
Computers & Operations Research 166 (2024) 106620

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Solving the Set Covering Problem with Conflicts on Sets: A new parallel
GRASP
Francesco Carrabs a, Raffaele Cerulli a, Renata Mansini b, Lorenzo Moreschini b,∗,
Domenico Serra a

a University of Salerno, Department of Mathematics, Via Giovanni Paolo II 132, 84084, Salerno, Italy
b University of Brescia, Department of Information Engeneering, Via Branze 38, 25123, Brescia, Italy

A R T I C L E I N F O

Keywords:
Heuristics
Set Covering Problem
Conflicts
GRASP
Parallel algorithm

A B S T R A C T

In this paper, we analyze a new variant of the well-known NP-hard Set Covering Problem, characterized by
pairwise conflicts among subsets of items. Two subsets in conflict can belong to a solution provided that a
positive penalty is paid. The problem looks for the optimal collection of subsets representing a cover and
minimizing the sum of covering and penalty costs. We introduce two integer linear programming formulations
and a quadratic one for the problem and provide a parallel GRASP (Greedy Randomized Adaptive Search
Procedure) that, during parallel executions of the same basic procedure, shares information among threads.
We tailor such a parallel processing to address the specific problem in an innovative way that allows us to
prevent redundant computations in different threads, ultimately saving time. To evaluate the performance
of our algorithm, we conduct extensive experiments on a large set of new instances obtained by adapting
existing instances for the Set Covering Problem. Computational results show that the proposed approach is
extremely effective and efficient providing better results than Gurobi (tackling three alternative mathematical
formulations of the problem) in less than 1/6 of the computational time.
1. Introduction

In the classical Set Covering Problem (SCP) given a set of elements
(e.g. regions into which a territory is partitioned) and a collection of
subsets of such elements (e.g. facilities each one providing a service to a
subset of regions), the problem looks for the optimal cover at minimum
cost (the optimal set of plants to open so to cover the whole territory
at the minimum set-up cost). The problem is known to be NP-hard.

A significant limitation of the SCP is its pursuit of an optimal cover
without considering the interrelationships among the chosen subsets.
This may lead to optimal solutions containing subsets that share a large
number of elements which might not be practical in various scenarios.
This paper introduces a generalization of the SCP dealing with pair-
wise conflicts among subsets. Differently from classic incompatibility
constraints, two subsets in conflict can be jointly selected in a solution
provided that a penalty is paid. The problem looks for a cover of the
set of items that minimizes the sum of both covering and conflict costs.
We name this problem the Set Covering Problem with Conflicts on Sets
(SCP-CS). In our application the definition of the conflicts is related to
the number of items jointly covered by a pair of subsets. More precisely,

∗ Corresponding author.
E-mail addresses: fcarrabs@unisa.it (F. Carrabs), raffaele@unisa.it (R. Cerulli), renata.mansini@unibs.it (R. Mansini), lorenzo.moreschini@unibs.it

(L. Moreschini), dserra@unisa.it (D. Serra).

consider two subsets in conflict if they have more than a predefined
number (called the conflict threshold) of elements in common.

Conflicts, also named incompatibility constraints, are commonly
dealt with in different combinatorial problems such as knapsack prob-
lems (Coniglio et al., 2021; Hifi and Michrafy, 2007; Pferschy and
Schauer, 2009), shortest path problems (Darmann et al., 2011), match-
ing problems (Öncan and Kuban Altınel, 2018; Öncan et al., 2013),
arc routing problems (Colombi et al., 2017), vehicle routing prob-
lems (Gendreau et al., 2016; Manerba and Mansini, 2016; Gobbi et al.,
2023), bin packing problems (Ekici, 2021; Epstein et al., 2011; Sadykov
and Vanderbeck, 2013), minimum spanning tree problems (Carrabs
et al., 2019, 2021; Carrabs and Gaudioso, 2021) and maximum flow
problems (Pferschy and Schauer, 2013; Şuvak et al., 2020). The term
‘conflict’ usually stands for an exclusionary constraint that forbids the
simultaneous selection of a pair of items. Disjunctive constraints are
frequently represented in terms of a conflict graph where vertices
correspond to the items and edges encode the constraints. Whatever
the considered combinatorial problem, a solution is feasible when it is
conflict-free. In Jacob et al. (2019) the authors study a SCP variant
vailable online 13 March 2024
305-0548/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.cor.2024.106620
Received 15 December 2022; Received in revised form 31 January 2024; Accepted
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

11 March 2024

https://www.elsevier.com/locate/cor
https://www.elsevier.com/locate/cor
mailto:fcarrabs@unisa.it
mailto:raffaele@unisa.it
mailto:renata.mansini@unibs.it
mailto:lorenzo.moreschini@unibs.it
mailto:dserra@unisa.it
https://doi.org/10.1016/j.cor.2024.106620
https://doi.org/10.1016/j.cor.2024.106620
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.
where pairs of subsets are classified as incompatible and thus they
cannot simultaneously belong to any feasible solution. They name
the problem Conflict-free Set Covering Problem and analyze it in the
context of approximation algorithms and parametrized complexity.
In Saffari and Fathi (2022), the authors introduce several families of
valid inequalities for the Conflict-free Set Covering Problem and work
out some pre-processing procedures to further speed up the problem
resolution. The work also suggests interesting application contexts
such as wireless communication services management and multi-period
staff-scheduling problems. Banik et al. (2020) face the SCP with
conflicts in a geometric setting (Geometric Covering Problem with con-
flicts) where subsets are given by the intersection between geometric
shapes and the universe of elements. As long as the conflict graph has
bounded arboricity, they prove that if the Geometric Covering Problem
is fixed-parameter tractable, then so is the conflict-free version, and
if it admits a factor 𝛼-approximation then the same occurs for the
conflict-free version.

Finally, for the sake of completeness, we also briefly present the
literature that appeared in the last years concerning variants of the SCP
including additional features such as profits and a budget constraint.
In the partial SCP, it is either not necessary or not possible to cover
all of the elements. Each element of the universe is associated with
a profit whereas each subset has a cost. The problem aims to find a
minimum cost collection of subsets such that the combined profit of
the elements covered by the collection is at least equal to a predefined
profit bound. In the prize-collecting version of partial SCP, if an element
remains uncovered a penalty has to be paid. The problem looks for
a collection of subsets such that the cost of selected subsets plus the
penalties of uncovered elements is minimized (see Könemann et al.
(2011) and references therein). In Bilal et al. (2014) the authors
analyze a variant of the partial SCP where subsets are partitioned into
groups. The selection of a subset in a solution implies the activation
of its group and the payment of the cost associated with that group
(negative profit). The objective is to maximize the total profit while it
is not necessary to cover all the elements.

Motivation and contributions

SCP-CS finds application in different contexts including multi-period
scheduling. In particular, we refer to a real-world application con-
cerning the location of the radio base stations (RBS) in mobile com-
munications. The larger the number of RBS opened, the higher the
coverage of a geographic area, but also the higher the electromagnetic
pollution that these antennas generate. The growth in the number of
Internet users and applications that make massive use of network data
exchange (online games, video streaming, telemedicine, lessons via
videoconferencing, and the Internet of Things (IoT), just to name a
few) has led to increased connectivity among devices of different types.
Future communication networks will have to be implemented to create
an infrastructure capable of simultaneously supporting various services
and many users connected to those services (Attar et al., 2011; Guo
et al., 2013). To support users and ensure high performance in densely
populated urban areas, many small cells need to be located to provide
good coverage. Nowadays people are more attentive and sensitive
to the problem of possible dangers due to electromagnetic pollution
generated by the use of these antennas (Saminathan et al., 2017; Sambo
et al., 2015). Although no scientific evidence of a relationship between
electromagnetic fields and human diseases has been provided, all pre-
cautionary measures against an uncontrolled rise in the electromagnetic
field level must be taken. This choice is not only related to a general
preventive principle but also to precise laws that require lowering
electromagnetic emissions to a minimum value compatible with the
quality of services (Cerri et al., 2002). In recent years, the interest in the
reduction of electromagnetic pollution has also spread to the scientific
community of optimization (Amaldi et al., 2002; Wang et al., 2013). In
2

summary, the problem consists in ensuring the coverage of the selected
areas with a good quality of service and limiting the overlapping of
the signals among RBS to reduce the exposure to radiation of people
living in the covered areas. To this end, we have set a penalty that
is proportional to the number of signal intersections between two
antennas so that a new RBS is installed only when strictly necessary.
Notice that trying to completely remove the signal overlapping is not
necessarily an optimal choice. It might lead to a reduction in the quality
of the service and might generate coverage holes. For this reason, we
introduce a conflict threshold 𝑘 which defines the maximum number
of overlapped signals that two antennas can have without paying a
penalty.

The contribution of this paper is manifold. First of all, we provide
the definition of a new and more realistic version of the SCP in
which the conflict constraints are modeled as soft constraints and the
concept of conflict depends on the structure of the available subsets.
Moreover, we propose three mathematical formulations for the SCP-CS:
a mixed integer linear program, a pure binary linear formulation, and
a binary quadratic model comparing their performance when solved
with a commercial solver. Introducing multiple models for the same
problem proves advantageous, as the performance of state-of-the-art
MIP solvers like Gurobi can vary significantly when applied to different
models. Moreover, since the SCP-CS problem is a new problem, there
are no benchmark instances and corresponding results that can be
used to validate the effectiveness of new heuristic solution algorithms.
Furthermore, to efficiently tackle the problem and obtain high-quality
solutions in a limited amount of time, we introduce a novel parallel
GRASP (Greedy Randomized Adaptive Search Procedure). To ensure an
impartial and thorough investigation, we compare the outcomes of our
parallel GRASP algorithm with those of Gurobi solving the three al-
ternative formulations. The proposed parallel GRASP efficiently shares
some common information among different processes that separately
run the same version of a basic GRASP. Unlike parallel approaches
commonly found in the literature, our method goes beyond a simple
exchange of incumbent solutions among processes. We take it a step
further by sharing intermediate computations, thereby eliminating re-
dundant operations across threads. This approach results in an overall
speedup of the procedure. The basic GRASP algorithm aims to enhance
the incumbent solution in two distinct phases during each iteration. The
initial phase involves generating a feasible solution using a combination
of random and greedy rules, while the subsequent phase applies a local
search procedure.

We obtained new benchmark instances by modifying existing ones
originally designed for the standard SCP to accommodate conflicts and
we run an extensive validation campaign by comparing the perfor-
mance of the two linear models, the quadratic one (all implemented
with the Gurobi solver) and the parallel GRASP. Computational results
show that our parallel algorithm is extremely efficient and effective,
always finding optimal or near-optimal solutions in a short amount of
time.

The remainder of this paper is organized as follows. In Section 2, we
introduce the formal problem definition and the three mathematical
formulations. In Section 3 we present the parallel implementation of
our heuristic approach. Computational results are reported in Section 4.
Finally, conclusions are drawn in Section 5.

2. Problem definition and mathematical formulations

The SCP-CS is formalized as follows. Let 𝑈 = {1,… , 𝑚} be a finite set
of elements (items) and  =

{

𝑈𝑗 ⊆ 𝑈 | 𝑗 ∈ 𝑁
}

be a collection of subsets
of 𝑈 with 𝑁 = {1,… , 𝑛}. For each 𝑗 ∈ 𝑁 , we indicate as 𝑐𝑗 ∈ R+

0 the
cost of selecting the subset 𝑈𝑗 and as 𝑑𝑗𝑙 ∈ R+

0 the cost that has to be
paid if the subsets 𝑈𝑗 and 𝑈𝑙 (𝑗, 𝑙 ∈ 𝑁 , 𝑗 ≠ 𝑙) are jointly selected. We
indicate as 𝐵 the set of all unordered pairs {𝑗, 𝑙} with 𝑗, 𝑙 ∈ 𝑁 (𝑗 ≠ 𝑙)
and as 𝐷 ⊆ 𝐵 the set of unordered pairs {𝑗, 𝑙} such that 𝑑𝑖𝑗 > 0 (the
two subsets 𝑈𝑗 and 𝑈𝑙 are in conflict). In the following, we present two
mathematical formulations for the SCP-CS: a linear formulation using
only binary variables, and a binary quadratic formulation. We also
introduce a mixed integer linear programming model for the special

case related to the described application.

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.

v
v
f
t
u
c

3

a
i
i
g
t
t
d
R
(

r
s
s
r
c

f
c
C
d
e
a
h

1
1

2.1. Binary linear programming formulation

To formulate the model, we introduce two sets of binary variables.
The first set associates a binary variable 𝑥𝑗 with each subset 𝑈𝑗 (𝑗 ∈ 𝑁).
Variable 𝑥𝑗 takes value 1 if the subset is selected and zero otherwise.
The second set consists of a binary variable 𝑦𝑗𝑙 (𝑗 < 𝑙) for each
unordered pair {𝑗, 𝑙} ∈ 𝐷 of subsets in conflict. The variable 𝑦𝑗𝑙
takes value 1 when both subsets are selected and zero otherwise. The
mathematical formulation is as follows:

(SCP-CS_BLP) min
∑

𝑗∈𝑁
𝑐𝑗𝑥𝑗 +

∑

{𝑗,𝑙}∈𝐷
𝑑𝑗𝑙𝑦𝑗𝑙 (1)

∑

𝑗∈𝑁
𝑎𝑖𝑗𝑥𝑗 ≥ 1, ∀𝑖 ∈ 𝑈, (2)

𝑥𝑗 + 𝑥𝑙 ≤ 𝑦𝑗𝑙 + 1, ∀ {𝑗, 𝑙} ∈ 𝐷, (3)

𝑥𝑗 ∈ {0, 1} , ∀𝑗 ∈ 𝑁, (4)

𝑦𝑗𝑙 ∈ {0, 1} , ∀ {𝑗, 𝑙} ∈ 𝐷. (5)

Constraints (2) are classical set covering constraints where the param-
eter 𝑎𝑖𝑗 is equal to 1 if 𝑖 ∈ 𝑈𝑗 (element 𝑖 is covered by subset 𝑈𝑗), and
0 otherwise. They ensure that each item belongs to at least one subset.
Constraints (3) model the conflict: variable 𝑦𝑗𝑙 is forced to 1 when both
subsets 𝑈𝑗 and 𝑈𝑙 ({𝑗, 𝑙} ∈ 𝐷) are selected, i.e. when 𝑥𝑗 = 𝑥𝑙 = 1,
and, thanks to the objective function minimization, it is guaranteed to
be zero when at least one of 𝑥𝑗 and 𝑥𝑙 is zero. Since the size of 𝐷 is
bounded by 𝑂(𝑛2), this model has 𝑂(𝑛2) binary variables and 𝑂(𝑛2 +𝑚)
constraints.

2.2. Binary quadratic programming formulation

To compare our heuristic algorithm with a wider range of tradi-
tional exact approaches, we also introduce a binary quadratic formula-
tion where conflict constraints are removed and expressed as quadratic
terms in the objective function. Nowadays, commercial solvers like
Gurobi are highly efficient in solving binary programming problems
with quadratic objectives and linear constraints. Research in this field is
very active, as evidenced by recent contributions (see, for instance, Gus-
meroli et al. (2022) and Rostami et al. (2023)).

Starting from the formulation of SCP-CS_BLP, the variables family
{

𝑦𝑗𝑙
}

{𝑗,𝑙}∈𝐷 is eliminated by incorporating constraints (3) into the
objective function as quadratic terms.

(SCP-CS_BQP) min
∑

𝑗∈𝑁
𝑐𝑗𝑥𝑗 +

∑

{𝑗,𝑙}∈𝐷
𝑑𝑗𝑙𝑥𝑗𝑥𝑙 (6)

∑

𝑗∈𝑁
𝑎𝑖𝑗𝑥𝑗 ≥ 1, ∀𝑖 ∈ 𝑈, (7)

𝑥𝑗 ∈ {0, 1} , ∀𝑗 ∈ 𝑁. (8)

The only set of constraints (7) is the classical family of set covering
constraints. The conflict cost for a pair {𝑗, 𝑙} ∈ 𝐷 of simultaneously
selected subsets is tracked directly into the objective function where
the product 𝑥𝑗𝑥𝑙 is equal to 1 if and only if both subsets 𝑈𝑗 and 𝑈𝑙 are
selected, and is equal to 0 otherwise. This model has exactly 𝑛 binary
variables, 𝑚 constraints, and an objective function with 𝑂(𝑛2) terms.

2.3. Special case

In the practical application described in Section 1, the conflict cost
between two subsets depends linearly on the number of elements jointly
covered by the two subsets and exceeding the threshold 𝑘, i.e.

𝑑𝑗𝑙 = 𝛾 max
{

|𝑈𝑗 ∩ 𝑈𝑙| − 𝑘, 0
}

, ∀𝑗, 𝑙 ∈ 𝑁, 𝑗 ≠ 𝑙 (9)

where 𝛾 ∈ R+ is a unitary cost. In this special case, the previous general
formulation (SCP-CS_BLP) can be rewritten using integer and binary
variables as follows.

(SCP-CS_MILP) min
∑

𝑐𝑗𝑥𝑗 + 𝛾
∑

𝑤𝑗𝑙 (10)
3

𝑗∈𝑁 {𝑗,𝑙}∈𝐵
∑

𝑗∈𝑁
𝑎𝑖𝑗𝑥𝑗 ≥ 1, ∀𝑖 ∈ 𝑈, (11)

(𝑚
∑

𝑖=1
𝑎𝑖𝑗𝑎𝑖𝑙

)

(𝑥𝑗 + 𝑥𝑙 − 1) − 𝑘 ≤ 𝑤𝑗𝑙 , ∀ {𝑗, 𝑙} ∈ 𝐵, (12)

𝑥𝑗 ∈ {0, 1} , ∀𝑗 ∈ 𝑁, (13)

𝑤𝑗𝑙 ∈ N, ∀ {𝑗, 𝑙} ∈ 𝐵. (14)

The conflicts are represented by constraints (12). For every pair of
subsets 𝑈𝑗 and 𝑈𝑙 where 𝑗, 𝑙 ∈ 𝐵, an integer variable 𝑤𝑗𝑙 is defined.
Thanks to objective function minimization, this variable takes the value
max

{

|𝑈𝑗 ∩ 𝑈𝑙| − 𝑘, 0
}

if both subsets are selected, and zero otherwise.
Variables 𝑥𝑗 (𝑗 ∈ 𝑁) have the meaning already explained. Since the
number of integer variables grows as the square of the number of
available subsets 𝑛, the model consists of 𝑂(𝑛2) integer variables, 𝑂(𝑛)
binary variables, and 𝑂(𝑛2 + 𝑚) constraints.

It is worth noticing that integer variables are not necessary. Since
ariables 𝑤𝑗𝑙 ({𝑗, 𝑙} ∈ 𝐵) only appear in constraints (12) where their
alue is bounded below by an integer quantity and in the objective
unction where the minimization of their costs forces them to take
he smallest possible value, these variables can be defined as contin-
ous. Problem complexity deflates to 𝑂(𝑛) binary variables and 𝑂(𝑛2)
ontinuous ones.

. The parallel GRASP algorithm

GRASP (Greedy Randomized Adaptive Search Procedure) is an iter-
tive heuristic approach. At each iteration, a possibly better solution
s constructed through a two-phase procedure: in the first phase, an
nitial feasible solution is determined using a mix between random and
reedy choices; then, in the second phase, a local search is applied
o improve the current solution. At the end of each iteration, either
he current (feasible) solution improves the incumbent one or it is
iscarded. Interested readers can refer to the initial work by Feo and
esende (1989) and the annotated bibliography by Festa and Resende
2002) for further details about the method and its variants.

The main contribution provided in this section is a parallel algo-
ithm where common information (not limited to feasible solutions) is
hared among different processes, each of them separately running the
ame single-process GRASP. The parallel execution allows the explo-
ation of a much wider range of the search space within the same time
onstraint, leading to a significant improvement of the final solution.

Since the description of the final algorithm is quite complex and
ull of details, we decided to split it into three parts. Section 3.1
ontains a high-level outline of the single-process GRASP for the SCP-
S problem, whereas in Section 3.2 we provide details on procedures,
ata structures, and time and space complexity. Finally, Section 3.3
xplains how parallel processing has been exploited to speed up the
lgorithm. The complete source code written in Python is available at
ttps://github.com/lmores/or-scp-cs-src.

Algorithm 1 Single-process GRASP: outline
1: function GraspStrategy(𝑈 ,  ,

{

𝑐𝑗
}

𝑗∈𝑁 ,
{

𝑑𝑗𝑙
}

{𝑗,𝑙}∈𝐷 , 𝑓) ⊳ 𝑓 is the objective function
2: (𝑊 ,𝑤) ← (∅, 0)
3: while ⋃

𝑗∈𝑊 𝑈𝑗 ≠ 𝑈 do ⊳ Phase 1: build initial solution
4: Sort subsets in 𝑊 in non-decreasing order w.r.t. 𝜃𝑊
5: Randomly select 𝑈𝑗 among the first 𝑝 subsets in 𝑊
6: 𝑤 ← 𝑤 + |𝑈𝑗 ⧵

⋃

𝑗∈𝑊 𝑈𝑗 | ⋅ 𝜃𝑊 (𝑈𝑗)
7: 𝑊 ← 𝑊 ∪

{

𝑈𝑗
}

8: end while
9: while ∃ m ∈ 𝑀𝑊 ∶ 𝑓 (m(𝑊)) < 𝑤 do ⊳ Phase 2: improve current solution
0: Pick m ∈ argminm∈𝑀𝑊 {𝑓 (m(𝑊))}
1: (𝑊 ,𝑤) ← (m(𝑊), 𝑓 (m(𝑊)))

12: end while
13: return (𝑊 ,𝑤) ⊳ Feasible solution and its cost built in a single GRASP iteration
14: end function

https://github.com/lmores/or-scp-cs-src

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.

T


c

1
1
1
1
1
1
1
1

i
a

3.1. Single-process GRASP: the outline

This section is devoted to the description of the overall strategy we
have developed. From now on, we will refer to a solution of the SCP-
CS problem indicating a subset 𝑊 ⊆ 𝑁 of the indexes of the available
subsets and, with a slight abuse of terminology, we will say ‘‘the subsets
inside 𝑊 ’’ when we actually mean ‘‘the subsets whose index belongs to
𝑊 ’’.

The GRASP metaheuristic consists of the following two main phases.
In the first phase, an initial solution 𝑊 ⊆ 𝑁 is constructed. The process
begins with an empty set and gradually adds subsets 𝑈𝑗 (𝑗 ∈ 𝑁) one at
a time until a feasible solution is obtained. When adding a new subset
to 𝑊 , the selection is made from the collection 𝑊 of subsets that, if
selected, cover at least one element not currently covered by the partial
solution 𝑊 , i.e.

𝑊 ∶=

{

𝑈𝑗 ∈ 
|

|

|

|

|

𝑈𝑗 ⧵
⋃

𝑙∈𝑊
𝑈𝑙 ≠ ∅

}

.

he choice of which subset to add is made by sorting all subsets in
𝑊 by non-decreasing values of a greedy function 𝜃𝑊 ∶𝑊 → R that

measures the total increase of the objective function value associated
with the selection of each subset in 𝑊 as follows:

𝜃𝑊 ∶𝑈𝑗 ↦
1

|𝑈𝑗 ⧵
⋃

𝑙∈𝑊 𝑈𝑙|

(

𝑐𝑗 +
∑

𝑙∈𝑊
𝑑𝑗𝑙

)

.

Indeed, given a partial solution 𝑊 , for each 𝑈𝑗 ∈ 𝑊 , 𝜃𝑊 (𝑈𝑗) provides
the ratio between the current cost of 𝑈𝑗 (comprising the costs of its
conflicts with the subsets already included in the current partial solu-
tion 𝑊) and its cardinality excluding the items already covered by the
current solution 𝑊 . This heuristic is adaptive because the evaluation
of each subset is updated at each iteration depending on the subsets
already selected in the current partial solution. Once the subsets inside
𝑊 have been ranked according to 𝜃𝑊 , the new subset to be added
to 𝑊 is chosen randomly among a predefined number 𝑝 ∈ N+ of the
most promising subsets, called the Restricted Candidate List (RCL). This
probabilistic component allows us to obtain different solutions at the
end of each iteration of the first phase of our GRASP algorithm.

The goal of the second phase is to iteratively enhance the current
feasible solution 𝑊 by exploring a neighborhood 𝑀𝑊 of 𝑊 in search
of better solutions. To define 𝑀𝑊 we introduce the concept of (𝑟, 𝑠)-
exchange move. Let 𝑟, 𝑠 ∈ N, we define a (𝑟, 𝑠)-exchange move m as a
function that exchanges 𝑟 subsets in the cover 𝑊 with 𝑠 subsets in 𝑁⧵𝑊
while preserving the feasibility. We choose

𝑀𝑊 ∶= {m(𝑊) | m is an (𝑟, 𝑠)-exchange move with

(𝑟, 𝑠) ∈ ({1} × N) ∪ (N × {0, 1})} . (15)

The neighborhood 𝑀𝑊 contains all the moves that either remove
exactly one subset from 𝑊 (𝑟 = 1) and replace it with as many
available subsets as needed to preserve the feasibility or insert at most
one available subset (𝑠 ∈ {0, 1}) in 𝑊 and remove from 𝑊 potential
subsets that are no longer needed to ensure the feasibility. Since
the neighborhood 𝑀𝑊 can be quite large, evaluating all the feasible
solutions it contains may require an excessive amount of time. For this
reason, in Section 3.2 we explain how we split 𝑀𝑊 into three smaller
neighborhoods that require an increasing computational burden to be
searched. Our method explores the second neighborhood when the first
one terminates in a local optimum and as soon as an improving solution
is found in the second neighborhood, the search is restarted in the first
one. The procedure moves to the last neighborhood only when no more
improving solutions can be found in the preceding ones.

Algorithm 1 displays the pseudo-code of the procedure discussed
so far. A naive implementation of this strategy would lead to a huge
amount of time to execute even a single iteration of our algorithm.
Since we aim to build and compare the outcomes of many iterations,
in the next section we explain how we achieve an equivalent result in
a much smaller amount of time.
4

Table 1
Summary of symbols adopted in parallel GRASP pseudo-code.

Symbol Description

𝑝 ∈ N+ The size of the restricted candidate list
𝑊 ⊆ 𝑁 The indexes of the subsets in a (partial) cover of 𝑈
𝑆 ⊆ 𝑁 The indexes of the subsets that can be used during the first phase

to build an initial cover (only meaningful for parallel two-stage
GRASP, otherwise 𝑆 = 𝑁)

𝑖 ⊆ 𝑁 The indexes 𝑗 ∈ 𝑁 such that 𝑖 ∈ 𝑈𝑗 (𝑖 ∈ 𝑈)
𝑗 ⊆ 𝑁 The indexes 𝑙 ∈ 𝑁 such that 𝑈𝑗 (𝑗 ∈ 𝑁) is in conflict with 𝑈𝑙 (i.e.

𝑑𝑗𝑙 > 0)
𝑅𝑗 ∈ N The current cost of 𝑈𝑗 (𝑗 ∈ 𝑁) w.r.t. a (partial) cover 𝑊
𝑖 ⊆ 𝑁 The indexes of the subsets of a (partial) cover 𝑊 containing 𝑖 ∈ 𝑈
𝑗 ⊆ 𝑈 The elements covered only by 𝑈𝑗 in a (partial) cover 𝑊 with 𝑗 ∈ 𝑊

 𝑗 ⊆ 𝑈 The elements in 𝑈𝑗 (𝑗 ∈ 𝑁) not yet covered by a (partial) cover 𝑊

3.2. Single-process GRASP

This section describes how the strategy outlined in Section 3.1 has
been effectively implemented. In order to make the pseudo-code as
readable as possible, we adopt the following conventions. Lowercase
letters (𝑎, 𝑏, 𝑐, . . .) denote simple numerical values. Uppercase letters
(𝐴, 𝐵, 𝐶, . . .) distinguish associative arrays containing simple numeri-
al values, whereas uppercase letters with the calligraphic font (, ,
, . . .) indicate associative arrays that contain at each position sets of
numerical values. In both cases the value associated with a given key 𝑘
is denoted placing 𝑘 as subscript to the name of the data structure (𝐴𝑘,
𝐵𝑘, 𝐶𝑘, . . . , 𝑘, 𝑘, 𝑘, . . .).

Algorithm 2 Single-process GRASP
1: function Grasp(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑖max , 𝑡max , 𝑆, 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝐶𝑜𝑠𝑡)
2:  ← BuildIncidenceStructure(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒)
3:  ← BuildConflictStructure(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒)
4: (𝑊 ∗ , 𝑤∗) ← (𝑁,

∑

𝑗∈𝑁 𝑐𝑗 +
∑

{𝑗,𝑙}∈𝐷 𝑑𝑗𝑙)
5: (𝑖, 𝑡) ← (0, 0)
6: while (𝑖 < 𝑖max) and (𝑡 < 𝑡max) do
7: (𝑊 ,𝑤) ← (∅, 0)
8: (𝑅, ,) ← InitStateStructures(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒)
9: GraspPhase1(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,,,𝑊 ,𝑤,𝑅, ,, 𝑆, 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒)
0: GraspPhase2(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,,,𝑊 ,𝑤,𝑅, ,)
1: if 𝑤 < 𝑤∗ then
2: (𝑊 ∗ , 𝑤∗) ← (𝑊 ,𝑤)
3: 𝑖 ← 0
4: else
5: 𝑖 ← 𝑖 + 1
6: end if
7: 𝑡 ← ElapsedTime()

18: end while
19: return (𝑊 ∗ , 𝑤∗)
20: end function

Algorithm 2 provides the pseudo-code of the procedure run by
each process and is thus at the core of our parallel algorithm. The
method receives as input the data related to a problem 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 (i.e.
the set of elements 𝑈 , the available subsets  , the cost of each subset
and the conflict costs) and the stopping rule parameters (𝑖max ∈ N+

ndicates the maximum number of iterations without improvement
fter which the algorithm terminates, 𝑡max ∈ R+ is the time limit

assigned to the algorithm). Although the algorithm can run in a single
process, we describe it by already including the data used by its parallel
variant. In particular, 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒 is the data structure that holds
common information shared by all the processes and 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝐶𝑜𝑠𝑡
is the objective function value of the best solution found among all
processes at any given time during the execution of the parallel variant
of the algorithm. Finally, the set 𝑆 ⊆ 𝑁 refers to the family of subsets
available to build the initial cover during the first phase of GRASP.
Since this data structure is meaningful only when a two-stage parallel
variant of the algorithm is described in Section 3.3, we defer its detailed
description and, in this section, we suppose that 𝑆 equals 𝑁 . In Table 1,

we summarize the meaning of the symbols used in the pseudo-code.

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.

f
e

c
i

T

1
1

1
2
2
2
2
2
2
2
2
2
2

3

4
4
4
4
4
5
5
5
5
5
5
5
5

c
n
t
t
b
t

The main loop of Algorithm 2 (Lines 6–18) ends as soon as one
of the two stopping rules, controlled by 𝑖max and 𝑡max, holds. Since
we will often need to check which subsets contain a given element
and which subsets are in conflict with a given one, at Lines 2–3 we
initialize two data structures that allow to retrieve this information in
constant time. BuildIncidenceStructure is a function that builds the array
 that associates with each element 𝑖 ∈ 𝑈 the subsets 𝑈𝑗 containing 𝑖,
i.e. 𝑖 ∶=

{

𝑗 ∈ 𝑁 | 𝑖 ∈ 𝑈𝑗
}

. Note that infeasible instances can be easily
detected by checking if any subset 𝑖 (𝑖 ∈ 𝑈) is empty. Similarly,
unction BuildConflictStructure builds the associative array  that maps
ach index 𝑗 ∈ 𝑁 to the set

{

𝑙 ∈ 𝑁 | 𝑑𝑗𝑙 > 0
}

(𝑗 ∈ 𝑁) of the subsets of
𝑈 in conflict with 𝑈𝑗 . At Line 4, the incumbent solution 𝑊 ∗ and its
objective function value 𝑤∗ are initialized.

During each iteration of the main loop, we initialize an empty set
𝑊 that will contain the cover we are going to build and we set its
initial cost 𝑤 equal to 0. Given a partial cover 𝑊 , let us denote by 𝑅𝑗 =
𝑐𝑗+

∑

𝑙∈𝑊 𝑑𝑗𝑙, the current cost associated with each subset 𝑈𝑗 (𝑗 ∈ 𝑁). If
𝑗 ∉ 𝑊 , then 𝑅𝑗 represents the increase of the objective function value
if 𝑗 were added to the current working cover 𝑊 , whereas if 𝑗 ∈ 𝑊 ,
then 𝑅𝑗 represents the decrease of the objective function value if 𝑗 were
removed from the current working cover 𝑊 . We implement the current
costs as an associative array named 𝑅. Since at the beginning of each
iteration 𝑊 is empty, the current cost of each subset 𝑈𝑗 equals its subset
cost (i.e. 𝑅𝑗 = 𝑐𝑗 for each 𝑗 ∈ 𝑁).

For each element 𝑖 ∈ 𝑈 , we denote by 𝑖 ∶=
{

𝑗 ∈ 𝑊 | 𝑖 ∈ 𝑈𝑗
}

the set
of subsets 𝑈𝑗 (𝑗 ∈ 𝑊) that cover 𝑖, and by 𝑗 =

{

𝑖 ∈ 𝑈 |𝑖 = {𝑗}
}

the
set of elements of 𝑈 uniquely covered by subset 𝑈𝑗 for a given 𝑗 ∈ 𝑊 .
Data structures  and  are implemented as associative arrays mapping
each element 𝑖 ∈ 𝑈 to 𝑖 and each subset 𝑈𝑗 (𝑗 ∈ 𝑊) to 𝑗 . Since
𝑊 is initially empty, each set inside the data structures  and  is
initially empty as well. Moreover, since they depend on 𝑊 , whenever
𝑊 changes they are updated accordingly. These data structures are
mostly needed during the second phase of the algorithm when we must
explore the neighborhood 𝑀𝑊 . A priori, enforcing the feasibility of a
solution would require computing the union of all subsets it contains
and comparing it to 𝑈 ; the data structures  and  make this operation
less expensive as they incrementally track which subsets cover each
item.

Lines 9–10 refer to the two phases of our algorithm. The function
GraspPhase1 is in charge of building the working cover 𝑊 to get an
initial (possibly good) solution, whereas function GraspPhase2 tries to
improve the initial solution exploring a sequence of neighborhoods and
moving to a better cover (if any is found). When GraspPhase2 function
completes, at Lines 11–16 the algorithm checks if the current working
cover 𝑊 improves the incumbent one 𝑊 ∗ and if this is the case, the
latter is replaced. Finally, the counter 𝑖, which tracks the number of
iterations without improvement, and the variable 𝑡, which measures the
time elapsed since the beginning of the execution, are updated. Line 19
returns the best cover found together with its cost when the stopping
criterion terminates the main loop. In the following, we provide a
detailed description of GraspPhase1 and GraspPhase2 functions.

Phase 1: building an initial solution
The pseudo-code of GraspPhase1 function is shown in Algorithm 3.

The procedure is iterative. At each iteration, a new subset is randomly
selected from the Restricted Candidate List (RCL) and used to populate
the working cover 𝑊 that is initially empty and its objective function
value 𝑤 is set to 0 (Line 1). At Line 2, the associative array  that
ontains the subsets to be selected to enter the current cover 𝑊 is
nitialized. More precisely, each subset  𝑗 is initialized with the subset
𝑈𝑗 (𝑗 ∈ 𝑁). After each update of the current partial cover 𝑊 ,  𝑗 will
contain only the elements of 𝑈𝑗 not yet covered by 𝑊 .

The RCL contains the 𝑝 most promising subsets obtained by ranking
the candidates according to non-decreasing values of 𝜃𝑊 (𝑈𝑗) = 𝑅𝑗

| 𝑗 |
.

he ordering is adaptive since it depends on the value of 𝑅 (that
5

𝑗

Algorithm 3 Phase 1: initial solution
1: function GraspPhase1(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,,,𝑊 ,𝑤,𝑅, ,, 𝑆, 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒)
2:  ← InitializeCandidates(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒)
3: 𝑍 ← BuildCandidateStructure(𝑆, , 𝑅)
4: while  ≠ ∅ do
5: 𝑗 ← PopRandomCandidate(𝑍)
6: 𝑊 ← 𝑊 ∪ {𝑗}
7:  ← Remove( , 𝑗)
8: if 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒𝑊 ≠ null then
9: ( , 𝑤,𝑅, ,, 𝑍) ← 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒𝑊
10: else
11: 𝑤 ← 𝑤 + 𝑅𝑗
12: for 𝑙 in 𝑗 do
3: 𝑅𝑙 ← 𝑅𝑙 + 𝑑𝑗𝑙
4: 𝑍 ← UpdateCandidateStructure(𝑍, 𝑙, 𝑅𝑙∕| 𝑙 |)

15: end for
16: 𝑇 ← ∅
17: for 𝑖 in 𝑈𝑗 do
18: if |𝑖| = 0 then
9: 𝑗 ← 𝑗 ∪ {𝑖}
0: else if |𝑖| = 1 then
1: 𝑙 ← Peek(𝑖)
2: 𝑙 ← 𝑙 ⧵ {𝑖}
3: if |𝑙 | = 0 then
4: 𝑇 ← 𝑇 ∪ {𝑙}
5: end if
6: end if
7: 𝑖 ← 𝑖 ∪ {𝑗}
8: end for
9: PruneWorkingCover(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,,,𝑊 ,𝑤,𝑅, ,, , 𝑍, 𝑇)

30: for 𝑙 in  do
31: if  𝑙 ⧵ 𝑗 = ∅ then
2:  ←  ⧵ 𝑙

33: 𝑍 ← RemoveCandidate(𝑍, 𝑙)
34: else
35:  𝑙 ←  𝑙 ⧵ 𝑗
36: end if
37: end for
38: 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒𝑊 ← ( , 𝑤,𝑅, ,, 𝑍)
39: end if
40: end while
41: end function

42: function PruneWorkingCover(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,,,𝑊 ,𝑤,𝑅, ,, , 𝑍, 𝑇)
43: for 𝑗 in 𝑇 do
44: if |𝑗 | > 0 then
5: 𝑊 ← 𝑊 ⧵ {𝑗}
6: 𝑗 ← ∅
7: 𝑤 ← 𝑤 − 𝑅𝑗
8: for 𝑖 in 𝑈𝑗 do
9: 𝑖 ← 𝑖 ⧵ {𝑗}
0: if |𝑖| = 1 then
1: 𝑙 ← Peek(𝑖)
2: 𝑙 ← 𝑙 ∪ {𝑖}
3: end if
4: end for
5: for 𝑙 in 𝑗 do
6: 𝑅𝑙 ← 𝑅𝑙 − 𝑑𝑗𝑙
7: 𝑍 ← UpdateCandidateStructure(𝑍, 𝑙, 𝑅𝑙∕| 𝑙 |)

58: end for
59: end if
60: end for
61: end function

includes the cost of the conflicts between the subset 𝑈𝑗 and the subsets
that already belong to the current partial cover 𝑊) and the size of
 𝑗 (that contains only the elements of 𝑈𝑗 not yet covered by the
urrent partial cover 𝑊). To efficiently implement this strategy, we
eed a specialized data structure 𝑍 that during each iteration keeps
rack of the repeated changes of the values of the greedy function 𝜃𝑊
hat determines the RCL (further details about the data structure 𝑍 can
e found in Appendix). The while loop (Lines 4–40) is repeated until
he selected collection of subsets provides a cover for 𝑈 . At Lines 5–

7, the algorithm randomly chooses a subset from the RCL (function
PopRandomCandidate), adds it to the current cover 𝑊 and removes it
from  . Next, at Line 8 the procedure checks if the current collection
of subsets inside 𝑊 has already been met in previous iterations. If this is
the case, the procedure retrieves the previously computed information

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.

s
(

A
s

P

(
s

1

c
c

T

from the 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒 object and sets the updated values of all data
tructures (Line 9); otherwise, we update the data structure accordingly
Lines 11–38). This procedure is iterated until  is empty, which

implies that 𝑊 is a cover of 𝑈 . Each time the addition of a subset to
the working cover 𝑊 leads to a never-encountered partial cover, the
algorithm works as follows.

1. The working cover cost 𝑤 is increased by the current cost 𝑅𝑗 of
the selected subset 𝑗 (Line 11).

2. The current cost of all subsets in conflict with 𝑗 are increased
and the structure 𝑍 is updated by the UpdateCandidateStructure
function (Lines 12–15, where 𝑙 is the index of a subset in conflict
with 𝑗).

3. The subsets that have become redundant after the addition
of subset 𝑈𝑗 are removed from 𝑊 (Lines 16–29). To achieve
this goal we note that a subset 𝑈𝑙 inside the current cover is
redundant when all its elements are covered by at least another
subset (i.e. when set 𝑙 is empty). To this aim, we iterate on
elements 𝑖 in 𝑈𝑗 . If 𝑖 was previously uncovered, 𝑈𝑗 is recorded
as the unique subset that covers 𝑖 (Lines 18–19); otherwise, if 𝑖
was previously covered by only one other subset 𝑙 in the working
cover, i.e. 𝑖 contains exactly one index (the value returned by
Peek(𝑖)), we keep track that such subset is no more the only one
that covers 𝑖 (Lines 20–26). If this action makes 𝑈𝑙 redundant, we
add 𝑙 to the list 𝑇 of redundant subsets that may be eliminated
(Lines 23–25). In any case, index 𝑗 is added to the collection of
the subsets in the working cover 𝑊 that cover element 𝑖 (Line
27). Finally, the PruneWorkingCover function actually removes
from 𝑊 some of the redundant subsets in 𝑇 and updates all
the other data structures accordingly (Line 29). Note that when
𝑇 contains more than one redundant subset, they may have a
non-empty pairwise intersection. In turn, this may imply that
only some of them can be removed without uncovering some al-
ready covered elements. In this situation, making the best choice
would require a cumbersome computational analysis of all the
possibilities. However, since the goal of the current phase is to
generate a feasible initial solution, we randomly remove as many
redundant subsets as possible using a first in first out strategy and
delegating any refinement to the second phase of the algorithm.
The pseudo-code of the function PruneWorkingCover is provided
at the end of Algorithm 3.

4.  𝑗 is subtracted from each subset  𝑙 inside  . If  𝑗 contains
 𝑙 we remove 𝑙 from  and from 𝑍, otherwise we replace  𝑙
with  𝑙 ⧵ 𝑗 (Lines 30–37).

5. Information about the new working cover 𝑊 is saved into the
𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒 object for future reuse (Line 38).

t the end of this phase, the subsets contained in 𝑊 provide a feasible
olution with value 𝑤.

hase 2: local search

The function GraspPhase2 employs a sequential local search strategy
pseudo-code is shown in Algorithm 4). Recall that, given a feasible
olution 𝑊 and 𝑟, 𝑠 ∈ N, we define a (𝑟, 𝑠)-exchange move as a function

that exchanges 𝑟 subsets in the cover 𝑊 with 𝑠 subsets not belonging to
𝑊 and preserves feasibility. We are interested in improving the current
solution 𝑊 looking for another cover inside the neighborhood 𝑀𝑊
(defined in Eq. (15) by means of (𝑟, 𝑠)-exchange moves with 𝑟 = 1 or
𝑠 ∈ {0, 1}). 𝑀𝑊 can be written as the disjoint union of the following
subsets:

𝑀0
𝑊 = {m(𝑊) | m (𝑟, 0)-exchange move with 𝑟 ∈ N} ,

𝑀1
𝑊 = {m(𝑊) | m (𝑟, 1)-exchange move with 𝑟 ∈ N} ,

𝑀2
𝑊 = {m(𝑊) | m (1, 𝑠)-exchange move with 𝑠 ∈ N, 𝑠 ≥ 2} ,

𝑀𝑊 = 𝑀0
𝑊 ⊔𝑀1

𝑊 ⊔𝑀2
𝑊 .
6

i

Algorithm 4 Phase 2: Local Search
1: function GraspPhase2(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,,,𝑊 ,𝑤,𝑅, ,)
2: (𝑊 ∗ , 𝑤∗) ← (𝑊 ,𝑤)
3: 𝑒𝑥𝑖𝑡 ← false
4: repeat
5: (𝑊 ,𝑤) ← Explore𝑀0

𝑊 (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,,,𝑊 ,𝑤,𝑅, ,)
6: if 𝑤 < 𝑤∗ then
7: (𝑊 ∗ , 𝑤∗) ← (𝑊 ,𝑤)
8: else
9: (𝑊 ,𝑤) ← Explore𝑀1

𝑊 (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,,,𝑊 ,𝑤,𝑅, ,)
0: if 𝑤 < 𝑤∗ then

11: (𝑊 ∗ , 𝑤∗) ← (𝑊 ,𝑤)
12: else
13: (𝑊 ,𝑤) ← Explore𝑀2

𝑊 (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,,,𝑊 ,𝑤,𝑅, ,)
14: if 𝑤 < 𝑤∗ then
15: (𝑊 ∗ , 𝑤∗) ← (𝑊 ,𝑤)
16: else
17: 𝑒𝑥𝑖𝑡 ← true
18: end if
19: end if
20: end if
21: until 𝑒𝑥𝑖𝑡
22: end function

The three disjoint neighborhoods 𝑀0
𝑊 , 𝑀1

𝑊 , and 𝑀2
𝑊 require an in-

reasing effort to be fully searched. We propose a local search strategy
onsisting of the following steps.

1. Explore 𝑀0
𝑊 by using a best improvement strategy (function

Explore𝑀0
𝑊). This neighborhood contains all the feasible covers

of 𝑈 that can be obtained by removing one or more subsets from
the current solution 𝑊 . A necessary and sufficient condition to
be able to remove a single subset 𝑈𝑗 with index 𝑗 from 𝑊 is that
the set of elements covered only by such a subset must be empty,
i.e. 𝑗 = ∅. Let 𝐹 ⊆ 𝑊 be the set of removable subsets belonging
to the current cover that satisfy this condition. Note that it may
not be possible to remove all the subsets in 𝐹 at once. We apply
a procedure to determine the subfamily of 𝐹 that once removed
maintains the feasibility and produces the highest decrease of
the objective function value.

2. Explore 𝑀1
𝑊 by using the best improvement strategy (function

Explore𝑀1
𝑊). If at least one cover that improves the current one

is found, update the best incumbent solution and restart the
search from Step 1.

3. Explore 𝑀2
𝑊 (function Explore𝑀2

𝑊). This neighborhood is de-
fined by the set of (1, 𝑠)-exchange moves with 𝑠 ≥ 2, namely,
the moves that replace any subset in the current cover 𝑊 with
two or more external subsets while preserving feasibility. Fully
exploring all these possibilities may require a large amount of
time since restoring feasibility after the removal of a subset
from a feasible solution amounts to solving a smaller SCP-CS
instance. As a consequence, we explore this neighborhood only
partially, starting from the most promising move and setting
a time threshold 𝜏 ∈ R+ to the evaluation of the moves that
replace a given subset inside 𝑊 (we forcefully stop the analysis
when the time threshold is reached and move to the next one).
More precisely, for each subset 𝑈𝑗 (𝑗 ∈ 𝑊), we retrieve the set
𝑗 of elements covered only by 𝑈𝑗 and, for each such an element,
we sort its incident subsets by increasing current cost. We iterate
over all possible Cartesian products of the subsets that cover the
elements previously covered only by 𝑈𝑗 and, if their addition to
𝑊 improves the best value found so far, we save this move as
the incumbent one. Once all subsets in 𝑊 have been evaluated
for removal, if we have found at least one cover improving the
current one, we update 𝑊 and restart from Step 1, otherwise,
the local search ends.

he procedure iterates until the current cover 𝑊 cannot be further

mproved and GraspPhase2 ends. To efficiently implement the above

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.

e
b
o
c
o
p
o
(
t
t
c
m
t
a
o

𝑠𝑡))

1

6

procedure, we use information stored inside the associative arrays 
and . When removing a subset 𝑈𝑗 (𝑗 ∈ 𝑁) from the current solution,
a necessary and sufficient condition to restore the feasibility of the
current cover 𝑊 is to add a (possibly empty) collection of available
subsets that covers the elements inside 𝑗 . Data structures required
during these steps are mainly needed to track the local changes of their
global counterparts.

As far as time complexity is concerned, we observe that the size
of the neighborhood in Step 1 depends on the cardinality of 𝑊 which
is at most 𝑂(𝑛) (although one may expect that on average |𝑊 | ≪ 𝑛).
To detect the best possible (𝑟, 0)-exchange move, during each iteration,
the procedure goes through all the elements of a given subset and
through all the subsets that have non-zero conflict costs with a such
subset. Determining whether a subset can be added to the collection
of removable subsets requires a time complexity of 𝑂(𝑠 + 𝑡), where 𝑠
is the maximum cardinality of a subset (bounded by 𝑚) and 𝑡 is the
maximum number of conflicts that involve a fixed subset in 𝑈 (bounded
by 𝑛 − 1). 𝑀1

𝑊 contains all covers that can be obtained by adding one
external subset to 𝑊 and removing the most convenient ones. Once the
external subset is inserted, we find the best collection of subsets that
can be removed preserving feasibility amounts to evaluate all possible
(𝑟, 0)-exchange moves and we apply the same strategy adopted for 𝑀0

𝑊 .
Finally, as already described, when exploring neighborhood 𝑀2

𝑊 we set
a time limit for the evaluation of each collection of moves that removes
a given subset from 𝑊 preserving feasibility.

3.3. Parallel GRASP

Parallel processing can greatly improve the outcome of the single-
process algorithm. Due to GRASP’s randomly-restart nature, the higher
the number of restarts and thus of feasible solutions the algorithm is
able to evaluate, the higher the chance it has to improve the value
of the final solution. A naive application of parallel computing would
be to spawn as many processes as the number of available CPUs on
the machine where the program is executed, each one independently
carrying out the single-process algorithm previously described. After
the termination of all executions, the main procedure would gather the
result of each process and select the best solution among all the avail-
able ones. However, since each process executes the same optimization
steps, it is beneficial to save and share among all processes the informa-
tion computed during each execution (especially for computationally
intensive tasks). This prevents each process from performing exactly
the same operations that others have done before. This strategy can
be usefully adopted during the first phase of the single-process GRASP.
When building the initial feasible solution the procedure starts from an
empty collection and iteratively adds one subset randomly chosen from
the RCL. Each time this action is carried out we are forced to update
many data structures (namely  , 𝑊 , 𝑤, 𝑅,  ,  and 𝑍) to reflect the
ffect of the inclusion of a new subset inside the cover that is currently
eing built. However, the outcome after each iteration of the first phase
f the algorithm solely depends on which subsets belong to the partial
over that we have constructed so far (regardless of their insertion
rder). This is a type of information that can easily be shared among all
rocesses. Therefore, in the parallel implementation of our algorithm,
nce the new state of each data structure has been computed for a given
partial) cover 𝑊 , it is stored in a hash table (𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒) available
o all the processes. In this way, when any iteration of the first phase of
he single-process GRASP needs to evaluate an already analyzed partial
over 𝑊 , no additional computational effort is required. Note that this
ay come out to be particularly convenient when we need to retrieve

he state of the data structures associated with partial covers containing
few (typically of high quality) subsets: they have a high probability

f appearing more than once across different processes.
7

Algorithm 5 Parallel GRASP: change to Algorithm 2
11: if 𝑤 < 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝐶𝑜𝑠𝑡 then
12: (𝑊 ∗ , 𝑤∗ , 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝐶𝑜𝑠𝑡) ← (𝑊 ,𝑤,𝑤)
13: 𝑖 ← 0
14: else
15: 𝑖 ← 𝑖 + 1
16: end if

In order to reduce the overall running time, during the execution of
the algorithm we also share among all workers the value of the best
cover found at any given time. To this aim, we must replace Lines
11–16 in Algorithm 2 with the ones contained in Algorithm 5.

The benefits provided by multiprocessing are not limited to infor-
mation sharing. The possibility to run the same instance multiple times
in parallel has also been exploited to develop a two-stage algorithm.
Performing the same non-deterministic task in multiple processes leads
to (most likely) different final solutions. In our case, a solution consists
of a cover of 𝑈 that, although not optimal, is expected to contain at
least some of the subsets that belong to an optimal solution. The union
of all such solutions is likely to contain most (if not all) of the subsets
needed to build an optimal cover. Therefore, at the end of the first
stage, we collect the best solutions found by each process and during
the first phase of the second stage, we restrict the candidate list to
the collection of subsets selected in this way. This is the goal of the
data structure 𝑆 that appears in the signature of the function Grasp in
Algorithm 2.

Algorithm 6 Parallel GRASP
1: function GraspCoordinator(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑖max , 𝑡max , 𝑐𝑝𝑢𝐶𝑜𝑢𝑛𝑡)
2: (𝑤𝑜𝑟𝑘𝑒𝑟𝑠, 𝑖𝑛𝑏𝑜𝑢𝑛𝑑, 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑, 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝐶𝑜𝑠𝑡) ← InitMultiprocessing(𝑐𝑝𝑢𝐶𝑜𝑢𝑛𝑡)
3: for 𝑤 in 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 do
4: Run(𝑤,GraspWorker, (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑖max , 𝑡max , 𝑖𝑛𝑏𝑜𝑢𝑛𝑑, 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑, 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝐶𝑜
5: end for

6: 𝑆 ← ∅
7: for 𝑖 in 1,… , |𝑤𝑜𝑟𝑘𝑒𝑟𝑠| do
8: 𝑊 ← Poll(𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑) ⊳ Wait for Stage 1 completion
9: 𝑆 ← 𝑆 ∪𝑊
10: end for
11: Clear(𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒)
12: for 𝑖 in 1,… , |𝑤𝑜𝑟𝑘𝑒𝑟𝑠| do
13: Put(𝑖𝑛𝑏𝑜𝑢𝑛𝑑, 𝑆)
14: end for

15: 𝑊 ∗ ← 𝑁
16: 𝑤∗ ←

∑

𝑗∈𝑁 𝑐𝑗 +
∑

{𝑗,𝑙}∈𝐷 𝑑𝑗𝑙
7: for 𝑖 in 1,… , |𝑤𝑜𝑟𝑘𝑒𝑟𝑠| do

18: (𝑊 ,𝑤) ← Poll(𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑) ⊳ Wait for Stage 2 completion
19: if 𝑤 < 𝑤∗ then
20: 𝑊 ∗ ← 𝑊
21: 𝑤∗ ← 𝑤
22: end if
23: end for

24: return (𝑊 ∗ , 𝑤∗)
25: end function

26: function GraspWorker(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑖max , 𝑡max , 𝑖𝑛𝑏𝑜𝑢𝑛𝑑, 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑, 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝐶𝑜𝑠𝑡)
27: (𝑊 ,𝑤) ← Grasp(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑖max , 𝑡max , 𝑁, 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝐶𝑜𝑠𝑡)
28: Put(𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑,𝑊)
29: 𝑆 ← Poll(𝑖𝑛𝑏𝑜𝑢𝑛𝑑)
30: (𝑊 ,𝑤) ← Grasp(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑖max , 𝑡max , 𝑆, 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒, 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝐶𝑜𝑠𝑡)
31: Put(𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑, (𝑊 ,𝑤))
32: end function

An algorithm that leverages parallel processing needs a coordinator
(at an outer layer) to handle and coordinate the work of each sub-
process. The sole purpose of the function GraspCoordinator in Algorithm

(from now on the main process) is to orchestrate the execution
of a pool of sub-processes (from now on the workers) in charge of
running function Grasp (Algorithm 2). Function GraspCoordinator takes
as input the instance data and the stopping rule parameters already
discussed plus the integer value 𝑐𝑝𝑢𝐶𝑜𝑢𝑛𝑡, which represents the number
of CPUs the algorithm can use during the execution. At Line 2, function
InitMultiprocessing is called to instantiate the 𝑤𝑜𝑟𝑘𝑒𝑟𝑠, two queue-like
data structures (𝑖𝑛𝑏𝑜𝑢𝑛𝑑 and 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑) used to collect the individual

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.

c

c
c
i
i

w
r
b
e
s

o
p
t
h
m

4

l
t
i
a
d
m

worker results at the end of the first and second stage of the algorithm,
the associative array 𝑠ℎ𝑎𝑟𝑒𝑑𝐶𝑎𝑐ℎ𝑒, used to share among all workers the
outcome of the most expensive computations, and the best incumbent
objective function value 𝑖𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡𝐶𝑜𝑠𝑡 found among all workers at a
given instant of time. At Lines 3–5, Algorithm 6 calls the Run function
that instructs each worker (the first argument) to execute the single-
process GRASP (the second argument) on the necessary input data (the
third argument). At Lines 6–10, Algorithm 6 gathers the results of the
first stage of each worker (the best covers found) and computes their
union, storing the result inside the array 𝑆. Note that the main process
(the GraspCoordinator function) will block waiting for all workers to
put their results inside the 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 queue (Line 8). Once all workers
have completed the first stage, the method exits the loop and goes to
Lines 12–14 where the union of all the best covers previously found
is added to the 𝑖𝑛𝑏𝑜𝑢𝑛𝑑 queue (shared with each worker). Adding such
information inside the 𝑖𝑛𝑏𝑜𝑢𝑛𝑑 data structure provides the signal to each
worker to start running the second stage of parallel GRASP, using as
available subsets for the first phase only those contained inside the set
𝑆. Eventually, at Lines 15–23, the algorithm waits for each worker to
complete the execution of the second stage by querying the 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑
queue. Once all results have been collected, the best one is returned as
the final solution (Line 24).

3.4. Data structures, time and space complexity

In our single-process GRASP, we make use of various data struc-
tures. Most of the time, we need to store and retrieve information
associated with an element or a subset (both represented by integers).
Thus, the most frequently used data structures are associative arrays,
more specifically arrays and hash maps. These well-established data
structures offer efficient 𝑂(1) complexity for retrieving, inserting, or
updating entries.

However, in the first phase of our algorithm, there is a step that
requires tracking the topmost 𝑝 subsets ranked according to the value
of 𝑅𝑗

| 𝑗 |
(that depends on the current partial cover) as discussed in

Section 3.2. This situation cannot be effectively handled using arrays
or hash maps, since they do not provide efficient ways to sort their
entries and to keep them sorted when the value of any of them changes.
To address this issue we use a pair 𝑍 = (𝐻max,𝐻min) of key–value
binary heaps. The former is a maximum key–value binary heap with
a maximum size equal to 𝑝 and at any given time during the execution
of the algorithm, it holds the subsets that have the lowest current
costs. The latter, instead, is a minimum key–value binary heap that
contains all the remaining subsets (those with higher current costs).
Whenever the current cost of any subset changes, we locate the heap
that contains that subset with 𝑂(1) time complexity and update its value
with 𝑂(log2(𝑝)) time complexity if it belongs to 𝐻1 and 𝑂(log2(𝑛 − 𝑝))
complexity if it belongs to 𝐻2. Finally, we compare the top elements of
𝐻max and 𝐻min (which can be both retrieved in 𝑂(1)) and, if the former
is greater than the latter, we swap them. At the end of this procedure,
𝐻max will contain the 𝑝 subsets with the lowest current costs. One can
easily check that in the worst-case scenario the time complexity of one
iteration of the first phase of our algorithm is 𝑂(𝑛 + 𝑚 log2(𝑛)). Data
structures involved in the second phase are just plain arrays and hash
maps. As a final remark, we note that adding parallel processing to our
algorithm has a space and time complexity that does not depend on the
size of the input instance.

4. Experimental analysis

In this section, first, we describe the data set and how the algorithm
parameters have been set, then we provide the results obtained solving
all mathematical formulations using Gurobi and compare their perfor-
mance with that of our parallel GRASP (using as conflict threshold both
𝑘 = 1 and 𝑘 = 2). The source code and all data sets are available at the
8

following public GitHub repository: https://github.com/lmores/or-scp-
cs-src.

The same machine has been used to execute all algorithms: an Intel
Xeon Gold 6140M CPU 2.30 GHz with 8 physical cores and 16 logical
cores paired with 64 GB of RAM running Microsoft Windows 10 Pro in
a virtual machine.

4.1. Parameters setting

The parallel GRASP algorithm has been implemented using CPython
3.10. Since many of the implementation details of this parallel variant
depend on the language chosen to code the algorithm, we specify that
our architecture makes use of the tools provided by the multipro-
cessing module of the Python Standard Library and the interested
reader can inspect the complete source code freely available at https://
github.com/lmores/or-scp-cs-src. No other external software packages
have been used. The main process in charge of handling the execution
of all the subprocesses has been initialized with a number of workers
equal to 15 (the number of available machine cores minus one used
to handle the inter-process communication workload and to provide to
the operating system a free thread to execute all the other programs).

Let 𝑢 be the number of elements contained in each available subset
counted with multiplicity, i.e. 𝑢 =

∑

𝑗∈𝑁 |𝑈𝑗 |. The average number
of elements in a subset is, therefore, 𝑢

𝑛 and we may expect that, on
average, a feasible solution should be made up of a number of subsets
equal to the total number of elements 𝑚 divided by 𝑢

𝑛 . Therefore, a
andidate value for the size 𝑝 of the RCL could be 𝑚𝑛

𝑢 . While this choice
of 𝑝 has proven effective for the majority of instances, there are specific
ases where this value is either too high or too low. In the first case,
reating an RCL with this size results in an excessively high variance
n the quality of the subsets it contains. An example is offered by the
nstances family scpcyc, where each available subset contains either 3

or 4 items, while the set to be covered varies in size from 240 to 28 160.
For these instances, we chose to limit the size of the RCL by

√

𝑛 which
depends solely on the number of available choices. In the second case
(i.e. when the available subsets are nearly as large as the whole set to be
covered), the size of the RCL happens to be too small to provide enough
variance to escape from a local minimum. An example is provided by
the instances family scpe, where many feasible solutions are made of
only 3 subsets. In this case, we decided to bound by below the size of
the RCL using a fixed value 𝑝min. The general rule adopted to set the
value of 𝑝 is therefore

𝑝 = max

{

𝑝min, min

{

√

𝑛, 𝑚𝑛
∑

𝑗∈𝑁 |𝑈𝑗 |

}}

,

here we set 𝑝min = 12. Finally, parameters related to the stopping
ules have been set to 𝑖max = 50 and 𝑡max = 600 s (equally divided
etween the first and second stage), whereas the threshold time for the
valuation of each subfamily of moves in 𝑀2

𝑊 has been set to 𝜏 = 0.01
.

To solve the mathematical formulations, we used Gurobi 9.5 with-
ut changing its default parameter settings except for the TimeLimit
arameter which has been set to 1 h (in particular, the default value of
he MIPGap parameter is 10−4). As for parallel GRASP, all logical cores
ave been made available to Gurobi which decided independently how
any of them to use during the optimization process.

.2. Instances generation

Since the SCP-CS problem has not been previously studied in the
iterature, no benchmark instances exist. We have decided to generate
hem by adapting the instances for the SCP made available by Beasley
n the OR-library (Beasley, 1990a,b). In Beasley’s instances, the size
nd the number of overlaps between subsets are not high enough to
etermine a consistent number of conflicts even when 𝑘 = 1 (the value
ax

{

max
{

|𝑈 ∩ 𝑈 | − 𝑘
}

, 0
}

is often very low or equal to zero).
𝑗,𝑙∈𝑁,𝑗≠𝑙 𝑗 𝑙

https://github.com/lmores/or-scp-cs-src
https://github.com/lmores/or-scp-cs-src
https://github.com/lmores/or-scp-cs-src
https://github.com/lmores/or-scp-cs-src
https://github.com/lmores/or-scp-cs-src
https://github.com/lmores/or-scp-cs-src

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.

f

𝛾

Table 2
Benchmark instances: Set A.
Set-A

Instance |𝑈 | |𝑁| #conf
(𝑘 = 1)

#conf
(𝑘 = 2)

scp41–3 200 334 8351 1908
scp42–3 200 334 8306 1848
scp43–3 200 334 8258 1791
scp44–3 200 334 8596 1977
scp45–3 200 334 8136 1789
scp46–3 200 334 8826 2055
scp47–3 200 334 7843 1711
scp48–3 200 334 8526 1860
scp49–3 200 334 8195 1807
scp410–3 200 334 7944 1793
scp51–3 200 667 33 962 8238
scp52–3 200 667 34 092 8047
scp53–3 200 667 34 153 8104
scp54–3 200 667 33 893 7913
scp55–3 200 667 32 490 7376
scp56–3 200 667 34 551 8355
scp57–3 200 667 34 832 8393
scp58–3 200 667 33 285 7784
scp59–3 200 667 33 094 7597
scp510–3 200 667 34 476 8321
scp61–3 200 334 49 416 40 825
scp62–3 200 334 49 916 41 855
scp63–3 200 334 49 827 41 583
scp64–3 200 334 49 404 40 723
scp65–3 200 334 49 830 41 733
scpa1–3 300 1000 139 239 49 629
scpa2–3 300 1000 139 174 49 455
scpa3–3 300 1000 139 351 49 665
scpa4–3 300 1000 139 104 50 086
scpa5–3 300 1000 139 255 49 635
scpb1–3 300 1000 485 873 457 826
scpb2–3 300 1000 486 022 458 275
scpb3–3 300 1000 485 654 457 218
scpb4–3 300 1000 485 276 456 577
scpb5–3 300 1000 485 595 457 456
scpc1–3 400 1334 347 270 152 214
scpc2–3 400 1334 345 511 150 739
scpc3–3 400 1334 345 621 151 469
scpc4–3 400 1334 346 553 150 846
scpc5–3 400 1334 346 137 151 744
scpd1–3 400 1334 883 245 867 920
scpd2–3 400 1334 883 605 869 019
scpd3–3 400 1334 883 254 868 280
scpd4–3 400 1334 883 136 868 196
scpd5–3 400 1334 883 471 868 775
scpe1–3 50 167 13 810 13 707
scpe2–3 50 167 13 837 13 756
scpe3–3 50 167 13 755 13 666
scpe4–3 50 167 13 818 13 707
scpe5–3 50 167 13 839 13 790

Table 3
Benchmark instances: Set B.

Set-B

Instance |𝑈 | |𝑁| #conf
(𝑘 = 1)

#conf
(𝑘 = 2)

scpclr10–3 511 70 2415 2415
scpclr11–3 1023 110 5995 5995
scpclr12–3 2047 165 13 530 13 530
scpclr13–3 4095 239 28 441 28 441
scpcyc06–3 240 64 281 153
scpcyc07–3 672 150 806 443
scpcyc08–3 1792 342 2173 1230
scpcyc09–3 4608 768 5660 3267
scpcyc10–3 11 520 1707 14 370 8401
scpcyc11–3 28 160 3755 35 487 21 072

For this reason, for each instance in the OR-library we generated a new
instance obtained by merging three consecutive subsets (as appearing
9

Table 4
Benchmark instances: Set C.

Set-C

Instance |𝑈 | |𝑁| #conf
(𝑘 = 1)

#conf
(𝑘 = 2)

scpnre1–3 500 1667 1 388 611 1388611
scpnre2–3 500 1667 1 388 611 1388611
scpnre3–3 500 1667 1 388 611 1388611
scpnre4–3 500 1667 1 388 611 1388611
scpnre5–3 500 1667 1 388 611 1388611
scpnrf1–3 500 1667 1 388 611 1388611
scpnrf2–3 500 1667 1 388 611 1388611
scpnrf3–3 500 1667 1 388 611 1388611
scpnrf4–3 500 1667 1 388 611 1388611
scpnrf5–3 500 1667 1 388 611 1388611
scpnrg1–3 1000 3334 4 628 203 3574676
scpnrg2–3 1000 3334 4 626 736 3574156
scpnrg3–3 1000 3334 4 623 974 3574347
scpnrg4–3 1000 3334 4 630 196 3579650
scpnrg5–3 1000 3334 4 625 519 3575142
scpnrh1–3 1000 3334 5 555 947 5555602
scpnrh2–3 1000 3334 5 555 936 5555589
scpnrh3–3 1000 3334 5 555 946 5555566
scpnrh4–3 1000 3334 5 555 937 5555574
scpnrh5–3 1000 3334 5 555 925 5555576

inside Beasley’s original instance) into a single one with a cost equal to
the sum of the costs of the merged subsets. Thanks to this operation, the
number of conflicts in each instance increased to a meaningful value for
our purposes. As a consequence of this adaptation, the new instances
contain a number of subsets that is about one-third of the number of
subsets in the original ones. Moreover, to compute the conflict costs 𝑑𝑗𝑙
or each {𝑗, 𝑙} ∈ 𝐵 we set

= max
{⌈

max
𝑗∈𝑁

𝑐𝑗
|𝑈𝑗 |

⌋

, 1
}

in (9). Our goal is to generate complex instances where the conflict
costs must have the same order of magnitude as the costs 𝑐𝑗 (𝑗 ∈ 𝑁)
associated with the selection of a single subset 𝑈𝑗 . The rationale is
that too-high conflict costs would simply imply the exclusion of the
related pair of conflicting subsets from an optimal solution, while too-
low conflict costs would essentially be negligible, actually reducing our
SCP-CS to a traditional SCP. To distinguish the generated instances from
the original ones we append the suffix ‘-3’ to the name of the former
ones (e.g., the name of the original instance ‘scp42’ from the OR-library
becomes ‘scp42-3’).

Computational tests have been carried out on 80 instances par-
titioned into three sets. Set-A, consisting of 50 instances, has been
obtained by adapting the instances proposed in Beasley (1987). Set-B
contains 10 instances and has been obtained by modifying the instances
proposed in Grossman and Wool (1997). Finally, Set-C has 20 instances
obtained by modifying instances proposed in Beasley (1992). The main
features of these three sets are summarized in Tables 2–4 where the first
column shows the name of the instance, the second and third columns
show the number of elements (|𝑈 |) and of subsets (|𝑁|), whereas the
last two columns show the number of pairs of subsets in conflict when
𝑘 = 1 and 𝑘 = 2, respectively.

4.3. Computational results: parallel GRASP vs adapted algorithms from the
literature

Since SCP-CS modifies the classical SCP by introducing conflict
costs, we adapted the classical SCP’s algorithm by Chvátal (see Chvatal
(1979)) to handle conflicts. We refer to this new algorithm as MC (Mod-
ified Chvátal). Moreover, we also developed an enhanced version of MC
obtained by incorporating the Carousel Greedy framework (see Cerrone
et al. (2017)). In the following, we provide a concise description of

them. Both algorithms are much less effective than our parallel GRASP.

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.
Fig. 1. Parallel GRASP versus MC and CG: percentage gaps from the best-known values on Set-A instances.
• Modified Chvátal (MC). Original Chvátal’s algorithm starts by
placing the available subsets 𝑈𝑗 ⊆ 𝑈 into a priority queue 𝑄. Let
𝜌(𝑈𝑗) be the number of elements in 𝑈𝑗 that are not yet covered
by the currently selected subsets (at the beginning 𝜌(𝑈𝑗) = |𝑈𝑗 |).
With each subset 𝑈𝑗 in 𝑄 we associate a priority equal to 𝑐𝑗

𝜌(𝑈𝑗)
(the lower the better). The algorithm builds a cover by iteratively
selecting the subset 𝑈𝑗 with the minimum ratio from the queue 𝑄
and adding it to the solution set 𝐶. The priority of the subsets in 𝑄
are updated at each iteration accordingly. This process continues
until the chosen subsets provide a cover for 𝑈 . We propose an
adapted version of the algorithm, in which the weight for each
subset instead of a pure 𝑐𝑗 is modified taking into account the
additional cost caused by the conflicts generated if 𝑈𝑗 is added to
𝐶. It is worth noting that without this modification, the algorithm
produces a percentage gap from the best-known values equal to
170%, at least.

• Carousel Greedy (CG) algorithm for SCP-CS. The CG approach
is a versatile and generalized greedy framework designed to sig-
nificantly enhance the performance of traditional greedy strate-
gies. CG starts from an initial feasible solution generated by the
domain-specific algorithm to be improved. This solution is refined
by replacing prior selections, made by the greedy domain-specific
algorithm, with new choices, thereby yielding a new feasible
solution. CG requires as input an initial feasible solution along
with two parameter values. The first parameter 𝛼 ∈ N is an
integer that specifies the number of iterations, while the second
parameter 𝛽 ∈ [0, 1] specifies the percentage of the initial solution
that can be pruned and rebuilt. The CG implementation for the
SCP-CS is based on the MC algorithm. After tuning, we found that
the best results were obtained by setting 𝛼 = 9 and 𝛽 = 0.3. The
core steps of the algorithm are as follows.

1. Initialization: invoke the MC algorithm to obtain an initial
feasible solution built adding one available subset at a
time; let it be 𝐶 =

{

𝑈𝑖1 ,… , 𝑈𝑖𝑡

}

.

2. Carousel start: remove from 𝐶 a percentage 𝛽 of subsets
starting from the last ones and obtaining a new (infeasible)
solution 𝐶 =

{

𝑈𝑖1 ,… , 𝑈𝑖𝑠

}

(𝑠 < 𝑡).

3. Iterative update: iterate 𝛼 ⋅ |𝐶| times, and at each iteration:

(a) remove the oldest element from 𝐶 (e.g., in the first
iteration, remove 𝑈𝑖1),

(b) add a new subset to 𝐶 using the greedy policy of
MC.

4. Solution completion: finally, invoke the MC algorithm on 𝐶
to complete the solution (restoring the feasibility).
10
We verified the performance of MC and CG by comparing them with
our parallel GRASP on the instances in Set A (where more optimal
solutions are known) for both 𝑘 = 1 and 𝑘 = 2. The result of this
comparison is shown in Fig. 1. To generate these charts we sort in
non-decreasing order the percentage gaps from the best-known solu-
tion values (plotted on the y-axis), while the 𝑥-axis is related to the
instances. The percentage gap is computed with the formula: 100 ×
𝑂𝑏𝑗−𝐵𝑒𝑠𝑡

𝐵𝑒𝑠𝑡 where 𝑂𝑏𝑗 is the solution value provided by the algorithm
considered and 𝐵𝑒𝑠𝑡 is the value of the best-known solution given by
the minimum among the results of the three mathematical models, the
parallel GRASP, MC, and CG.

As shown in Fig. 1, the parallel GRASP is by far the most effective
among the three algorithms, with a percentage gap that is often equal
to zero. In particular, for 𝑘 = 1 it finds the best-known solution in 33
out of 40 instances, and in 38 instances for 𝑘 = 2. On the other hand,
MC never finds the best-known solution and its percentage gap ranges
from 10% up to 120%, for 𝑘 = 1, and from 2% up to 122%, for 𝑘 = 2.
The application of the Carousel Greedy framework on MC allows for
improved effectiveness achieving a gap that ranges from 8% to 86%, for
𝑘 = 1, and from 2% up to 65%, for 𝑘 = 2. However, these results are
not sufficient to make it competitive with the parallel GRASP algorithm
which is, by far, more effective than the other developed methods.

4.4. Computational results: parallel GRASP vs mathematical models

In Table 5, we compare the performance of the two linear math-
ematical formulations (SCP-CS_BLP and SCP-CS_MILP) solved with
Gurobi. Given a time limit of 1 h, Gurobi’s execution terminates
with one out of three possible statuses: OPTIMAL status indicates
that Gurobi found an optimal solution within the time limit; TIME
LIMIT status signifies that the imposed time limit was reached without
finding an optimal solution; MEMORY LIMIT status indicates that the
procedure ran out of memory before reaching the time limit. In the
latter two cases, the incumbent feasible solution (if any) is returned.
When the algorithm terminates with an OPTIMAL status, we denote
the corresponding solution value with an asterisk (*). In the event of
a MEMORY LIMIT status, we report the computational time in italics.
Notice that Table 5 is partitioned into two parts, one devoted to the
comparison of the two models for 𝑘 = 1 and the other for 𝑘 = 2.

As Gurobi allows us to tune the percentage of the total runtime spent
in heuristic procedures (rather than advancing in the exploration of
the branch and bound tree), we conducted additional computational
experiments by running Gurobi with different settings for the MIPFo-
cus parameter. When this parameter is set to 0 (the default) Gurobi
strikes a balance between finding new feasible solutions and proving
that the incumbent solution is optimal, whereas when set to 1 Gurobi

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.
Table 5
Computational results for SCP-CS_BLP and SCP-CS_MILP.

GUROBI

Instance k = 1 k = 2

SCP-CS_BLP SCP-CS_MILP SCP-CS_BLP SCP-CS_MILP

Mode Obj ObjC (#conf) Time Mode Obj ObjC (#conf) Time Mode Obj ObjC (#conf) Time Mode Obj ObjC (#conf) Time

Set-A

scp41–3 D 2037* 350 (7) 253.69 D 2037* 350 (7) 200.33 D 1108* 50 (1) 1.50 D 1108* 50 (1) 1.47
scp42–3 D 1977* 700 (14) 81.81 D 1977* 700 (14) 84.44 D 1209* 100 (2) 22.47 D 1209* 100 (2) 1.42
scp43–3 D 2583* 500 (5) 1314.28 D 2583* 500 (5) 1428.64 D 1113* 0 (0) 0.86 D 1113* 0 (0) 0.94
scp44–3 D 2543* 686 (7) 1033.85 D 2543* 686 (7) 824.51 D 1192* 98 (1) 2.64 D 1192* 98 (1) 2.62
scp45–3 D 2247* 413 (7) 400.11 D 2247* 413 (7) 363.55 D 1279* 59 (1) 2.00 D 1279* 59 (1) 1.78
scp46–3 D 2602* 666 (9) 1550.40 D 2602* 666 (9) 1535.76 D 1302* 74 (1) 3.23 D 1302* 74 (1) 3.22
scp47–3 D 2128* 590 (8) 778.80 D 2128* 590 (8) 731.50 D 1116* 118 (2) 2.36 D 1116* 118 (2) 2.30
scp48–3 D 2647* 567 (7) 2220.35 D 2647* 567 (7) 1756.22 D 1149* 0 (0) 1.69 D 1149* 0 (0) 1.53
scp49–3 D 2604* 564 (6) 705.27 D 2604* 564 (6) 968.81 D 1398* 0 (0) 4.83 D 1398* 0 (0) 4.83
scp410–3 D 2501* 290 (5) 903.23 D 2501* 290 (5) 911.93 D 1404* 0 (0) 2.81 D 1404* 0 (0) 2.31
scp51–3 D 1532 304 (4) 3601.05 D 1615 76 (1) 3600.84 D 618* 0 (0) 4.94 D 618* 0 (0) 5.39
scp52–3 H 1446 73 (1) 3601.46 D 1446 73 (1) 3606.41 D 602* 0 (0) 1.19 D 602* 0 (0) 1.20
scp53–3 D 1506 300 (3) 3600.72 D 1423 0 (0) 3602.14 D 627* 0 (0) 5.14 D 627* 0 (0) 5.36
scp54–3 H 1391 294 (3) 3600.70 D 1360 196 (2) 3601.83 D 546* 0 (0) 2.14 D 546* 0 (0) 2.09
scp55–3 D 1375 201 (3) 3601.73 D 1375 201 (3) 3602.23 D 528* 0 (0) 0.78 D 528* 0 (0) 0.81
scp56–3 D 1410 91 (1) 3601.16 D 1410 91 (1) 3601.00 D 511* 0 (0) 0.56 D 511* 0 (0) 0.47
scp57–3 D 1551 0 (0) 3601.06 D 1551 0 (0) 3601.41 D 764* 0 (0) 7.58 D 764* 0 (0) 7.73
scp58–3 D 1574 77 (1) 3600.43 H 1612 0 (0) 3602.34 D 650* 0 (0) 3.45 D 650* 0 (0) 3.34
scp59–3 D 1518 200 (2) 3601.19 D 1535 100 (1) 3601.18 D 660* 0 (0) 3.23 D 660* 0 (0) 3.34
scp510–3 H 1361 0 (0) 3601.23 D 1547 178 (2) 3601.01 D 642* 0 (0) 1.86 D 642* 0 (0) 1.87
scp61–3 H 4833 3572 (63) 3602.29 D 4846 3078 (74) 3601.16 H 2169 1216 (47) 3600.78 H 2286 1501 (40) 3600.80
scp62–3 H 4808 3344 (83) 3602.87 H 4310 3439 (86) 3603.81 H 2518 1330 (43) 3601.23 H 2740 2223 (56) 3601.02
scp63–3 H 5709 3975 (71) 3601.94 D 6227 4150 (69) 3601.12 H 2925 1625 (43) 3600.57 D 3103 2000 (41) 3600.66
scp64–3 H 4061 3260 (79) 3602.47 D 4905 3880 (84) 3601.08 H 2128 1180 (40) 3600.83 D 2905 1980 (52) 3600.78
scp65–3 D 4508 3145 (73) 3601.05 D 4636 3230 (78) 3601.02 H 2319 1224 (47) 3600.68 D 2590 1496 (46) 3600.67
scpa1–3 H 3717 1248 (24) 3602.71 D 4784 2080 (34) 3601.44 D 963 52 (1) 3602.77 D 963 52 (1) 3603.54
scpa2–3 H 4037 1357 (22) 3601.89 D 4395 1947 (26) 3601.40 D 1048 59 (1) 3601.59 H 1048 59 (1) 3601.04
scpa3–3 H 3459 1150 (22) 3601.29 D 4189 1500 (26) 3600.96 D 910 0 (0) 3604.48 D 910 0 (0) 3604.49
scpa4–3 H 4025 1496 (22) 3607.18 D 4242 952 (14) 3601.74 D 946 0 (0) 3602.87 D 946 0 (0) 3603.09
scpa5–3 H 4216 670 (10) 3603.66 D 5000 2278 (31) 3600.82 D 894* 0 (0) 2010.28 D 894* 0 (0) 697.61
scpb1–3 H 9378 9126 (148) 3600.11 D 10 857 8853 (115) 3600.13 H 6045 5564 (172) 3600.43 D 6697 5772 (140) 3600.14
scpb2–3 D 10 581 9408 (235) 3600.12 D 10 581 9408 (235) 3600.11 D 6109 5432 (178) 3600.17 D 6109 5432 (178) 3600.15
scpb3–3 D 9324 8772 (160) 3600.13 D 9324 8772 (160) 3600.13 D 5864 5112 (182) 3600.82 H 4802 4440 (154) 3600.50
scpb4–3 D 9576 8820 (257) 3600.11 H 9232 9024 (152) 3600.10 D 5145 4596 (151) 3600.42 D 5145 4596 (151) 3600.46
scpb5–3 D 10 922 9758 (217) 3600.12 D 10 922 9758 (217) 3600.13 D 6178 5614 (174) 3600.11 D 6178 5614 (174) 3600.14
scpc1–3 H 14 664 11600 (86) 3602.17 D 17 478 13100 (96) 3600.94 H 1613 0 (0) 3606.77 H 1585 0 (0) 3602.22
scpc2–3 D 7473 4785 (111) 3601.70 D 7473 4785 (111) 3602.05 H 1391 99 (3) 3601.92 H 1596 33 (1) 3601.72
scpc3–3 H 10 559 7350 (106) 3603.30 D 10 699 7100 (107) 3602.40 H 1583 150 (3) 3602.28 H 1553 150 (3) 3603.92
scpc4–3 D 7997 5206 (107) 3601.81 D 7997 5206 (107) 3601.83 H 1596 152 (4) 3601.78 D 1636 190 (5) 3629.82
scpc5–3 D 10 557 7150 (105) 3601.31 D 10 557 7150 (105) 3601.92 H 1514 0 (0) 3601.94 H 1370 50 (1) 3601.77
scpd1–3 H 12 058 11106 (306) 3600.16 D 12 601 10845 (136) 3600.22 D 8882 8181 (241) 3600.21 D 8882 8181 (241) 3600.23
scpd2–3 D 11 682 10746 (304) 3600.25 D 11 682 10746 (304) 3600.20 D 9258 8361 (279) 3600.21 D 9258 8361 (279) 3600.23
scpd3–3 D 11 049 9432 (152) 3600.22 D 11 049 9432 (152) 3600.21 H 8530 7785 (233) 3600.14 H 9177 8784 (183) 3600.12
scpd4–3 D 13 535 12320 (120) 3600.39 D 13 535 12320 (120) 3600.22 D 13 738 12586 (231) 3600.18 D 13 738 12586 (231) 3600.21
scpd5–3 D 13 176 12366 (329) 3600.22 D 13 176 12366 (329) 3600.24 D 8403 7659 (237) 3600.18 D 8403 7659 (237) 3600.20
scpe1–3 D 26* 17 (3) 72.41 D 26* 17 (3) 71.23 D 23* 14 (3) 69.64 D 23* 14 (3) 50.59
scpe2–3 D 28* 19 (3) 94.54 D 28* 19 (3) 93.20 D 25* 16 (3) 63.08 D 25* 16 (3) 71.44
scpe3–3 D 24* 18 (1) 33.94 D 24* 18 (1) 23.81 D 23* 11 (5) 42.39 D 23* 11 (5) 54.05
scpe4–3 D 25* 16 (3) 88.23 D 25* 16 (3) 88.88 D 22* 13 (3) 30.17 D 22* 13 (3) 45.31
scpe5–3 D 28* 19 (3) 85.77 D 28* 19 (3) 85.64 D 25* 16 (3) 73.84 D 25* 16 (3) 73.78

Set-B

scpclr10–3 D 1926* 1893 (55) 412.10 D 1926* 1893 (55) 271.49 D 1871* 1838 (55) 331.91 D 1871* 1838 (55) 258.75
scpclr11–3 D 4215 4182 (55) 3600.43 H 4330 4294 (66) 3600.62 D 4034 3998 (66) 3600.26 H 3446 3413 (55) 3600.80
scpclr12–3 H 9236 9200 (66) 3600.78 H 9986 9950 (66) 3601.45 D 7728 7692 (66) 3600.23 H 8612 8579 (55) 3600.83
scpclr13–3 H 28 175 28130 (105) 3600.47 H 17 926 17890 (66) 3603.27 H 27 325 27283 (91) 3600.25 H 21 299 21260 (78) 3601.56
scpcyc06–3 D 126* 42 (27) 1.23 D 126* 42 (27) 2.41 D 99* 15 (9) 0.83 D 99* 15 (9) 0.72
scpcyc07–3 D 335* 136 (74) 2273.54 D 335* 136 (74) 1942.80 D 250* 49 (42) 1688.08 D 250* 49 (38) 1246.73
scpcyc08–3 D 911 434 (183) 3600.78 D 919 442 (176) 3600.22 H 660 177 (163) 3600.41 H 659 188 (160) 3600.31
scpcyc09–3 D 2332 1234 (485) 3600.83 H 2594 1481 (773) 3601.59 D 1678 565 (453) 3600.27 D 1721 608 (476) 3600.16
scpcyc10–3 D 6755 4214 (1966) 3600.70 H 7603 4985 (2428) 3600.99 D 4462 1966 (1136) 3600.58 D 4441 1909 (1376) 3600.38
scpcyc11–3 H 19 380 13500 (6627) 3600.54 H 19 744 13792 (6640) 3600.80 H 12 694 6826 (4059) 3600.42 H 13 718 7542 (5123) 3600.33

Set-C

scpnre1–3 D 7424 7149 (78) 3600.35 H 4233 3675 (36) 3603.10 D 7047 5724 (55) 3600.29 H 4773 4344 (45) 3602.90
scpnre2–3 D 9054 8826 (78) 3618.44 H 4905 4536 (45) 2079.32 H 7553 6192 (55) 3600.95 H 5210 4854 (45) 1546.80
scpnre3–3 D 8211 7440 (105) 3600.28 H 4680 4158 (36) 3603.01 D 6581 6213 (78) 3601.35 H 5625 5142 (45) 2072.90
scpnre4–3 D 7230 7158 (78) 3601.18 H 4221 3699 (36) 3603.44 D 6327 6273 (66) 3600.33 H 4856 4449 (45) 3603.74
scpnre5–3 D 7488 6288 (55) 3600.30 H 5139 4695 (45) 2787.62 D 7323 6123 (55) 3600.32 H 4530 4152 (45) 3603.19
scpnrf1–3 D 2145 1608 (15) 3601.12 H 1835 1556 (15) 3603.78 D 2798 2777 (21) 3601.01 H 1807 1718 (15) 1360.77
scpnrf2–3 D 2324 1748 (15) 3601.03 H 1888 1522 (15) 3602.90 H 2214 1919 (21) 3601.50 H 1968 1722 (15) 3603.83
scpnrf3–3 D 2241 1836 (15) 3601.09 H 1813 1777 (15) 3602.89 H 2082 1878 (15) 3601.17 H 1892 1655 (15) 2459.28
scpnrf4–3 D 2484 2370 (21) 3601.12 H 1696 1666 (15) 3603.45 H 2206 1657 (15) 3601.24 H 1829 1730 (15) 1921.07
scpnrf5–3 H 1829 1793 (15) 3601.19 H 1445 1250 (10) 3602.91 H 1814 1778 (15) 3601.36 H 1708 1630 (15) 1765.84
scpnrg1–3 D 33 276 32210 (1125) 3600.98 D 33 276 32210 (1125) 3601.00 H 15 738 15140 (736) 3600.60 D 21 735 21240 (794) 3601.28
scpnrg2–3 D 34 828 34560 (1039) 3601.02 H 34 092 33830 (980) 3600.60 D 15 524 14020 (770) 3600.75 D 15 524 14020 (770) 3600.75
scpnrg3–3 D 28 168 26620 (1104) 3601.02 D 28 168 26620 (1104) 3601.07 D 17 639 15906 (771) 3600.69 D 17 639 15906 (771) 3600.82
scpnrg4–3 D 30 665 28740 (1324) 3600.96 H 30 425 29950 (1041) 3600.60 D 17 604 15940 (819) 3600.72 D 17 604 15940 (819) 3601.21
scpnrg5–3 D 26 931 24960 (1234) 3600.95 D 26 931 24960 (1234) 3601.07 D 15 825 15270 (755) 3602.36 D 15 825 15270 (755) 3601.19
scpnrh1–3 D 19 313 15684 (253) 3601.29 H 18 114 17799 (300) 3601.52 D 20 124 20019 (351) 3602.75 H 17 637 17307 (325) 3600.78
scpnrh2–3 H 18 537 14442 (253) 3600.79 D 18 537 14442 (253) 3601.48 D 19 527 19383 (351) 3601.27 H 16 860 16581 (276) 3600.84
scpnrh3–3 D 17 982 17889 (300) 3601.29 D 17 982 17889 (300) 3601.40 H 17 082 16989 (300) 3600.97 H 17 082 16989 (300) 3600.77
scpnrh4–3 D 16 749 14646 (253) 3601.27 D 16 749 14646 (253) 3601.37 D 16 815 16716 (300) 3601.39 D 16 815 16716 (300) 3601.69
scpnrh5–3 D 17 361 17268 (300) 3601.26 H 15 654 15564 (276) 3600.78 D 16 461 16368 (300) 3601.31 H 14 967 14877 (276) 3600.83

Avg 7652.49 2944.94 7385.54 2904.29 5003.62 2350.54 4813.15 2197.07
#Opt 18 18 29 29
11

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.
Fig. 2. Performance comparison between SCP-CS_BLP and SCP-CS_MILP for 𝑘 = 1 (a) and 𝑘 = 2 (b).
focuses on finding feasible solutions quickly (by default Gurobi spends
only 5% of runtime on solving heuristics). For each linear model and
instance, we run Gurobi with both settings: column Mode shows for
each case the best-performing configuration between the Default (D) or
the Heuristic (H) one. Column Obj provides the solution value, while
column ObjC shows the sum of all conflict costs, and, in brackets,
it reports the corresponding number of conflicts #conf. Column Time
contains the computational time in seconds. Finally, the last two lines
of the table report the average objective and time values (Avg), and the
number of optimal solutions (#Opt) found by the two models out of all
instances, respectively. Analyzing these last two lines, we observe that
both models find the same number of optimal solutions for 𝑘 = 1 and
𝑘 = 2. In particular, for 𝑘 = 1, they find 18 optimal solutions out of 80
instances while, for 𝑘 = 2, they provide 29 optimal solutions. Moreover,
for 𝑘 = 2, the computational time decreases by ∼ 20% for SCP-CS_BLP
and by ∼ 25% for SCP-CS_MILP. Thus, instances with 𝑘 = 2 seem to
be easier to solve than instances with 𝑘 = 1: this is most likely due
to the lower number of conflicts (cf. Tables 2–4). From the results in
the Avg row, we deduce that SCP-CS_MILP is, on average, faster than
SCP-CS_BLP and that it provides better solutions when both models do
not find an optimal one. However, the MEMORY LIMIT status occurs
only for SCP-CS_MILP (in particular when 𝑘 = 2) and this indicates that
the growth of its search tree is faster than the one of SCP-CS_BLP. Upon
a closer examination of the result table, it becomes evident that the in-
stances in Set-C are more challenging for both models. Notably, neither
model succeeds in finding optimal solutions for this set. This difficulty
can likely be attributed to the high number of conflicts within these
instances. It is important to highlight that when we set the MIPFocus
parameter equal to 1, Gurobi manages to improve the quality of the best
solution in many instances. Nevertheless, this improvement comes at
the expense of significantly higher memory consumption, occasionally
reaching the machine’s memory limit of 64 GB before the one-hour
time limit. Despite these advancements, our parallel GRASP algorithm
consistently outperforms Gurobi in the majority of the cases.

In Fig. 2, we show the results reported in Table 5 in a way that
better highlights the performance of the linear models. In these charts,
the horizontal axis reports the computational time in seconds and
the vertical one shows the percentage of optimally solved instances
within that time. More precisely, a (𝑥, 𝑦) point on this plot shows
the percentage of optimally solved instances (𝑦 value) in less than or
equal to 𝑥 seconds. This implies that the faster the growth of a curve,
the better the performance. The blue curve is associated with SCP-
CS_BLP model, whereas the orange one corresponds to SCP-CS_MILP.
Fig. 2(a) certifies the similar performance of the two models that we
have already observed. However, we note that, overall, around 23%
of the instances are solved to optimality by SCP-CS_BLP within 2280 s,
12
while SCP-CS_MILP reaches the same result in 1950 s. This means that
SCP-CS_MILP is ∼15% faster than SCP-CS_BLP in reaching the optimal
solution. This trend is even more clear in Fig. 2(b). Here, the number of
optimal solutions found is equal to 36% and most of them are found by
both models in less than 75 s. However, the performance gap between
the two models for 𝑘 = 2 is more evident as SCP-CS_MILP reaches the
highest percentage in about 1250 s while SCP-CS_BLP requires around
2000 s to achieve the same result. To summarize, the effectiveness of the
two models is the same, but SCP-CS_MILP is, on average, more efficient
than SCP-CS_BLP.

In Table 6, we compare the solutions found by our parallel GRASP
with the ones found by the three mathematical models. Also in this
case the table is partitioned into two parts providing results for 𝑘 = 1
and 𝑘 = 2, respectively. In particular, under the headings ILP and
BQP, we report the best (possibly optimal) solution found by Gurobi
within the time limit of 1 h, when solving the two linear models and
the quadratic one, respectively. Optimal solution values are emphasized
by a trailing asterisk. Columns ObjBest and ObjMed report the best
and the median objective values of parallel GRASP out of 10 runs for
each instance. The next four columns provide statistics about the best
solution out of the ten runs. Column ObjC shows the sum of all conflict
costs and the corresponding number of conflicts #conf while column
Ttb reports the time to best that represents the time required to find
the best solution provided as output. The column Time shows the total
computational time in seconds. This value is underlined when parallel
GRASP reaches the time limit of 300 s during Stage 1. Finally, the Gap
column provides the percentage gap between ObjB and the best value
found when solving all three mathematical models. This percentage
value is computed as 100 × 𝑂𝑏𝑗𝐵𝑒𝑠𝑡−min{𝐼𝐿𝑃 , 𝐵𝑄𝑃 }

min{𝐼𝐿𝑃 , 𝐵𝑄𝑃 } . In each row, the best
value is marked in bold. At the bottom of the table, the Avg row reports
the average values of the computational time and of the percentage gap,
while #Best shows how many times parallel GRASP finds a solution that
is better than or equal to the one found by the three models solved
with Gurobi. Finally, the AvgRSD row contains the average value of
the relative standard deviation of the objective value computed using
the results of the 10 runs. The results in row #Best show that, for
𝑘 = 1, parallel GRASP finds a solution better than or equal to the
best one found by Gurobi in 72 out of 80 instances. In the remaining
8 instances the percentage gap is lower than 7.3%. For 51 instances
parallel GRASP provides a solution strictly better than the best one
with an average improvement of ∼ 15%. Similar results are observed
for 𝑘 = 2 where for 74 instances the solution provided by parallel
GRASP is the best one (the value is strictly better in 41 instances with an
average improvement of 14.56%); the percentage gap in the remaining
4 instances is lower than 4.4%. It is worthy of note that, for 𝑘 = 2,
parallel GRASP always finds the optimal solution in the 30 instances

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.
Table 6
Gurobi vs. parallel GRASP: computational results.

Parallel GRASP

Instance k = 1 k = 2

ILP QBP ObjBest ObjMed ObjC (#conf) Ttb Time Gap ILP QBP ObjBest ObjMed ObjC (#conf) Ttb Time Gap

Set-A

scp41–3 2037* 2037* 2097 2123.00 650 (13) 68.83 110.11 2.95% 1108* 1108* 1108 1108.00 50 (1) 3.25 69.81 0.00%
scp42–3 1977* 1977* 1977 2000.00 700 (14) 66.77 105.20 0.00% 1209* 1209* 1209 1209.00 50 (1) 4.52 89.06 0.00%
scp43–3 2583* 2583* 2583 2613.00 500 (5) 87.81 134.53 0.00% 1113* 1113* 1113 1113.00 0 (0) 1.14 74.20 0.00%
scp44–3 2543* 2543* 2543 2639.00 686 (7) 166.52 209.64 0.00% 1192* 1192* 1192 1192.00 98 (1) 3.03 89.83 0.00%
scp45–3 2247* 2247* 2247 2247.00 413 (7) 74.94 111.58 0.00% 1279* 1279* 1279 1279.00 59 (1) 51.00 81.56 0.00%
scp46–3 2602* 2602* 2602 2688.50 666 (9) 91.50 133.59 0.00% 1302* 1302* 1302 1302.00 74 (1) 60.56 93.78 0.00%
scp47–3 2128* 2128* 2128 2128.00 590 (8) 2.00 96.92 0.00% 1116* 1116* 1116 1116.00 118 (2) 5.08 78.34 0.00%
scp48–3 2647* 2647* 2663 2777.00 972 (10) 84.67 129.61 0.60% 1149* 1149* 1149 1149.00 0 (0) 8.52 97.16 0.00%
scp49–3 2604* 2604 2604 2684.00 564 (6) 16.14 109.52 0.00% 1398* 1398* 1398 1398.00 0 (0) 53.25 95.34 0.00%
scp410–3 2501* 2501* 2501 2527.00 290 (5) 102.95 147.56 0.00% 1404* 1404* 1404 1404.00 0 (0) 11.17 96.50 0.00%
scp51–3 1532 1637 1532 1665.00 304 (4) 199.44 273.38 0.00% 618* 618* 618 618.00 0 (0) 13.47 137.75 0.00%
scp52–3 1446 1446* 1446 1499.00 73 (1) 30.66 189.63 0.00% 602* 602* 602 602.00 0 (0) 5.17 105.80 0.00%
scp53–3 1423 1423* 1479 1502.50 300 (3) 152.00 235.36 3.94% 627* 627* 627 627.00 0 (0) 14.55 144.83 0.00%
scp54–3 1360 1392 1360 1535.00 196 (2) 89.91 263.18 0.00% 546* 546* 546 546.00 0 (0) 75.80 121.81 0.00%
scp55–3 1375 1375* 1382 1428.00 335 (5) 143.06 217.92 0.51% 528* 528* 528 528.00 0 (0) 2.91 105.14 0.00%
scp56–3 1410 1410 1410 1458.00 91 (1) 172.99 247.16 0.00% 511* 511* 511 511.00 0 (0) 6.50 96.35 0.00%
scp57–3 1551 1551 1571 1650.00 100 (1) 200.74 276.17 1.29% 764* 764* 764 764.00 0 (0) 77.41 137.03 0.00%
scp58–3 1574 1611 1517 1631.00 231 (3) 129.86 197.42 −3.62% 650* 650* 650 661.00 0 (0) 140.85 201.06 0.00%
scp59–3 1518 1518 1557 1664.50 100 (1) 216.12 285.26 2.57% 660* 660* 660 660.00 0 (0) 8.63 133.24 0.00%
scp510–3 1361 1338* 1435 1467.50 356 (4) 95.67 182.38 7.25% 642* 642* 642 664.00 0 (0) 23.30 142.72 0.00%
scp61–3 4833 2930 2930 2930.00 2166 (63) 0.70 53.08 0.00% 2169 1807 1733 1733.00 969 (30) 31.20 58.72 −4.10%
scp62–3 4310 3437 3361 3469.50 2394 (59) 37.45 60.38 −2.21% 2518 2147 2037 2037.00 1482 (52) 28.30 52.86 −5.12%
scp63–3 5709 4840 4105 4492.50 3125 (70) 39.95 61.78 −15.19% 2925 2498 2355 2544.00 1375 (37) 25.45 50.20 −5.72%
scp64–3 4061 3447 3211 3286.50 2460 (63) 30.31 55.11 −6.85% 2128 1899 1899 1899.00 940 (32) 33.81 60.94 0.00%
scp65–3 4508 3345 3181 3260.00 2091 (60) 54.81 78.20 −4.90% 2319 1994 1960 1986.00 1071 (36) 43.16 70.00 −1.71%
scpa1–3 3717 3136 2893 3048.00 936 (17) 45.27 389.85 −7.75% 963 976 978 1000.00 52 (1) 343.19 454.07 1.56%
scpa2–3 4037 3291 2934 3250.00 826 (14) 338.52 489.32 −10.85% 1048 1127 1053 1103.50 0 (0) 141.39 417.33 0.48%
scpa3–3 3459 3728 2647 2790.50 1150 (23) 361.96 514.08 −23.47% 910 907 907 919.00 50 (1) 204.44 338.07 0.00%
scpa4–3 4025 3601 2701 3031.50 884 (13) 539.39 601.24 −24.99% 946 946* 946 951.50 0 (0) 257.06 374.28 0.00%
scpa5–3 4216 3930 3069 3160.50 737 (10) 455.65 588.59 −21.91% 894* 894* 894 895.00 0 (0) 43.00 321.89 0.00%
scpb1–3 9378 4972 4320 4724.50 3666 (100) 150.86 255.21 −13.11% 6045 2975 2863 3005.00 1963 (83) 290.55 406.12 −3.76%
scpb2–3 10 581 5101 4810 5079.00 4074 (108) 198.02 287.22 −5.70% 6109 3663 3044 3350.00 2016 (77) 138.06 268.08 −16.90%
scpb3–3 9324 4678 4099 4384.50 3372 (99) 159.67 251.77 −12.38% 4802 3094 2643 2892.00 2052 (82) 246.63 349.38 −14.58%
scpb4–3 9232 4782 3885 4370.00 3084 (108) 42.98 233.85 −18.76% 5145 3129 2470 2865.50 1776 (69) 88.52 308.71 −21.06%
scpb5–3 10 922 5120 4542 5044.50 3570 (104) 156.44 257.60 −11.29% 6178 3185 2944 3068.00 2156 (77) 264.19 388.07 −7.57%
scpc1–3 14 664 9677 7437 7944.50 3900 (35) 525.47 601.88 −23.15% 1585 1766 1583 1663.00 0 (0) 573.22 601.44 −0.13%
scpc2–3 7473 4506 3995 4309.00 2211 (61) 88.92 580.51 −11.34% 1391 1470 1249 1351.00 264 (7) 423.39 601.52 −10.21%
scpc3–3 10 559 5767 4611 5002.00 2050 (39) 453.91 601.57 −20.05% 1553 1746 1343 1426.00 100 (2) 484.02 601.41 −13.52%
scpc4–3 7997 5791 4457 4695.00 1900 (44) 394.38 566.19 −23.04% 1596 1543 1385 1494.00 304 (8) 488.61 592.34 −10.24%
scpc5–3 10 557 5673 5239 5493.50 3100 (56) 355.77 601.83 −7.65% 1370 1533 1295 1451.50 50 (1) 281.63 592.41 −5.47%
scpd1–3 12 058 6412 5340 5733.50 4662 (101) 109.91 407.39 −16.72% 8882 5634 4104 4345.50 3330 (125) 317.49 494.85 −27.16%
scpd2–3 11 682 6192 5520 5929.00 4923 (116) 263.38 391.35 −10.85% 9258 4485 4213 4483.50 3456 (124) 276.17 461.47 −6.06%
scpd3–3 11 049 6324 5572 5987.50 4833 (131) 29.03 333.22 −11.89% 8530 4890 4468 4596.00 3357 (112) 89.42 440.39 −8.63%
scpd4–3 13 535 9939 7873 8784.50 7210 (115) 81.22 378.18 −20.79% 13 738 7102 6209 6431.00 5390 (132) 509.02 602.33 −12.57%
scpd5–3 13 176 6588 5718 5993.00 4887 (143) 72.97 376.96 −13.21% 8403 4740 4287 4554.00 3609 (136) 412.71 544.11 −9.56%
scpe1–3 26* 26* 26 27.00 17 (3) 1.52 9.25 0.00% 23* 23* 23 24.00 14 (3) 0.89 10.13 0.00%
scpe2–3 28* 28* 28 28.00 19 (3) 0.09 7.39 0.00% 25* 25* 25 25.00 16 (3) 0.50 7.98 0.00%
scpe3–3 24* 24* 24 24.00 18 (1) 0.05 5.89 0.00% 23* 23* 23 23.00 17 (1) 0.05 6.03 0.00%
scpe4–3 25* 25* 25 25.00 16 (3) 0.12 8.39 0.00% 22* 22* 22 22.00 13 (3) 0.09 8.50 0.00%
scpe5–3 28* 28* 28 28.00 19 (3) 0.44 7.19 0.00% 25* 25* 25 25.00 16 (3) 0.06 7.12 0.00%

Set-B

scpclr10–3 1926* 1926* 1926 1926.00 1893 (55) 1.03 21.69 0.00% 1871* 1871* 1871 1871.00 1838 (55) 0.22 20.61 0.00%
scpclr11–3 4215 3649 3501 3501.00 3468 (55) 1.03 27.39 −4.06% 3446 3446 3446 3446.00 3413 (55) 0.80 27.70 0.00%
scpclr12–3 9236 7455 6429 6429.00 6396 (55) 21.31 40.45 −13.76% 7728 8142 6374 6374.00 6341 (55) 21.66 41.05 −17.52%
scpclr13–3 17 926 20 357 13267 14 122.50 13234 (55) 48.64 79.23 −25.99% 21 299 21 107 13212 14 033.00 13179 (55) 3.64 71.66 −37.40%
scpcyc06–3 126* 126* 126 126.00 42 (27) 0.47 13.80 0.00% 99* 99* 99 99.00 15 (9) 0.61 15.70 0.00%
scpcyc07–3 335* 335 335 335.00 136 (74) 1.23 41.36 0.00% 250* 250 250 253.00 49 (42) 33.00 50.13 0.00%
scpcyc08–3 911 947 908 911.00 434 (204) 6.83 599.41 −0.33% 659 663 677 689.50 191 (147) 366.02 602.08 2.73%
scpcyc09–3 2332 2654 2317 2338.00 1222 (488) 402.47 602.13 −0.64% 1678 1762 1751 1781.00 611 (463) 448.85 602.19 4.35%
scpcyc10–3 6755 6420 5728 5794.00 3280 (1250) 456.13 602.21 −10.78% 4441 4594 4525 4586.50 1931 (1397) 568.99 602.23 1.89%
scpcyc11–3 19 380 23 938 13727 14 107.50 8334 (3030) 569.43 602.96 −29.17% 12 694 14 388 11391 11 534.50 5565 (3942) 288.55 603.00 −10.26%

Set-C

scpnre1–3 4233 4369 3711 3893.00 3546 (36) 333.32 581.88 −12.33% 4773 4296 3648 3860.00 3204 (36) 5.16 465.45 −15.08%
scpnre2–3 4905 4316 3693 4000.50 3372 (36) 263.22 495.97 −14.43% 5210 4473 3449 3876.00 3090 (36) 7.81 452.55 −22.89%
scpnre3–3 4680 4912 3826 3998.50 3510 (36) 137.64 591.86 −18.25% 5625 4595 3549 3848.00 3357 (36) 465.75 566.35 −22.76%
scpnre4–3 4221 4692 3726 3881.50 3264 (36) 157.58 574.05 −11.73% 4856 4095 3558 3832.50 3330 (45) 145.59 556.71 −13.11%
scpnre5–3 5139 4696 3660 3898.00 3348 (36) 297.39 566.87 −22.06% 4530 4536 3579 3768.50 3234 (36) 123.27 565.82 −20.99%
scpnrf1–3 1835 1621 1185 1232.00 1098 (10) 19.02 559.89 −26.90% 1807 1546 1175 1234.50 1088 (10) 78.53 603.60 −24.00%
scpnrf2–3 1888 1607 1243 1243.00 1090 (10) 34.19 570.86 −22.65% 1968 1602 1227 1233.00 1116 (10) 483.97 608.15 −23.41%
scpnrf3–3 1813 1564 1184 1205.00 1088 (10) 1.83 561.74 −24.30% 1892 1556 1174 1195.00 1078 (10) 41.28 576.44 −24.55%
scpnrf4–3 1696 1602 1183 1183.00 1105 (10) 2.20 560.21 −26.15% 1829 1533 1173 1173.00 1095 (10) 357.62 563.22 −23.48%
scpnrf5–3 1445 1590 1226 1251.00 1138 (10) 78.03 588.70 −15.16% 1708 1353 1216 1245.50 1128 (10) 204.60 603.42 −10.13%
scpnrg1–3 33 276 13234 13 302 13 616.50 10560 (567) 240.19 609.41 0.51% 15 738 6110 6151 6424.00 3930 (285) 392.78 615.22 0.67%
scpnrg2–3 34 092 13 663 13110 13 644.00 10500 (582) 48.30 607.63 −4.05% 15 524 7114 6272 6780.50 4010 (274) 575.94 613.44 −11.84%
scpnrg3–3 28 168 14 737 14287 14 946.00 12078 (603) 65.88 615.52 −3.05% 17 639 7779 6947 7464.50 4686 (284) 587.18 608.29 −10.70%
scpnrg4–3 30 425 14 053 13673 13 983.50 11330 (614) 38.61 613.43 −2.70% 17 604 6653 6589 7023.00 4900 (340) 348.42 613.66 −0.96%
scpnrg5–3 26 931 15 077 13529 14 169.50 10520 (589) 90.75 610.50 −10.27% 15 825 8521 6493 7002.50 4080 (277) 344.52 614.15 −23.80%
scpnrh1–3 18 114 12 252 9315 9856.50 8559 (190) 129.91 616.55 −23.97% 17 637 11 370 8574 9247.00 7956 (153) 160.64 627.48 −24.59%
scpnrh2–3 18 537 12 972 9101 9788.50 7974 (153) 14.45 613.57 −29.84% 16 860 10 887 8880 9147.00 8019 (190) 9.11 623.06 −18.43%
scpnrh3–3 17 982 12 348 9294 9696.00 8511 (171) 12.13 617.05 −24.73% 17 082 10 951 8833 9175.50 7971 (190) 140.39 625.81 −19.34%
scpnrh4–3 16 749 12 000 9644 9784.50 8727 (171) 100.91 616.32 −19.63% 16 815 10 599 8688 9150.00 8112 (171) 117.17 627.57 −18.03%
scpnrh5–3 15 654 12 408 9461 9762.50 8814 (208) 80.34 620.76 −23.75% 14 967 11 307 9070 9249.50 7701 (190) 103.78 629.44 −19.78%

Avg 339.18 −9.28% 325.98 −7.32%
#Best/Opt 72 74
AvgRSD 2.31% 1.56%
13

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.
Fig. 3. Average improvement of the incumbent solution value before and after the second stage of parallel GRASP.
where this solution is known. Moreover, the average percentage gaps
equal to −9.28% for 𝑘 = 1 and −7.32% for 𝑘 = 2 further highlight the
effectiveness of our algorithm. Finally, the standard deviation values
show that our algorithm is also stable with an average relative standard
deviation equal to 2.31% and 1.56%, respectively. The results in the
Gap column confirm that the hardest instances to solve using the
mathematical formulations are the ones in Set-C. Indeed, the average
percentage gap computed on these instances is equal to −16.77% for
𝑘 = 1, and to −17.36% for 𝑘 = 2. Nevertheless, even for parallel
GRASP, these instances consistently prove to be the most demanding,
frequently resulting in the algorithm reaching the time limit. Regarding
Gurobi’s solutions, it is worth highlighting the distinct performance
of the quadratic model, which impressively outperforms the other
two integer linear programming models on the Set-C instances, thus
providing a better bound for the GRASP evaluation. Finally, regarding
the computational time, parallel GRASP requires on average less than
340 s for 𝑘 = 1 and less than 326 s for 𝑘 = 2. In 62% of the instances
the algorithm stops before reaching the time limit of 600 s.

4.5. Computational results: performance evaluation of parallel GRASP com-
ponents

We conclude this section by providing some charts that allow us
to better understand the contribution of the different components of
the parallel GRASP algorithm and to highlight how the structural
differences of the test instances at hand reflect on the internal work-
load. Fig. 3 shows the performance impact of the second stage in
parallel GRASP (when GRASP is rerun restricting the subsets taken into
account during the first phase) that consistently improves the value
of the final solution. Each bar represents the percentage improvement
of the average solution value computed on the instances of a given
family (each instance has been run ten times). The family that benefits
the most by the second stage is the scpc family that has an average
improvement of ∼ 7%. A notable exception is given by the scpe and
scpnrh families, for both 𝑘 = 1 and 𝑘 = 2, where the improvement of
the final solution during the second stage is low.

Fig. 4 quantifies the benefit yielded from the adoption of the shared
cache during the first phase of parallel GRASP (see Section 3.2). For
14
each family of instances, each bar of the chart represents the average
percentage number of times when parallel GRASP has been able to re-
trieve data from the shared cache avoiding further computations (each
instance has been run ten times). The most relevant result is observed
again for the scpe family on which the parallel GRASP algorithm reuses
previously computed information ∼60% of times. For all other families,
this value ranges between 1% and 30% and for half of the families this
value is equal to at least 10%. It is important to note that whenever the
algorithm retrieves the required information from the shared cache, it
can substitute a procedure with a time cost of 𝑂(𝑛 + 𝑚 log2 𝑛) with a
straightforward memory read, which incurs a cost of 𝑂(1).

Figs. 5(a) and 5(b) show how many times the main loop of Grasp-
Phase1 and GraspPhase2 functions have been repeated on average in
order to complete a single iteration of the parallel GRASP algorithm.
Recall that one iteration of the main loop in the first phase of the
parallel GRASP amounts to the addition of a subset to the current
partial cover, while one iteration of the main loop of the second phase
of the algorithm corresponds to searching the neighborhood of the
current solution for a better cover. Each bar of the figure shows the
average number of times that a given phase has been repeated across
all instances belonging to a given family (each instance has been run
ten times). The particularly high values of the scpcyc family in Figs. 5(a)
and 5(b) are due to the fact that each available subset belonging to the
instances of this family has at most 4 elements and the total number of
elements in 𝑈 ranges from 240 in instance scpcyc06-3 up to 28 160 in
instance scpcyc11-3.

4.6. Computational results: parallel GRASP on the standard Set Covering
Problem

As SCP is a special case of the SCP-CS for the case where con-
flict costs are all zero, we also tested the performance of our paral-
lel GRASP on benchmark instances for the SCP available in the OR
library (Beasley, 1990a) for which the optimal solution values are
known. We are interested in checking the effectiveness of our algorithm
by comparing its solution values with the optimal ones. It is important
to highlight that no particular expedient or modification has been

applied to the original version of the parallel GRASP to adapt it to this

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.
Fig. 4. Average number of times precomputed data has been retrieved from the shared cache.
Table 7
Parallel GRASP on standard Set Covering Problem instances from OR library (Beasley, 1990a).

Parallel GRASP on SCP instances

Instance Opt ObjBest ObjMed Gap Instance Opt ObjBest ObjMed Gap Instance Opt ObjBest ObjMed Gap

scp41 429 429 429 0.00% scp51 253 253 253 0.00% scp61 138 138 138 0.00%
scp42 512 512 512 0.00% scp52 302 302 304 0.00% scp62 146 146 146 0.00%
scp43 516 516 516 0.00% scp53 226 226 226 0.00% scp63 145 145 145 0.00%
scp44 494 494 494 0.00% scp54 242 242 242 0.00% scp64 131 131 131 0.00%
scp45 512 512 512 0.00% scp55 211 211 211 0.00% scp65 161 161 161 0.00%
scp46 560 560 560 0.00% scp56 213 213 213 0.00%
scp47 430 430 430 0.00% scp57 293 293 293 0.00%
scp48 492 492 492 0.00% scp58 288 288 288 0.00%
scp49 641 641 641 0.00% scp59 279 279 279 0.00%
scp410 514 514 514 0.00% scp510 265 265 265 0.00%
scpa1 253 254 256 0.40% scpb1 69 69 69 0.00% scpc1 227 229 233 0.88%
scpa2 252 252 257 0.00% scpb2 76 76 76 0.00% scpc2 219 223 226 1.83%
scpa3 232 234 235 0.86% scpb3 80 80 80 0.00% scpc3 243 245 251 0.82%
scpa4 234 235 237 0.43% scpb4 79 79 79 0.00% scpc4 219 223 225 1.83%
scpa5 236 237 237 0.42% scpb5 72 72 72 0.00% scpc5 215 215 219 0.00%
scpd1 60 60 61 0.00% scpe1 5 5 5 0.00%
scpd2 66 66 67 0.00% scpe2 5 5 5 0.00%
scpd3 72 72 73 0.00% scpe3 5 5 5 0.00%
scpd4 62 62 63 0.00% scpe4 5 5 5 0.00%
scpd5 61 61 61 0.00% scpe5 5 5 5 0.00%
special case. For this reason, its efficiency results in being penalized
by all the steps concerning the conflicts that are performed in vain.
Although not directly comparable in terms of computational time with
specialized state-of-the-art heuristic methods (see Lan et al. (2007))
that find optimal solutions in a few seconds, our method performs very
well. Table 7 shows the results obtained running parallel GRASP ten
times for each instance using the same settings described in Section 4.1.
Column Instance reports the name of the original instance from the
OR library, column Opt shows the value of the optimal solution from
the literature, columns ObjBest and ObjMed contain the best solution
value and the median value found by parallel GRASP out of the 10
trials, respectively. Finally, the Gap column shows the percentage gap
between the optimal solution value and the one reported in the ObjBest
column. Parallel GRASP comes out to be effective also for the SCP,
15
finding the optimal solution in 42 out of 50 instances. Moreover, its
average percentage gap is equal to 0.15% with a peak of 1.83% that
occurs only twice. It is worth noting that for each instance the values
of columns ObjBest and ObjMed are very close, certifying the stability
of GRASP.

5. Conclusions

In this paper, we propose a new variant of the Set Covering Problem
that introduces conflicts among subsets. Two subsets in conflict can
belong to the same solution provided that a cost (proportional to the
number of items that exceeds such a threshold) is paid. We provide
three mathematical models for the problem: a pure binary linear for-
mulation, a quadratic model, and a mixed integer linear program (the

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.
Fig. 5. Average number of repetitions of phase 1 (a) and phase 2 (b) in the parallel GRASP algorithm.
latter tailored to our specific application where two subsets are in
conflict when they share a number of elements exceeding a given
threshold.). Moreover, we develop a novel parallel GRASP algorithm
that exploits information sharing for the most demanding tasks. Unlike
classical parallel implementations that transfer only the incumbent
solutions among threads, our algorithm also shares intermediate com-
putations and this allows us the removal of redundant operations across
16
threads. This approach results in an overall speedup of the procedure.
The parallel GRASP (tested with a time limit of 600 s) is very effective,
frequently outperforming Gurobi when solving three different mathe-
matical formulations by using the same number of processors and a
larger amount of time (1 h).

Starting from the definition of SCP-CS introduced in this work,
future research topics may include, for example, the study of the

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.

c
a
a
f
s
t
a
z
w
c
c

T
v
w
t

i
v
𝐻

special case when the conflict threshold 𝑘 is equal to 0 (i.e. when any
pair of overlapping subsets is in conflict) and the evaluation of other
meaningful criteria to set the cost of conflicts. Specifically, one can
consider a problem’s variant that minimizes the total overlap or the
maximum overlap of a single element, employing a classical min–max
objective function.

CRediT authorship contribution statement

Francesco Carrabs: Data curation, Formal analysis, Validation,
Visualization, Writing – original draft, Writing – review & editing,
Conceptualization. Raffaele Cerulli: Formal analysis, Project admin-
istration, Supervision, Writing – original draft, Conceptualization. Re-
nata Mansini: Formal analysis, Methodology, Project administration,
Supervision, Writing – original draft, Writing – review & editing, Con-
ceptualization. Lorenzo Moreschini: Formal analysis, Investigation,
Methodology, Software, Validation, Visualization, Writing – original
draft, Writing – review & editing, Conceptualization. Domenico Serra:
Data curation, Formal analysis, Validation, Visualization, Writing –
original draft, Writing – review & editing, Conceptualization.

Data availability

We share the link to data and source code hosted on GitHub.

Appendix. GRASP phase 1: the 𝒁 data structure

Algorithm 7 Phase 1: the 𝑍 = (𝐻max,𝐻min) data structure
1: function PopRandomCandidate(𝑍)
2: 𝑟 ← RandomInteger(0, |𝐻max| − 1)
3: (𝑗, 𝑣𝑗) ← HeapPop(𝐻max , 𝑟)
4: if |𝐻min| > 0 then
5: (𝑙, 𝑣𝑙) ← HeapPop(𝐻min , 0)
6: 𝐻max ← HeapPush(𝐻max , 𝑙, 𝑣𝑙)
7: end if
8: return 𝑗
9: end function

10: function UpdateCandidateStructure(𝑍, 𝑗, 𝑣𝑗)
11: if 𝑗 ∈ 𝐻max then
12: HeapUpdate(𝐻max , 𝑗, 𝑣𝑗)
13: else
14: HeapUpdate(𝐻min , 𝑗, 𝑣𝑗)
15: end if
16: (𝑎, 𝑣𝑎) ← HeapPeek(𝐻max)
17: (𝑏, 𝑣𝑏) ← HeapPeek(𝐻min)
18: if 𝑣𝑎 > 𝑣𝑏 then
19: HeapPop(𝐻max , 0)
20: HeapPop(𝐻min , 0)
21: HeapPush(𝐻max , 𝑏, 𝑣𝑏)
22: HeapPush(𝐻min , 𝑎, 𝑣𝑎)
23: end if
24: return 𝑍
25: end function

This appendix provides details about the data structure 𝑍 employed
during the first phase of the parallel GRASP algorithm. The main goal of
this data structure is to ease the computation of the restricted candidate
list (RCL) during the construction of a feasible solution 𝑊 . The most
omputationally expensive task is by far constructing the collection 𝑊
nd sorting it by non-decreasing values of 𝜃𝑊 . The key observation to
chieve this in an efficient way is to observe that the construction of a
easible solution 𝑊 is pursued incrementally by expanding a partial
olution. Each time a new subset 𝑈𝑗 (𝑗 ∈ 𝑁 ⧵ 𝑊) is added to 𝑊 ,
he modification of 𝑊 can be incrementally computed taking into
ccount only the subsets already present inside 𝑊 that have a non-
ero conflict cost with 𝑈𝑗 , whereas all the other ones (the most part)
ill be unaffected. Similarly, after the addition of 𝑈𝑗 to 𝑊 , the values

omputed by 𝜃𝑊 (𝑈𝑙) will change only for those subsets 𝑈𝑙 (𝑙 ∈ 𝑁 ⧵𝑊)
onflicting with 𝑈 , leaving unmodified the values associated to all the
17

𝑗

others. Therefore, our approach aims to take advantage of this obser-
vation by using the right data structure (a specialized pair of binary
heaps) to incrementally track the changes to 𝑊 and 𝜃𝑊 during the
construction of a feasible solution 𝑊 . Determining the RCL essentially
requires to keep track of the current costs of the subsets inside 𝑊
in order to pick one at random among the top 𝑝 most promising ones.
For this reason, the data structure 𝑍 is implemented as a pair of heaps
𝑍 = (𝐻max,𝐻min). The former is a maximum key–value binary heap
with fixed size 𝑝 and the latter is a minimum key–value binary heap
with unbounded size. Each entry in both these data structures is a key–
value pair: keys are the indexes of the available subsets 𝑈𝑗 ∈ 𝑊 and
their associated values are those provided by the ranking function 𝜃𝑊 .

he heap structure is computed with respect to the value of each key–
alue pair. Alongside the array that stores the heap as a binary tree,
e also keep a hash map that maps each key to the current position of

he key–value pair inside the array.
Whenever a key–value pair (𝑈𝑗 , 𝜃𝑊 (𝑈𝑗)) is inserted in 𝑍, we store

t inside either 𝐻max or 𝐻min enforcing the following conditions: each
alue inside 𝐻max must not be greater than any value stored inside
min and pairs cannot be inserted inside 𝐻min if 𝐻max has not reached

its size limit of 𝑝 entries. In this way, we are able to perform on the
data structure 𝑍 = (𝐻max,𝐻min) all the tasks required by our use case
in sublinear time. Since both heaps are stored in an array, picking
one item at random among the most promising 𝑝 ones simply requires
generating a random integer number 𝑟 in [0, |𝐻max| − 1] and popping
the element in position 𝑟 from the array, preserving the heap structure.
This can be achieved in 𝑂(log2 𝑝) time. Similarly, when 𝑊 is modified,
updating the cost of a subset 𝑈𝑗 inside 𝑊 is as simple as establishing
whether 𝑈𝑗 belongs to 𝐻max or 𝐻min and changing its position inside
the heap according to its new current cost. When doing this we must
handle an important case: if 𝑈𝑗 is inside 𝐻min and reaches the top of
the heap after the update, we may need to swap the elements at the
top of the two heaps in order to maintain the separation property.

Algorithm 7 shows the pseudo-code of the methods in Algorithm 3
that modify the data structure 𝑍. All functions whose name begins with
‘‘Heap’’ behave as in the traditional implementation of the heap data
structure; their description can be found in most textbooks (e.g. Cormen
et al. (2022)) or in the source code available at https://github.com/
lmores/or-scp-cs-src/blob/master/utils/heaps.py.

References

Amaldi, E., Capone, A., Malucelli, F., Signori, F., 2002. Umts radio planning: Optimizing
base station configuration. In: IEEE Vehicular Technology Conference. 56, pp.
768–772.

Attar, A., Li, H., Leung, V.C.M., 2011. Green last mile: How fiber-connected massively
distributed antenna systems can save energy. IEEE Wirel. Commun. 18 (5), 66–74.

Banik, A., Panolan, F., Raman, V., Sahlot, V., Saurabh, S., 2020. Parameterized
complexity of geometric covering problems having conflicts. Algorithmica 82 (1),
1–19.

Beasley, J., 1987. An algorithm for set covering problem. European J. Oper. Res. 31
(1), 85–93.

Beasley, J.E., 1990a. Or-library. Website. URL http://people.brunel.ac.uk/mastjjb/jeb/
orlib/scpinfo.html.

Beasley, J.E., 1990b. Or-library: Distributing test problems by electronic mail. J. Oper.
Res. Soc. 41 (11), 1069–1072.

Beasley, J., 1992. A lagrangean heuristic for set covering problems. In: Combinatorial
Optimization. Springer, Berlin, Heidelberg, pp. 325–326.

Bilal, N., Galinier, P., Guibault, F., 2014. An iterated-tabu-search heuristic for a variant
of the partial set covering problem. J. Heuristics 20 (2), 143–164.

Carrabs, F., Cerrone, C., Pentangelo, R., 2019. A multiethnic genetic approach for the
minimum conflict weighted spanning tree problem. Networks 74 (2), 134–147.

Carrabs, F., Cerulli, R., Pentangelo, R., Raiconi, A., 2021. Minimum spanning tree with
conflicting edge pairs: a branch-and-cut approach. Ann. Oper. Res. 298 (1), 65–78.

Carrabs, F., Gaudioso, M., 2021. A lagrangian approach for the minimum spanning tree
problem with conflicting edge pairs. Networks 78 (1), 32–45.

Cerri, G., Leo, R.D., Micheli, D., Russo, P., 2002. Reduction of electromagnetic pollution
in mobile communication systems by an optimized location of radio base stations.
In: Proceedings of the XXVIIth URSI General Assembly. Vol. 864, pp. 1–4.

Cerrone, C., Cerulli, R., Golden, B., 2017. Carousel greedy: A generalized greedy

algorithm with applications in optimization. Comput. Oper. Res. 85, 97–112.

https://github.com/lmores/or-scp-cs-src/blob/master/utils/heaps.py
https://github.com/lmores/or-scp-cs-src/blob/master/utils/heaps.py
https://github.com/lmores/or-scp-cs-src/blob/master/utils/heaps.py
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb1
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb1
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb1
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb1
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb1
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb2
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb2
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb2
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb3
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb3
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb3
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb3
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb3
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb4
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb4
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb4
http://people.brunel.ac.uk/mastjjb/jeb/orlib/scpinfo.html
http://people.brunel.ac.uk/mastjjb/jeb/orlib/scpinfo.html
http://people.brunel.ac.uk/mastjjb/jeb/orlib/scpinfo.html
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb6
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb6
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb6
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb7
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb7
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb7
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb8
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb8
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb8
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb9
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb9
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb9
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb10
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb10
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb10
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb11
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb11
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb11
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb12
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb12
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb12
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb12
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb12
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb13
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb13
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb13

Computers and Operations Research 166 (2024) 106620F. Carrabs et al.
Chvatal, V., 1979. A greedy heuristic for the set-covering problem. Math. Oper. Res. 4
(3), 233–235.

Colombi, M., Corberán, Á., Mansini, R., Plana, I., Sanchis, J.M., 2017. The directed
profitable rural postman problem with incompatibility constraints. European J.
Oper. Res. 261 (2), 549–562.

Coniglio, S., Furini, F., San Segundo, P., 2021. A new combinatorial branch-and-bound
algorithm for the knapsack problem with conflicts. European J. Oper. Res. 289 (2),
435–455.

Cormen, T., Leiserson, C., Rivest, R., Stein, C., 2022. Introduction to Algorithms, fourth
ed. MIT Press.

Darmann, A., Pferschy, U., Schauer, J., Woeginger, G.J., 2011. Paths, trees and
matchings under disjunctive constraints. Discrete Appl. Math. 159 (16), 1726–1735.

Ekici, A., 2021. Bin packing problem with conflicts and item fragmentation. Comput.
Oper. Res. 126.

Epstein, L., Favrholdt, L.M., Levin, A., 2011. Online variable-sized bin packing with
conflicts. Discrete Optim. 8 (2), 333–343.

Feo, T., Resende, M., 1989. A probabilistic heuristic for a computationally difficult set
covering problem. Oper. Res. Lett. 8 (2), 67–71.

Festa, P., Resende, M., 2002. Grasp: An annotated bibliography. In: Essays and Surveys
in Metaheuristics. Wiley-Blackwell, pp. 32–45.

Gendreau, M., Manerba, D., Mansini, R., 2016. The multi-vehicle traveling pur-
chaser problem with pairwise incompatibility constraints and unitary demands: A
branch-and-price approach. European J. Oper. Res. 248 (1), 59–71.

Gobbi, A., Manerba, D., Mansini, R., Zanotti, R., 2023. Hybridizing adaptive large
neighborhood search with kernel search: a new solution approach for the nurse
routing problem with incompatible services and minimum demand. International
Transactions in Operational Research 30 (1), 8–38.

Grossman, T., Wool, A., 1997. Computational experience with approximation algorithms
for the set covering problem. European J. Oper. Res. 101 (1), 81–92.

Guo, W., Wang, S., Chu, X., Zhang, J., Chen, J., Song, H., 2013. Automated small-
cell deployment for heterogeneous cellular networks. IEEE Commun. Mag. 51 (5),
46–53.

Gusmeroli, N., Hrga, T., Lužar, B., Povh, J., Siebenhofer, M., Wiegele, A., 2022. Biqbin:
A parallel branch-and-bound solver for binary quadratic problems with linear
constraints. ACM Trans. Math. Softw. 48 (2).

Hifi, M., Michrafy, M., 2007. Reduction strategies and exact algorithms for the
disjunctively constrained knapsack problem. Comput. Oper. Res. 34 (9), 2657–2673.
18
Jacob, A., Majumdar, D., Raman, V., 2019. Parameterized complexity of conflict-free
set cover. In: van Bevern, R., Kucherov, G. (Eds.), Computer Science – Theory and
Applications. pp. 191–202.

Könemann, J., Parekh, O., Segev, D., 2011. A unified approach to approximating partial
covering problems. Algorithmica 59 (4), 489–509.

Lan, G., DePuy, G.W., Whitehouse, G.E., 2007. An effective and simple heuristic for
the set covering problem. European J. Oper. Res. 176 (3), 1387–1403.

Manerba, D., Mansini, R., 2016. The nurse routing problem with workload constraints
and incompatible services. IFAC-PapersOnLine 49 (12), 1192–1197.

Öncan, T., Kuban Altınel, İ., 2018. A branch-and-bound algorithm for the minimum cost
bipartite perfect matching problem with conflict pair constraints. Electron. Notes
Discrete Math. 64, 5–14.

Öncan, T., Zhang, R., Punnen, A., 2013. The minimum cost perfect matching problem
with conflict pair constraints. Comput. Oper. Res. 40 (4), 920–930.

Pferschy, U., Schauer, J., 2009. The knapsack problem with conflict graphs. J. Graph
Algorithms Appl. 13, 233–249.

Pferschy, U., Schauer, J., 2013. The maximum flow problem with disjunctive
constraints. J. Combinat. Optim. 26 (1), 109–119.

Rostami, B., Errico, F., Lodi, A., 2023. A convex reformulation and an outer ap-
proximation for a large class of binary quadratic programs. Oper. Res. 71 (2),
471–486.

Sadykov, R., Vanderbeck, F., 2013. Bin packing with conflicts: A generic
branch-and-price algorithm. INFORMS J. Comput. 25 (2), 244–255.

Saffari, S., Fathi, Y., 2022. Set covering problem with conflict constraints. Comput.
Oper. Res. 143, 105763.

Sambo, Y.A., Héliot, F., Imran, M.A., 2015. A survey and tutorial of electromagnetic
radiation and reduction in mobile communication systems. IEEE Commun. Surv.
Tutor. 17 (2), 790–802.

Saminathan, B., Tamilarasan, I., Murugappan, M., 2017. Energy and electromag-
netic pollution considerations in arof-based multi-operator multi-service systems.
Photonic Netw. Commun. 34 (2), 221–240.

Şuvak, Z., Altınel, İ., Aras, N., 2020. Exact solution algorithms for the maximum
flow problem with additional conflict constraints. European J. Oper. Res. 287 (2),
410–437.

Wang, X., Jiang, Z., Gao, S., 2013. An enhanced difference method for multi-objective
model of cellular base station antenna configurations. Commun. Netw. 05, 361–366.

http://refhub.elsevier.com/S0305-0548(24)00092-3/sb14
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb14
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb14
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb15
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb15
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb15
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb15
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb15
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb16
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb16
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb16
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb16
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb16
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb17
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb17
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb17
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb18
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb18
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb18
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb19
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb19
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb19
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb20
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb20
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb20
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb21
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb21
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb21
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb22
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb22
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb22
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb23
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb23
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb23
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb23
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb23
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb24
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb24
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb24
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb24
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb24
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb24
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb24
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb25
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb25
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb25
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb26
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb26
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb26
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb26
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb26
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb27
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb27
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb27
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb27
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb27
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb28
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb28
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb28
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb29
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb29
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb29
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb29
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb29
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb30
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb30
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb30
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb31
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb31
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb31
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb32
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb32
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb32
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb33
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb33
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb33
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb33
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb33
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb34
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb34
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb34
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb35
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb35
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb35
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb36
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb36
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb36
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb37
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb37
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb37
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb37
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb37
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb38
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb38
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb38
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb39
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb39
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb39
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb40
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb40
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb40
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb40
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb40
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb41
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb41
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb41
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb41
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb41
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb42
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb42
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb42
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb42
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb42
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb43
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb43
http://refhub.elsevier.com/S0305-0548(24)00092-3/sb43

	Solving the Set Covering Problem with Conflicts on Sets: A new parallel GRASP
	Introduction
	Motivation and contributions

	Problem definition and mathematical formulations
	Binary Linear Programming Formulation
	Binary Quadratic Programming Formulation
	Special case

	The parallel GRASP algorithm
	Single-process GRASP: the outline
	Single-process GRASP
	Phase 1: building an initial solution
	Phase 2: local search

	Parallel GRASP
	Data structures, time and space complexity

	Experimental analysis
	Parameters setting
	Instances generation
	Computational results: parallel GRASP vs adapted algorithms from the literature
	Computational results: parallel GRASP vs mathematical models
	Computational results: performance evaluation of parallel GRASP components
	Computational results: parallel GRASP on the standard Set Covering Problem

	Conclusions
	CRediT authorship contribution statement
	Data availability
	Appendix. GRASP phase 1: the Z data structure
	References

