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Abstract

In this study we address the Set Orienteering Problem, which is a
generalization of the Orienteering Problem where customers are clus-
tered in groups. Each group is associated with a profit which is gained
in case at least one customer in the group is served. A single vehicle
is available to serve the customers. The aim is to find the vehicle
route that maximizes the profit collected without exceeding a maxi-
mum route cost, which can be interpreted also as route duration. The
problem was introduced in [2] together with a mathematical program-
ming formulation. In this paper, we propose a new formulation which
uses less variables. We also derive different classes of valid inequalities
to strengthen the formulation. In addition, separation algorithms are
developed, some of which are new with respect to those presented in
the literature. A branch-and-cut algorithm is implemented to solve the
problem and tests are made on benchmark instances. The results show
that the branch-and-cut algorithm is effective in solving instances with
up to 100 customers. Moreover, the difficulty of solving the problem
largely depends on the maximum route duration. We also show that
valid inequalities are effective in speeding up the solution process. Fi-
nally, a comparison with two exact benchmark approaches proposed
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in the literature shows that the branch-and-cut algorithm proposed in
this paper is the new state-of-the-art exact approach for solving the
Set Orienteering Problem.

Keywords: Routing; Orienteering Problem; Integer Linear Pro-
gramming; Branch-and-cut.

1 Introduction

The class of routing problems with profits have received a lot of attention
in recent years thanks to their many practical applications. We refer the
reader to the surveys by [3] and [16] for an exhaustive review of the literature
on these problems. The most widely known problem in the class is the
Orienteering Problem (OP) which was introduced in [24]. In the OP, there
is a single vehicle, leaving and returning to a depot, which serves a set of
geographically dispersed customers. Each customer is associated with a profit
which is collected in case the customer is served. The aim is to define the
vehicle route maximizing the collected profit in such a way that the route
cost does not exceed a maximum threshold.

The literature on OP is wide and the problem has recently found inter-
esting applications in the context of last-mile (or same-day) delivery services
(see [26] and [17]). In addition, generalizations of the problems also emerged
considering the cases in which customers are clustered and profits are as-
sociated with cluster of customers. A first contribution related to such a
case is by [1] where the Clustered Orienteering Problem (COP) is studied,
in which the profit of a cluster is collected in case all customers in the clus-
ter are visited. On the opposite, in [2] the Set Orienteering Problem (SOP)
was introduced, where the profit of a cluster is collected in case at least one
customer from the cluster is served.

In the current paper, we focus on the SOP. As mentioned in [2], the
SOP finds application in mass distribution products where customers are
clustered in groups and carriers stipulate the contract with each group. Once
the contract is signed, the carrier receives the corresponding compensation
in case the delivery is performed to one customer from the group, which is
chosen by the carrier. The entire quantity requested by the group is delivered
to that single customer, which will then distribute it among the others. This
allows the carrier to offer a better price for delivery. Another application
arises when private customers group together either to reach the minimum
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quantity order required by the carrier or to reach large quantity orders to
hopefully gain a lower price. Typically, in this case, the delivery is made to a
single location. Finally, SOP finds application in the recent domain of last-
mile fast delivery services. Specifically, when the service to a customer can
be made in different locations (for example, customer’s place, pickup station,
delivery locker), then the carrier can choose what is the most convenient
place to deliver the order. This problem has been recently studied in the
literature under the name ‘vehicle routing problem with delivery options’
(see [11, 12, 18, 23, 25, 27]). The SOP models the case where a single vehicle
is available to perform the deliveries and a prize is associated with each
customer and collected only in case the delivery is performed. In this case,
each customer represents a cluster and the nodes in each cluster represent
the locations where the delivery can be performed.

Heuristic algorithms for the SOP have been proposed in [20] and [5]. In
the first paper, the authors propose a Variable Neighborhood Search (VNS)
which is applied, in addition to the SOP, also to the Orienteering Problem
with Neighborhoods (OPN) and the Dubins Orienteering Problem (DOP).
The OPN is the problem in which the profit of a customer is collected within
a radius centered to the customer itself, while the DOP uses airplane-like
smooth trajectories to connect individual customers (see [4], [22], [21]). To
the best of our knowledge, the only contributions proposing a mathematical
formulation for the SOP are [2] and [20]. In both cases, the model includes
binary variables associated with a visit to each customer. The difference
among the two formulations is that, in [2], subtour elimination constraints
are formulated in a polynomial way using the Miller-Tucker-Zemlin (MTZ)
formulation (see [9]). Instead, in [20] subtour elimination constraints are
formulated as exponentially many connectivity constraints.

The contribution of the current work can be summarized as follows:

• We propose a new mathematical formulation for the SOP which does
not include binary visiting variables associated with customers. Also,
subtour elimination constraints are formulated through exponentially
many connectivity constraints linking arc-flow variables with binary
variables associated with clusters visit.

• We introduce different classes of valid inequalities to strengthen the
formulation. Some of them are inherited from existing works while
others are new and tailored to the new formulation.
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• We propose separation algorithms for subtour elimination constraints
and valid inequalities. Specifically, we propose a novel algorithm for a
class of valid inequalities called path inequalities.

• We perform extensive computational tests on benchmark instances.
The novel formulation, with the addition of valid inequalities, is solved
through a branch-and-cut algorithm. The results show that the ap-
proach is effective in handling instances with up to 100 customers and
that the problem difficulty largely depends on the maximum route du-
ration. The formulation, and the corresponding branch-and-cut al-
gorithm, performs favorably against exact approaches proposed in the
literature both in terms of computational time and number of instances
solved to optimality.

The paper is organized as follows. In Section 2 we formally describe the
problem, present a mathematical formulation proposed in the literature and
propose a new formulation. We also show that that new formulation has a
stronger relaxation than the benchmark formulation. Section 3 presents the
valid inequalities used to strengthen the formulation while in Section 4 we
describe the branch-and-cut algorithm. Computational results are presented
in Section 5. Finally, in Section 6 some conclusions are drawn.

2 Problem description and mathematical for-

mulations

The SOP can be described as follows. Let G = (V,A) be a complete directed
graph, where V = {0}

⋃
C. Vertex 0 is the depot where the route of the

vehicle starts and ends, while C is the set of customers, and it is partitioned
into l clusters, C1, ..., Cl. Let us denote by P = {0, 1, ..., l} the set of the
indices associated with clusters. Each cluster Cg has an associated profit pg,
which is collected when at least a customer i ∈ Cg is visited. The profit
of a cluster can be collected at most once. Cluster 0 corresponds to the
cluster containing the depot only and is associated with a profit p0 = 0.
Furthermore, let cij be a non-negative cost associated with arc (i, j) ∈ A. The
Set Orienteering Problem (SOP) consists in finding a route maximizing the
collected profit, assuring that the associated cost does not exceed a maximum
value Tmax. In what follows, we assume that the costs cij satisfy the triangle
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inequality. This implies that there exists an optimal solution containing at
most one vertex for each visited cluster.

In [2] and [20], the authors proposed a 0-1 Integer Linear Program (ILP)
for the SOP using the three following classes of binary variables:

• yi, ∀i ∈ V , equals to 1 if vertex i is visited, 0 otherwise;

• xij, ∀(i, j) ∈ A, equals to 1 if arc (i, j) is traversed, 0 otherwise;

• zg, ∀g ∈ P , equals to 1 if at least a vertex in cluster Cg is visited, 0
otherwise.

Given A′ ⊆ A and V ′ ⊆ V , we use the notations x(A′) =
∑

(i,j)∈A′ xij, and

y(V ′) =
∑

v∈V ′ yv. Furthermore, for Q ⊆ P , we use the notation z(Q) =∑
g∈Q zg. For S, S ′ ⊆ V , we denote by A(S : S ′) = {(u, v) ∈ A : u ∈ S, v ∈

S ′} the set of arcs having source in S and sink in S ′, and by A(S) = A(S : S)
the set of the arcs having both extremes in S. Given a subset S ⊆ V , we
denote by δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S} the set of its outgoing arcs,
and by δ−(S) = {(i, j) ∈ A : i /∈ S j ∈ S} the set of its incoming arcs. When
S = {v}, δ+({v}) and δ−({v}) are substituted by δ+(v) and δ−(v) for the
ease of reading.

In this formulation, connectivity is ensured by cutset constraints ex-
pressed by using vertices visiting variables y, thus we call the formulation
cutset formulation (cut). It reads as follows:

(cut) Maximize z =
∑
g∈P

pgzg (1)
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subject to

y0 = 1 (2)∑
(i,j)∈A

cijxij ≤ Tmax (3)

x(δ+(i)) = yi i ∈ V (4)

x(δ−(i)) = yi i ∈ V (5)

x(δ+(S)) ≥ yh S ⊂ V, 0 ∈ S, h /∈ S (6)

y(Cg) = zg g ∈ P (7)

xa ∈ {0, 1} a ∈ A (8)

yv ∈ {0, 1} v ∈ V (9)

zg ∈ {0, 1} g ∈ P (10)

The objective function (1) maximizes the collected profit. Constraint (2)
ensures that the depot belongs to the tour. Constraint (3) guarantees that
the total cost of the tour is lower than Tmax. Constraints (4) and (5) ensure
that exactly one arc enters and leaves every visited node. Constraints (6)
avoid subtours among visited nodes. Finally, constraints (7) ensure that
variable zg is equal to 0 when no customer in cluster Cg is visited. Constraints
(8)–(10) define the variables domain.

We note that in [2] subtour elimination constraints are formulated as
MTZ constraints (see [9]), while in [20] they are formulated as:

x(A(S)) ≤ y(S\{h}) S ⊂ V, 0 ∈ S, h ∈ S.
The first main contribution of this paper is the proposal of a new formu-

lation for the SOP that does not include vertex visiting variables y. Indeed,
as the profit is associated with clusters of customers, the value of a solu-
tion is measured through z variables. Also, connectivity constraints can be
modelled by using z variables. Note that both formulations proposed in [2]
and [20] use vertices visiting variables. A first clear advantage of our new
formulation is related to the fact that it uses fewer binary variables. Also,
we show in the following that the new formulation provides a stronger lower
bound associated with the linear relaxation, as the polyhedron of the new
formulation is contained in the one of the cut formulation.

Our formulation uses only two families of binary variables, namely, xij
and zg. Connectivity is ensured by cluster cutset constraints, thus we call it
cluster cutset formulation (clucut). It reads as follows:
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(clucut) Maximize z =
∑
g∈P

pgzg (11)

subject to

z0 = 1 (12)∑
(i,j)∈A

cijxij ≤ Tmax (13)

x(δ+(i)) = x(δ−(i)) i ∈ V (14)

x(δ+(S)) ≥ zg g ∈ P , S ⊂ V \ Cg, 0 ∈ S (15)

x(δ+(Cg)) = zg g ∈ P (16)

x(δ−(Cg)) = zg g ∈ P (17)

x(A(Cg)) = 0 g ∈ P (18)

xa ∈ {0, 1} a ∈ A (19)

zg ∈ {0, 1} g ∈ P (20)

The objective function (11) corresponds to maximizing the profit col-
lected, as in the cut formulation. Constraint (12) ensures that the cluster
containing the depot belongs to the tour. Constraint (13) is the same as
constraint (3) and ensure that the maximum duration Tmax is not exceeded.
Constraints (14) are flow balance constraints associated with each node.

Constraints (15) avoid subtours among visited clusters. Constraints (16)
and (17) ensure that variable zg is equal to 1 if and only if at least one
vertex in cluster Cg is visited. Constraints (18) ensure that intra-cluster arcs
are equal to zero. Note that (18) are not needed for the correctness of the
formulation and are used to strengthen it. Finally, (19) and (20) are variables
domain.

2.1 Properties of the cluster cutset formulation

We first show that formulation clucut is a valid formulation for the SOP by
showing that any feasible solution of clucut can be transformed in a feasible
solution of cut and vice versa.

Theorem 1. Any feasible solution of cut can be transformed in a feasible
solution of clucut and vice versa.
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Proof. Let us consider a feasible solution of cut. Note that, because of (7),
for each cluster g ∈ P we have that y(Cg) ≤ 1. Let P ′ ⊆ P be the subset
of clusters visited. A feasible solution for clucut is obtained by simply set-
ting the values of the variables x and z equal to the corresponding value in
the feasible solution of cut. Note that this solution is feasible for clucut.
In fact, constraints (12)–(14) correspond to (2)–(5). Also, by combing con-
straints (4) (or (5)) and (7), we obtain (16) (or (17)) and (18). Similarly, by
combining (7) and (6), we obtain (15). Thus, any feasible solution of cut
can be transformed in a feasible solution for clucut.

Let us now consider a feasible solution for clucut. Similarly as above, let
P ′ ⊆ P be the subset of clusters visited. Because of constraints (16), (17)
and (14), there is at most one vertex visited for each cluster g ∈ P ′. Let us
call this vertex ig. A solution of cut is obtained by setting the values of the
variables x and z equal to the corresponding value in the feasible solution of
clucut and by setting yig = 1, g ∈ P ′. This way, constraints (2)–(5) and
(7) are satisfied. Also, because of (15), connectivity is guaranteed so (6) are
satisfied as well.

We now show that formulation clucut provides a strongest relaxation
than the one associated with formulation cut as the polyhedron of clucut
is included in the one of cut.

Let us denote by Pcut and Pclucut the polytopes associated with the linear
relaxation of formulations cut and clucut, respectively, projected in the space
of x and z variables.

The following proposition holds.

Theorem 2. Pclucut ⊂ Pcut .

Proof. First, we show that, given (x, z) ∈ Pclucut , there exists a vector y such
that (x, y, z) ∈ Pcut . Let us choose y in such a way that yi = x(δ+(i)) =
x(δ−(i)), for any i ∈ V . Because of constraints (16), (17) and (7), (x, y, z)
satisfies constraints (4) and (5). Constraint (2) is implied by (12). Therefore,
to prove that (x, y, z) belongs to Pcut , it is sufficient to show that it satisfies
constraints (6). Indeed, by combining (15) with (16) or (17), we obtain (6).
This proves that Pclucut ⊆ Pcut .

As for the strict inclusion, the solution depicted in Figure 1 shows a
solution which is feasible for the linear relaxation of cut, but not of the one
of clucut. Vertex 0 corresponds to the depot and the 5 customers are grouped
in 4 clusters. The numbers close to each vertex and arc show the value of
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Figure 1: A solution in Pcut \ Pclucut

the y and x variables, respectively, in the solution of the linear relaxation of
cut. We can notice that all constraints of cut are satisfies while constraints
(15) are violated for S = {0, 5} and Cg = C2 = {1, 2}.

3 Valid Inequalities

In the following we describe the valid inequalities we used to strengthen
formulation clucut. They are inherited from the literature about routing
problems in general and are adapted to the SOP.

Given an instance of the SOP defined on graph G, let us consider the
following polytope:

P (G) = conv{(x, z) ∈ Rm+n : (x, z) satisfies (12)− (20)}.

3.1 Cover Inequalities

Cover inequalities enhance Tmax constraint (13). Specifically, given T ⊂ A,
such that

∑
(i,j)∈T cij > Tmax, we have that

x(T ) ≤ |T | − 1 (21)
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is valid for P (G). Inequality (21) can be further strengthened by considering
all the arcs of the graph having cost at least equal to max(i,j)∈T cij (see [14]).
In such a way we obtain the following inequality, which is valid for P (G):

x(T ∪ T̄ ) ≤ |T | − 1, (22)

where T̄ = {(h, k) ∈ A \ T : chk ≥ max(i,j)∈T cij}.

3.2 Conditional Cuts

Fischetti et al. in [14] introduced the so-called conditional cuts for the OP.
In the current paper, we adapted them to the SOP. Let zLB be a lower bound
on the optimal solution to the SOP. Given a subset of nodes, S ⊂ V ∪ {0},
such that 0 ∈ S, we denote by PS the subset of P such that PS = {g ∈ P :
S ∩Cg 6= ∅}. If it results that

∑
g∈PS

pg ≤ zLB, then the following inequality

x(A(S)) ≤ z(PS)− 1, (23)

is satisfied by the optimal solution to the SOP.

3.3 Cluster Cover Inequalities

Let zUB be an upper bound on the optimal solution to the SOP. Given a
subset Q ⊂ P , such that

∑
g∈Q pg > zUB, the following inequality

z(Q) ≤ |Q| − 1, (24)

is satisfied by the optimal solution to the SOP. These inequalities are adapted
from the vertex cover inequalities, which were first proposed for the OP in
[15].

3.4 Path Inequalities

Path inequalities were first introduced in [14] for the Orienteering Problem
and we adapt them to the SOP. The idea is the following. Given k clusters,
Ci1 , ..., Cik , let I = {(i1, i2), ..., (ik−1, ik)} be a simple path through nodes
V (I) = {i1, ..., ik} ⊂ C, such that i1 ∈ Ci1 , ..., ik ∈ Cik . We define the
following subset of nodes:

W (I) = {v ∈ V \ V (I) : I ∪ (ik, v) is part of a feasible SOP solution}.
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W (I) represent the set of all vertices to which path I can be feasibly extended.
Path inequalities are formulated as:

k−1∑
j=1

xijij+1
−

k−1∑
j=2

zij −
∑

v∈W (I)

xikv ≤ 0. (25)

Theorem 3. Inequalities (25) are valid for P (G).

Proof. Let us suppose that there exists a feasible solution to the SOP, (x∗, z∗),
violating (25). This implies that

x∗i1i2 + (x∗i2i3 − z
∗
i2

) + ...+ (x∗ik−1ik
− z∗ik−1

)−
∑

v∈W (I)

xikv > 0.

Let us note that, thanks to constraints (16), it results that x∗ijij+1
− z∗ij ≤ 0,

for j = 2, ..., k − 1. Therefore, for the left hand side to be greater than zero,
it must be x∗i1i2 = 1, x∗ijij+1

− z∗ij = 0, for any j = 2, ..., k − 1, and x∗ikv = 0,
for any v ∈ W (I). It follows that x∗ijij+1

= 1, for any j = 1, ..., k − 1, and
z∗i1 = z∗i2 = ... = z∗ik = 1, and this means that (x∗, z∗) contains every arc in I,
and at least an arc (ik, v), with v /∈ W (I), which cannot be according to the
definition of W (I).

4 Branch-and-cut algorithm

We devised a branch-and-cut algorithm for the SOP based on the clucut
formulation. A preprocessing procedure is carried out before executing the
algorithm by using the properties introduced in [5]. This procedure is aimed
at removing from G the vertices, arcs and clusters that are not necessary to
build an optimal solution. In particular, for the edge removal, we use the
procedure proposed in [7] and successfully applied also in [6, 8].

The initial LP model is obtained by removing constraints (15), and re-
laxing the integrality constraints on the variables of the original formulation.

For any subproblem L of the branch-and-bound tree, we compute the op-
timal Linear Programming (LP) solution (x∗LP (L)). If x∗LP (L) is not feasible,
we search for violated constraints (15), (22), (23), (24) and (25). When no
violation is identified, the algorithm performs the branching on a fractional
variable, by using the default CPLEX parameters.
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As for the sequence in which subtour elimination constraints (15) and
valid inequalities (22)–(25) are separated in each node of the branch-and-
bound tree, after some preliminary experiments, we determined that the
most efficient setting is the following. First, cover inequalities (22) and cluster
cover inequalities (24) are separated. Subtour elimination constraints (15)
are separated after (22) and (24). Moreover, except for the root node, they
are separated only in case no violated inequality (22) and (24) is identified.
Set S determined by the separation algorithm of (15) is checked also for
potential violation of conditional cuts (23). Lastly, path inequalities (25),
whose separation procedure is time consuming, are separated only in case
none of the former inequalities is violated.

In the following subsection, we describe the separation procedures used
for each family of valid inequalities. While most procedures are inherited
from benchmark algorithms proposed in the literature, we propose a new
procedure for separating path inequalities.

4.1 Separation Procedures

In the following we denote by G∗ = (V ∗, A∗) the graph associated with the
fractional solution (x∗, z∗). More in detail, V ∗ = {i ∈ V : ∃(i, j) ∈ δ+(i) :
x∗ij > 0} ∪ {i ∈ V : ∃(j, i) ∈ δ−(i) : x∗ji > 0} and A∗ = {(i, j) ∈ A : x∗ij > 0}.

Subtour elimination constraints (15) are separated through the classical
exact in polynomial time min-cut algorithm (see [19]).

Cover inequalities (22) are separated by using the following exact sepa-
ration procedure. We determine a set T ⊆ A such that

∑
(i,j)∈T cij > Tmax

and for which x∗(T )−|T |+ ε is maximum by solving the following Knapsack
Problem:

Minimize z̃ =
∑

(i,j)∈A

(1− x∗ij)z̃ij∑
(i,j)∈A

cij z̃ij ≥ Tmax + ε

z̃ij ∈ {0, 1}, (i, j) ∈ A

If the optimal solution is strictly less than 1, inequality (21) corresponding
to subset T = {(i, j) ∈ A : z̃∗ij = 1} is violated. Furthermore, to obtain the
stronger inequality (22), we simply look for any arc with cost greater than
max(i,j)∈T cij, and we add it to T . Note that a similar procedure was proposed
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in [14] for the OP. Also note that, for the results presented in Section 5.3,
the value of ε is set to 1 as distances are integer in the tested instances.

Conditional cuts (23) are separated heuristically by using a procedure
based on the separation algorithm for constraints (15). Indeed, given zLB,
the value of the best integer solution found so far, and S∗, a subset obtained
by computing the minimum cut on G̃, if it results that

∑
g∈PS∗

pg ≤ zLB,
then we check if x(A(S∗)) > z(PS∗)− 1, and if so we add the corresponding
violated inequality (23) to the formulation.

Cluster cover inequalities (24) are separated exactly by solving the fol-
lowing knapsack problem:

Minimize u =
∑
g∈P

(1− z∗g)ug∑
g∈P

pgug ≥ zUB + 1

ug ∈ {0, 1}, g ∈ P

where zUB is the value of the current upper bound. It is easy to see that if the
optimal solution is strictly less than 1, by choosing Q = {g ∈ P : u∗g = 1},
we obtain a violated inequality (24).

Path inequalities (25) are separated heuristically by using the following
procedure. Given the graph G∗ = (V ∗, A∗) we define a weight function,
w : A∗ → R, such that wij = z∗i − x∗ij, for any (i, j) ∈ A∗. For any u, v ∈
V \ {0} such that u and v belong to different clusters, we compute a path
I = {(i1, i2), ..., (ik−1, ik)} from u = i1 to v = ik in G∗, assuring that it
contains at most one vertex for each cluster and having minimum weight,
w(I) =

∑k−1
j=1 wijij+1

. It is easy to see that

w(I) =
k−1∑
j=1

z∗ij −
k−1∑
j=1

x∗ijij+1
.

To compute I for a given pair of vertices u, v we solve the following ILP
where sij is a binary variables taking value 1 if arc (i, j) is traversed and ti
is a binary variables equal to 1 if vertex i is visited:
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Minimize w =
∑

(i,j)∈A∗
wijsij (26)

∑
(i,j)∈δ+(i)

sij −
∑

(l,i)∈δ−(i)

sli =


1, i = u

0, i 6= u, v

−1, i = v

i ∈ V ∗ (27)

∑
i∈Cg∩V ∗

ti ≤ 1, g ∈ P (28)

ti ≥ sij, (i, j) ∈ A∗ (29)

tj ≥ sij, (i, j) ∈ A∗ (30)

ti ≤
∑

j∈FS(i)

sij +
∑

l∈BS(i)

sli, i ∈ V ∗ (31)

tu = 1 (32)

tv = 1 (33)

sij ∈ {0, 1}, (i, j) ∈ A∗ (34)

ti ∈ {0, 1}, i ∈ V ∗ (35)

Formulation (26)–(35) aims at finding the shortest path from u to v in
G∗. The objective function (26) minimizes the value of w(I). Constraints
(27) are flow conservation constraints while (28) establish that one vertex
per cluster at most is visited. Constraints (29) and (30) force t variables to
take value 1 in case an arc incident to the corresponding vertex is traversed.
Constraints (31) fix the value of variable ti to 0 in case vertex i is not visited.
(32) and (33) force the visit of vertices u and v, respectively, while (34)–(35)
define variables domain. Note that constraints (31)–(33) are not needed.
However, they strengthen the formulation and speed up the solution process.

If w(I)− z∗i1 ≥ 0, then I does not lead to a violated inequality (25). Oth-
erwise, we build W (I) as follows: for any v ∈ V \V (I), if c0i1 +

∑
(i,j)∈I cij +

cikv + cv0 is lower than Tmax, then we add v to W (I). Finally, we check if
−w(I) + z∗i1 −

∑
v∈W (I) x

∗
ikv

is strictly greater than 0, and in such a case we

have identified a violated inequality (25). The idea is that first a new vertex
v is added to the path and then the inequality is checked for violation.

Note that path inequalities were introduced in [14]. However, the sepa-
ration procedure used in the latter paper was different and it consisted in
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an enumeration scheme to detect path I. This scheme is not suitable for
the SOP as a further check is needed to assure that all nodes in I belong to
different clusters, making the procedure too slow to be applied in an effective
way. This has motivated the design of the new procedure described above.

5 Computational Tests

In this section, we present the results obtained by the branch-and-cut al-
gorithm described in Section 4. The branch-and-cut algorithm (called ‘BC’
from now on) was coded in C++ using the LEMON graph library [10]. All
tests were performed on an OSX platform (iMac 2020), running on an Intel
Core i9-10910 processor clocked at 3.6 GHz with 64 GB of RAM. The math-
ematical formulation was solved using the ILOG Concert Technology library
and CPLEX 20.1 in single thread mode. A time limit of one hour and a
memory limit of 5GB were imposed. All remaining CPLEX parameters were
left to their default value.

The computational tests were carried out on the instances proposed in [2]
and named Set1. This set of instances was obtained by adapting the instances
of the Generalized Traveling Salesman Problem proposed in [13]. The number
of vertices ranges from 52 to 1084 but we only consider the instances with
up to 198 nodes for our computational tests as for higher dimensions the
exact approach is not practicable. The number of clusters is equal to ∼ 20%
the number of vertices. Tmax is set to ω × GTSP ∗, where GTSP ∗ is the
best-known solution value of the GTSP (taken from [13]) and ω is set to 0.4,
0.6, and 0.8. Finally, two rules, g1 and g2, are used to assign the profit to the
clusters. The first rule sets the profit of each cluster Cg equal to |Cg|. The
second rule assigns to vertex j a profit equal to 1 + (7141j + 73)mod(100)
and the profit of a cluster is given by the sum of the values of the profit of
all vertices belonging to it.

Another set of instances for SOP, named Set2, was introduced in [2].
The instances in this set are the same as those in Set1. More specifically,
the instances contain the same vertices and the same number of clusters
as the instances in Set1, but the vertices are assigned in a random way to
the clusters. Both sets contain 27 instances each. The datasets and the
tables of the paper are available here https://github.com/fcarrabs/Set_

Orienteering_Problem

The section is organized as follows. We first analyze the effectiveness of
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C-BC NoCond NoCover NoCluCover NoPath
Time Time Gap% Time Gap% Time Gap% Time Gap%

ω = 0.4 and g1

AVG 622.50 610.86 0.80% 1229.98 -2.73% 615.23 0.00% 1361.12 -8.08%
#Worse 0 7 0 11

ω = 0.4 and g2

AVG 808.27 696.90 0.31% 1230.15 -2.89% 751.66 0.00% 1479.63 -8.06%
#Worse 0 7 0 13

ω = 0.6 and g1

AVG 934.94 1004.03 0.13% 1573.66 -1.83% 932.39 0.00% 1765.57 -2.43%
#Worse 1 5 0 6

ω = 0.6 and g2

AVG 1208.51 1104.96 -0.15% 1653.26 -0.28% 1188.54 0.00% 1580.25 -0.66%
#Worse 1 2 0 2

ω = 0.8 and g1

AVG 909.19 1222.59 -0.83% 2174.25 -4.99% 908.76 0.00% 2130.63 -4.90%
#Worse 2 10 0 10

ω = 0.8 and g2

AVG 1768.56 1744.82 0.09% 2290.29 -2.98% 1845.61 -0.08% 2362.75 -3.30%
#Worse 1 8 1 8

Table 1: Summary of the computational results for the five versions of the
branch-and-cut algorithm on all instances.

the valid inequalities presented in Section 3. Specifically, in Section 5.1, we
present the results of tests in which we run the branch-and-cut algorithm
with the full set of valid inequalities and we compare it with the version
of the algorithm in which we discard one inequality at a time. These tests
enable us to determine the best version of the algorithm which is used to
run the final tests. In Section 5.2 we provide the detailed results of the final
version of the algorithm and we provide some statistics on the performance
of the algorithm. Finally, in Section 5.3 we compare the performance of our
algorithm with two benchmark approaches available in the literature.

5.1 Valid Inequalities Effectiveness

As mentioned above, this section is dedicated to evaluate the effectiveness of
the valid inequalities presented in Section 3. Specifically, we run the branch-
and-cut algorithm with the full set of inequalities and we compare it with the
versions in which we discard a single inequality at a time. Tests are made
over all instances presented above.

The results of this comparison are summarized in Table 1 for the in-
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stances with ω = 0.4, 0.6, 0.8 and profits g1 and g2. The detailed results
are reported in Tables 12–15 of Appendix A. The first column of the table
reports the computational time, in seconds, of the branch-and-cut version
with the full set of inequalities (C-BC ). Four groups of two columns fol-
low, corresponding to the four versions of the branch-and-cut algorithm in
which one inequality is excluded: no conditional cuts (NoCond), no cover
inequalities (NoCover), no cluster cover inequalities (NoCluCover) and no
path inequalities (NoPath). Under the Time and Gap% headings, for each
branch-and-cut version, we report the corresponding computational time and
the percentage gap between the upper bound obtained by C-BC and the up-
per bound of the version considered, respectively. This gap is calculated as
gap = UBC−BC −UB∗

UBC−BC
, where UBC−BC and UB∗ are the upper bound by C-BC

and by the version considered, respectively. Note that positive values of the
gap mean that the version of the algorithm without the inequality gives a
better result than C-BC. Results are aggregated by values of ω and classes
of profit. The rows of the table are organized in groups of two lines report-
ing, for each version of the algorithm in which an inequality is excluded: the
average values of time and gap (AVG) and the number of times in which the
upper bound provided by the version without an inequality is worse than the
one provided by C-BC (#Worse).

We note that, when ω = 0.4, cover and path inequalities are indeed
effective as their exclusion cause both a remarkable increase in computing
time and a deterioration in the value of the upper bound.

In more detail, for both g1 and g2 profits, we observe that the upper
bound of NoCover worsens 7 times while the computational time increases
by∼52%, at least. For NoPath the upper bound worsens 11 and 13 times,
for g1 and g2 respectively, and the computational time increases by ∼96%, at
least. For ω = 0.6, the contribution of these two inequalities is less impactful
but still relevant. For ω = 0.8, the #Worse value of the version without path
inequalities is similar to the one observed for ω = 0.4 and profit g1 while it is
lower for profit g2. Instead, for the version without the cover inequalities, the
time, Gap%, and #Worse value are worse than the ones observed for ω = 0.4
and ω = 0.6. The effectiveness of conditional cuts is instead more debatable:
indeed, they are not effective when ω = 0.4, as their removal improve the
upper bound and reduces the computational time. However, when ω = 0.6,
the computational time increases when they are removed for the case g1 and
the upper bound slightly deteriorates for the case g2. Finally, when ω = 0.8,
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they are effective in g1 instances and not effective in g2 instances. Given
that the overall difference between the two versions of the algorithm (with or
without conditional cuts) is slightly to the advantage of the first version, we
decided to retain them in the final version of the branch-and-cut algorithm.
Finally, as for cluster cover inequalities, we notice that they are almost never
effective: in fact, the impact on the value of the upper bound is null while the
computational time reduces when they are discarded (apart the case ω = 0.8
and g2). For this reason, we decided to remove these inequalities from the
final version of the branch-and-cut algorithm.

5.2 Branch-and-cut performance

The results presented above show that the best version of the branch-and-cut
algorithm is the one that does not include cluster cover inequalities. This is
the version for which we present the results in the remaining of this section,
which is from now on called BC.
This section is organized as follows. We first present some statistics about
cuts and valid inequalities separation. Then, we analyse the performance of
the algorithm over all instances of the testbed and compare it with a version
of the algorithm where none of the inequalities presented in Section 3 is used.
The aim of this comparison is to show that indeed the inequalities pay-off
(apart the cluster cover inequalities as mentioned in the former section).

Specifically, Tables 2–5 present statistics about the separation of sub-
tour elimination constraints and the remaining inequalities for the instances
with ω = 0.4, 0.6, 0.8, respectively. The first column reports the name of
the instance which contains the reference to the number of customers in the
instance (last part of the instance’ name). In the second we have the number
of nodes of the branch-and-bound tree explored at termination (Nnodes).
Then we report statistics related to the separation of subtour elimination
constraints, conditional cuts, cover inequalities and path inequalities, re-
spectively. Specifically, for each family of inequality, we report the number
of inequalities separated (Num) and the total computational time for sepa-
ration (Time). The rows of the table are divided in two groups associated
with the datasets Set1 and Set2, respectively. Finally, the last row of the
table (AVG) reports the average values of Nnodes, Num and Time.

Focusing first on Table 2, we see that subtour elimination constraints are
by far the most widely violated constraints, followed by path inequalities.
The remaining inequalities are much less often violated. As for the time for
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ω = 0.4 and g1

Nnodes Subtour Conditional Cover Path
Instance Num Time Num Time Num Time Num Time

Set1

11berlin52 47 148 0.01 3 0.00 5 0.11 26 0.14
11eil51 44 163 0.01 0 0.00 4 0.07 18 0.03
14st70 60 217 0.03 0 0.00 3 0.11 29 0.10
16eil76 144 709 0.17 2 0.00 12 0.43 182 0.78
16pr76 126 705 0.20 0 0.00 6 1.04 51 0.26
20kroA100 327 2754 1.49 0 0.00 11 4.32 137 0.62
20kroB100 179 1125 0.50 2 0.00 17 1.68 94 0.90
20kroC100 86 534 0.16 1 0.00 5 0.62 36 0.23
20kroD100 127 670 0.18 1 0.00 15 0.61 125 0.82
20kroE100 131 743 0.21 1 0.00 3 0.77 24 0.14
20rat99 107 433 0.05 2 0.00 3 0.19 50 0.58
20rd100 186 1082 0.31 0 0.00 6 0.78 67 0.28
21eil101 150 1229 1.27 0 0.00 11 1.14 112 1.85
21lin105 243 1212 0.29 3 0.00 6 1.16 61 0.32
22pr107 3 9 0.00 0 0.00 0 0.01 0 0.00
25pr124 775 4938 3.13 2 0.00 41 9.91 310 6.27
26bier127 948 10409 25.12 1 0.00 13 21.28 184 3.50
26ch130 812 9358 19.93 1 0.00 48 14.64 223 9.59
28pr136 305 2423 2.31 0 0.00 19 2.81 291 4.34
29pr144 1669 16353 22.97 3 0.00 24 21.38 462 5.76
30ch150 1468 12015 19.23 17 0.00 66 16.30 528 13.48
30kroA150 1118 12733 27.13 2 0.00 57 23.60 358 13.11
30kroB150 692 7658 20.54 7 0.00 29 17.78 531 29.73
31pr152 1094 11838 14.13 4 0.00 12 14.46 305 4.00
32u159 969 10084 14.10 1 0.00 23 10.61 125 3.97
39rat195 685 8612 13.78 1 0.00 17 6.61 344 10.00
40d198 279 1914 1.23 17 0.00 24 1.66 230 6.65

Set2

11berlin52 53 283 0.05 4 0.00 4 0.19 37 0.35
11eil51 116 466 0.07 1 0.00 18 0.29 151 1.57
14st70 41 293 0.06 0 0.00 2 0.13 33 0.21
16eil76 103 672 0.26 0 0.00 4 0.36 120 1.05
16pr76 225 1765 0.80 3 0.00 3 2.38 44 0.64
20kroA100 243 2564 2.30 3 0.00 17 5.51 166 10.56
20kroB100 277 2645 2.08 1 0.00 15 2.86 47 4.32
20kroC100 260 2051 1.48 0 0.00 23 2.61 157 8.39
20kroD100 135 1042 0.59 0 0.00 8 1.43 80 3.87
20kroE100 87 790 0.47 1 0.00 6 0.76 39 3.39
20rat99 56 416 0.10 8 0.00 2 0.16 5 1.26
20rd100 234 1993 1.30 1 0.00 6 1.68 209 11.84
21eil101 231 2506 2.93 2 0.00 16 2.43 110 5.54
21lin105 496 3880 2.22 42 0.00 24 3.06 430 6.83
22pr107 281 2789 0.89 18 0.00 21 1.25 191 4.49
25pr124 556 6744 7.66 0 0.00 12 13.41 185 46.82
26bier127 837 16399 47.56 23 0.00 23 32.75 260 18.22
26ch130 955 10080 26.69 3 0.00 60 19.73 329 268.79
28pr136 186 2864 4.03 0 0.00 5 2.12 77 4.56
29pr144 402 9044 19.02 0 0.00 10 13.22 336 7.16
30ch150 544 8392 21.25 0 0.00 23 9.61 228 112.49
30kroA150 375 9272 28.64 4 0.00 11 15.80 173 11.96
30kroB150 646 12812 42.42 11 0.00 51 33.13 444 85.94
31pr152 457 9460 18.32 0 0.00 18 11.15 328 19.43
32u159 333 5439 12.63 0 0.00 19 4.82 154 9.81
39rat195 746 14727 38.77 0 0.00 29 8.98 154 59.56
40d198 478 7665 12.09 0 0.00 11 4.83 158 47.74

AVG 409.76 4761.50 8.95 3.63 0.00 17.06 6.83 176.81 16.19

Table 2: Branch-and-cut statistics on the instances with ω = 0.4 and profit
g1.
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separation, we notice that, while subtour elimination constraints are sepa-
rated very efficiently, the computational time for separating path inequalities
is, in comparison, much larger. This justifies our choice of separating path
inequalities only when no other inequality is violated. As for the other in-
equalities, we recall that conditional cuts are separated during the separation
of subtour elimination constraints, which explains the short computing time
of separation for this class. As for the cover inequalities, the separation time
is short so this justifies the choice of keeping these inequalities despite the
fact that they are violated quite rarely.

Similar considerations can be done for ω equal to 0.4 and profit g2 (Ta-
ble 3). However, an interesting observation here is that instances in g2 are
more difficult to solve as witnessed by the larger number of nodes of the
branch-and-bound tree. As a consequence, the number of inequalities sepa-
rated and the computational time required to separate them almost always
increases for all the types of inequalities.

The same trend is observed for values of ω equal to 0.6 and 0.8 (reported
in Tables 4 and 5, respectively) where again we notice that the instances with
profit g2 are more difficult to solve with respect to the ones with profit g1.

We now present the results of the comparison between BC and the branch-
and-cut algorithm that solves formulation clucut only, i.e., with none of
the valid inequalities proposed in Section 3. Formulation clucut is solved
through branch-and-cut by separating the subtour elimination constraints
(15). The separation algorithm is the same as the one used in BC.

The results of the comparison between clucut and BC are reported in
Tables 6–8 for values of ω equal to 0.4, 0.6 and 0.8, respectively.

Each table is organized as follows. The first column reports the name of
the instance. Then, two groups of six columns report the results for prof-
its g1 and g2, respectively. Each group is composed by two subgroups of
three columns, referring to the results by clucut, first, and BC, second.
Specifically, we report the value of the best solution found at termination,
the computational time (in seconds) and the optimality gap at termination
(which is 0% in case the instance is solved to proven optimality). The rows
of the table are divided in two groups associated with the datasets Set1 and
Set2, respectively. The last two rows of each table report the average com-
putational time and the average optimality gap, and the number of instances
solved to optimality, respectively.

The values on the AVG line in Table 6, related to instances with ω = 0.4,
show that BC is much faster than clucut. Indeed, the average computational
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ω = 0.4 and g2

Nnodes Subtour Conditional Cover Path
Instance Num Time Num Time Num Time Num Time

Set1

11berlin52 60 182 0.02 1 0.00 6 0.14 38 0.12
11eil51 159 332 0.03 0 0.00 21 0.24 152 0.50
14st70 74 295 0.03 2 0.00 2 0.15 8 0.03
16eil76 126 547 0.12 18 0.00 14 0.36 112 0.46
16pr76 139 599 0.16 13 0.00 9 0.79 89 0.26
20kroA100 402 2517 1.34 1 0.00 20 5.33 173 3.65
20kroB100 296 1623 0.76 0 0.00 35 2.91 200 3.45
20kroC100 194 796 0.24 3 0.00 14 1.11 162 1.53
20kroD100 288 992 0.26 0 0.00 29 1.48 522 3.03
20kroE100 168 944 0.28 1 0.00 11 1.15 103 0.98
20rat99 76 278 0.03 2 0.00 4 0.12 34 0.15
20rd100 217 1295 0.38 1 0.00 2 1.07 53 1.21
21eil101 229 1816 1.83 2 0.00 6 1.60 72 0.98
21lin105 229 944 0.23 13 0.00 11 1.01 128 1.14
22pr107 7 29 0.00 0 0.00 1 0.02 17 0.03
25pr124 1135 5835 3.89 4 0.00 85 12.45 629 17.94
26bier127 2083 18913 48.53 1 0.00 57 37.82 504 32.86
26ch130 1560 13028 27.41 1 0.00 116 21.11 513 20.82
28pr136 865 7784 7.49 2 0.00 36 8.75 617 4.83
29pr144 3682 12905 17.26 8 0.00 490 42.63 1889 98.98
30ch150 1376 10970 17.88 1 0.00 40 14.12 548 33.02
30kroA150 1473 12756 25.96 1 0.00 111 32.42 898 32.75
30kroB150 2359 17929 47.76 3 0.00 258 54.98 1335 60.74
31pr152 1099 11895 14.29 2 0.00 14 14.50 270 4.20
32u159 884 9275 12.98 1 0.00 15 11.23 139 4.00
39rat195 749 7499 12.40 4 0.00 81 8.67 920 30.59
40d198 422 2967 1.84 2 0.00 10 2.45 142 2.17

Set2

11berlin52 36 211 0.03 3 0.00 4 0.14 35 0.47
11eil51 71 308 0.05 2 0.00 5 0.14 24 0.23
14st70 78 401 0.07 3 0.00 5 0.18 35 0.20
16eil76 273 1224 0.47 1 0.00 20 0.95 274 7.02
16pr76 214 1353 0.55 0 0.00 12 2.19 131 6.31
20kroA100 342 2832 2.53 1 0.00 35 6.59 237 20.89
20kroB100 396 2920 2.40 3 0.00 37 6.64 183 40.50
20kroC100 808 3278 2.48 3 0.00 91 7.85 646 43.54
20kroD100 342 2421 1.50 1 0.00 31 3.33 155 11.59
20kroE100 154 1397 0.93 1 0.00 11 2.13 109 19.38
20rat99 395 975 0.23 16 0.00 38 1.00 405 39.81
20rd100 265 2561 1.62 0 0.00 9 1.86 128 5.44
21eil101 356 3269 3.93 2 0.00 32 3.90 165 9.23
21lin105 392 3677 2.01 4 0.00 9 2.48 177 2.47
22pr107 253 2304 0.74 30 0.00 12 1.07 187 2.79
25pr124 524 8959 9.81 4 0.00 13 15.41 131 11.97
26bier127 530 9626 25.04 5 0.00 40 14.89 419 40.26
26ch130 493 9396 24.93 1 0.00 23 14.11 282 79.01
28pr136 491 4656 6.58 0 0.00 57 4.48 243 31.63
29pr144 339 7470 15.52 0 0.00 9 9.13 319 7.80
30ch150 657 10182 25.18 0 0.00 39 10.80 270 95.81
30kroA150 436 10989 33.92 2 0.00 10 22.80 210 5.74
30kroB150 395 6989 22.99 2 0.00 64 22.72 464 271.12
31pr152 434 9557 18.94 1 0.00 9 10.56 251 8.01
32u159 392 6500 14.98 1 0.00 11 6.06 143 7.72
39rat195 655 9809 25.55 1 0.00 57 7.09 477 71.29
40d198 744 6984 11.29 0 0.00 113 7.95 486 195.61

AVG 570.67 5096.17 9.22 3.22 0.00 42.48 8.61 312.09 25.86

Table 3: Branch-and-cut statistics on the instances with ω = 0.4 and profit
g2.
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ω = 0.6 and g1

Nnodes Subtour Conditional Cover Path
Instance Num Time Num Time Num Time Num Time

Set1

11berlin52 214 813 0.12 0 0.00 14 0.72 100 0.80
11eil51 105 509 0.09 0 0.00 12 0.33 65 0.50
14st70 226 1316 0.44 2 0.00 11 0.76 109 2.90
16eil76 167 1466 0.64 3 0.00 6 0.79 54 0.47
16pr76 321 2092 1.24 3 0.00 16 2.50 158 2.23
20kroA100 490 5432 5.55 2 0.00 7 8.74 80 1.81
20kroB100 428 4196 4.48 0 0.00 11 5.95 144 1.03
20kroC100 425 4048 4.02 1 0.00 24 5.86 261 2.23
20kroD100 451 4369 3.64 1 0.00 9 5.67 105 3.26
20kroE100 477 3959 2.43 0 0.00 4 4.29 46 0.49
20rat99 313 2436 1.09 1 0.00 3 1.30 36 0.86
20rd100 781 6982 7.07 0 0.00 23 6.55 176 5.94
21eil101 450 4324 5.39 4 0.00 19 3.38 126 3.21
21lin105 752 5506 3.84 7 0.00 9 6.23 90 1.18
22pr107 700 7290 4.88 0 0.00 8 5.65 246 1.83

Set2

11berlin52 7 39 0.01 1 0.00 0 0.03 0 0.00
11eil51 82 544 0.13 0 0.00 4 0.36 34 2.42
14st70 336 2471 1.16 6 0.00 8 1.32 64 1.15
16eil76 250 2542 1.67 3 0.00 6 1.58 5 4.12
16pr76 316 2895 1.97 4 0.00 9 3.74 87 1.61
20kroA100 356 5927 7.75 2 0.00 21 10.43 276 9.97
20kroB100 336 5446 6.36 0 0.00 5 8.54 133 1.36
20kroC100 328 4693 6.68 6 0.00 13 11.55 155 8.48
20kroD100 420 5592 7.27 2 0.00 12 9.83 297 6.38
20kroE100 314 3121 2.81 2 0.00 13 4.98 80 16.65
20rat99 419 2929 2.01 2 0.00 3 1.99 21 53.31
20rd100 313 4697 7.17 5 0.00 6 6.07 78 1.23
21eil101 262 3696 5.72 0 0.00 3 2.71 60 2.99
21lin105 515 7737 7.59 1 0.00 3 10.55 45 1.10
22pr107 96 596 0.43 0 0.00 20 0.59 312 6.99

AVG 355.00 3588.77 3.45 1.93 0.00 10.07 4.43 114.77 4.88

ω = 0.6 and g2

Nnodes Subtour Conditional Cover Path
Instance Num Time Num Time Num Time Num Time

Set1

11berlin52 258 1063 0.17 5 0.00 10 1.00 67 0.37
11eil51 73 414 0.08 0 0.00 4 0.21 53 0.41
14st70 254 1075 0.34 1 0.00 25 0.82 292 6.31
16eil76 224 1597 0.71 1 0.00 3 0.78 21 0.34
16pr76 764 4298 2.59 5 0.00 54 5.80 210 6.45
20kroA100 576 5376 5.60 0 0.00 37 9.47 273 7.17
20kroB100 575 5233 5.57 1 0.00 16 8.84 130 1.67
20kroC100 886 7800 7.97 5 0.00 37 12.03 200 7.86
20kroD100 597 4214 3.43 1 0.00 39 6.09 396 9.01
20kroE100 457 3425 2.21 0 0.00 7 3.43 147 1.53
20rat99 311 2443 1.09 2 0.00 5 1.41 70 0.72
20rd100 764 4193 4.34 0 0.00 71 6.76 609 20.49
21eil101 966 6079 7.53 0 0.00 84 7.31 304 22.71
21lin105 837 5216 3.69 0 0.00 14 7.10 160 3.75
22pr107 734 7588 5.06 8 0.00 17 6.19 464 4.05

Set2

11berlin52 7 39 0.01 1 0.00 0 0.03 0 0.00
11eil51 21 104 0.02 0 0.00 3 0.09 17 0.29
14st70 420 3085 1.58 1 0.00 3 1.59 30 0.69
16eil76 222 2109 1.34 4 0.00 8 1.25 47 1.24
16pr76 260 2112 1.48 0 0.00 4 2.30 69 1.13
20kroA100 335 5668 7.73 0 0.00 7 12.23 107 29.13
20kroB100 453 6857 9.04 4 0.00 13 13.94 254 5.15
20kroC100 348 5350 7.04 0 0.00 12 8.48 134 5.07
20kroD100 372 5380 6.29 2 0.00 22 8.76 131 7.37
20kroE100 408 5533 5.84 13 0.00 11 7.05 124 3.12
20rat99 493 3264 2.18 1 0.00 3 2.36 96 78.91
20rd100 310 5185 8.18 2 0.00 8 6.50 104 1.32
21eil101 453 7298 11.22 4 0.00 7 5.98 67 22.19
21lin105 631 9487 11.18 13 0.00 10 10.12 302 6.89
22pr107 460 5835 5.73 44 0.00 53 4.85 495 28.38

AVG 448.97 4244.00 4.31 3.93 0.00 19.57 5.43 179.10 9.46

Table 4: Branch-and-cut statistics on the instances with ω = 0.6 and profit
g1 and g2.
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ω = 0.8 and g1

Nnodes Subtour Conditional Cover Path
Instance Num Time Num Time Num Time Num Time

Set1

11berlin52 269 1286 0.22 22 0.00 10 1.03 81 0.45
11eil51 101 472 0.10 1 0.00 5 0.23 31 0.15
14st70 319 2313 0.97 2 0.00 4 1.29 40 0.37
16eil76 294 2533 1.35 2 0.00 12 1.31 90 1.12
16pr76 365 3602 2.33 2 0.00 12 3.83 116 5.05
20kroA100 570 4960 5.36 0 0.00 54 7.68 293 17.85
20kroB100 1125 12442 15.30 1 0.00 28 16.56 328 61.90
20kroC100 482 4720 5.17 5 0.00 45 6.17 462 21.03
20kroD100 473 5581 6.00 1 0.00 16 5.71 226 3.02
20kroE100 788 5783 6.20 6 0.00 53 9.63 406 23.34
20rat99 737 6604 5.94 3 0.00 27 4.97 155 11.53
20rd100 418 4687 5.74 1 0.00 13 5.91 133 1.45
21eil101 523 6211 8.46 3 0.00 7 4.37 48 2.18
21lin105 748 7544 10.64 10 0.00 27 10.56 193 6.55
22pr107 908 14048 16.36 9 0.00 30 13.24 612 13.21

Set2

11berlin52 0 4 0.00 0 0.00 0 0.01 0 0.00
11eil51 69 363 0.07 8 0.00 2 0.20 9 0.07
14st70 92 599 0.25 3 0.00 6 0.51 49 0.56
16eil76 83 821 0.46 16 0.00 4 0.59 41 1.02
16pr76 130 1214 0.67 20 0.00 9 1.56 95 1.46
20kroA100 80 972 1.16 4 0.00 9 1.62 85 2.50
20kroB100 420 6160 8.85 14 0.00 10 13.27 118 2.95
20kroC100 417 6221 9.89 1 0.00 6 13.63 102 2.37
20kroD100 669 10003 14.61 17 0.00 2 18.23 17 0.60
20kroE100 456 5856 7.20 1 0.00 19 10.64 258 8.40
20rat99 304 4146 3.49 1 0.00 2 3.14 16 1.45
20rd100 300 4728 6.79 19 0.00 9 5.05 162 3.30
21eil101 327 5445 8.45 6 0.00 3 4.32 33 10.76
21lin105 36 329 0.39 1 0.00 4 0.52 48 0.87
22pr107 45 408 0.52 3 0.00 9 0.60 95 2.91

AVG 384.93 4335.17 5.10 6.07 0.00 14.57 5.55 144.73 6.95

ω = 0.8 and g2

Nnodes Subtour Conditional Cover Path
Instance Num Time Num Time Num Time Num Time

Set1

11berlin52 384 1568 0.28 27 0.00 7 1.22 51 0.55
11eil51 228 1091 0.24 1 0.00 9 0.55 27 0.50
14st70 434 2729 1.23 14 0.00 5 1.41 41 0.32
16eil76 300 2120 1.17 0 0.00 10 1.18 86 1.51
16pr76 588 5379 3.92 8 0.00 14 6.25 89 2.00
20kroA100 920 7834 8.65 0 0.00 74 12.71 486 27.40
20kroB100 842 11643 13.59 1 0.00 25 14.68 181 2.77
20kroC100 811 6911 8.04 3 0.00 43 8.73 394 23.33
20kroD100 559 8551 9.20 1 0.00 12 8.89 103 2.97
20kroE100 720 5812 6.43 0 0.00 31 8.23 718 25.94
20rat99 1111 9701 8.69 6 0.00 31 7.22 287 10.00
20rd100 530 8827 10.87 1 0.00 8 12.51 113 8.27
21eil101 1048 9168 13.65 0 0.00 38 9.02 113 32.38
21lin105 814 11973 15.85 2 0.00 12 14.93 77 3.44
22pr107 750 10736 12.13 24 0.00 16 10.07 290 5.17

Set2

11berlin52 2 6 0.00 0 0.00 0 0.01 0 0.00
11eil51 34 235 0.05 1 0.00 1 0.14 6 0.03
14st70 220 2137 0.84 0 0.00 4 1.29 35 0.26
16eil76 350 3974 2.79 8 0.00 3 2.57 32 4.96
16pr76 510 5235 3.55 26 0.00 8 6.48 76 2.93
20kroA100 498 6557 8.70 7 0.00 44 13.67 222 19.35
20kroB100 561 6972 8.69 0 0.00 12 12.10 146 3.27
20kroC100 397 6195 7.81 2 0.00 11 11.45 151 3.79
20kroD100 734 10636 13.71 29 0.00 17 20.35 185 4.13
20kroE100 581 8520 10.23 0 0.00 7 16.56 110 1.61
20rat99 286 3537 3.92 4 0.00 10 3.00 117 29.47
20rd100 219 2566 3.48 4 0.00 11 3.38 111 2.73
21eil101 620 9369 15.33 10 0.00 7 8.14 87 53.05
21lin105 761 9707 14.16 21 0.00 27 17.60 281 10.86
22pr107 316 2880 3.74 1 0.00 26 3.77 383 8.51

AVG 537.60 6085.63 7.03 6.70 0.00 17.43 7.94 166.60 9.72

Table 5: Branch-and-cut statistics on the instances with ω = 0.8 and profit
g1 and g2.
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ω = 0.4

g1 g2

clucut BC clucut BC
Instance Sol Time Gap% Sol Time Gap% Sol Time Gap% Sol Time Gap%

Set1

11berlin52 37 0.56 0.00% 37 0.41 0.00% 1829 0.64 0.00% 1829 0.46 0.00%
11eil51 24 0.14 0.00% 24 0.21 0.00% 1279 0.26 0.00% 1279 1.03 0.00%
14st70 33 0.45 0.00% 33 0.48 0.00% 1672 0.56 0.00% 1672 0.48 0.00%
16eil76 40 3.38 0.00% 40 2.54 0.00% 2223 3.40 0.00% 2223 1.74 0.00%
16pr76 47 4.57 0.00% 47 5.19 0.00% 2449 13.97 0.00% 2449 3.75 0.00%
20kroA100 42 40.14 0.00% 42 27.14 0.00% 2151 69.19 0.00% 2151 30.50 0.00%
20kroB100 49 13.84 0.00% 49 8.32 0.00% 2431 24.68 0.00% 2431 15.81 0.00%
20kroC100 42 2.72 0.00% 42 2.07 0.00% 2174 2.62 0.00% 2174 4.64 0.00%
20kroD100 39 3.23 0.00% 39 2.94 0.00% 1740 8.50 0.00% 1740 7.84 0.00%
20kroE100 52 3.55 0.00% 52 3.68 0.00% 2415 2.49 0.00% 2415 5.18 0.00%
20rat99 37 0.82 0.00% 37 1.61 0.00% 1905 0.75 0.00% 1905 0.59 0.00%
20rd100 45 5.20 0.00% 45 5.62 0.00% 2228 13.91 0.00% 2228 11.38 0.00%
21eil101 67 43.13 0.00% 67 12.20 0.00% 3365 56.74 0.00% 3365 15.78 0.00%
21lin105 50 16.20 0.00% 50 31.96 0.00% 2489 12.82 0.00% 2489 12.89 0.00%
22pr107 41 0.03 0.00% 41 0.04 0.00% 2123 0.05 0.00% 2123 0.10 0.00%
25pr124 46 2130.68 0.00% 46 105.37 0.00% 2302 3516.36 0.00% 2302 175.17 0.00%
26bier127 109 3759.00 8.49% 110 924.20 0.00% 5069 3685.02 15.49% 5420 2739.41 0.00%
26ch130 70 3731.59 16.82% 70 499.02 0.00% 3423 3423.03 0.00% 3423 878.49 0.00%
28pr136 53 281.85 0.00% 53 32.23 0.00% 2699 438.36 0.00% 2699 312.89 0.00%
29pr144 6 3662.96 94.06% 60 1535.54 0.00% 3055 3767.94 39.15% 3055 1622.75 0.00%
30ch150 61 3726.14 4.31% 61 570.16 0.00% 3131 1665.39 0.00% 3131 514.97 0.00%
30kroA150 58 3742.55 28.62% 58 617.23 0.00% 3039 3732.85 12.73% 3039 742.87 0.00%
30kroB150 66 3719.59 10.49% 66 343.15 0.00% 3172 3727.47 23.22% 3172 1933.77 0.00%
31pr152 9 3651.60 91.43% 57 882.45 0.00% 2440 3649.65 54.71% 2915 1433.18 0.00%
32u159 76 1710.73 0.00% 76 1296.21 0.00% 4002 2432.60 0.00% 4002 547.70 0.00%
39rat195 71 1308.45 0.00% 71 287.79 0.00% 3656 975.52 0.00% 3656 251.21 0.00%
40d198 70 501.47 0.00% 70 85.84 0.00% 3595 532.26 0.00% 3595 131.35 0.00%

Set2

11berlin52 50 0.85 0.00% 50 0.92 0.00% 2584 0.65 0.00% 2584 0.86 0.00%
11eil51 37 0.32 0.00% 37 2.29 0.00% 1929 0.22 0.00% 1929 0.59 0.00%
14st70 56 1.77 0.00% 56 0.76 0.00% 2736 1.67 0.00% 2736 0.84 0.00%
16eil76 51 3.25 0.00% 51 2.70 0.00% 2518 5.58 0.00% 2518 10.63 0.00%
16pr76 70 115.29 0.00% 70 129.47 0.00% 3550 107.33 0.00% 3550 30.61 0.00%
20kroA100 80 1159.43 0.00% 80 40.97 0.00% 3894 681.68 0.00% 3894 54.43 0.00%
20kroB100 86 533.20 0.00% 86 50.21 0.00% 4357 542.72 0.00% 4357 394.08 0.00%
20kroC100 72 113.76 0.00% 72 27.22 0.00% 3586 175.16 0.00% 3586 95.66 0.00%
20kroD100 78 24.67 0.00% 78 9.97 0.00% 3799 93.56 0.00% 3799 31.96 0.00%
20kroE100 90 144.30 0.00% 90 7.54 0.00% 4614 21.82 0.00% 4614 27.59 0.00%
20rat99 73 0.32 0.00% 73 1.69 0.00% 3624 1.06 0.00% 3624 42.50 0.00%
20rd100 82 40.18 0.00% 82 27.52 0.00% 4181 39.30 0.00% 4181 28.32 0.00%
21eil101 83 46.59 0.00% 83 29.75 0.00% 4264 71.45 0.00% 4264 45.93 0.00%
21lin105 95 633.97 0.00% 95 329.39 0.00% 4814 748.22 0.00% 4814 339.21 0.00%
22pr107 94 9.54 0.00% 94 13.10 0.00% 4740 69.03 0.00% 4740 18.69 0.00%
25pr124 90 3624.48 25.62% 101 697.18 0.00% 4334 3622.27 28.41% 3859 3623.57 36.26%
26bier127 11 3653.82 91.27% 124 3654.25 1.59% 6236 3673.75 1.53% 6004 3636.61 5.20%
26ch130 6 3627.94 95.35% 111 2190.43 0.00% 250 3626.31 96.16% 5354 3635.65 16.25%
28pr136 120 2239.39 0.00% 120 36.30 0.00% 6106 1609.05 0.00% 6106 146.88 0.00%
29pr144 24 3636.55 83.22% 4 3629.55 97.20% 166 3629.58 97.71% 166 3626.60 97.71%
30ch150 111 3627.12 25.50% 114 525.90 0.00% 124 3635.22 98.35% 6025 995.18 0.00%
30kroA150 11 3624.33 92.62% 99 3631.89 33.56% 141 3628.84 98.13% 4478 3634.65 39.94%
30kroB150 9 3629.74 93.92% 117 3640.74 19.16% 171 3627.88 97.73% 6190 3625.89 17.73%
31pr152 89 3631.77 40.67% 9 3629.77 94.00% 431 3637.55 94.34% 431 3631.17 94.34%
32u159 143 3627.89 7.14% 143 428.88 0.00% 7507 3620.71 4.37% 7507 919.53 0.00%
39rat195 135 750.97 0.00% 135 472.05 0.00% 6813 1201.13 0.00% 6813 292.75 0.00%
40d198 149 3432.08 0.00% 149 2728.54 0.00% 6700 3630.10 26.78% 7480 303.29 0.00%

AVG 1370.33 14.99% 615.23 4.55% 1360.35 14.61% 751.66 5.69%
#Opt 38 49 39 47

Table 6: Comparison between clucut and BC on the Set1 and Set2 instances
with ω = 0.4.
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ω = 0.6

g1 g2

clucut BC clucut BC
Instance Sol Time Gap% Sol Time Gap% Sol Time Gap% Sol Time Gap%

Set1

11berlin52 43 3.41 0.00% 43 3.88 0.00% 2190 2.12 0.00% 2190 3.72 0.00%
11eil51 39 0.53 0.00% 39 1.81 0.00% 1911 0.60 0.00% 1911 1.21 0.00%
14st70 50 80.90 0.00% 50 19.87 0.00% 2589 33.47 0.00% 2589 18.62 0.00%
16eil76 59 59.75 0.00% 59 8.02 0.00% 3119 63.80 0.00% 3119 19.60 0.00%
16pr76 65 59.88 0.00% 65 124.85 0.00% 3275 1089.40 0.00% 3275 182.03 0.00%
20kroA100 65 1573.50 0.00% 65 106.66 0.00% 3192 1524.53 0.00% 3192 135.17 0.00%
20kroB100 59 3631.79 36.39% 66 97.08 0.00% 3203 1723.12 0.00% 3203 165.41 0.00%
20kroC100 62 424.37 0.00% 62 72.43 0.00% 3110 1321.52 0.00% 3110 246.28 0.00%
20kroD100 64 1901.65 0.00% 64 75.22 0.00% 3133 1740.32 0.00% 3133 81.68 0.00%
20kroE100 63 84.31 0.00% 63 166.56 0.00% 2950 237.76 0.00% 2950 82.57 0.00%
20rat99 52 102.58 0.00% 52 46.19 0.00% 2643 66.64 0.00% 2643 41.06 0.00%
20rd100 72 321.63 0.00% 72 368.21 0.00% 3591 265.07 0.00% 3591 133.94 0.00%
21eil101 82 762.19 0.00% 82 82.72 0.00% 4187 602.27 0.00% 4187 412.53 0.00%
21lin105 78 472.41 0.00% 78 132.16 0.00% 3955 1087.02 0.00% 3955 162.10 0.00%
22pr107 53 3622.72 36.14% 53 3625.48 31.17% 2697 3626.63 34.73% 2697 3626.40 30.44%

Set2

11berlin52 51 0.11 0.00% 51 0.14 0.00% 2608 0.11 0.00% 2608 0.14 0.00%
11eil51 50 0.57 0.00% 50 3.76 0.00% 2575 0.51 0.00% 2575 0.56 0.00%
14st70 64 1360.19 0.00% 64 300.55 0.00% 3218 2602.34 0.00% 3218 502.19 0.00%
16eil76 74 353.70 0.00% 74 175.62 0.00% 3728 89.88 0.00% 3728 100.66 0.00%
16pr76 74 3620.91 1.33% 74 1777.29 0.00% 3729 3334.55 0.00% 3729 481.00 0.00%
20kroA100 91 3625.62 8.08% 95 3623.23 4.04% 3763 3628.82 24.86% 4554 3621.34 9.07%
20kroB100 93 3630.43 6.06% 2 3621.31 97.98% 3578 3630.00 28.55% 4668 3623.16 6.79%
20kroC100 5 3626.30 94.95% 90 3618.66 9.09% 3915 3622.41 21.83% 4534 3619.27 9.46%
20kroD100 4 3624.16 95.96% 93 3618.94 6.06% 4394 3628.09 12.26% 4570 3618.92 8.75%
20kroE100 97 3620.09 2.02% 97 2215.67 0.00% 4910 3621.33 1.96% 4910 3617.95 1.96%
20rat99 87 140.58 0.00% 87 194.56 0.00% 4516 70.56 0.00% 4516 154.69 0.00%
20rd100 97 3626.93 2.02% 99 2135.44 0.00% 5008 2876.95 0.00% 4957 3619.27 1.02%
21eil101 95 3622.50 5.00% 97 962.97 0.00% 4933 3621.81 2.32% 4933 3622.82 2.32%
21lin105 102 3641.03 1.92% 104 781.43 0.00% 5075 3629.93 2.93% 5103 3627.18 2.39%
22pr107 106 225.08 0.00% 106 11.02 0.00% 5363 28.98 0.00% 5363 134.78 0.00%

AVG 1593.99 9.66% 932.39 4.94% 1592.35 4.31% 1188.54 2.41%
#Opt 19 25 22 21

Table 7: Comparison between clucut and BC on the Set1 and Set2 instances
with ω = 0.6.

time for BC is equal to 615 and 751 seconds for the instances with profits
g1 and g2, respectively. On the contrary, for clucut this time is equal to
1370 and 1360 seconds, respectively. Regarding the effectiveness, the average
Gap% values are equal to 4.55% and 5.69% for BC and equal to 14.99% and
14.61% for clucut. Moreover, from line #Opt we observe that BC is able to
solve 49 instances to optimality (out of 54) for g1 and 47 for g2, while clucut
solves 38 instances for g1 and 39 for g2. It is worth noting that BC optimally
solves all the instances of Set1 while it does not find the optimal solution 12
times on the Set2 dataset. This shows that, for our algorithm, the instances
of Set2 are more difficult to solve than the ones of Set1. We recall that the
only difference is that customers are randomly assigned to clusters in Set2,
while they are geographically clustered in Set1.

Similar considerations can be done for the results reported in Table 7
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ω = 0.8

g1 g2

clucut BC clucut BC
Instance Sol Time Gap% Sol Time Gap% Sol Time Gap% Sol Time Gap%

Set1

11berlin52 47 54.39 0.00% 47 6.36 0.00% 2384 11.80 0.00% 2384 12.23 0.00%
11eil51 43 4.06 0.00% 43 2.10 0.00% 2114 6.50 0.00% 2114 6.94 0.00%
14st70 65 773.70 0.00% 65 361.26 0.00% 3355 488.31 0.00% 3355 533.94 0.00%
16eil76 69 476.84 0.00% 69 153.38 0.00% 3573 1334.32 0.00% 3573 85.04 0.00%
16pr76 72 3618.59 1.37% 72 1653.24 0.00% 3611 3625.51 2.58% 3611 3619.83 2.25%
20kroA100 73 3630.08 26.26% 79 224.73 0.00% 2713 3631.67 45.83% 4115 3034.79 0.00%
20kroB100 77 3636.04 22.22% 86 2802.72 0.00% 4188 3627.16 16.37% 4117 3637.40 16.25%
20kroC100 76 3630.97 23.23% 83 417.48 0.00% 3999 3624.35 20.15% 3999 287.95 0.00%
20kroD100 77 3633.75 22.22% 85 430.87 0.00% 3854 3630.75 23.04% 4026 3625.22 19.61%
20kroE100 78 3627.27 18.75% 80 347.91 0.00% 4002 2849.01 0.00% 4002 388.90 0.00%
20rat99 69 3632.64 21.59% 79 1810.70 0.00% 3855 3625.82 13.06% 3992 2785.76 0.00%
20rd100 90 3627.83 9.09% 91 813.84 0.00% 3892 3634.55 22.28% 4640 3626.99 7.35%
21eil101 89 3630.17 11.00% 91 319.53 0.00% 4538 3635.25 10.14% 4717 1786.74 0.00%
21lin105 87 3639.87 16.35% 90 289.91 0.00% 4245 3648.18 18.80% 4561 3638.53 10.43%
22pr107 6 3637.27 94.34% 53 3645.25 50.00% 2156 3639.16 59.80% 2697 3636.09 49.71%

Set2

11berlin52 51 0.02 0.00% 51 0.03 0.00% 2608 0.06 0.00% 2608 0.07 0.00%
11eil51 50 1.13 0.00% 50 0.79 0.00% 2575 0.45 0.00% 2575 0.51 0.00%
14st70 69 7.23 0.00% 69 3.57 0.00% 3513 22.52 0.00% 3513 13.25 0.00%
16eil76 75 12.27 0.00% 75 4.03 0.00% 3800 3.31 0.00% 3800 167.70 0.00%
16pr76 75 1997.86 0.00% 75 8.15 0.00% 3800 2003.37 0.00% 3800 670.13 0.00%
20kroA100 99 331.47 0.00% 99 9.73 0.00% 4086 3627.77 18.41% 4241 3623.81 15.32%
20kroB100 69 3634.85 30.30% 99 1207.78 0.00% 83 3633.52 98.34% 4668 3624.05 6.79%
20kroC100 4 3631.41 95.96% 94 3623.28 5.05% 249 3641.88 95.03% 3043 3622.69 39.24%
20kroD100 5 3630.36 94.95% 95 3631.99 4.04% 3750 3624.62 25.12% 4776 3634.34 4.63%
20kroE100 97 3624.73 2.02% 98 3620.10 1.01% 325 3631.13 93.51% 325 3627.43 93.51%
20rat99 98 1335.88 0.00% 98 155.44 0.00% 5007 531.44 0.00% 5007 323.20 0.00%
20rd100 99 134.14 0.00% 99 135.97 0.00% 5008 24.29 0.00% 5008 45.00 0.00%
21eil101 99 3623.63 1.00% 100 1569.38 0.00% 4831 3628.04 4.34% 4933 3629.89 2.32%
21lin105 104 3.76 0.00% 104 4.51 0.00% 5228 1953.40 0.00% 5228 1541.45 0.00%
22pr107 106 11.65 0.00% 106 8.74 0.00% 5363 62.54 0.00% 5363 138.40 0.00%

AVG 2107.80 16.36% 908.76 2.00% 2246.69 18.89% 1845.61 8.91%
#Opt 14 26 14 18

Table 8: Comparison between clucut and BC on the Set1 and Set2 instances
with ω = 0.8.

which are related to ω = 0.6. Here we report the results for instances with
up to 107 customers as no meaningful result was obtained for larger sizes. BC
solves 25 instances to optimality (out of 30) for g1 and 21 for g2, while clucut
solves 19 and 22, respectively. Also, as before, BC performs much better in
terms of both computational time and optimality gap. More in detail, the
Gap% value for BC is equal to 4.94% and 2.41% for g1 and g2, respectively,
while it is around double for clucut. Regarding the computational time, BC
is nearly 41% faster than clucut for g1 and 25% faster for g2. It is interesting
to note that instances with ω = 0.6 are more difficult to solve than those
with ω = 0.4. Indeed, for both algorithms, the number of instances optimally
solved decreases while the computational times increase. This was expected:
the larger is the value of ω, the larger is the set of feasible solutions so the
more difficult is the problem to solve.

The results of Table 8, which are related to ω = 0.8, show that the
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performance of clucut largely deteriorates with respect to the case ω = 0.6.
In fact, the number of instances solved to optimality reduces to 14 for both g1
and g2 while the average optimality gap increases to 16.36% for g1 and 18.89%
for g2. There is also an increase of the computational time of clucut, which
now exceeds 2100 seconds. On the contrary, the results of BC are more stable.
Indeed it solves 26 instances to optimality for g1 and 18 for g2. Once again
BC largely outperforms clucut in both computational time and optimality
gap at termination. It is worth noting that, when going from ω = 0.6 to
ω = 0.8, the average time of BC with profit g1 does not significantly change
and the optimality gap reduces from 4.94% to 2.00%. On the contrary, for
profit g2, both the computational time and the optimality gap remarkably
increase. Therefore, when going from ω = 0.6 to ω = 0.8, there is a significant
difference in the behaviour of the algorithm with respect to the type of profit
considered.

Thus, by summarizing all results in Tables 6–8, except for cluster cover
inequalities, we can conclude that the valid inequalities described in Section
3 greatly improves the efficacy of the exact algorithm.

5.3 Comparison with Benchmark Approaches

In this section, we compare BC with two exact approaches proposed in the
literature, specifically, the one proposed in [2] (called ACC from now on) and
the one proposed in [20] (called PFS). It is worth noting that BC and ACC
were executed on the same machine and then their CPU times are directly
comparable. For PFS, we scale the CPU time according to the processor
performance.

In Tables 9 and 10 we compare the solutions found by BC with the ACC
algorithm proposed in [2] on the dataset Set1 and Set2, respectively. The
formulation used in ACC is a polynomial formulation where subtour elimi-
nation constraints are modelled as Miller-Tucker-Zemlin (MTZ) constraints.
The formulation uses three types of binary variables: arc variables, vertex
visiting variables and cluster visiting variables. The results are restricted
to the instances with 100 customers at most as ACC was not capable of
providing any solution within the time limit for larger instances. The first
three columns of the Tables report the name of the instance (Instance), the
ω value (ω) and the type of profit (pg). The next six columns are grouped
in two parts referring to the results by ACC, first, and BC, second. Specifi-
cally, we report the value of the best solution found at termination (Sol), the
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ACC BC
Instance ω pg Sol Time Gap% Sol Time Gap%

Set1

11berlin52 0.4 g1 37 15.52 0.00% 37 0.41 0.00%
11berlin52 0.4 g2 1829 18.14 0.00% 1829 0.46 0.00%
11berlin52 0.6 g1 43 646.07 0.00% 43 3.88 0.00%
11berlin52 0.6 g2 2190 540.54 0.00% 2190 3.72 0.00%
11berlin52 0.8 g1 47 1877.97 0.00% 47 6.36 0.00%
11berlin52 0.8 g2 2384 1207.51 0.00% 2384 12.23 0.00%
11eil51 0.4 g1 24 12.51 0.00% 24 0.21 0.00%
11eil51 0.4 g2 1279 15.90 0.00% 1279 1.03 0.00%
11eil51 0.6 g1 39 9.38 0.00% 39 1.81 0.00%
11eil51 0.6 g2 1911 75.43 0.00% 1911 1.21 0.00%
11eil51 0.8 g1 43 1987.21 0.00% 43 2.10 0.00%
11eil51 0.8 g2 2114 1673.87 0.00% 2114 6.94 0.00%
14st70 0.4 g1 33 3610.11 18.98% 33 0.48 0.00%
14st70 0.4 g2 1672 3610.11 14.62% 1672 0.48 0.00%
14st70 0.6 g1 50 3610.11 14.35% 50 19.87 0.00%
14st70 0.6 g2 2589 3610.11 14.18% 2589 18.62 0.00%
14st70 0.8 g1 64 3610.10 5.88% 65 361.26 0.00%
14st70 0.8 g2 3229 3610.10 7.43% 3355 533.94 0.00%
16eil76 0.4 g1 40 2161.31 0.00% 40 2.54 0.00%
16eil76 0.4 g2 2223 2142.87 0.00% 2223 1.74 0.00%
16eil76 0.6 g1 59 3610.10 9.41% 59 8.02 0.00%
16eil76 0.6 g2 3119 3610.10 8.63% 3119 19.60 0.00%
16eil76 0.8 g1 67 3610.10 8.22% 69 153.38 0.00%
16eil76 0.8 g2 3525 3610.11 6.60% 3573 85.04 0.00%
16pr76 0.4 g1 47 3610.10 20.18% 47 5.19 0.00%
16pr76 0.4 g2 2449 3609.80 18.89% 2449 3.75 0.00%
16pr76 0.6 g1 65 3609.79 7.48% 65 124.85 0.00%
16pr76 0.6 g2 3275 3608.23 7.36% 3275 182.03 0.00%
16pr76 0.8 g1 71 3609.71 4.05% 72 1653.24 0.00%
16pr76 0.8 g2 3601 3608.42 3.43% 3611 3619.83 2.25%
20kroA100 0.4 g1 42 3609.53 26.60% 42 27.14 0.00%
20kroA100 0.4 g2 2151 3609.85 28.60% 2151 30.50 0.00%
20kroA100 0.6 g1 65 3609.89 18.68% 65 106.66 0.00%
20kroA100 0.6 g2 3164 3609.87 23.60% 3192 135.17 0.00%
20kroA100 0.8 g1 76 3610.03 23.23% 79 224.73 0.00%
20kroA100 0.8 g2 3919 3609.77 21.75% 4115 3034.79 0.00%

AVG 2550.01 8.67% 288.70 0.06%
#Opt 14 35

Table 9: Comparison between ACC and BC on the Set1 instances.

computational time (Time), in seconds, and the optimality gap (Gap% ) at
termination (which is 0% in case the instance is solved to proven optimality).
The last two rows of each table report the average computational time and
the average optimality gap, and the number of instances solved to optimality,
respectively.

The results of Table 9 highlight that BC is much better than ACC from
the effectiveness and performance point of view. The AVG line shows that the
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average gap of BC is equal to 0.06% and 35 out of 36 instances are optimally
solved. In the only case in which BC fails to find the optimal solution, the
Gap% value is equal to 2.25%. Instead, the average gap of ACC goes up
to 8.67% and the algorithm optimally solves only 14 instances within the
time limit of one hour. It is worth noting that in 12 out of 22 instances not
optimally solved by ACC, the Gap% value is greater than 14% with a peak
equal to 28.60%. Regarding the performance, with an average computational
time equal to 288 seconds, BC is eight times faster than ACC. BC proves
to be better than ACC even on dataset Set2 but the gap is smaller here.
Indeed, BC optimally solves 33 out of 36 instances while ACC solves 22 of
them. The average gap is equal to 0.79% for BC and 3.49% for ACC and,
about the performance, the average time of BC is equal to 426 seconds while
it is 1644 seconds for ACC. Finally, in the worst case, the Gap% value is
equal to 15.32% for BC and 24.50% for ACC.

The last comparison is carried out between BC and PFS. The formu-
lation used in PFS involves only two types of binary variables, namely arc
variables and vertex visiting variables. Subtour elimination constraints are
dynamically separated. Moreover, a greedy construction procedure is used for
creating an initial feasible solution which is used as a warm start for CPLEX.
The results of the comparison are shown in Table 11 and are restricted to
the instances tested in [20], i.e., 11berlin52, 11eil51, 14st70, 16eil76, for val-
ues of ω equal to 0.4, 0.6 and 0.8. The headings of Table 11 are the same
as in Table 10, the only difference being that the Gap% column is removed
because all the instances are optimally solved by both algorithms. Indeed,
in [20] only instances solved to optimality are reported. In order to have
a fair comparative from the performance point of view, the CPU time re-
ported in [20] has been scaled according to the scaling factor reported here:
https://www.cpubenchmark.net/CPU_mega_page.html. From the results
of Table 11, we observe that BC is around 17% faster than PFS. A detailed
analysis reveals that in 14 out of 20 instances, BC is faster than PFS. Essen-
tially, PFS wins on the smallest instances where probably the branch-and-
cut pays on overhead associated with the separation of the valid inequalities.
This is certified by the results of the two algorithms on the last 11 instances
of the table, the largest ones, where BC is faster than PFS in 10 cases.
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ACC BC
Instance ω pg Sol Time Gap% Sol Time Gap%

Set2

11berlin52 0.4 g1 50 30.90 0.00% 50 0.92 0.00%
11berlin52 0.4 g2 2584 53.99 0.00% 2584 0.86 0.00%
11berlin52 0.6 g1 51 1.01 0.00% 51 0.14 0.00%
11berlin52 0.6 g2 2608 1.15 0.00% 2608 0.14 0.00%
11berlin52 0.8 g1 51 0.51 0.00% 51 0.03 0.00%
11berlin52 0.8 g2 2608 0.66 0.00% 2608 0.07 0.00%
11eil51 0.4 g1 37 3.98 0.00% 37 2.29 0.00%
11eil51 0.4 g2 1929 10.25 0.00% 1929 0.59 0.00%
11eil51 0.6 g1 50 17.71 0.00% 50 3.76 0.00%
11eil51 0.6 g2 2575 10.25 0.00% 2575 0.56 0.00%
11eil51 0.8 g1 50 4.72 0.00% 50 0.79 0.00%
11eil51 0.8 g2 2575 1.55 0.00% 2575 0.51 0.00%
14st70 0.4 g1 56 3609.95 12.50% 56 0.76 0.00%
14st70 0.4 g2 2736 3609.76 16.11% 2736 0.84 0.00%
14st70 0.6 g1 64 3609.40 7.25% 64 300.55 0.00%
14st70 0.6 g2 3218 3609.79 8.40% 3218 502.19 0.00%
14st70 0.8 g1 69 77.66 0.00% 69 3.57 0.00%
14st70 0.8 g2 3513 130.22 0.00% 3513 13.25 0.00%
16eil76 0.4 g1 51 1515.90 0.00% 51 2.70 0.00%
16eil76 0.4 g2 2518 3610.01 6.66% 2518 10.63 0.00%
16eil76 0.6 g1 74 1767.92 0.00% 74 175.62 0.00%
16eil76 0.6 g2 3728 1183.11 0.00% 3728 100.66 0.00%
16eil76 0.8 g1 75 249.92 0.00% 75 4.03 0.00%
16eil76 0.8 g2 3800 65.56 0.00% 3800 167.70 0.00%
16pr76 0.4 g1 70 3610.10 3.65% 70 129.47 0.00%
16pr76 0.4 g2 3402 3610.09 8.52% 3550 30.61 0.00%
16pr76 0.6 g1 74 3434.82 0.00% 74 1777.29 0.00%
16pr76 0.6 g2 3729 3610.10 1.66% 3729 481.00 0.00%
16pr76 0.8 g1 75 69.28 0.00% 75 8.15 0.00%
16pr76 0.8 g2 3800 21.90 0.00% 3800 670.13 0.00%
20kroA100 0.4 g1 75 3610.12 24.24% 80 40.97 0.00%
20kroA100 0.4 g2 3781 3610.11 24.50% 3894 54.43 0.00%
20kroA100 0.6 g1 95 3610.12 4.04% 95 3623.23 4.04%
20kroA100 0.6 g2 4741 3610.12 5.33% 4554 3621.34 9.07%
20kroA100 0.8 g1 98 3610.12 1.01% 99 9.73 0.00%
20kroA100 0.8 g2 4920 3610.12 1.76% 4241 3623.81 15.32%

AVG 1644.25 3.49% 426.76 0.79%
#Opt 22 33

Table 10: Comparison between ACC and BC on the Set2 instances.

6 Conclusions

This paper deals with the Set Orienteering Problem (SOP), which is a variant
of the Orienteering Problem recently introduced in the literature. Specifi-
cally, in the SOP, customers are grouped in clusters and the profit associated
with a cluster is collected in case at least one customer from the cluster is
visited. The SOP finds interesting applications in practice, especially related
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PFS BC
Instance ω pg Sol Time Sol Time

Set1

11berlin52 0.4 g1 37 0.78 37 0.41
11berlin52 0.4 g2 1829 0.85 1829 0.46
11berlin52 0.6 g1 43 3.05 43 3.88
11berlin52 0.6 g2 2190 0.96 2190 3.72
11berlin52 0.8 g1 47 3.33 47 6.36
11berlin52 0.8 g2 2384 5.52 2384 12.23
11eil51 0.4 g1 24 1.83 24 0.21
11eil51 0.4 g2 1279 2.02 1279 1.03
11eil51 0.6 g1 39 1.20 39 1.81
11eil51 0.6 g2 1911 2.17 1911 1.21
11eil51 0.8 g1 43 11.88 43 2.10
11eil51 0.8 g2 2114 29.01 2114 6.94
14st70 0.4 g1 33 11.98 33 0.48
14st70 0.4 g2 1672 20.50 1672 0.48
14st70 0.8 g1 65 690.35 65 361.26
14st70 0.8 g2 3355 164.63 3355 533.94
16eil76 0.4 g1 40 62.00 40 2.54
16eil76 0.4 g2 2223 27.01 2223 1.74
16eil76 0.6 g1 59 46.27 59 8.02
16eil76 0.6 g2 3119 78.24 3119 19.60

AVG 58.18 48.42

Table 11: Comparison between PFS and BC

to mass distribution products. In general, routing problems with profits are
facing a new wave of interest from the research community thanks to their
link with fast delivery services, where it often happens that not all customers
requiring a service can be satisfied, thus a selection is needed (which is the
main feature of routing problems with profits). Specifically, the SOP finds
applications in delivery services where multiple options are associated with
each customer regarding where a parcel can be delivered.

We focus on developing an exact algorithm for the SOP. Specifically, we
propose a new formulation for the problem that has fewer variables than
those proposed in the literature as it does not include vertex visiting vari-
ables. We show that the new formulation has a stronger relaxation than
the formulation with vertex visiting variables. Then, we propose different
classes of valid inequalities to strengthen the formulation. Exhaustive com-
putational tests show that the resulting branch-and-cut algorithm is effective.
The performance depends on the number of customers and on the value of
ω, which measures the maximum route length. Specifically, when ω is small
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(and the vehicle route is short), the branch-and-cut algorithm is able to solve
almost all instances with up to 200 vertices. For larger values of ω, the algo-
rithm fails to solve instances with more than 107 customers, while it solves
the majority of those with fewer customers. Also, a comparison with two
exact approaches proposed in the literature shows that our branch-and-cut
algorithm scales better in terms of number of customers and can thus be
considered as the new state-of-the art exact solution approach for the SOP.

As a future research direction, we plan to study the case in which multiple
vehicles are available and to adapt the branch-and-cut algorithm to this
case. Also, a column generation approach might be suitable in the multiple
vehicle case. Finally, it might be interesting to investigate whether similar
formulations as the one proposed in this paper (which get rid of the vertex
visiting variables) are effective in the solution of similar problems, as, for
example, the Cluster Orienteering Problem.
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Appendix A Detailed Results

In this section we show the detailed results of the comparison among the
branch-and-cut algorithm with the full set of inequalities and the versions in
which we discard a single inequality at a time. These results are presented in
Tables 12–15. The first column (Instance) shows the name of the instance.
Then, five groups of columns follow, corresponding to the five versions of
the branch-and-cut algorithm: the version with the full set of inequalities
(C-BC ), no conditional cuts (NoCond), no cover inequalities (NoCover), no
cluster cover inequalities (NoCluCover) and no path inequalities (NoPath).
For each version of the algorithm, we report the value of the upper bound
(UB) at termination (which corresponds to the value of the optimal solution
in case the computational time is lower than one hour) and the computational
time (Time). Also, for each version of the algorithm in which one inequality
is excluded, we report the percentage gap of the corresponding upper bound
with respect to the upper bound obtained by C-BC, calculated as gap =
UBC−BC −UB∗

UBC−BC
, where UBC−BC and UB∗ are the upper bound of C-BC and

of the version considered, respectively. Note that positive values of the gap
mean that the version of the algorithm without the inequality gives a better
result that C-BC. The second last row of each table reports the average values
of time and gap while the last row report, for each version of the algorithm
in which an inequality is excluded, the number of times in which the upper
bound provided by that version is worse than the one provided by C-BC.
These two rows are the same as the ones reported in Table 1.
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ω = 0.4 and g1

C-BC NoCond NoCover NoCluCover NoPath
Instance UB Time UB Time Gap% UB Time Gap% UB Time Gap% UB Time Gap%

Set1

11berlin52 37.0 0.39 37.0 0.52 0.00% 37.0 0.65 0.00% 37.0 0.41 0.00% 37.0 1.19 0.00%
11eil51 24.0 0.34 24.0 0.34 0.00% 24.0 0.29 0.00% 24.0 0.21 0.00% 24.0 0.40 0.00%
14st70 33.0 0.48 33.0 0.49 0.00% 33.0 0.58 0.00% 33.0 0.48 0.00% 33.0 0.70 0.00%
16eil76 40.0 2.54 40.0 2.59 0.00% 40.0 1.52 0.00% 40.0 2.54 0.00% 40.0 4.24 0.00%
16pr76 47.0 5.08 47.0 5.21 0.00% 47.0 8.04 0.00% 47.0 5.19 0.00% 47.0 7.46 0.00%

20kroA100 42.0 27.09 42.0 27.97 0.00% 42.0 33.37 0.00% 42.0 27.14 0.00% 42.0 38.52 0.00%
20kroB100 49.0 11.27 49.0 10.04 0.00% 49.0 15.13 0.00% 49.0 8.32 0.00% 49.0 22.92 0.00%
20kroC100 42.0 2.05 42.0 2.04 0.00% 42.0 3.11 0.00% 42.0 2.07 0.00% 42.0 4.62 0.00%
20kroD100 39.0 3.04 39.0 2.85 0.00% 39.0 4.26 0.00% 39.0 2.94 0.00% 39.0 7.11 0.00%
20kroE100 52.0 5.07 52.0 4.39 0.00% 52.0 3.93 0.00% 52.0 3.68 0.00% 52.0 5.67 0.00%

20rat99 37.0 1.60 37.0 0.78 0.00% 37.0 1.04 0.00% 37.0 1.61 0.00% 37.0 1.13 0.00%
20rd100 45.0 5.99 45.0 5.76 0.00% 45.0 7.86 0.00% 45.0 5.62 0.00% 45.0 8.87 0.00%
21eil101 67.0 23.12 67.0 30.11 0.00% 67.0 22.93 0.00% 67.0 12.20 0.00% 67.0 48.34 0.00%
21lin105 50.0 33.20 50.0 6.06 0.00% 50.0 38.34 0.00% 50.0 31.96 0.00% 50.0 15.34 0.00%
22pr107 41.0 0.04 41.0 0.04 0.00% 41.0 0.03 0.00% 41.0 0.04 0.00% 41.0 0.04 0.00%
25pr124 46.0 136.08 46.0 114.73 0.00% 46.0 2773.53 0.00% 46.0 105.37 0.00% 46.0 2443.04 0.00%

26bier127 110.0 1559.50 110.0 1019.16 0.00% 113.4 3730.33 -3.05% 110.0 924.20 0.00% 120.1 3663.76 -9.19%
26ch130 70.0 158.72 70.0 159.48 0.00% 70.0 496.45 0.00% 70.0 499.02 0.00% 70.0 2568.43 0.00%
28pr136 53.0 39.16 53.0 37.48 0.00% 53.0 324.79 0.00% 53.0 32.23 0.00% 53.0 324.88 0.00%
29pr144 60.0 616.99 60.0 875.78 0.00% 60.0 2448.41 0.00% 60.0 1535.54 0.00% 100.0 3724.15 -66.71%
30ch150 61.0 703.97 61.0 549.95 0.00% 63.0 3744.96 -3.28% 61.0 570.16 0.00% 71.5 3732.29 -17.16%

30kroA150 58.0 1061.34 58.0 1058.20 0.00% 58.0 1722.95 0.00% 58.0 617.23 0.00% 105.9 3803.33 -82.52%
30kroB150 66.0 362.01 66.0 371.70 0.00% 66.0 2126.92 0.00% 66.0 343.15 0.00% 132.0 3634.76 -100.00%

31pr152 57.0 877.35 57.0 2122.48 0.00% 105.0 3671.32 -84.21% 57.0 882.45 0.00% 105.0 3678.55 -84.21%
32u159 76.0 1373.83 76.0 1267.41 0.00% 76.0 1784.42 0.00% 76.0 1296.21 0.00% 76.0 2652.70 0.00%

39rat195 71.0 291.73 71.0 839.51 0.00% 71.0 2104.62 0.00% 71.0 287.79 0.00% 71.0 2021.79 0.00%
40d198 70.0 85.51 70.0 101.60 0.00% 70.0 346.87 0.00% 70.0 85.84 0.00% 70.0 902.71 0.00%

Set2

11berlin52 50.0 1.00 50.0 1.04 0.00% 50.0 0.59 0.00% 50.0 0.92 0.00% 50.0 1.07 0.00%
11eil51 37.0 0.61 37.0 0.66 0.00% 37.0 0.56 0.00% 37.0 2.29 0.00% 37.0 0.72 0.00%
14st70 56.0 0.78 56.0 0.77 0.00% 56.0 2.57 0.00% 56.0 0.76 0.00% 56.0 1.66 0.00%
16eil76 51.0 7.95 51.0 8.11 0.00% 51.0 3.49 0.00% 51.0 2.70 0.00% 51.0 4.32 0.00%
16pr76 70.0 135.46 70.0 146.88 0.00% 70.0 118.49 0.00% 70.0 129.47 0.00% 70.0 165.75 0.00%

20kroA100 80.0 41.44 80.0 23.44 0.00% 80.0 1852.62 0.00% 80.0 40.97 0.00% 80.0 1038.06 0.00%
20kroB100 86.0 50.14 86.0 71.47 0.00% 86.0 910.49 0.00% 86.0 50.21 0.00% 86.0 657.33 0.00%
20kroC100 72.0 27.36 72.0 26.97 0.00% 72.0 137.27 0.00% 72.0 27.22 0.00% 72.0 116.40 0.00%
20kroD100 78.0 10.11 78.0 10.13 0.00% 78.0 31.37 0.00% 78.0 9.97 0.00% 78.0 92.67 0.00%
20kroE100 90.0 7.44 90.0 3.92 0.00% 90.0 255.75 0.00% 90.0 7.54 0.00% 90.0 68.45 0.00%

20rat99 73.0 0.86 73.0 0.86 0.00% 73.0 6.50 0.00% 73.0 1.69 0.00% 73.0 0.67 0.00%
20rd100 82.0 27.93 82.0 24.82 0.00% 82.0 138.71 0.00% 82.0 27.52 0.00% 82.0 57.48 0.00%
21eil101 83.0 26.15 83.0 24.78 0.00% 83.0 33.38 0.00% 83.0 29.75 0.00% 83.0 49.03 0.00%
21lin105 95.0 344.37 95.0 361.56 0.00% 95.0 648.17 0.00% 95.0 329.39 0.00% 95.0 1106.10 0.00%
22pr107 94.0 13.22 94.0 13.92 0.00% 94.0 12.05 0.00% 94.0 13.10 0.00% 94.0 8.95 0.00%
25pr124 101.0 698.51 101.0 696.02 0.00% 101.0 3249.68 0.00% 101.0 697.18 0.00% 121.0 3619.24 -19.80%

26bier127 126.0 3653.99 126.0 3659.72 0.00% 126.0 3649.08 0.00% 126.0 3654.25 0.00% 126.0 3640.60 0.00%
26ch130 111.0 2392.90 111.0 2345.38 0.00% 129.0 3628.53 -16.22% 111.0 2190.43 0.00% 129.0 3629.11 -16.22%
28pr136 120.0 36.70 120.0 35.96 0.00% 120.0 2716.97 0.00% 120.0 36.30 0.00% 120.0 3097.60 0.00%
29pr144 143.0 3629.13 143.0 3629.15 0.00% 143.0 3636.00 0.00% 143.0 3629.55 0.00% 143.0 3629.63 0.00%
30ch150 114.0 575.59 114.0 578.36 0.00% 149.0 3631.51 -30.70% 114.0 525.90 0.00% 149.0 3625.85 -30.70%

30kroA150 149.0 3632.46 110.0 2324.17 26.17% 149.0 3622.59 0.00% 149.0 3631.89 0.00% 149.0 3633.49 0.00%
30kroB150 145.0 3640.89 120.0 3108.51 17.22% 148.0 3630.07 -2.10% 144.7 3640.74 0.16% 148.0 3629.60 -2.10%

31pr152 150.0 3629.36 150.0 3629.78 0.00% 150.0 3630.57 0.00% 150.0 3629.77 0.00% 150.0 3627.45 0.00%
32u159 143.0 426.69 143.0 428.30 0.00% 154.0 3629.74 -7.69% 143.0 428.88 0.00% 154.0 3621.58 -7.69%

39rat195 135.0 504.49 135.0 501.76 0.00% 135.0 324.21 0.00% 135.0 472.05 0.00% 135.0 539.33 0.00%
40d198 149.0 2711.98 149.0 2713.38 0.00% 149.0 1501.18 0.00% 149.0 2728.54 0.00% 149.0 521.36 0.00%

AVG 622.50 610.86 0.80% 1229.98 -2.73% 615.23 0.00% 1361.12 -8.08%
#Worse 0 7 0 11

Table 12: Computational results for the five versions of the branch-and-cut
algorithm on the instances with ω = 0.4 and profit g1.
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ω = 0.4 and g2

C-BC NoCond NoCover NoCluCover NoPath
Instance UB Time UB Time Gap% UB Time Gap% UB Time Gap% UB Time Gap%

Set1

11berlin52 1829.0 0.59 1829.0 0.71 0.00% 1829.0 0.78 0.00% 1829.0 0.46 0.00% 1829.0 1.24 0.00%
11eil51 1279.0 0.57 1279.0 0.64 0.00% 1279.0 0.52 0.00% 1279.0 1.03 0.00% 1279.0 0.77 0.00%
14st70 1672.0 0.68 1672.0 0.66 0.00% 1672.0 0.81 0.00% 1672.0 0.48 0.00% 1672.0 0.88 0.00%
16eil76 2223.0 5.77 2223.0 2.71 0.00% 2223.0 6.60 0.00% 2223.0 1.74 0.00% 2223.0 8.12 0.00%
16pr76 2449.0 7.01 2449.0 8.01 0.00% 2449.0 11.52 0.00% 2449.0 3.75 0.00% 2449.0 7.97 0.00%

20kroA100 2151.0 38.03 2151.0 53.20 0.00% 2151.0 42.72 0.00% 2151.0 30.50 0.00% 2151.0 111.96 0.00%
20kroB100 2431.0 20.11 2431.0 19.48 0.00% 2431.0 11.65 0.00% 2431.0 15.81 0.00% 2431.0 43.78 0.00%
20kroC100 2174.0 30.16 2174.0 29.84 0.00% 2174.0 11.85 0.00% 2174.0 4.64 0.00% 2174.0 4.54 0.00%
20kroD100 1740.0 15.20 1740.0 15.15 0.00% 1740.0 21.36 0.00% 1740.0 7.84 0.00% 1740.0 13.49 0.00%
20kroE100 2415.0 2.75 2415.0 2.76 0.00% 2415.0 10.36 0.00% 2415.0 5.18 0.00% 2415.0 6.87 0.00%

20rat99 1905.0 1.24 1905.0 1.50 0.00% 1905.0 0.83 0.00% 1905.0 0.59 0.00% 1905.0 0.86 0.00%
20rd100 2228.0 15.07 2228.0 10.21 0.00% 2228.0 7.85 0.00% 2228.0 11.38 0.00% 2228.0 11.71 0.00%
21eil101 3365.0 34.06 3365.0 33.38 0.00% 3365.0 39.45 0.00% 3365.0 15.78 0.00% 3365.0 42.81 0.00%
21lin105 2489.0 16.48 2489.0 26.24 0.00% 2489.0 14.38 0.00% 2489.0 12.89 0.00% 2489.0 21.65 0.00%
22pr107 2123.0 0.11 2123.0 0.11 0.00% 2123.0 0.06 0.00% 2123.0 0.10 0.00% 2123.0 0.09 0.00%
25pr124 2302.0 163.67 2302.0 167.95 0.00% 2302.0 2492.24 0.00% 2302.0 175.17 0.00% 4329.0 3628.61 -88.05%

26bier127 5420.0 2264.48 5420.0 1362.98 0.00% 5420.0 2988.36 0.00% 5420.0 2739.41 0.00% 5973.6 3746.84 -10.21%
26ch130 3423.0 1021.06 3423.0 495.95 0.00% 3423.0 2301.28 0.00% 3423.0 878.49 0.00% 3784.8 3729.98 -10.57%
28pr136 2699.0 106.06 2699.0 106.76 0.00% 2699.0 160.09 0.00% 2699.0 312.89 0.00% 2699.0 450.63 0.00%
29pr144 3055.0 2929.56 3055.0 2129.83 0.00% 3055.0 2643.36 0.00% 3055.0 1622.75 0.00% 5033.6 3753.32 -64.76%
30ch150 3131.0 817.59 3131.0 954.14 0.00% 3131.0 2304.69 0.00% 3131.0 514.97 0.00% 3131.0 3606.56 0.00%

30kroA150 3039.0 794.65 3039.0 840.56 0.00% 3039.0 1398.12 0.00% 3039.0 742.87 0.00% 4528.2 3741.84 -49.00%
30kroB150 3172.0 1848.50 3172.0 1672.67 0.00% 3705.3 3744.28 -16.81% 3172.0 1933.77 0.00% 5722.4 3772.42 -80.40%

31pr152 2915.0 1417.53 2915.0 1373.85 0.00% 5387.0 3649.19 -84.80% 2915.0 1433.18 0.00% 5387.0 3645.35 -84.80%
32u159 4002.0 517.02 4002.0 420.29 0.00% 4002.0 280.93 0.00% 4002.0 547.70 0.00% 4002.0 994.63 0.00%

39rat195 3656.0 454.65 3656.0 405.72 0.00% 3656.0 802.93 0.00% 3656.0 251.21 0.00% 3656.0 2780.70 0.00%
40d198 3595.0 129.76 3595.0 135.22 0.00% 3595.0 608.51 0.00% 3595.0 131.35 0.00% 3595.0 437.66 0.00%

Set2

11berlin52 2584.0 0.85 2584.0 0.95 0.00% 2584.0 0.63 0.00% 2584.0 0.86 0.00% 2584.0 0.77 0.00%
11eil51 1929.0 1.66 1929.0 1.60 0.00% 1929.0 2.39 0.00% 1929.0 0.59 0.00% 1929.0 0.65 0.00%
14st70 2736.0 1.50 2736.0 1.39 0.00% 2736.0 1.74 0.00% 2736.0 0.84 0.00% 2736.0 1.99 0.00%
16eil76 2518.0 32.22 2518.0 8.91 0.00% 2518.0 21.34 0.00% 2518.0 10.63 0.00% 2518.0 8.91 0.00%
16pr76 3550.0 32.22 3550.0 31.50 0.00% 3550.0 117.36 0.00% 3550.0 30.61 0.00% 3550.0 301.43 0.00%

20kroA100 3894.0 56.40 3894.0 63.12 0.00% 3894.0 641.03 0.00% 3894.0 54.43 0.00% 3894.0 1618.67 0.00%
20kroB100 4357.0 458.83 4357.0 393.65 0.00% 4357.0 620.17 0.00% 4357.0 394.08 0.00% 4357.0 1675.12 0.00%
20kroC100 3586.0 181.76 3586.0 104.91 0.00% 3586.0 366.21 0.00% 3586.0 95.66 0.00% 3586.0 222.14 0.00%
20kroD100 3799.0 56.77 3799.0 62.48 0.00% 3799.0 149.19 0.00% 3799.0 31.96 0.00% 3799.0 273.25 0.00%
20kroE100 4614.0 41.80 4614.0 10.00 0.00% 4614.0 38.30 0.00% 4614.0 27.59 0.00% 4614.0 43.07 0.00%

20rat99 3624.0 12.99 3624.0 17.58 0.00% 3624.0 21.41 0.00% 3624.0 42.50 0.00% 3624.0 2.94 0.00%
20rd100 4181.0 26.65 4181.0 32.46 0.00% 4181.0 79.52 0.00% 4181.0 28.32 0.00% 4181.0 42.35 0.00%
21eil101 4264.0 15.50 4264.0 46.97 0.00% 4264.0 56.60 0.00% 4264.0 45.93 0.00% 4264.0 74.82 0.00%
21lin105 4814.0 362.29 4814.0 368.71 0.00% 4814.0 1682.85 0.00% 4814.0 339.21 0.00% 4814.0 411.31 0.00%
22pr107 4740.0 19.65 4740.0 16.97 0.00% 4740.0 11.05 0.00% 4740.0 18.69 0.00% 4740.0 52.44 0.00%
25pr124 6054.0 3624.39 5035.0 746.37 16.83% 6054.0 3623.37 0.00% 6054.0 3623.57 0.00% 6054.0 3623.35 0.00%

26bier127 6333.0 3635.77 6333.0 3633.48 0.00% 6333.0 3643.92 0.00% 6333.0 3636.61 0.00% 6333.0 3707.41 0.00%
26ch130 6393.0 3634.77 6393.0 3633.04 0.00% 6503.0 3625.46 -1.72% 6393.0 3635.65 0.00% 6503.0 3627.20 -1.72%
28pr136 6106.0 227.95 6106.0 228.75 0.00% 6106.0 1896.72 0.00% 6106.0 146.88 0.00% 6777.0 3624.38 -10.99%
29pr144 7242.0 3626.17 7242.0 3626.51 0.00% 7242.0 3626.72 0.00% 7242.0 3626.60 0.00% 7242.0 3630.24 0.00%
30ch150 6025.0 1209.80 6025.0 1214.47 0.00% 7533.0 3633.93 -25.03% 6025.0 995.18 0.00% 7533.0 3637.54 -25.03%

30kroA150 7456.0 3634.86 7456.0 3633.38 0.00% 7533.0 3626.17 -1.03% 7456.0 3634.65 0.00% 7533.0 3624.25 -1.03%
30kroB150 7524.0 3626.34 7524.0 3621.87 0.00% 7524.0 3627.64 0.00% 7524.0 3625.89 0.00% 7524.0 3628.93 0.00%

31pr152 7613.0 3630.61 7613.0 3628.96 0.00% 7613.0 3634.35 0.00% 7613.0 3631.17 0.00% 7613.0 3628.25 0.00%
32u159 7507.0 658.71 7507.0 435.99 0.00% 7850.0 3629.59 -4.57% 7507.0 919.53 0.00% 7860.0 3626.45 -4.70%

39rat195 6813.0 1805.72 6813.0 1419.77 0.00% 6813.0 857.97 0.00% 6813.0 292.75 0.00% 6813.0 598.08 0.00%
40d198 7480.0 378.10 7480.0 378.26 0.00% 9130.0 3637.92 -22.06% 7480.0 303.29 0.00% 7776.7 3648.54 -3.97%

AVG 808.27 696.90 0.31% 1230.15 -2.89% 751.66 0.00% 1479.63 -8.06%
#Worse 0 7 0 13

Table 13: Computational results for the five versions of the branch-and-cut
algorithm on the instances with ω = 0.4 and profit g2.
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ω = 0.6 and g1

C-BC NoCond NoCover NoCluCover NoPath
Instance UB Time UB Time Gap% UB Time Gap% UB Time Gap% UB Time Gap%

Set1

11berlin52 43.0 3.91 43.0 3.86 0.00% 43.0 3.46 0.00% 43.0 3.88 0.00% 43.0 3.18 0.00%
11eil51 39.0 1.75 39.0 1.96 0.00% 39.0 0.56 0.00% 39.0 1.81 0.00% 39.0 0.85 0.00%
14st70 50.0 25.46 50.0 17.32 0.00% 50.0 28.17 0.00% 50.0 19.87 0.00% 50.0 37.84 0.00%
16eil76 59.0 3.26 59.0 5.47 0.00% 59.0 26.91 0.00% 59.0 8.02 0.00% 59.0 19.06 0.00%
16pr76 65.0 227.57 65.0 207.38 0.00% 65.0 487.74 0.00% 65.0 124.85 0.00% 65.0 2670.91 0.00%

20kroA100 65.0 107.03 65.0 99.77 0.00% 65.0 2310.71 0.00% 65.0 106.66 0.00% 65.0 1640.40 0.00%
20kroB100 66.0 98.45 66.0 99.49 0.00% 92.8 3629.78 -40.67% 66.0 97.08 0.00% 98.0 3629.25 -48.48%
20kroC100 62.0 74.74 62.0 95.02 0.00% 62.0 585.94 0.00% 62.0 72.43 0.00% 62.0 863.48 0.00%
20kroD100 64.0 75.17 64.0 63.98 0.00% 64.0 2621.97 0.00% 64.0 75.22 0.00% 64.0 2162.33 0.00%
20kroE100 63.0 174.86 63.0 175.40 0.00% 63.0 104.17 0.00% 63.0 166.56 0.00% 63.0 168.14 0.00%

20rat99 52.0 49.10 52.0 58.21 0.00% 52.0 125.12 0.00% 52.0 46.19 0.00% 52.0 150.13 0.00%
20rd100 72.0 211.81 72.0 209.05 0.00% 72.0 265.78 0.00% 72.0 368.21 0.00% 72.0 384.49 0.00%
21eil101 82.0 91.61 82.0 123.22 0.00% 82.0 259.97 0.00% 82.0 82.72 0.00% 82.0 201.01 0.00%
21lin105 78.0 248.31 78.0 342.03 0.00% 78.0 339.01 0.00% 78.0 132.16 0.00% 86.0 3635.17 -10.26%
22pr107 77.0 3623.71 77.0 3623.48 0.00% 83.0 3626.10 -7.79% 77.0 3625.48 0.00% 83.0 3649.39 -7.79%

Set2

11berlin52 51.0 0.15 51.0 0.15 0.00% 51.0 0.12 0.00% 51.0 0.14 0.00% 51.0 0.14 0.00%
11eil51 50.0 3.74 50.0 3.88 0.00% 50.0 0.73 0.00% 50.0 3.76 0.00% 50.0 0.96 0.00%
14st70 64.0 334.63 64.0 538.55 0.00% 64.0 1208.40 0.00% 64.0 300.55 0.00% 64.0 834.69 0.00%
16eil76 74.0 176.04 74.0 621.02 0.00% 74.0 274.06 0.00% 74.0 175.62 0.00% 74.0 340.50 0.00%
16pr76 74.0 1779.79 74.0 839.91 0.00% 75.0 3620.74 -1.35% 74.0 1777.29 0.00% 75.0 3619.31 -1.35%

20kroA100 99.0 3623.43 99.0 3619.14 0.00% 99.0 3624.66 0.00% 99.0 3623.23 0.00% 99.0 3622.15 0.00%
20kroB100 99.0 3621.47 99.0 3621.26 0.00% 99.0 3626.66 0.00% 99.0 3621.31 0.00% 99.0 3622.42 0.00%
20kroC100 99.0 3618.73 99.0 3619.69 0.00% 99.0 3625.41 0.00% 99.0 3618.66 0.00% 99.0 3627.18 0.00%
20kroD100 99.0 3618.70 93.0 3039.27 6.06% 99.0 3621.29 0.00% 99.0 3618.94 0.00% 99.0 3624.66 0.00%
20kroE100 97.0 2207.74 99.0 3616.08 -2.06% 99.0 3622.52 -2.06% 97.0 2215.67 0.00% 99.0 3618.93 -2.06%

20rat99 87.0 188.38 87.0 223.63 0.00% 87.0 256.23 0.00% 87.0 194.56 0.00% 87.0 70.03 0.00%
20rd100 99.0 2115.45 99.0 1210.77 0.00% 99.0 1885.67 0.00% 99.0 2135.44 0.00% 99.0 2752.34 0.00%
21eil101 97.0 958.46 97.0 960.57 0.00% 100.0 3630.72 -3.09% 97.0 962.97 0.00% 100.0 3622.44 -3.09%
21lin105 104.0 773.88 104.0 3070.16 0.00% 104.0 3638.71 0.00% 104.0 781.43 0.00% 104.0 3647.31 0.00%
22pr107 106.0 11.02 106.0 11.22 0.00% 106.0 158.53 0.00% 106.0 11.02 0.00% 106.0 748.37 0.00%

AVG 934.94 1004.03 0.13% 1573.66 -1.83% 932.39 0.00% 1765.57 -2.43%
#Worse 1 5 0 6

ω = 0.6 and g2

C-BC NoCond NoCover NoCluCover NoPath
Instance UB Time UB Time Gap% UB Time Gap% UB Time Gap% UB Time Gap%

Set1

11berlin52 2190.0 2.98 2190.0 2.82 0.00% 2190.0 2.17 0.00% 2190.0 3.72 0.00% 2190.0 3.70 0.00%
11eil51 1911.0 4.63 1911.0 4.79 0.00% 1911.0 1.87 0.00% 1911.0 1.21 0.00% 1911.0 0.89 0.00%
14st70 2589.0 25.40 2589.0 15.89 0.00% 2589.0 45.11 0.00% 2589.0 18.62 0.00% 2589.0 16.48 0.00%
16eil76 3119.0 23.29 3119.0 23.06 0.00% 3119.0 82.51 0.00% 3119.0 19.60 0.00% 3119.0 46.33 0.00%
16pr76 3275.0 56.14 3275.0 55.32 0.00% 3275.0 41.63 0.00% 3275.0 182.03 0.00% 3275.0 520.02 0.00%

20kroA100 3192.0 219.32 3192.0 219.64 0.00% 3192.0 1467.65 0.00% 3192.0 135.17 0.00% 3192.0 2890.51 0.00%
20kroB100 3203.0 161.54 3203.0 159.52 0.00% 3203.0 3506.17 0.00% 3203.0 165.41 0.00% 4753.0 3630.43 -48.39%
20kroC100 3110.0 503.42 3110.0 241.53 0.00% 3110.0 727.83 0.00% 3110.0 246.28 0.00% 3110.0 597.71 0.00%
20kroD100 3133.0 80.11 3133.0 127.92 0.00% 3133.0 1584.18 0.00% 3133.0 81.68 0.00% 3133.0 2556.97 0.00%
20kroE100 2950.0 136.87 2950.0 136.95 0.00% 2950.0 989.92 0.00% 2950.0 82.57 0.00% 2950.0 301.43 0.00%

20rat99 2643.0 43.82 2643.0 50.08 0.00% 2643.0 67.76 0.00% 2643.0 41.06 0.00% 2643.0 131.01 0.00%
20rd100 3591.0 390.73 3591.0 287.11 0.00% 3591.0 318.44 0.00% 3591.0 133.94 0.00% 3591.0 247.61 0.00%
21eil101 4187.0 416.81 4187.0 326.02 0.00% 4187.0 358.10 0.00% 4187.0 412.53 0.00% 4187.0 644.74 0.00%
21lin105 3955.0 181.35 3955.0 182.64 0.00% 3955.0 1324.81 0.00% 3955.0 162.10 0.00% 3955.0 1058.50 0.00%
22pr107 3877.0 3626.58 4132.0 3627.09 -6.58% 4132.0 3625.61 -6.58% 3877.0 3626.40 0.00% 2697.0 3045.43 30.44%

Set2

11berlin52 2608.0 0.15 2608.0 0.15 0.00% 2608.0 0.12 0.00% 2608.0 0.14 0.00% 2608.0 0.15 0.00%
11eil51 2575.0 0.57 2575.0 0.56 0.00% 2575.0 0.88 0.00% 2575.0 0.56 0.00% 2575.0 1.79 0.00%
14st70 3218.0 528.44 3218.0 334.69 0.00% 3218.0 2829.94 0.00% 3218.0 502.19 0.00% 3218.0 795.15 0.00%
16eil76 3728.0 101.79 3728.0 87.29 0.00% 3728.0 441.42 0.00% 3728.0 100.66 0.00% 3728.0 92.92 0.00%
16pr76 3729.0 476.85 3729.0 473.60 0.00% 3800.0 3623.70 -1.90% 3729.0 481.00 0.00% 3800.0 3623.80 -1.90%

20kroA100 5008.0 3621.09 5008.0 3621.25 0.00% 5008.0 3627.00 0.00% 5008.0 3621.34 0.00% 5008.0 3626.83 0.00%
20kroB100 5008.0 3622.99 5008.0 3622.28 0.00% 5008.0 3631.70 0.00% 5008.0 3623.16 0.00% 5008.0 3629.08 0.00%
20kroC100 5008.0 3618.73 5008.0 3618.58 0.00% 5008.0 3620.71 0.00% 5008.0 3619.27 0.00% 5008.0 3620.53 0.00%
20kroD100 5008.0 3618.38 5008.0 3617.24 0.00% 5008.0 3622.52 0.00% 5008.0 3618.92 0.00% 5008.0 3630.76 0.00%
20kroE100 5008.0 3617.79 4910.0 3423.90 1.96% 5008.0 3618.89 0.00% 5008.0 3617.95 0.00% 5008.0 3622.17 0.00%

20rat99 4516.0 173.82 4516.0 220.51 0.00% 4516.0 123.91 0.00% 4516.0 154.69 0.00% 4516.0 72.77 0.00%
20rd100 5008.0 3619.60 5008.0 1374.48 0.00% 5008.0 3028.85 0.00% 5008.0 3619.27 0.00% 5008.0 3620.90 0.00%
21eil101 5050.0 3622.75 5037.0 3617.47 0.26% 5050.0 3621.34 0.00% 5050.0 3622.82 0.00% 5050.0 3628.80 0.00%
21lin105 5228.0 3627.07 5228.0 3641.74 0.00% 5228.0 3641.79 0.00% 5228.0 3627.18 0.00% 5228.0 1629.92 0.00%
22pr107 5363.0 132.19 5363.0 34.54 0.00% 5363.0 21.29 0.00% 5363.0 134.78 0.00% 5363.0 120.14 0.00%

AVG 1208.51 1104.96 -0.15% 1653.26 -0.28% 1188.54 0.00% 1580.25 -0.66%
#Worse 1 2 0 2

Table 14: Computational results for the five versions of the branch-and-cut
algorithm on the instances with ω = 0.6 and profits g1 and g2.
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ω = 0.8 and g1

C-BC NoCond NoCover NoCluCover NoPath
Instance UB Time UB Time Gap% UB Time Gap% UB Time Gap% UB Time Gap%

Set1

11berlin52 47.0 6.35 47.0 8.06 0.00% 47.0 33.77 0.00% 47.0 6.36 0.00% 47.0 25.64 0.00%
11eil51 43.0 2.21 43.0 5.67 0.00% 43.0 6.30 0.00% 43.0 2.10 0.00% 43.0 7.00 0.00%
14st70 65.0 388.64 65.0 65.07 0.00% 65.0 2173.28 0.00% 65.0 361.26 0.00% 65.0 1216.32 0.00%
16eil76 69.0 175.45 69.0 92.37 0.00% 69.0 668.67 0.00% 69.0 153.38 0.00% 69.0 741.48 0.00%
16pr76 72.0 1645.28 72.0 1610.18 0.00% 75.0 3625.52 -4.17% 72.0 1653.24 0.00% 73.0 3619.85 -1.39%

20kroA100 79.0 223.57 79.0 224.33 0.00% 99.0 3628.66 -25.32% 79.0 224.73 0.00% 99.0 3630.21 -25.32%
20kroB100 86.0 2791.01 99.0 3642.47 -15.12% 99.0 3635.00 -15.12% 86.0 2802.72 0.00% 99.0 3637.24 -15.12%
20kroC100 83.0 448.35 83.0 394.61 0.00% 99.0 3630.59 -19.28% 83.0 417.48 0.00% 99.0 3630.37 -19.28%
20kroD100 85.0 465.21 85.0 262.62 0.00% 99.0 3631.93 -16.47% 85.0 430.87 0.00% 99.0 3632.48 -16.47%
20kroE100 80.0 334.23 80.0 182.45 0.00% 99.0 3625.67 -23.75% 80.0 347.91 0.00% 99.0 3625.78 -23.75%

20rat99 79.0 1795.76 79.0 1587.52 0.00% 88.0 3624.21 -11.39% 79.0 1810.70 0.00% 88.0 3622.83 -11.39%
20rd100 91.0 807.77 91.0 849.85 0.00% 99.0 3627.06 -8.79% 91.0 813.84 0.00% 99.0 3630.76 -8.79%
21eil101 91.0 312.88 100.0 3628.12 -9.89% 100.0 3639.89 -9.89% 91.0 319.53 0.00% 100.0 3637.50 -9.89%
21lin105 90.0 270.19 90.0 1541.15 0.00% 104.0 3639.01 -15.56% 90.0 289.91 0.00% 104.0 3644.62 -15.56%
22pr107 106.0 3645.23 106.0 3642.42 0.00% 106.0 3643.92 0.00% 106.0 3645.25 0.00% 106.0 3632.86 0.00%

Set2

11berlin52 51.0 0.03 51.0 0.03 0.00% 51.0 0.02 0.00% 51.0 0.03 0.00% 51.0 0.03 0.00%
11eil51 50.0 0.84 50.0 0.51 0.00% 50.0 0.83 0.00% 50.0 0.79 0.00% 50.0 1.31 0.00%
14st70 69.0 3.56 69.0 6.05 0.00% 69.0 134.31 0.00% 69.0 3.57 0.00% 69.0 17.66 0.00%
16eil76 75.0 4.04 75.0 3.24 0.00% 75.0 13.35 0.00% 75.0 4.03 0.00% 75.0 2.65 0.00%
16pr76 75.0 8.46 75.0 18.80 0.00% 75.0 3643.29 0.00% 75.0 8.15 0.00% 75.0 1583.03 0.00%

20kroA100 99.0 10.19 99.0 27.53 0.00% 99.0 528.28 0.00% 99.0 9.73 0.00% 99.0 713.57 0.00%
20kroB100 99.0 1202.32 99.0 3626.85 0.00% 99.0 3634.82 0.00% 99.0 1207.78 0.00% 99.0 3625.98 0.00%
20kroC100 99.0 3623.05 99.0 3622.40 0.00% 99.0 3631.01 0.00% 99.0 3623.28 0.00% 99.0 3631.17 0.00%
20kroD100 99.0 3632.61 99.0 3634.61 0.00% 99.0 3629.19 0.00% 99.0 3631.99 0.00% 99.0 3622.21 0.00%
20kroE100 99.0 3619.87 99.0 3626.20 0.00% 99.0 3637.93 0.00% 99.0 3620.10 0.00% 99.0 3630.18 0.00%

20rat99 98.0 154.46 98.0 632.05 0.00% 98.0 939.68 0.00% 98.0 155.44 0.00% 98.0 1272.54 0.00%
20rd100 99.0 135.40 99.0 98.07 0.00% 99.0 441.48 0.00% 99.0 135.97 0.00% 99.0 234.98 0.00%
21eil101 100.0 1555.04 100.0 3625.01 0.00% 100.0 2144.42 0.00% 100.0 1569.38 0.00% 100.0 3625.32 0.00%
21lin105 104.0 4.65 104.0 10.31 0.00% 104.0 3.26 0.00% 104.0 4.51 0.00% 104.0 6.79 0.00%
22pr107 106.0 8.94 106.0 9.16 0.00% 106.0 12.09 0.00% 106.0 8.74 0.00% 106.0 16.52 0.00%

AVG 909.19 1222.59 -0.83% 2174.25 -4.99% 908.76 0.00% 2130.63 -4.90%
#Worse 2 10 0 10

ω = 0.8 and g2

C-BC NoCond NoCover NoCluCover NoPath
Instance UB Time UB Time Gap% UB Time Gap% UB Time Gap% UB Time Gap%

Set1

11berlin52 2384.0 10.57 2384.0 12.43 0.00% 2384.0 18.16 0.00% 2384.0 12.23 0.00% 2384.0 19.31 0.00%
11eil51 2114.0 9.92 2114.0 12.42 0.00% 2114.0 9.15 0.00% 2114.0 6.94 0.00% 2114.0 7.18 0.00%
14st70 3355.0 566.19 3355.0 134.57 0.00% 3355.0 659.94 0.00% 3355.0 533.94 0.00% 3355.0 372.47 0.00%
16eil76 3573.0 60.10 3573.0 59.11 0.00% 3573.0 1294.30 0.00% 3573.0 85.04 0.00% 3573.0 2992.97 0.00%
16pr76 3611.0 857.82 3611.0 843.61 0.00% 3694.0 3622.85 -2.30% 3694.0 3619.83 -2.30% 3765.0 3626.08 -4.26%

20kroA100 4115.0 3088.95 4115.0 3015.71 0.00% 5008.0 3635.46 -21.70% 4115.0 3034.79 0.00% 5008.0 3632.68 -21.70%
20kroB100 4916.0 3637.48 4916.0 3640.34 0.00% 5008.0 3628.18 -1.87% 4916.0 3637.40 0.00% 5008.0 3630.01 -1.87%
20kroC100 3999.0 304.44 3999.0 574.05 0.00% 5008.0 3626.03 -25.23% 3999.0 287.95 0.00% 5008.0 3624.21 -25.23%
20kroD100 5008.0 3624.83 5008.0 3625.03 0.00% 5008.0 3621.51 0.00% 5008.0 3625.22 0.00% 5008.0 3629.87 0.00%
20kroE100 4002.0 388.55 4002.0 384.94 0.00% 4703.0 3622.29 -17.52% 4002.0 388.90 0.00% 5008.0 3631.36 -25.14%

20rat99 3992.0 3085.27 4297.0 3626.93 -7.64% 4434.0 3622.18 -11.07% 3992.0 2785.76 0.00% 4434.0 3625.47 -11.07%
20rd100 5008.0 3627.15 5008.0 3629.51 0.00% 5008.0 3638.36 0.00% 5008.0 3626.99 0.00% 5008.0 3633.61 0.00%
21eil101 4717.0 1873.07 4717.0 1878.69 0.00% 5050.0 3633.56 -7.06% 4717.0 1786.74 0.00% 5050.0 3626.43 -7.06%
21lin105 5092.0 3638.94 4572.7 3664.68 10.20% 5228.0 3625.12 -2.67% 5092.0 3638.53 0.00% 5228.0 3646.06 -2.67%
22pr107 5363.0 3636.41 5363.0 3630.58 0.00% 5363.0 3637.33 0.00% 5363.0 3636.09 0.00% 5363.0 3650.05 0.00%

Set2

11berlin52 2608.0 0.08 2608.0 0.07 0.00% 2608.0 0.06 0.00% 2608.0 0.07 0.00% 2608.0 0.07 0.00%
11eil51 2575.0 0.51 2575.0 0.50 0.00% 2575.0 0.48 0.00% 2575.0 0.51 0.00% 2575.0 0.62 0.00%
14st70 3513.0 13.74 3513.0 13.62 0.00% 3513.0 24.55 0.00% 3513.0 13.25 0.00% 3513.0 81.31 0.00%
16eil76 3800.0 163.65 3800.0 33.08 0.00% 3800.0 2.22 0.00% 3800.0 167.70 0.00% 3800.0 117.77 0.00%
16pr76 3800.0 665.83 3800.0 248.03 0.00% 3800.0 984.88 0.00% 3800.0 670.13 0.00% 3800.0 677.96 0.00%

20kroA100 5008.0 3624.63 5008.0 3138.14 0.00% 5008.0 3626.01 0.00% 5008.0 3623.81 0.00% 5008.0 3632.02 0.00%
20kroB100 5008.0 3623.69 5008.0 3623.81 0.00% 5008.0 3629.08 0.00% 5008.0 3624.05 0.00% 5008.0 3636.64 0.00%
20kroC100 5008.0 3622.66 5008.0 3622.57 0.00% 5008.0 3643.09 0.00% 5008.0 3622.69 0.00% 5008.0 3636.16 0.00%
20kroD100 5008.0 3635.24 5008.0 3633.28 0.00% 5008.0 3623.96 0.00% 5008.0 3634.34 0.00% 5008.0 3624.31 0.00%
20kroE100 5008.0 3627.77 5008.0 3627.91 0.00% 5008.0 3630.97 0.00% 5008.0 3627.43 0.00% 5008.0 3639.56 0.00%

20rat99 5007.0 324.77 5007.0 110.66 0.00% 5007.0 209.81 0.00% 5007.0 323.20 0.00% 5007.0 1748.72 0.00%
20rd100 5008.0 43.69 5008.0 72.08 0.00% 5008.0 10.58 0.00% 5008.0 45.00 0.00% 5008.0 10.01 0.00%
21eil101 5050.0 3631.53 5050.0 3626.64 0.00% 5050.0 3630.00 0.00% 5050.0 3629.89 0.00% 5050.0 3643.53 0.00%
21lin105 5228.0 1532.00 5228.0 1827.56 0.00% 5228.0 3518.19 0.00% 5228.0 1541.45 0.00% 5228.0 2311.88 0.00%
22pr107 5363.0 137.27 5363.0 33.96 0.00% 5363.0 280.41 0.00% 5363.0 138.40 0.00% 5363.0 774.23 0.00%

AVG 1768.56 1744.82 0.09% 2290.29 -2.98% 1845.61 -0.08% 2362.75 -3.30%
#Worse 1 8 1 8

Table 15: Computational results for the five versions of the branch-and-cut
algorithm on the instances with ω = 0.8 and profits g1 and g2.
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