and two distinct vertices u,v ∈ V , if u and v are connected by k ≥ 2 edge-disjoint
paths P1, P2, . . . , Pk , any pair of vertices in P1, P2, . . . , Pk is connected by at least 2 edge-disjoint paths.

Proof LetG = (V , E) be a graph, and let u and v be two vertices inV . Let P = {P1, P2, ..., Pk }, k ≥ 2, be the k edge-disjoint
paths between u and v . Let x be a generic vertex in Pi and let y be a generic vertex in Pj , with Pi , Pj ∈ P , then we have to
prove that there exist at least 2 edge-disjoint paths connecting x and y . The following two cases may occur:

F IGURE 3 (a) Case where the vertices x and y are on the same path that connects u and v . (b) Case in which
they are on different paths. In both cases there are 2 edge-disjoint paths between x and y , highlighted in the figure
by different colors.

• Pi = Pj: In this case, the vertices x and y are on the same path and, without loss of generality, let us suppose that
x precedes y , that is Pi has the following structure: (u, ..., x , ..., y , ...,v) (Figure 3(a)). The vertices from x to y that
appear along Pi represent a first path p ′ connecting the two vertices. On the other hand, a second path will have the
form p ′′ : (x , ...,u, ...,v , ..., y) , where the edges from x to u and from v to y belong to Pi , while the edges from u to v
belong to a path Pt ∈ P , with Pt , Pi , that exists because, by hypothesis, k ≥ 2. The two paths p ′ and p ′′ do not share
edges.

• Pi , Pj: In this case, the x and y vertices are located on two separate paths, Pi and Pj . The first path between x and
y has the form p ′ : (x , ...,u, ..., y) and it includes the vertices from x to u along Pi and the vertices from u to y along
Pj . The second path between x and y has the form p ′′ : (x , ...,v , ..., y) , which contains the vertices from x to v along
Pi and the vertices from v to y along Pj . Since Pi and Pj , by hypothesis, are edge-disjoint paths, then p ′ and p ′′ are
edge-disjoint paths, too.

By using Proposition 7, we designed the constructive procedure BuildSolutionwhich incrementally builds a set
S of vertices inducing a 2-edge-connected subgraph of G , by adding edge-disjoint paths between vertices in S and
vertices inV \ S , until S contains all the vertices of G . The pseudocode of this procedure is given in Algorithm 2.

The algorithm takes as input the original 2-edge-connected graphG . After initializing the output graphG ′ with an
empty set of edges (lines 1-2), a first vertex of G is randomly selected and added to S (line 3). By now, the algorithm
adds a vertex u ∈ V \ S to S only if u is 2-edge-connected with some vertex in S . To this end, at each iteration, the
following operations are performed: (i) vertices x and y are randomly selected from S and V \ S , respectively (lines
4-5); (ii) a path P1 in G between x and y is found and the edges in P1 are temporarily removed from G (lines 7-8);
(iii) a second x -y path P2 in G is found (line 9) and, since the edges of P1 have been removed from G , P1 and P2 are
edge-disjoint paths connecting x and y ; (iv) the edges in P1 are re-added toG (line 10); (v) finally, all the edges in P1 and
P2 are added toG ′ and, since we know from Proposition 7 that every pair of vertices in P1 and P2 is 2-edge-connected

10 Carrabs et al.

Algorithm 2: BuildSolution
Input :The original 2-edge-connected graph G = (V , E)

1 E ′ = ∅

2 G ′ ← (V , E ′)
3 S ← {a random vertex inV }
4 while |V \ S | > 0 do
5 x ← random vertex in S

6 y ← random vertex inV \ S
7 P1 ← x -y path in G

8 E ← E \ {edges in P1}
9 P2 ← x -y path in G

10 E ← E ∪ {edges in P1}
11 E ′ ← E ′ ∪ {edges in P1} ∪ {edges in P2}
12 S ← S ∪ {vertices in P1} ∪ {vertices in P2}
13 return G ′

in G ′, we add every vertices in P1 and P2 to G ′ (lines 11-12).
The algorithm ends when V \ S is empty. This requires a variable number of iterations, depending on which

vertices are randomly selected at each iteration.
In the best case, a single iteration is sufficient, while in the worst case, that occurs when only one vertex per

iteration is added to S , the main loop requires n − 1 iterations, which is O (n) . The most expensive operation of each
iteration is finding a path between two vertices in the graph and it is performed exactly two times per iteration. This
can be achieved with several algorithms. We adopt a simple visit of the graph, which takes time O (n + m) . As a
consequence, the complexity of the algorithm is O (n (n + m)) in the worst case. Since the input graph is 2-edge-
connected, m > n and the worst case time complexity is equivalent to O (nm) .

Generally, when studying the complexity of randomized algorithms, the expected running time is discussed de-
pending on the random choices made by the algorithm [4]. Indeed, the worst case cannot be determined on the
basis of the input, but it is only determined by the random choices made. We can express the time complexity of the
algorithm through a recurrence relation. Denoting by T (n) the number of iterations needed to build a solution for a
graph with n vertices, we obtain the following recurrence relation:

T (|V \ S (i) |) = 2 · O (n +m) +T (|V \ S (i+1) |),

where S (i) denotes set S at iteration i , with |V \ S (0) | = n . Let us observe that the total number of operations carried
out by the algorithm to build a solution for an instance of size n includes: i) 2 · O (n +m) operations to find two edge-
disjoint paths between a vertex in S and one inV \ S (i) in the original graph G ; ii) the number of operations needed
to perform the next iterations, that depends on the number of vertices still present inV \ S (i+1) .

At each step, the setV \S (i) is partitioned intoV \S (i+1) and (V \S (i))\(V \S (i+1)) . The balance of such partitioning
affects the recurrence describing the running time. If the best-case partitioning takes place, i.e., |V \S (1) | = ∅, a single
iteration is sufficient and the recurrence has the solutionO (m+n) . On the other hand, if the partitioning is unbalanced
in every step, i.e., |V \S (i+1) | = |V \S (i) | −1 [i , the recurrence has the solutionO (n (m+n)) = O (nm) , which matches

Carrabs et al. 11

the worst case. Finally, in the average case, on random 2-edge-connected graphs, the BuildSolution procedure has
an expected running time of O ((n +m) log2 n) .

For the sake of intuition, when after each step of the recurrence relation the number of vertices remaining in
V \ S (i+1) is a fraction of n , a logarithmic number of steps is needed to solve the resulting recurrence: no matter how
small this fraction is, the only required condition is that we do not remove fromV \ S (i) a fixed number of vertices at
each step i . In fact, let us say n

α i
is the number of vertices remaining inV \ S (i+1) after each step i , with α ∈ Ò and

α > 1. We can rewrite the recurrence relation as follows:
T (|V \ S (0) |) = 2c (n +m) +T

(n
α

) (1)
= 2c (n +m) + 2c (n +m) +T

(
n

α2

)
(2)

= 2c (n +m) + 2c (n +m) + · · · + 2c (n +m) +T
(
n

α j

)
, (3)

where S (0) = ∅ and j is the number of iterations needed to solve the relation, that is O (log2 n) .
Clearly, the partitioning does not generally produce splits of constant proportionality at every step, but sufficiently

well balanced and fairly unbalanced splits are expected to be randomly distributed in the recursion tree. It can be
proved that, even in this case, the expected number of iterations until a best-case partitioning takes place isO (log2 n)
[4].

7 | GENETIC ALGORITHM

Genetic algorithms are powerful evolutionary algorithms, originally introduced by John Holland [9] and widely used
to solve hard combinatorial optimization problems. Holland was inspired by Darwin’s theory of evolution, based on
the idea of natural selection. Genetic algorithms simulate the evolution of a population of individuals, each of which
represents a feasible solution of the problem. Starting with an initial population, the algorithm performs a certain
number of iterations and, at each iteration, a new population is generated on the basis of the previous one.

In this section, we describe our genetic algorithm (GA) for the 2ECMBV problem. In the algorithm, a solution
of the problem is represented by a chromosome thus, as first step, we define how these chromosomes are encoded.
Then, we define the fitness function, used to evaluate the quality of each chromosome, and the stopping criteria.
Finally, we describe the selection, crossover and mutation operators.

7.1 | Chromosome representation and fitness function

In our algorithm, each chromosome C is associated to a feasible solution of the 2ECMBV problem on G . For this
reason, C is a binary vector whose size is equal to the number of edges of G and the i th gene in it is equal to 1 if the
edge e i of G belongs to the solution and zero otherwise. We denote by C[i] the value of i th gene of chromosome C.

An example of a feasible solution encoding is shown in Figure 4. Here C1 [i] = 1 for all i = 1, . . . , 9while C2 [i] = 1,
for i={1,2,5,6,7,8} and C2 [i] = 0, for i={3,4,9}. From now on, we denote by G (C) the subgraph of G induced by
selected edges in C. According to this definition, G (C2) is the subgraph of G depicted in Figure 4(b).

The chromosomes of the population are ranked according to a fitness function F. In our algorithm, the fitness
function F(C) of a chromosome C is equal to the number of branch vertices in G (C) . The lower is the number of
branch vertices the better is the fitness value. In Figure 4, we have that F(C1) = 5 while F(C2) = 0 and then G (C2)

12 Carrabs et al.

F IGURE 4 (a) The original graph G and (b) a 2-edge-connected subgraph of G with their corresponding
encodings, C1 and C2, respectively.

is a better solution than G (C1) .

7.2 | Initial population

The initial population is generated by using the BuildSolution procedure described in Section 6. Thanks to its ran-
domized nature, the algorithm is able to generate, from the same input graph, different and heterogeneous feasible
solutions. We repeatedly invoke this procedure until a fixed number of individuals, equal to the size N of the popula-
tion, is obtained.

7.3 | Selection, Crossover and Mutation operators

The selection of two parents for the reproduction is carried out by using the Tournament Selection policy. This tech-
nique consists of randomly choosing t chromosomes from the current population and then the one with the best
fitness function value is chosen as first parent. The process is iterated to select the second parent. In our implemen-
tation, t is equal to 3.

Two crossover operators, both taking as input two parent chromosomes and generating a new child chromosome,
were designed: the former focuses on feasibility and naturally guarantees the 2-edge-connectivity and spanning prop-
erties, while the latter tries to reduce the number of branch vertices and exploits the restorer operator to assure that
the child chromosome is a feasible solution. More in detail, the first crossover operator generates the child chromo-
some by copying one of two parents and then by adding to it some edges of the other parent. Let C1 and C2 be the two
parent chromosomes and let G (C1) = (VC1 , EC1) and G (C2) = (VC2 , EC2) be the two induced subgraphs. To produce
the child chromosome Cc , the crossover operator randomly select one of two parents, w.l.o.g. let us suppose C1, and
makes Cc a copy of this parent. Then, each edge in EC2 is added to E (Cc) , i.e., the related gene is set to 1 in Cc , with
probability 0.5. Figure 5 shows how this crossover works. As said, this first operator focuses on feasibility, indeed it
always produces feasible solutions whose values are worse than or equal to those of the reference parents: the im-
provement of such values is left to the next operators. On the other hand, the second crossover operator generates
the child chromosome CC by performing the following three steps: (i) initially, all the edges in EC1 ∩ EC2 are added to
ECC ; then (ii) the edges incident on branch vertices inG (CC) are removed; and finally the restorer operator is invoked
on G (CC) . Figure 6 depicts an example of this crossover. Considering the edges from both the parents which do not

Carrabs et al. 13

F IGURE 5 Illustration of the first crossover: the arrows represent the actual parent gene determining the value
of the resulting child gene CCi

. The special character ∗ means random choice between 0 and 1.

F IGURE 6 Illustration of the second crossover. (a) The first parent G (C1) . (b) The second parent G (C2) . (c) Thesubgraph induced by the set of common edges EC1 ∩ EC2 . (d) The subgraph remaining after removing the edges
incident on branch vertices. The child chromosome CC is obtained by invoking the restorer operator on the last
graph.

lead to branch vertices and then completing the solution is more expensive, but is more likely to produce promising
child chromosomes. In our implementation, the two designed crossover operators are performed alternatively, with
probabilities of 30% and 70%, respectively.

Generally, in genetic algorithms, after the generation of a new individual from two parents, a mutation operation
is invoked with a certain probability. The motivation is to introduce new genetic material in the population, allowing
to consider unexplored areas of the feasible region and thus reduce the probability to be trapped in local optima. In
our algorithm, the mutation operation, performed with probability Pm , randomly chooses ⌈Jm · 1C ⌉ bits equal to one
and ⌈Jm · 0C ⌉ bits equal to zero and inverts them, where Jm ∈ [0, 1] is the mutation impact parameter, while 1C and
0C denote the number of genes equal to one and equal to zero in C, respectively.

Since the mutation operator and the local search procedure, described in the next section and invoked after the
mutation, do not preserve the feasibility of the solution, Restore2EC operator is invoked at the end of the creation
process of a new individual.

7.4 | Local Search

After the application of the crossover and mutation operators, the new individual can contain much more branch
vertices than its parents. For this reason, we implemented a LocalSearch procedurewhich aims to reduce the number
of these branch vertices by performing a sequence of edge replacements.

The idea behind the replacements of the edges is the following. Let G (C) be the current solution and let u and
v be two branch vertices in G (C) ; LocalSearch removes an edge (u,w) ∈ δG (C) (u) and it inserts in G (C) a new

14 Carrabs et al.

F IGURE 7 (a) A graph G with four branch vertices u , b , a and v ; (b) a subgraph G ′ of G having three branch vertices: u , b
and a ; (c) a subgraph G ′′ of G with two branch vertices, a and b , obtained from G ′ by replacing the edge (v ,u) with the edge
(v , b) .

edge (w ,v) ∈ δG (w) \ δG (C) (w) , currently not in C, to try to preserve the 2-edge-connectivity. As a consequence
of this replacement, the degree of u in G (C) is decreased by one while the degree of v is increase by one. The
aim of LocalSearch is to remove branch vertices from G (C) by reducing their degree to 2 thanks to these replace-
ments. Since such replacements cannot assure that the 2-edge-connectivity constraint is satisfied then, as last step,
LocalSearch invokes the Restore2EC procedure on the new solution.

For instance, let us consider the graphG = (V , E) shown in 7(a) and the 2-edge connected subgraphG ′ = (V ′, E ′)
in 7(b) with three branch vertices a , b and u . By invoking LocalSearch procedure on G ′, it removes from the branch
vertex u the edge (u,v) ∈ E ′ and adds to the branch vertex b the edge (v , b) ∈ E \ E ′ (Figure 7(c)). In this way, b
remains a branch vertex while u is no longer a branch vertex. It is easy to see that, according to this strategy, the
LocalSearch procedure never introduces new branch vertices but it could reduce their number.

The pseudocode of the LocalSearch procedure is reported in Algorithm 3.
Given the graph G and the chromosome C, the procedure sets G (C) as the subgraph of G associated to C and

sets B to the empty set (line 1-2). All the branch vertices inG (C) are then added to B (line 3-4). The while loop, in line
5, iterates until the set B gets empty. In this loop a branch vertex b of B is randomly selected (line 6) and for each edge
(b,v) incident to b that is not in EC , the procedure looks for another edge (v ,u) in EC having u as branch vertex (line
10). If this last edge is found, LocalSearch adds (b,v) to EC , removes (v ,u) from EC and stops the for loop of line 9
(lines 11-12). In order to increase the possibility to preserve the 2-edge-connectivity while keeping the fitness value
unchanged, in line 13 the procedure adds to EC all the edges in E \EC which endpoints are both branch vertices. Finally,
LocalSearch invokes Restore2EC to assure that the solution returned satisfy the 2-edge-connectivity constraint.

7.5 | Shaking and Cleaning

A shaking operator has been implemented to escape from the local optimum and to encourage a wider exploration
of the solution space. After ISH iterations of the genetic algorithm without improvements of the incumbent solution,
⌊N · JSH ⌋ random individuals are replaced with new individuals generated from scratch. Here, JSH ∈ [0, 1] is the
shaking impact parameter, which determines the number of individuals of the population to be replaced.

When the genetic algorithm ends its execution, a cleaning policy is applied by carrying out the BranchReduction
procedure on all the individuals of the final population. As previously described, this allows to decrease the number

Carrabs et al. 15

Algorithm 3: LocalSearch
Input :G and C

1 G (C) = (VC , EC) //subgraph of G associated to C
2 B ← ∅

3 foreach vertex u ∈ VC do
4 if dG (C) (u) > 2 then B ← B ∪ {u }

5 while B is not empty do
6 b ← random branch vertex in B

7 for (b,v) ∈ δG (b) do
8 if (b,v) < EC then
9 for (v ,u) ∈ δG (C) (v) do
10 if dG (C) (u) > 2 then
11 EC ← EC \ { (v ,u) } ∪ { (b,v) }
12 break

13 add in EC all (u,v) edges with u and v branch.

14 return Restore2EC(G ,G (C))

of branch vertices by removing a large number of redundant edges.

7.6 | Termination criteria

GA iterates until one of the two following stopping criteria is reached.

• The first criterion is based on IMAX parameter, representing the maximum number of iterations that the algorithm
can carry out;

• The second criterion is based on the ISH parameter: if, after the application of the shaking operator, a new
sequence of ISH iterations not improving the best chromosome fitness value occur, the algorithm stops.

8 | COMPUTATIONAL TESTS

In this section we present the computational results of the tests we made in order to evaluate the effectiveness and
the performance of GA. The algorithm was coded in Python by using NetworkX [8] library on a Linux platform running
on an Intel Xeon E5 2.3 GHz processor with 128 GB of RAM.

In the following two subsections, we describe how we generated the instances for the 2ECMBV and how the
parameters of GA were chosen. The computational results are reported in subsection 8.3.

16 Carrabs et al.

8.1 | Test instances

To the best of our knowledge, the only instances available in the literature for the 2ECMBV problem are the ones
presented in [10]. However, since these instances were generated to test the B&C algorithm, presented in that work,
they are too small to be used to test the effectiveness and performance of a metaheuristic. For this reason, we
extended this dataset with new larger instances generated by using the same strategy proposed in [10]. The idea
behind the instance generation procedure is to obtain a non-Hamiltonian and 3-connected graph, ensuring that there
are not essential edges or vertices which must necessarily be branch.

More in detail, given a starting clique graphG ′ = (V ′, E ′) with |V ′ | = n ′ ≥ 4, let q be an integer such that n ′ ≥ 3q .
The procedure defines q disjoint subsetsW1, . . . ,Wq ofV ′ with |Wi | = 3, i = 1 . . . , q . Then it generates q disjoint sets,
T1, . . . ,Tq , of new vertices, not inV ′, with |Ti | ≥ 3, i = 1, . . . , q . Finally, the procedure build the graph G = (V , E) with
V = V ′ ∪ ⋃q

i=1
Ti and E = E ′ ∪ ⋃q

i=1
{ (u,v) : u ∈ Ti ,v ∈ Wi }. The graph G = (V , E) just built is 3-connected and

non-Hamiltonian (the proof is provided in [10]).
Note that |V | = n ′ − n̄ where n̄ =

∑q
i=1
|Ti | is the number of vertices that are added to the starting graph G ′. In

our computational tests, we grouped the instances in two sets: the Small instances where n ′ ∈ {20, 30, 40, 50}, which
are the same used in [10] and the Large instances where n ′ ∈ {60, 70, 80, 90, 100}. For each combination of n ′, n̄ , and
q , five different instances were generated that together represent a scenario. Thus, in total, this first set consists of
630 individual instances, grouped in 126 scenarios.

To further investigate the effectiveness of GA, we generated a set of random Hamiltonian instances. Since the
optimal solution of 2ECMBV is always zero in these instances, then we can compare the solutions found by GA
with the optimal ones. The generation of the instances is carried out as follows. Given n vertices and a proba-
bility d , we first create a Hamiltonian cycle randomly and then, for every couple of vertices i and j we introduce
the edge (i , j) in the graph with probability d . For the generation of the instances we used the following values:
n ∈ {100, 150, 200, 250, 300, 350, 400} and d ∈ {0.3, 0.5, 0.7}. For each combination of these two parameters, we
generated five different instances for a total of 105 Hamiltonian instances grouped in 21 scenarios.

8.2 | Parameters tuning

To find the best performing values for the parameters of the GA, we used the IRACE package [11], an automatic
configuration tool for parameter setting. IRACE was executed on a subset of 147 instances selected according to all
the possible combinations of the n and m parameters values. In particular, 126 instances were selected from the non-
Hamiltonian and 3-connected set, while the remaining 21 instances were selected from the Hamiltonian set. Table 1
reports, for each parameter, the set of tested values (Values) and the corresponding target value (Target) in the best
configuration found by IRACE.

8.3 | Computational results

In this section, we verify the effectiveness of GA algorithm by comparing it with the B&C proposed in [10]. The two
algorithms are executed on the same machine and for the B&C we set a time limit equal to 2 hours.

Table 2 reports the results of GA and B&C on the Small instances. The first five columns show the characteristics
of the instances: the number n ′ of vertices of the graph G ′, the cardinality n̄ ofT1 ∪ · · · ∪Tq , the value q , the number
n of vertices and the number m of edges of G .

The next four columns report the solution value (Obj) and the computational time (T ime), in seconds, of B&C and

Carrabs et al. 17

Parameter Values Target

N {30, 50, 70} 30

IMAX {30, 50, 70} 50

Pm {0.05, 0.1, 0.15} 0.1

Jm {0.02, 0.04} 0.02

ISH {3, 5, 7} 7

JSH {1, 1/3, 1/4} 1/3

TABLE 1 Tested sets of values and IRACE choices for GA parameters.

GA, respectively. Whenever B&C reaches the time limit of two hours, the related solution value is marked with a “*”
symbol to highlight that this value is an upper bound of the optimal solution value. Each row in the tables represents
a scenario composed of five instances with the same characteristics but different seed (used to initialize the random
number generator), and the results shown in each line are the average values of these five instances. The last column
shows the gap (Gap) between the solution found by GA and the best/optimal solutions. This gap is computed by using
the formula: Gap = Obj (GA) −Obj (B&C) . Finally, at the bottom of the table, theAvg row reports the average values
of Obj ,T ime and Gap while the #Best row shows how many times GA finds the best/optimal solution.

The results of Table 2 show that B&C provides the optimal solution on 39 out of 56 scenarios with an average
time equal to 1759 seconds. On 55 out of 56 scenarios, GA returns the same solutions of B&C and, in particular, it
always finds the optimal solution in the scenarios where this solution is known. In the remaining scenario (50-50-16)
the gap from the optimal/best solution is equal to 0.2. The results of the Avg row show that the difference between
the average Obj values of the two algorithms is equal to 0.01. Moreover, the average computational time of GA in the
Small instances is equal to 60.15 seconds, and it never exceeds the 3 minutes in this set of instances. However, it is
worth noting that there are several scenarios where GA is slower than B&C. This occurs because, despite the stopping
criteria used by GA, it has to always carry out a minimum number of iterations before stopping, even when it finds
the best solution at the first iteration.

Table 3 shows the computational results of the two algorithms on the Large instances. Table headings have the
same meaning that they have for Table 2. The results show that B&C provides the optimal solution only in 5 scenarios,
while, on the remaining ones, it reaches the time limit. GA finds the same solutions of B&C on 65 out of 70 scenarios
and, in the remaining five scenarios, its gap is always equal to 0.2. Moreover, the average gap is very low (0.014).
These results highlight the effectiveness of GA which very often finds the best/optimal solution and when this does
not occur, its gap from this solution is very low. Regarding the computational time, GA requires on average 319
seconds and never exceeds 1170 seconds. As expected, by increasing the size of the instances the computational
time of the two algorithms is not comparable anymore.

Since in the scenarios where B&C reaches the time limit GA never finds a better solution, even in the largest
instances, we suspect that the solutions provided by B&C could be the optimal ones or very close to the optimal ones
but the algorithm fails to certify this optimality within the time limit.

As described in Section 8.1, we generated a new random set of instances to further investigate the effectiveness
of our algorithm. To this end, we have chosen to generate Hamiltonian instances to know a priori the optimal solution
value that is zero. Table 4 reports the results of GA on this new set of instances.

The first three columns show the characteristics of the instance: the number n of vertices of the graph, the

18 Carrabs et al.

B&C GA

n′ n q n m Obj Time Obj Time Gap

20 10 2 30 220 3.40 0.04 3.40 10.50 0.0
3 30 220 3.00 0.06 3.00 9.56 0.0

16 3 36 238 4.40 0.07 4.40 12.11 0.0
5 36 238 5.00 2.60 5.00 9.68 0.0

20 4 40 250 6.00 0.12 6.00 12.67 0.0
6 40 250 7.00 12.55 7.00 10.19 0.0

30 4 50 280 7.20 0.21 7.20 17.85 0.0
6 50 280 8.60 2.33 8.60 14.26 0.0

40 4 60 310 6.60 0.23 6.60 24.38 0.0
6 60 310 8.40 1.47 8.40 19.99 0.0

50 4 70 340 7.80 0.40 7.80 33.32 0.0
6 70 340 10.40 5.92 10.40 26.91 0.0

60 4 80 370 7.40 0.33 7.40 42.35 0.0
6 80 370 10.40 2.61 10.40 33.41 0.0

30 15 3 45 480 4.40 0.17 4.40 22.35 0.0
5 45 480 5.00 2.13 5.00 18.04 0.0

24 4 54 507 6.60 0.34 6.60 24.94 0.0
8 54 507 8.00 25.43 8.00 19.29 0.0

30 6 60 525 8.40 7.15 8.40 24.06 0.0
10 60 525 10.00 1030.81 10.00 19.30 0.0

45 6 75 570 10.40 2.72 10.40 36.49 0.0
10 75 570 11.00 605.38 11.00 30.54 0.0

60 6 90 615 10.40 8.94 10.40 49.90 0.0
10 90 615 15.40 248.00 15.40 37.15 0.0

75 6 105 660 11.60 9.97 11.60 67.43 0.0
10 105 660 15.40 646.42 15.40 50.79 0.0

90 6 120 705 11.20 11.91 11.20 84.79 0.0
10 120 705 18.20 617.87 18.20 65.67 0.0

40 20 4 60 840 7.00 1.73 7.00 37.00 0.0
6 60 840 7.00 11.34 7.00 32.43 0.0

32 6 72 876 7.60 10.75 7.60 39.98 0.0
10 72 876 11.00* 7201.41 11.00 32.33 0.0

40 8 80 900 11.40 509.73 11.40 43.49 0.0
13 80 900 13.00* 7215.75 13.00 34.25 0.0

60 8 100 960 13.60 111.74 13.60 58.73 0.0
13 100 960 14.00* 7214.94 14.00 59.44 0.0

80 8 120 1020 13.40 173.60 13.40 80.98 0.0
13 120 1020 20.20* 4262.95 20.20 61.63 0.0

100 8 140 1080 13.80 211.74 13.80 109.36 0.0
13 140 1080 22.40* 6289.50 22.40 84.20 0.0

120 8 160 1140 14.20 149.54 14.20 148.16 0.0
13 160 1140 22.60* 3559.44 22.60 111.85 0.0

50 25 5 75 1300 6.00 2.84 6.00 58.27 0.0
8 75 1300 8.00 364.32 8.00 52.12 0.0

40 8 90 1345 9.00 713.76 9.00 61.05 0.0
13 90 1345 13.00* 6810.18 13.00 57.51 0.0

50 10 100 1375 11.00* 2492.98 11.00 72.03 0.0
16 100 1375 17.00* 7218.56 17.20 58.70 0.2

75 10 125 1450 11.00* 3271.07 11.00 101.91 0.0
16 125 1450 17.00* 7218.50 17.00 78.62 0.0

100 10 150 1525 11.00* 4580.52 11.00 132.02 0.0
16 150 1525 17.00* 7218.60 17.00 116.93 0.0

125 10 175 1600 11.00* 2496.49 11.00 191.37 0.0
16 175 1600 17.00* 7218.80 17.00 156.33 0.0

150 10 200 1675 11.00* 1557.97 11.00 258.74 0.0
16 200 1675 17.00* 7218.64 17.00 211.11 0.0

Avg 10.87 1759.89 10.88 60.15 0.004
#Best 55

TABLE 2 Comparison between the solutions of B&C and GA on the Small instances.

Carrabs et al. 19

B&C GA B&C GA

n′ n q n m Obj Time Obj Time Gap n′ n q n m Obj Time Obj Time Gap

60 30 6 90 1860 8.20 40.05 8.20 84.16 0.0 90 45 9 135 4140 10.00* 1595.33 10.00 199.60 0.0
10 90 1860 10.00 1169.83 10.00 68.67 0.0 15 135 4140 15.00* 5689.53 15.00 171.51 0.0

48 9 108 1914 13.60 727.07 13.60 87.42 0.0 72 14 162 4221 15.00* 6113.03 15.00 208.69 0.0
16 108 1914 16.00* 7218.46 16.00 67.82 0.0 24 162 4221 24.00* 7219.43 24.00 163.24 0.0

60 12 120 1950 16.60* 7217.62 16.60 101.83 0.0 90 18 180 4275 19.00* 7212.73 19.00 218.79 0.0
20 120 1950 20.00* 7219.04 20.00 69.26 0.0 30 180 4275 30.00* 7212.53 30.00 184.76 0.0

90 12 150 2040 19.40* 5893.34 19.40 122.03 0.0 135 18 225 4410 19.00* 7212.18 19.00 337.66 0.0
20 150 2040 21.00* 7218.70 21.20 117.73 0.2 30 225 4410 31.00* 7212.78 31.00 297.96 0.0

120 12 180 2130 21.20* 5057.12 21.20 177.71 0.0 180 18 270 4545 19.00* 7212.54 19.00 537.10 0.0
20 180 2130 30.80* 7211.34 30.80 129.99 0.0 30 270 4545 31.00* 7212.27 31.00 385.45 0.0

150 12 210 2220 21.20* 5643.38 21.20 236.21 0.0 225 18 315 4680 19.00* 7213.94 19.00 736.06 0.0
20 210 2220 34.20* 7201.44 34.20 173.92 0.0 30 315 4680 31.00* 7214.27 31.00 565.67 0.0

180 12 240 2310 22.60* 4318.54 22.60 320.99 0.0 270 18 360 4815 19.00* 7215.76 19.00 857.13 0.0
20 240 2310 35.00* 7199.04 35.00 228.70 0.0 30 360 4815 31.00* 7216.75 31.00 750.56 0.0

70 35 7 105 2520 8.00 106.44 8.00 113.83 0.0 100 50 10 150 5100 11.00* 5003.63 11.00 222.28 0.0
11 105 2520 12.00* 1834.72 12.00 106.95 0.0 16 150 5100 17.00* 7218.58 17.00 210.87 0.0

56 11 126 2583 12.00 823.36 12.00 130.54 0.0 80 16 180 5190 17.00* 7219.34 17.20 254.29 0.2
18 126 2583 19.00* 7219.10 19.00 114.08 0.0 26 180 5190 27.00* 7219.55 27.20 219.37 0.2

70 14 140 2625 15.00* 6739.40 15.00 137.69 0.0 100 20 200 5250 21.00* 7214.37 21.00 296.72 0.0
23 140 2625 23.00* 7213.12 23.00 129.46 0.0 33 200 5250 33.00* 7214.10 33.00 238.51 0.0

105 14 175 2730 15.00* 7208.77 15.00 191.50 0.0 150 20 250 5400 21.00* 7209.18 21.00 423.98 0.0
23 175 2730 24.00* 7209.88 24.00 174.34 0.0 33 250 5400 34.00* 7209.86 34.20 325.13 0.2

140 14 210 2835 15.00* 7215.04 15.00 271.18 0.0 200 20 300 5550 21.00* 7210.20 21.00 582.60 0.0
23 210 2835 24.00* 7215.46 24.00 244.17 0.0 33 300 5550 34.00* 7210.07 34.00 481.60 0.0

175 14 245 2940 15.00* 5266.06 15.00 418.21 0.0 250 20 350 5700 21.00* 7214.75 21.00 955.59 0.0
23 245 2940 24.00* 7212.86 24.00 292.64 0.0 33 350 5700 34.00* 7215.47 34.20 684.00 0.2

210 14 280 3045 15.00* 7214.44 15.00 532.53 0.0 300 20 400 5850 21.00* 7212.96 21.00 1169.45 0.0
23 280 3045 24.00* 7214.29 24.00 406.82 0.0 33 400 5850 34.00* 7213.10 34.00 1013.71 0.0

80 40 8 120 3280 9.00* 2052.80 9.00 140.54 0.0 Avg 21.00 6270.12 21.01 319.12 0.014
13 120 3280 13.00* 7217.67 13.00 144.72 0.0 #Best 65

64 12 144 3352 13.00* 5661.32 13.00 167.71 0.0
21 144 3352 21.00* 7217.17 21.00 148.49 0.0

80 16 160 3400 17.00* 7218.16 17.00 171.42 0.0
26 160 3400 27.00* 7218.77 27.00 149.07 0.0

120 16 200 3520 17.00* 7219.19 17.00 281.02 0.0
26 200 3520 27.00* 7219.76 27.00 205.11 0.0

160 16 240 3640 17.00* 7219.22 17.00 374.10 0.0
26 240 3640 27.00* 7219.73 27.00 329.79 0.0

200 16 280 3760 17.00* 7219.35 17.00 605.52 0.0
26 280 3760 27.00* 7220.03 27.00 420.54 0.0

240 16 320 3880 17.00* 7219.19 17.00 672.45 0.0
26 320 3880 27.00* 7219.82 27.00 585.43 0.0

TABLE 3 Comparison between the solutions of B&C and GA on the Large instances.

probability d used to generate the edges (see Section 8.1) and the number of edges m. This last column reports an
interval of values representing the minimum and the maximum number of edges contained inside the graphs of that
scenario. Indeed, each line in the tables represents a scenario composed of five instanceswith the same characteristics
but a different seed, and the results shown in each line are the average values of these five instances. The remaining

20 Carrabs et al.

GA

n d m Opt Obj Time

100 0.3 [1554 - 1615] 0.00 2.20 91.19
100 0.5 [2494 - 2550] 0.00 1.80 111.40
100 0.7 [3464 - 3566] 0.00 1.40 133.46
150 0.3 [3493 - 3587] 0.00 2.60 192.94
150 0.5 [5694 - 5747] 0.00 2.60 264.18
150 0.7 [7846 - 7935] 0.00 1.60 334.73
200 0.3 [6174 - 6307] 0.00 3.00 356.46
200 0.5 [10155 - 10262] 0.00 2.60 482.03
200 0.7 [13970 - 14134] 0.00 2.00 607.44
250 0.3 [9631 - 9779] 0.00 3.80 435.34
250 0.5 [15818 - 16026] 0.00 3.20 749.63
250 0.7 [21870 - 22083] 0.00 2.00 1106.88
300 0.3 [13753 - 14135] 0.00 3.20 763.16
300 0.5 [22649 - 22852] 0.00 3.00 1135.25
300 0.7 [31517 - 31622] 0.00 2.40 1552.63
350 0.3 [18838 - 19004] 0.00 3.20 1168.42
350 0.5 [30846 - 31038] 0.00 3.00 1749.42
350 0.7 [42757 - 42932] 0.00 2.60 2128.46
400 0.3 [24630 - 24776] 0.00 4.20 1457.40
400 0.5 [40340 - 40678] 0.00 3.80 2032.20
400 0.7 [56119 - 56498] 0.00 3.20 2646.19
Avg 2.73 928.51

TABLE 4 Computational results for the Hamiltonian instances.

three columns show the optimal solution value (Opt), the solution value (Obj) and the computational time (T ime), in
seconds, of GA, respectively. Notice that we do not report the column Gap in this table because, having an optimal
solution value always equal to zero, this column coincides with the column Obj. Finally, at the bottom of the table,
the Avg row reports the average values of Obj andT ime .

The results of Table 4 show that these new instances are harder to solve for GA. Indeed, the algorithm does not
find the optimal solution in these instances. However, the average gap value from the optimal solution is equal to
2.73 and only in one case this gap is over 4. From these results, we derive that GA remains effective even on this type
of instance but less effective if compared with the results obtained on the previous benchmark instances. It is worth
noting that as the density of the instances increases as the solution quality, provided by GA, improves. For instance,
in scenario 100-0.3 the gap is equal to 2.20 while in scenario 100-0.7 this gap decreases to 1.40. We suspect that this
occurs because, by increasing the number of edges inside the graph, we increase the chance to havemoreHamiltonian
cycles and then more optimal solutions. Even the computational time increases in these instances with an average
value equal to 928.51 seconds and a peak equal to 2646.19 seconds in the largest scenario 400-0.7. Overall, GA

Carrabs et al. 21

remains sufficiently fast despite the density of these graphs.

9 | CONCLUSION

In this paper, we developed a genetic algorithm to solve the 2ECMBV problem. This algorithm is based on a procedure
able to find and remove useless edges from the feasible solution and some ad-hoc operators that increase the effec-
tiveness of the procedure by performing a wider exploration of the solution space. We tested the performance of the
genetic algorithm on benchmark and new instances with respect to accuracy and running time. The computational
results show that our algorithm is very effective on the benchmark instances where only in one case it does not find
the best/optimal solution. In the Hamiltonian instances, it is less effective, but the gap from the best/optimal solution
remains low. Finally, GA results fast, with a computational time that is almost always lower than 1200 seconds.

Conflict of interest

The authors have no conflict of interests to declare.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References
[1] F. Carrabs, R. Cerulli, C. D’Ambrosio, and F. Laureana, The generalized minimum branch vertices problem: Properties and

polyhedral analysis, J. Optim. Theory Appl. 188 (2021), 356–377.
[2] F. Carrabs, R. Cerulli, M. Gaudioso, and M. Gentili, Lower and upper bounds for the spanning tree with minimum branch

vertices, Comput. Optim. Appl. 56(2) (2013), 405–438.
[3] R. Cerulli, M. Gentili, and A. Iossa, Bounded-degree spanning tree problems: models and new algorithms, Comput. Optim.

Appl. 42 (2009), 353.
[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to algorithms, 4th edition, The MIT Press, 2022.
[5] K.P. Eswaran and R.E. Tarjan, Augmentation problems, SIAM J. Comput. 5 (1976), 653–665.
[6] Z. Galil and G.F. Italiano, Reducing edge connectivity to vertex connectivity, SIGACT News 22 (Mar. 1991), 57–61.
[7] L. Gargano, P. Hell, L. Stacho, andU. Vaccaro, Spanning treeswith bounded number of branch vertices, Int. Colloq. Automata,

Languages, Program., Springer Berlin Heidelberg 2380 (2002), 355–365.
[8] A.A. Hagberg, P.J. Swart, and D.A. Schult, Exploring network structure, dynamics, and function using networkx, Proceedings

of the 7th Python in Science Conference, Pasadena, CA USA, 2008, pp. 11 – 15.
[9] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975.

[10] F. Laureana, Polyhedral analysis and branch and cut algorithms for some np-hard spanning subgraph problems, Ph.D. thesis,
University of Salerno, 2019.

[11] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stützle, The irace package: Iterated racing for
automatic algorithm configuration, Oper. Res. Perspectives 3 (2016), 43–58.

22 Carrabs et al.

[12] A. Marín, Exact and heuristic solutions for the minimum number of branch vertices spanning tree problem, Eur. J. Oper. Res.
245 (2015), 680–689.

[13] J. Moreno, Y. Frota, and S. Martins, An exact and heuristic approach for the d-minimum branch vertices problem, Comput.
Optim. Appl. 71 (2018), 829–855.

[14] K.A. Ravindra, L.M. Thomas, and B.O. James, Network Flows, theory, algorithms, and applications, Prentice-Hall, New
Jersey, 1993.

[15] R.T. S. Khuller, Approximation algorithms for graph augmentation, J. Algorithms 14 (1993), 214–225.
[16] J.M. Schmidt, A simple test on 2-vertex- and 2-edge-connectivity, Informat. Process. Lett. 113 (2013), 241 – 244.
[17] R.M.A. Silva, D.M. Silva, M.G.C. Resende, G.R. Mateus, J.F. Gonçalves, and P. Festa, An edge-swap heuristic for generating

spanning trees with minimum number of branch vertices, Optim. Lett. 8 (2014), 1225–1243.
[18] S. Silvestri, G. Laporte, and R. Cerulli, A branch-and-cut algorithm for the minimum branch vertices spanning tree problem,

Comput. Oper. Res. 81 (2017), 322–332.
[19] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972), 146–160.
[20] R.E. Tarjan, A note on finding the bridges of a graph, Informat. Process. Lett. 2 (1974), 160–161.

	Introduction
	Notations and Definitions
	Complexity Results
	2-Edge-Connectivity Operators
	2-Edge-Connectivity Checker Operator
	2-Edge-Connectivity Restorer Operator

	Reducing Branch Vertices
	Finding Feasible Solutions
	Genetic Algorithm
	Chromosome representation and fitness function
	Initial population
	Selection, Crossover and Mutation operators
	Local Search
	Shaking and Cleaning
	Termination criteria

	Computational Tests
	Test instances
	Parameters tuning
	Computational results

	Conclusion

