
An Additive Branch-and-Bound Algorithm for the

Pickup and Delivery Traveling Salesman Problem

with LIFO or FIFO Loading

Francesco Carrabs and Raffaele Cerulli
Dipartimento di Matematica ed Informatica, Università di Salerno, 84084 Fisciano (SA), Italy

fcarrabs@unisa.it, raffaele@unisa.it

Jean-François Cordeau
Canada Research Chair in Logistics and Transportation and CIRRELT

HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7
jean-francois.cordeau@hec.ca

February 6, 2008

This paper introduces an additive branch-and-bound algorithm for two variants of the pickup

and delivery traveling salesman problem in which loading and unloading operations have

to be performed either in a Last-In-First-Out (LIFO) or in a First-In-First-Out (FIFO)

order. Two relaxations are used within the additive approach: the assignment problem and

the shortest spanning r-arborescence problem. The quality of the lower bounds is further

improved by a set of elimination rules applied at each node of the search tree to remove from

the problem arcs that cannot belong to feasible solutions because of precedence relationships.

The performance of the algorithm and the effectiveness of the elimination rules are assessed

on instances from the literature.

Keywords: Traveling salesman problem, pickup and delivery, LIFO loading, FIFO loading,

additive branch-and-bound.

1. Introduction

This paper addresses two related variants of the Traveling Salesman Problem with Pickup and

Delivery (TSPPD) called the TSPPD with LIFO Loading (TSPPDL) and TSPPD with FIFO

Loading (TSPPDF), respectively. The TSPPD is well known. It consist of determining a

minimum length tour traveled by a vehicle to service n requests. Each request is characterized

by an origin vertex, the pickup location, where goods are loaded, and a destination vertex,

the delivery location, where goods are unloaded. The vehicle starts from a fixed vertex, the

depot, and returns to it after all requests have been satisfied. Every other vertex has to be

1

visited exactly once, with the additional constraint that the pickup vertex associated with

any given request must be visited before the corresponding delivery vertex. This problem has

been studied, among others, by Kalantari et al. [1985], Fischetti and Toth [1989], Savelsbergh

[1990], Healy and Moll [1995], Ruland and Rodin [1997], and Renaud et al. [2000, 2002]. For

a recent survey, see Cordeau et al. [2007].

In the TSPPDL, the LIFO (Last-In-First-Out) constraints require that the loading and

unloading of freight be performed in a LIFO order, i.e., if the vehicle picks up request i

before request j, then it must deliver request j before delivering request i. The TSPPDL

has applications in the distribution of goods by vehicles having a unique entry and exit point

for freight and in situations where rearranging the load is not allowed. This may be the case

for safety or physical reasons (e.g., weight, fragility, dimensions) or simply to reduce service

time at customer locations. The problem also arises in the routing of automatic guided

vehicles that use a stack to move items between locations in a plant or warehouse.

In the TSPPDF, the FIFO (First-In-First-Out) constraints require that the loading and

unloading of freight be performed in a FIFO order, i.e., if the vehicle picks up request i before

request j, then it must deliver request i before delivering request j. The TSPPDF arises, for

example, in dial-a-ride systems when fairness is a major concern, i.e. when the passengers

resent another passenger being picked up after them but dropped off before them. Other

potential industrial applications may arise in the management of automatic guided vehicles

that load items on one end and unload them at the other end [Erdogan et al., 2007].

The TSPPDL and TSPPDF are both relatively new problems on which there exists only

a limited literature. Volchenkov [1982] has analyzed a planar layout problem with LIFO

constraints. The results were later used by Levitin [1986] and Levitin and Abezgaouz [2003].

The latter paper proposes an exact algorithm for the routing of multiple-load automatic

guided vehicles. This problem is in fact a TSPPDL with the difference that each pickup

customer can be associated with more than one delivery customer, and vice-versa. Ladany

and Mehrez [1984] have studied a version of the TSPPDL in which the LIFO constraints are

relaxed, and their violations are penalized in the objective function. Computational results

were presented for very small instances (typically n = 5).

More recently, Pacheco [1997a,b] has adapted to the TSPPDL the TSP Or-opt operator

(Or [1976]). This operator relocates chains of one, two or three vertices in different positions

in the tour. The total number of possible exchanges is θ(n2), but Pacheco’s adaptation runs

in θ(n3) time due to the checks needed to find feasible 3-exchanges for the TSPPDL. The

2

author has presented results on random instances with up to 120 customers. Cassani [2004]

has introduced a Variable Neighborhood Descent (VND) heuristic based on four local search

operators. Finally, three new operators for the TSPPDL were introduced by Carrabs et al.

[2007]. These operators are embedded into a Variable Neighborhood Search (VNS) heuristic

together with the four operators proposed by Cassani [2004]. Computational results show

that the solutions produced by the VNS heuristic are significantly better than those of the

VND, at the expense of an increase in computing times.

The first exact approach for the TSPPDL studied in this paper was introduced by Pacheco

[1994, 1995] who developed a branch-and-bound algorithm derived from the algorithms of

Little et al. [1963] and Kalantari et al. [1985] for the TSP and TSPPD, respectively. Cassani

[2004] has later introduced a different branch-and-bound algorithm in which lower bounds are

computed by solving the minimum spanning tree problem (MSTP) and assignment problem

(AP) relaxations. Another method, based on dynamic programming, was also introduced by

Ficarelli [2005]. These last two approaches are able to solve instances with up to 23 vertices

in less than 20 minutes of computing time.

Very recently, three integer programming formulations and a branch-and-cut algorithm

for the TSPPDL were introduced by Cordeau et al. [2008]. This approach is based on the

TSPPD formulation of Ruland and Rodin [1997] and relies on an exponential number of

constraints to impose the LIFO policy. Several families of valid inequalities are also used

to strengthen the formulation. Exact separation procedures are used to identify violated

subtour elimination constraints, precedence constraints and LIFO constraints, while heuristic

separation procedures are used for the other families of inequalities. This algorithm is able

to solve most instances with up to 43 vertices and some instances with 51 vertices in less

than 60 minutes of computing time.

To the best of our knowledge the TSPPDF problem was first addressed by Erdogan et al.

[2007]. These authors have proposed an integer programming formulation of problem, five

local search operators and two meta-heuristics based on these operators: a tabu search and

an iterated local search. Using CPLEX on their formulation, the authors were able to solve

some instances with 25 vertices.

In this paper, we introduce an additive branch-and-bound algorithm to solve both the

TSPPDL and the TSPPDF. The concept of additive lower bounds was first introduced

by Fischetti and Toth [1989] who have applied it to the traveling salesman problem with

precedence constraints (TSPPC). This approach has also been applied successfully to the

3

symmetric TSP by Carpaneto et al. [1989] and to the asymmetric TSP by Fischetti and Toth

[1992].

In comparison with the branch-and-bound algorithms proposed by Kalantari et al. [1985],

Pacheco [1994] and Pacheco [1995], our algorithm proposes a new search tree and a different

exploration strategy. Following Pacheco [1994, 1995] and Cassani [2004], we also introduce

elimination rules that reduce the number of arcs in the residual graph (the graph induced by

the vertices not yet inserted in the tour). These elimination rules are based on the precedence

relations that arise between the vertices of the graph during the construction of a tour.

The search tree and visiting strategy chosen for our branch-and-bound algorithm increase

the number of known precedence relations and consequently improve the effectiveness of

elimination rules.

Cassani [2004] has used the same search tree in his branch-and-bound algorithm. In his

case, however, the best results are obtained by constructing the tour in a bidirectional way,

i.e., starting from the depot in forward and backward directions. In addition, lower bounds

are computed by solving the AP or MSTP relaxations. Except for one case, this algorithm

is limited to solving instances with at most 17 vertices. In our algorithm, we replace the

MSTP with the shortest spanning r-arborescence problem (r-SAP) which produces better

lower bounds. We also combine, through the additive lower bounding approach, the AP and

r-SAP, thus generating tighter lower bounds that allow the solution of larger instances. The

resulting algorithm is able to solve some instances with 43 vertices.

For the TSPPDF, the number of arc elimination rules is reduced and this affects the

performance of the algorithm which is limited to solving instances with at most 39 vertices.

This is nevertheless an improvement with respect to the results reported by Erdogan et al.

[2007] who could not solve instances with more than 25 vertices.

The remainder of the paper is organized as follows. Section 2 introduces the definitions

and notation that are used throughout the paper. Section 3 then introduces an equation to

compute the number of feasible solutions of the TSPPDL, and describes the search tree that

is explored by the additive branch-and-bound algorithm. This algorithm is then described

in detail in Section 4 and is followed by computational results in Section 5. In Section 6 we

show the flexibility of our branch-and-bound algorithm by adapting it to the TSPPDF. This

is accomplished by changing the selection policy of delivery vertices in the search tree and

by adapting the exclusion rules according to the FIFO constraints. Finally, conclusions are

presented in Section 7.

4

2. Definitions and notation

Let R = {1, ..., n} be a set of n transportation requests. A request x ∈ R is composed of

a pickup vertex x+ and a delivery vertex x−. Let P = {1+, ..., n+} be the set of pickup

vertices and D = {1−, ..., n−} the set of delivery vertices. We restrict ourselves to the case

with a single depot denoted by 0 and we assume that the depot and the pickup and delivery

vertices are all different, i.e. P ∩ D = ∅, 0 /∈ P and 0 /∈ D. Under these assumptions we

have that |P | = |D| = n. The TSPPDL and TSPPDF are defined on a weighted complete

digraph G = (N,A, c), where N = P ∪ D ∪ {0} is the vertex set, A is the arc set with

m = |A|, and c is the cost function defined on A. The cost of arc (x, y) is denoted by c(x, y).

The problem is to determine a minimum cost Hamiltonian cycle (or tour) T ∗ on G, subject

to the constraint that each pickup vertex i+ is visited before the associated delivery vertex

i− and the pickup and delivery operations are executed in a LIFO fashion for the TSPPDL

and in a FIFO fashion for the TSPPDF. A tour is a sequence (S0, ..., Si, ..., S2n), where Si

denotes the i-th stop of the tour and is defined as follows:

Si =

0 if i = 0

x+ if the vehicle picks up request x at stop i

x− if the vehicle delivers request x at stop i.

Given a vertex a ∈ N , we denote by FS(a) and BS(a) the outgoing and ingoing arc

sets of vertex a in G. Let T be a tour. Define pos(a) as the position of a in T and define

p(Si, Sj) as the path from Si to Sj in T . Given a request x ∈ R, the two vertices composing

this request are denoted by the couple [x+, x−]. Two couples [x+, x−] and [y+, y−] in T are

compatible for the TSPPDL if one of the following four compatibility conditions is satisfied:

pos(x+) < pos(y+) < pos(y−) < pos(x−) (1)

pos(y+) < pos(x+) < pos(x−) < pos(y−) (2)

pos(x+) < pos(x−) < pos(y+) < pos(y−) (3)

pos(y+) < pos(y−) < pos(x+) < pos(x−). (4)

It is easy to derive similar compatibility conditions for the TSPPDF. When two couples

[x+, x−] and [y+, y−] are not compatible for the TSPPDL, we say that there is a cross

crs(x, y) in the tour. Note that the presence of a cross implies that the LIFO constraints

are violated while the FIFO constraints can be respected as shown in Figure 1a.

5

0 1+ 2+ 1- 3+ 2- 4+

1+ 2+ 1- 2-a)

b) 0 1+ 2+ 3+ 3- 2- 4+

c)

Figure 1: a) The cross crs(1,2). The FIFO constraints are satisfied while the LIFO one are violated. b) A
consistent path for the TSPPDL. This path contains pickup vertices 1+ and 4+, but not the corresponding
delivery vertices 1− and 4−. c) A consistent path for the TSPPDF.

We also introduce the following definition that will be used in the description of our

algorithm.

Definition 1 A path p(Si, Sj) of G is consistent if i) Si = 0 and ii) there exists a feasible

tour T of G such that p(Si, Sj) ∈ T (see Figures 1b and 1c).

Observe that precedence, LIFO and FIFO constraints are satisfied by any consistent path

even though such a path may contain a pickup vertex x+ without the corresponding delivery

vertex x−. Any feasible tour T = (S0, . . . , S2n) is a consistent path with 2n+ 1 vertices and

an arc from 2n to 0.

For any path p on G, let N(p) ⊆ N be the set of vertices visited by p. Given a

consistent path p(0, w) of G, we define the residual graph Gw = (Nw, Aw), where Nw =

(N \ N(p(0, w))) ∪ {w} and Aw = {(x, y) : x, y ∈ Nw}. The residual graph Gw is thus the

subgraph of G induced by w and the vertices that do not belong to p(0, w).

To avoid repeated distinctions between the LIFO and FIFO versions of problem and to

ease the reading of paper we focus from this point on the description of our branch-and-

bound algorithm for the TSPPDL. In Section 6 we will explain how to adapt this algorithm

for the TSPPDF.

6

3. The number of feasible tours

In this section we give an equation to compute, given a directed graph G = (N,A, c), the

number of feasible TSPPDL tours on G. We explain in detail how we have derived this

equation because the approach followed also underlies the construction of the search tree

used in our branch-and-bound algorithm.

Our aim is to construct a tree T in which each node τ will represent a consistent path

on G. Clearly, according to this definition, the number of paths composed by 2n+ 1 nodes

in T represents the number of feasible solutions of the TSPPDL on G. The correspondence

between a node τ ∈ T and a consistent path in G is defined by the function ρ(τ) which

returns the consistent path of G associated with node τ . We define another function ` that,

given in input a node τ , returns the last vertex of ρ(τ). To avoid confusion, we use the term

vertex to designate one of the 2n+1 vertices of G while we will use the term node to denote

one of the elements of T .

The root node of the tree T corresponds to the trivial path containing only the depot

vertex (see Figure 2). Because of precedence constraints, the second vertex of any consistent

path has to be a pickup vertex. This implies that level 1 of T contains n nodes: one for each

of the n pickup vertices {1+, . . . , n+} of G. After selecting a node ϕ ∈ T on level 1 with

`(ϕ) = x+, the consistent path ρ(ϕ) = [0, x+] of G can be extended in two ways to generate

a new consistent path:

• adding the delivery vertex x− to obtain the path [0, x+, x−];

• adding one of the remaining n− 1 pickup vertices to obtain the path [0, x+, y+], where

y+ ∈ P \ {x+}.

From these two possibilities, we know that ρ(ϕ) can be extended in n different ways,

producing n different nodes at level 2 of T . Since this reasoning holds for each node at level

1 of T , the number of nodes at level 2 is equal to n2.

In general, given a node τ ∈ T with τ 6= 0, let a+ be the last pickup vertex visited by

ρ(τ) such that a− /∈ N(ρ(τ)). The branching on the node τ produces a set Cτ of nodes with

the following properties: i) ∃ϕ ∈ Cτ such that `(ϕ) = a−; ii) if Γ = {x+ ∈ P : x+ /∈ N(ρ(τ))}

then ∀x+ ∈ Γ ∃ψ ∈ Cτ such that `(ψ) = x+; iii) |Γ ∪ a−| = |Cτ |.

After completing the construction of T according to these rules, we can state the following

result.

7

0

1+ 2+ 3+ n+

1- 2+ 3+ n+ 1+ 2- 3+ n+

Level 0

Level 1

Level 2

Figure 2: The tree T of feasible tours. Level 0 has a single node corresponding to the trivial path containing
the depot. Level 1 has n nodes associated with the n pickup vertices of G. At level 2 we show the results of
some branching executed on level 1.

Theorem 1 The number of nodes on level k of T is equal to the number of consistent paths

of G composed by k vertices plus the depot.

Proof. The proof is by induction on the level k of T . The base case is for k = 0. On level

0 of T we have only one node and this is correct because there is an unique consistent path

composed by zero vertices plus the depot. Assuming that the statement is true for level

k − 1 we want to show that it is also true for level k. In particular we want to prove that

to each consistent path of G composed by k vertices plus the depot corresponds a node of

T on level k, and vice-versa.

Let p = p′ · {a} be a consistent path of G composed by k vertices plus the depot. Since,

by the induction hypothesis, there are on level k − 1 all the consistent paths composed of

k − 1 vertices plus the depot, then there is also a node τ corresponding to the consistent

path p′. By construction, the branching on τ generates, on level k of T , the set Cτ of all and

only nodes ϕ such that ρ(τ) · `(ϕ) is a consistent path of G with k vertices plus the depot.

This implies that ∃ϕ ∈ Cτ such that ρ(ϕ) = p.

Conversely, given a node ϕ on level k of T , the consistent path associated with this node

is ρ(ϕ), i.e. the sequence of vertices `(τ) for each node τ belonging to the path from the root

of T to ϕ. Since this path contains k + 1 nodes, then |N(ρ(ϕ))| = k + 1. 2

Corollary 1 The number of leaf nodes in T , which are all located on level 2n, is equal to

the number of feasible tours on G.

8

From Corollary 1 we conclude that it is sufficient to count the number of leaves of T to

determine the number of feasible tours of G. In the following we show how to compute the

number of leaves of T .

Let N (k, x) be the number of consistent paths composed by k vertices (plus the depot)

of which x are pickup vertices. According to the construction of T it is easy to see that

N (1, 1) = n, N (0, 0) = 1, and N (k, x) = 0 if x > k or x < dk/2e. This last condition is

derived by observing that the number of pickup vertices in a consistent path must be at least

equal to the number of deliveries, hence x ≥ dk/2e. These conditions represent the base case

of our equation. For the remaining cases, the value of N (k, x) can be computed using the

following recursive equation:

N (k, x) = N (k − 1, x) + [N (k − 1, x− 1)× (n− x+ 1)]. (5)

Equation (5) was derived as follows. In general, to construct a consistent path with k

vertices, of which x are pickup vertices, one needs to add a vertex to a consistent path p

with k − 1 vertices in which there are either x− 1 or x pickup vertices. Here we distinguish

the following two cases:

• Each consistent path p composed of k−1 vertices and containing x pickup vertices can

be extended in only one manner, by adding the unique delivery vertex that satisfies

the LIFO constraints. This explains the first term in equation (5).

• Each consistent path p composed of k− 1 vertices and containing x− 1 pickup vertices

can be extended in (n− x+ 1) ways, by adding one of the (n− x+ 1) pickup vertices

that are not in p. This explains the second term in equation (5).

Using equation (5) we can compute the number of nodes on level k of T and then, from

Theorem 1, the number of consistent paths on G composed by k vertices (plus the depot).

Indeed, the number of nodes on level k is equal to the sum of N (k, x) for dk/2e ≤ x ≤

min{k, n}. Formally, let N (k) be the number of nodes on level k. Then,

N (k) =

min{k,n}∑

x=dk/2e

N (k, x). (6)

From Equation (6) and Corollary 1 we derive the following claim.

9

Claim 1 Given a graph G = (N,A, c) with |N | = 2n + 1, the number of feasible solutions

of TSPPDL on G is given by:

N (2n) = N (2n, n). (7)

It is interesting to see how much the LIFO constraint reduces the number of feasible

solutions of the TSPPDL compared to the classical TSPPD. Using the same reasoning as

above, one can easily construct the tree of consistent paths for the TSPPD. Let p be a

consistent path (for the TSPPD) with k vertices of which x are pickup vertices. One can

extend this path by adding to it any remaining pickup vertex or any delivery vertex whose

corresponding pickup vertex is already in p. This is the difference with respect to the

TSPPDL in which, because of the LIFO constraints, we can add only one delivery vertex.

The number of delivery vertices that we can add to p is equal to 2x+1− k. Using this idea,

we can compute the number of feasible tours for the TSPPD replacing equation (5) with the

following:

N (k, x) = N (k − 1, x)× (2x+ 1− k) + [N (k − 1, x− 1)× (n− x + 1)]. (8)

In Table 1 we report the number of solutions for both problems. From this table one

can see that the LIFO constraints significantly reduce the number of feasible solutions with

respect to the TSPPD.

|N | TSPPD TSPPDL

3 1 1

5 6 4

7 90 30

9 2.520 336

11 113.400 5.040

13 7.484.400 95.040

15 681.080.400 2.162.160

17 81.729.648.000 57.657.600

Table 1: The number of feasible solutions for the TSPPD and TSPPDL

Cordeau et al. [2008] have described a different but equivalent approach for computing

the number of feasible routes in the TSPPDL.

10

4. An additive branch-and-bound algorithm

In this section we describe our additive branch-and-bound algorithm for the TSPPDL. The

three main aspects of a branch-and-bound algorithm are i) the branching strategy (i.e. the

construction of the search tree); ii) the exploration strategy for searching the tree; and iii) the

computation of lower bounds at each node of the tree. To accelerate the algorithm we also

introduce a powerful set of elimination rules or filters whose aim is to reduce as much as

possible the number of arcs in the residual graph considered at each node of the enumeration

tree.

We have already described in Section 3 our branching strategy. In the following sections

we describe the exploration strategy, the computation of lower bounds, and the set of filters

used in the algorithm.

4.1. The exploration strategy

The exploration strategy specifies, after each node evaluation, the node from which the next

branching should be performed. The most common strategies are breadth-first, depth-first,

and best-first. The breadth-first strategy explores the tree level by level, while the depth-first

strategy explores the tree by visiting at each step a child node of the last one visited. After

reaching a leaf, this strategy backtracks to visit the remaining nodes. Finally, the best-first

strategy selects at each step the node with the smallest lower bound. This strategy usually

leads to the early identification of good feasible solutions, thus allowing more pruning of the

search tree.

In our algorithm we use a depth-first strategy which is the most efficient one in terms of

computing time. Indeed, the best-first strategy requires the update of several data structures

when jumping from the current node to the most promising leaf in the search tree. Suppose

that the algorithm executes the branching on node τ , generating Cτ . After this, the algorithm

identifies the most promising leaf ϕ of T and jumps to it (let us suppose that ϕ /∈ Cτ). At

this point, the algorithm has to reconstruct the new current path ρ(ϕ) and to apply on

ϕ all the exclusion rules that will remove arcs from the residual graph according to the

new set of precedences generated by ρ(ϕ). Finally, one must update the data structures

used to represent the residual graph taking into account the arcs removed by the exclusion

rules and the vertices outside the current path (except `(ϕ)). These operations decrease the

performance of the algorithm because they are repeated millions of times. The depth-first

11

strategy is much cheaper from a computational point of view because the new current path

is obtained by simply extending the old one with one of the vertices in Cτ . The exclusion

rules remove arcs from the residual graph by only taking into account the precedences just

generated between the last vertex introduced in the current path and the ones already in

this path. This reasoning also holds when pruning a node of the search tree.

A good property of the best-first strategy, compared to the depth-first strategy, is that

it quickly finds good upper bounds which can reduce the total number of nodes that must

be explored in the search tree. However, because we use as an upper bound the solution

produced by the VNS heuristic of Carrabs et al. [2007], which often finds the optimal solution

on instances with less than 50 vertices, we are able to use a cheaper visiting strategy without

increasing the number of nodes in the search tree.

4.2. Lower bound computation

After choosing branching and exploration strategies the final step for the creation of a branch-

and-bound algorithm consists in the computation of lower bounds at each node of the search

tree. This step is essential to prune the search tree and speed up the algorithm. In the

following we explain why the lower bounds are so important and how we compute them.

Given a node τ ∈ T with τ 6= 0, let T ∗ be the best tour found so far and let Gτ be the

residual graph induced by `(τ) and the vertices in N \N(ρ(τ)). In order to generate a feasible

tour we have to find in Gτ a path pτ from `(τ) to 0 containing all vertices of Gτ and such

that ρ(τ) · pτ is a feasible tour. We call pτ a residual path of Gτ . Let us suppose now that

we know a lower bound, lbτ , on the cost of all residual paths of Gτ . If c(ρ(τ)) + lbτ ≥ c(T ∗)

then each tour with prefix ρ(τ) will have a cost greater than or equal to the best one found

so far and it is therefore useless to continue the construction of these tours as they cannot

be better than T ∗. This condition allows us to prune the search tree at node τ , avoiding the

exploration of the subtree of T rooted in τ . Obviously, the larger the number of prunings

performed on T , the smaller the number of nodes to be explored. For this reason, it is

essential to compute lower bounds that are as tight as possible.

For the TSP various relaxations allow the computation of a lower bound on the optimal

tour. For instance, two common relaxations used for the TSP are the 1-tree problem and the

assignment problem. However, Kalantari et al. [1985] reported that the solutions generated

by these two relaxations do not provide tight lower bounds for the TSPPD. The authors

adapted the assignment problem to handle the pickup and delivery precedence constraints,

12

but in a preliminary study this approach was found to be ineffective because of the amount

of branching required. Clearly, if the lower bounds computed through these relaxations are

weak for the TSPPD, they will be even weaker for the TSPPDL. For this reason, we have

decided to apply the additive approach, introduced by Fischetti and Toth [1989], and which

can be outlined as follows in the context of the TSP.

Let L (1),L (2), . . . ,L (q) be q bounding procedures available for the TSP. Suppose that

for h = 1, 2, . . . , q and for any cost matrix c = (cij), procedure L (h)(c) applied to an instance

with cost matrix c returns a lower bound δ(h) as well as a residual cost matrix c(h) = (c
(h)
ij)

such that:

i) c
(h)
ij ≥ 0 for all i, j ∈ N ;

ii) δ(h) +
∑

i∈N

∑

j∈N

c
(h)
ij xij ≤

∑

i∈N

∑

j∈N

cijxij for any feasible solution (xij).

The additive approach generates a sequence of problems, each obtained by considering

the residual cost matrix corresponding to the previous problem and applying a different

bounding procedure. The procedure is summarized in Figure 3.

Procedure: Additive

1: input: cost matrix c
2: output: lower bound δ and the corresponding residual-cost matrix c(q)

3:

4: c(0) ← c; δ ← 0;
5: for h = 1 to q do

6: apply L (h)(c(h−1)) obtaining δ(h) and the residual cost matrix c(h)

7: δ ← δ + δ(h);
8: end for

Figure 3: Additive approach

An inductive argument shows that the δ values computed in Step 7 of the procedure

provide a nondecreasing sequence of valid lower bounds.

Fischetti and Toth [1989] have applied the additive approach to the TSPPC using as

bounding procedures the AP and r-SAP. Carpaneto et al. [1989] have applied this approach

to the symmetric TSP while Fischetti and Toth [1992] have applied it to the asymmetric

TSP. For the TSPPDL we use the same bounding procedures as Fischetti and Toth [1989],

13

i.e., the AP and r-SAP. These two relaxations are derived from the following mathematical

formulation of the ATSP (see, e.g., Gutin and Punnen [2002]):

Min
∑

(i,j)∈A

cijxij (9)

subject to

∑

i∈N

xij = 1 ∀j ∈ N (10)

∑

j∈N

xij = 1 ∀i ∈ N (11)

∑

i∈S

∑

j∈N\S

xij ≥ 1 S ⊂ N : S 6= ∅ (12)

xij ≥ 0 ∀i, j ∈ N (13)

xij ∈ {0, 1} ∀i, j ∈ N, (14)

where xij = 1 if and only if arc (i, j) is in the tour. Constraints (10) and (11) restrict the

in-degree and out-degree of each vertex to be equal to one, while constraints (12) impose

strong connectivity. It is well known that one can halve the number of constraints (12) by

replacing them with:

∑

i∈S

∑

j∈V \S

xij ≥ 1 S ⊂ N : r ∈ S. (15)

Constraints (10), (11) and (13) with objective function (9), define the AP. This problem

always has an integer optimal solution and requires finding a minimum-cost collection of

vertex-disjoint subtours visiting all the vertices of G. If an optimal solution of AP determines

only one directed cycle, then it satisfies all constraints (12) and is thus optimal for the ATSP

as well. Relaxation AP can be solved in O(n3) using the Hungarian algorithm (see, e.g.,

Ahuja et al. [1993]).

Constraints (10), (13) and (15) with the objective function (9), define the r -SAP problem.

Formally, the r -SAP is defined as follows. Given a graph G = (N,A) and a root vertex r,

the shortest spanning r-arborescence problem consists in finding a minimum cost spanning

sub-graph G′ = (N,A′) of G such that: i) the in-degree of each vertex is exactly one, and

ii) each vertex can be reached from the root r. If an optimal solution of r -SAP leaves each

vertex with out-degree equal to 1, then it satisfies all constraints (11) and is thus optimal

for the ATSP as well. Relaxation r -SAP can be solved in O(n2) time by finding the shortest

14

spanning arborescence rooted at vertex r (SSAr) and by adding to it a minimum-cost arc

entering vertex r. Since, unlike the MSTP, this problem is solved on a directed graph the

lower bound produced in this way may be tighter. Polynomial algorithms for solving SSAr

have been proposed, independently, by Chu and Liu [1965] and by Edmonds [1967].

Tarjan [1977] gave efficient implementations of Edmonds’ algorithm, requiring O(|N |2)

time for complete digraphs, and O(|A| log |N |) time for sparse digraphs. Camerini et al.

[1979] have corrected an error in Tarjan’s implementation. Different implementations for

sparse digraphs based on sophisticated data structures have been proposed by Gabow et al.

[1986, 1989]. For our implementation we followed the guidelines presented by Gabow et al.

[1986] and by Fischetti and Toth [1993] to accelerate the first phase (contraction phase) of

Edmonds’ algorithm.

To obtain tighter lower bounds, an enhanced relaxation of r -SAP can be introduced. This

new relaxation is obtained from r -SAP by adding constraint (11) for i = r, i.e.,
∑

j∈N xrj = 1,

which imposes an out-degree equal to 1 for the root vertex r. This constraint can be easily

introduced by adding a large positive value M to the costs c(r, j), ∀j ∈ N . If v is the value

of an optimal solution for the r -SAP with the new cost matrix and t is the number of arcs

outgoing from r in this solution then v−Mt is the optimal value for r -SAP with the original

cost matrix.

4.3. Filters

The AP and r-SAP used in the additive approach are relaxations of the ATSP, which is

itself a relaxation of the TSPPDL. For this reason the lower bounds provided by the additive

approach may not be so tight. In the hope of improving the quality of the lower bounds,

we introduce a set of filters to detect and remove as many arcs as possible from the residual

graph Gτ = (Nτ , Aτ) considered at node τ ∈ T . Because of the precedence relations among

the vertices in the current path ρ(τ) and the precedence and LIFO constraints, some arcs

cannot belong to a feasible tour with prefix ρ(τ) and can thus be removed from the graph.

Since the “filtered” residual graph contains fewer arcs than Gτ , the solution of our two

relaxations on this new graph produces a lower bound that should be closer to the value of

shortest residual path pτ . Cassani [2004] has used a set of filters that are similar to those

introduced here although they were applied in the context of a bidirectional search.

Before listing our seven filters, we introduce some further definitions. Let a and b be two

vertices of N(ρ(τ)). If pos(a) < pos(b) we say that a precedes b in the tour and we denote

15

0 a+ b+ c+ c- b- d+ a+
d+

LS

top

Figure 4: On the left: the consistent path composed by vertices a
+, b

+, c
+, c

−, b
−, d

+. On the right: the
corresponding LIFO stack LS.

this by a b. Define a stack LS = {a+ : a+ ∈ N(ρ(τ)) and a− /∈ N(ρ(τ))} such that the

insertion order of pickup vertices in this stack coincides with their insertion order in ρ(τ).

Consequently, the vertex at the top of LS is the last pickup vertex whose delivery is not in

the current path (see Figure 4).

The seven filters applied in our branch-and-bound algorithm are:

f 1. (Basic) Remove the arcs (a+, b−) with a 6= b, (a−, a+), (0, b−), (a+, 0) and (a, a) ∀a+ ∈ P

and b− ∈ D. This filter removes from G all arcs that cannot belong to any feasible tour

for the TSPPDL. This filter can be directly applied to the graph prior to the construction

of the search tree.

f 2. If a+
 b+ in ρ(τ) or if a+ ∈ N(ρ(τ)) and b+ 6∈ N(ρ(τ)), then remove (a−, b−).

If a+
 b+ we have two cases to consider: a− b+ and b+ a−. In the first case

we can trivially remove (a−, b−) because, from the precedence constraints, b+ b−. In

the second case, both a+ and b+ are in LS and in particular b+ is over a+ in the stack

(Figure 5a). This implies that b− has to precede a− to satisfy the LIFO constraint and

then the arc (a−, b−) cannot be in the tour we are constructing. Similar reasoning holds

when a+ ∈ N(ρ(τ)) and b+ 6∈ N(ρ(τ)).

f 3. If a+, b+ ∈ LS and a+ is just under b+ in LS, then remove (b−, c−) ∀c− 6= a−.

In the presence of the LIFO constraints, the only delivery vertex that can be inserted

immediately after b− is a−. Any other delivery vertex of the residual graph produces an

infeasible tour. For this reason, we can remove all the arcs outgoing from b− toward the

delivery vertices of the residual graph, except a− (Figure 5b).

f 4. If a+
 b+ and a+, b+ ∈ LS then remove (b−, 0).

16

a+ b+ b- a-a) 0

a+b) 0 b+ a-b-

c)

c+

c+ x- c-0

a+

b+

a+
b+

Figure 5: Graphical representation of some cases of filters f2, f3 and f5.

Using the arc (b−, 0) under the previous conditions means completing the tour without

inserting in it the vertex a−. Consequently, the tour produced is not feasible.

f 5. If `(τ) = x− then remove (x−, b−) ∀b− ∈ Nτ \ {c−} where c+ is the vertex at the top of

LS.

Since the vertex c+ is at the top of LS, the only delivery vertex that can be inserted

immediately after x− is c−. Any other delivery vertex of the residual graph produces a

cross with request c (Figure 5c). For this reason, we can remove all the arcs outgoing

from x− toward the delivery vertices of the residual graph, except c−.

f 6. Remove (a, `(τ)) ∀a ∈ Nτ .

Since each vertex in a tour has only one ingoing arc and `(τ) already has one because

it is inserted in the current path, we can remove all the arcs coming from the residual

graph and ingoing to `(τ).

f 7. If `(τ) ∈ D and |N ∩N(ρ(τ))| 6= 2n+ 1, then remove (`(τ), 0).

If there are other vertices to introduce in the current path to construct a feasible tour,

we can clearly remove the arc (`(τ), 0) that produces an infeasible tour.

17

0

1+

2+

3+

n+

Level 0 Level 1

Cτ

τ
ϕ

Figure 6: The search tree T . On the right the branching of τ that produces the children set Cτ .

4.4. The algorithm

Let G = (N,A, c) be a directed and weighted graph and let T ∗ be a feasible tour identified

by a heuristic. The branch-and-bound algorithm starts the generation of the search tree T

from the depot vertex. Given a generic node τ ∈ T with τ 6= 0, the algorithm branches

according to the rules described in Section 3, generating the node set Cτ (Figure 6).

After generating Cτ the algorithm randomly selects a new node ϕ ∈ Cτ from which

to perform the next branching. Before executing this branching, the algorithm computes

the lower bound lbϕ to verify whether there may exist in the subtree rooted in ϕ at least

one solution better than T ∗. To this end, the algorithm applies on the residual graph

Gϕ = (Nϕ, Aϕ) the filters described in Section 4.3, removing a set of arcs H ⊂ Aϕ. At this

point the algorithm solves two problems on the filtered residual graph Ĝϕ = (Nϕ, Âϕ), where

Âϕ = Aϕ \H: first the AP relaxation, yielding a temporary lower bound δ ′ and the residual

cost matrix c; then the r-SAP relaxation on c, yielding another lower bound δ ′′ which is

added to δ′ to produce the lower bound δ on Ĝϕ. The lower bound on the node ϕ of the

search tree is given by lbϕ = c(ρ(ϕ)) + δ. Notice that since the residual path pϕ starts from

ϕ and ends at the depot, before solving our relaxation on Ĝϕ we replace BS(ϕ) with the set

of arcs {(x, 0) : x ∈ Nϕ}.

18

After computing lbϕ, the algorithm checks whether lbϕ ≥ c(T ∗). If this is the case the

algorithm prunes node ϕ and selects a new node in Cτ from which to restart the branching.

Otherwise, the algorithm branches on ϕ, generating the new children set Cϕ and selecting

from it a new node for the next branching. When the current path ρ(τ) is composed by 2n+1

vertices, the algorithm completes the tour by adding to it the arc (`(τ), 0) and generates a

feasible tour T ′ for TSPPDL. If c(T ′) < c(T ∗) then the algorithm sets T ∗ = T ′.

Finally, we should mention that we have also tested a deterministic node selection rule

that selects first the delivery vertex and later the pickup vertex as they appear in the stack

of available pickup vertices (i.e., the pickup vertex must be outside the current path). There

was no significant difference in performance because the starting upper bound (which is often

the optimal value or is very close to it) is rarely updated.

5. Computational results for the TSPPDL

Our additive branch-and-bound algorithm was coded in C and run on a 2.4 GHz AMD

Opteron 250 processor. Following the approach used by Carrabs et al. [2007], we have

generated test instances for the TSPPDL by adapting instances from TSPLIB. To this end,

nine files were used: a280, att532, brd14051, d15112, d18512, fnl4461, nrw1379, pr1002,

ts225. In each case, seven subsets of customers were selected to yield instances containing

19, 23, 27, 31, 35, 39 and 43 vertices, respectively. For an instance with n vertices, the cost

matrix was obtained by considering the first n rows associated with cities in the file. For

each file, the pairing of pickup and delivery vertices for the smallest instance (n = 19) was

obtained by performing a random matching between the selected locations. Larger instances

(n = 23, 27, . . .) were then obtained sequentially by performing a random matching between

the new locations considered in each step. This procedure ensures that the cost of a larger

instances can never be lower than the cost of a smaller instance.

Table 2 reports results obtained with our complete additive branch-and-bound algorithm

(denoted by BBL in the table). It also reports corresponding results obtained by considering

either the arborescence relaxation alone or the assignment problem relaxation alone. These

latter two algorithms are denoted by Arborescence and by Assignment , respectively. In this

table, column UB reports the upper bound given as an input to the algorithm. Except for

ts225-d35 for which the optimum value is equal to 36703, all values reported in column UB

coincide with the optimal objective function value. For each algorithm we report the number

19

Instance Size UB BBL Arborescence Assignment GAP

Visited nodes Time Visited nodes Time Visited nodes Time Ad → Ar Ad → As
a280 19 402 2.985 0,02 32.457 0,17 8.469 0,03 88,24 33,33

23 468 8.915 0,13 143.733 1,11 39.179 0,21 88,29 38,10
27 505 42.789 1,00 1.180.665 12,26 119.632 0,96 91,84 -4,00
31 560 126.018 4,21 4.121.411 58,54 570.088 6,09 92,81 30,87
35 647 545.528 24,42 50.828.395 978,96 3.214.238 45,29 97,51 46,08
39 691 5.329.064 299,11 375.507.586 8443,55 34.267.257 583,75 96,46 48,76
43 752 55.792.327 3918,54 n.d. n.d. 463.362.024 9471,25 58,63

att532 19 4250 4.263 0,03 28.135 0,13 59.675 0,18 76,92 83,33
23 5038 40.643 0,46 646.965 4,02 624.408 2,83 88,56 83,75
27 5800 388.248 6,95 11.551.146 105,09 12.689.262 78,96 93,39 91,20
31 6173 3.352.943 83,33 188.051.653 2358,86 162.217.084 1388,40 96,47 94,00
35 6361 54.144.429 1671,03 n.d. n.d. n.d. n.d.
39 6725 206.598.551 8478,59 n.d. n.d. n.d. n.d.
43 10714 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

brd14051 19 4555 247.539 1,22 917.963 2,46 1.246.916 2,69 50,41 54,65
23 4655 806.696 8,56 8.097.120 30,16 2.256.461 11,52 71,62 25,69
27 4936 10.925.699 149,00 135.505.592 796,55 69.079.536 446,69 81,29 66,64
31 5186 14.874.093 367,95 n.d. n.d. 321.342.607 3062,15 87,98
35 5196 149.453.979 4958,67 n.d. n.d. n.d. n.d.
39 5629 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
43 5719 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

d15112 19 76203 13.068 0,10 221.961 0,85 39.150 0,13 88,24 23,08
23 88272 200.554 2,20 10.368.678 53,74 822.409 3,94 95,91 44,16
27 93158 814.850 15,82 155.512.347 1299,02 5.547.541 43,59 98,78 63,71
31 109166 13.998.866 391,49 415.546.398 5737,71 87.276.910 913,75 93,18 57,16
35 115554 45.984.827 1935,22 n.d. n.d. 372.957.673 5793,58 66,60
39 119863 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
43 128798 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

d18512 19 4446 7.436 0,04 331.311 0,97 767.535 1,59 95,88 97,48
23 4658 634.066 6,24 2.512.323 12,28 1.894.524 8,66 49,19 27,94
27 4704 12.023.434 141,47 19.353.777 146,80 63.179.735 347,11 3,63 59,24
31 5120 24.459.889 527,21 365.265.141 3528,83 122.335.390 1234,18 85,06 57,28
35 5186 335.729.113 9252,33 n.d. n.d. n.d. n.d.
39 5419 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
43 5634 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

fnl4461 19 1866 996 0,01 1.235 0,00 5.871 0,02 50,00
23 2067 9.444 0,15 37.177 0,27 62.298 0,45 44,44 66,67
27 2483 154.020 3,56 2.985.419 29,88 1.596.609 15,12 88,09 76,46
31 2672 575.082 18,93 26.900.815 385,81 14.003.558 181,80 95,09 89,59
35 2852 4.124.716 178,50 421.376.576 8185,39 126.162.492 2037,76 97,82 91,24
39 3109 120.707.943 6372,41 n.d. n.d. n.d. n.d.
43 3269 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

nrw1379 19 2691 5.571 0,05 1.019.856 2,86 13.014 0,04 98,25 -20,00
23 2919 11.722 0,18 22.885.165 92,37 15.686.374 55,36 99,81 99,67
27 3366 18.347.920 311,32 1.253.002.900 6765,31 311.695.166 1937,43 95,40 83,93
31 3554 299.732.802 7232,92 n.d. n.d. n.d. n.d.
35 3652 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
39 4002 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
43 4282 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

pr1002 19 12947 1.306 0,01 3.010 0,02 14.925 0,07 50,00 85,71
23 13872 2.202 0,04 10.838 0,09 69.980 0,64 55,56 93,75
27 15566 13.882 0,43 129.589 1,83 777.791 9,85 76,50 95,63
31 16255 117.976 4,59 732.124 15,09 8.388.684 133,33 69,58 96,56
35 17564 557.678 28,75 8.006.178 225,55 66.545.439 1361,79 87,25 97,89
39 18862 9.266.715 563,59 110.463.870 4068,64 n.d. n.d. 86,15
43 20173 29.966.621 2435,54 n.d. n.d. n.d. n.d.

ts225 19 21000 3.698 0,03 9.697 0,04 5.431 0,01 25,00 -66,67
23 25000 11.146 0,16 62.181 0,43 18.030 0,09 62,79 -43,75
27 32395 345.338 5,32 1.520.839 15,63 8.323.803 39,01 65,96 86,36
31 33395 686.365 20,74 841.602 17,05 5.713.115 47,30 -17,79 56,15
35 36784 3.366.853 149,39 6.406.906 191,76 19.963.941 255,40 22,10 41,51
39 39395 12.705.633 752,21 27750950 1099,44 93.497.199 1544,21 31,58 51,29
43 43082 85.718.933 6120,99 240.369.346 10576,00 n.d. n.d. 42,12

Table 2: Performance comparison between the additive algorithm and the algorithms that
use either the arborescence or the assignment relaxation.

20

of nodes visited in the search tree and the total CPU time, in seconds, spent to compute the

optimal solution. A maximum CPU time of 3 hours was imposed for the solution of each

instance. When an instance could not be solved within that time limit, this is indicated by

n.d. The last column, GAP, shows the difference of computing time, in percentage, between

BBL and Arborescence and between BBL and Assignment, respectively.

A comparison of the number of nodes visited by each of the three algorithms shows

the superiority of the additive approach. Except for one case, fnl4461-d15, the number of

nodes visited by BBL is much smaller than with the two other algorithms. This difference

is sometimes dramatic. For example on a280-d39, att532-d31, brd14051-d27, d15112-d31,

d18512-d31, fnl4461-d35, nrw1379-d27, pr1002-d35, i.e., the largest instances for which all

three algorithms reach an optimal solution in less than three hours, the reduction is larger

than 80%, and on ts225-d39 it is equal to 54% with respect to Arborescence and to 86% with

respect to Assignment. Obviously, this reduction in the number of nodes visited often implies

that BBL is much faster than Arborescence and Assignment. However, this is not always

true because of the extra time spent in solving two relaxations at each node of the tree.

From Table 2, one can see that BBL is slower than Arborescence in only one case, on ts225-

d31. With respect to Assignment, BBL is slower in four cases, on a280-d23, nrw1379-d19,

ts225-d19 and ts225-d23. In these cases, however, the gap between BBL and Assignment is

negligible.

For the remaining instances, running times show significant improvements are obtained

by applying the additive approach. On all a280, att532, brd14051, d15112, nrw1379 and

pr1002 instances, BBL is at least 50% faster than Arborescence and this improvement often

exceeds 80%. Within the maximum time limit, BBL can solve instances with four more

vertices on a280, d15112, d18512, fnl4461, nrw1379, pr1002 and eight more vertices on

att532, brd14051. The Assignment has better performance with respect to Arborescence.

Nevertheless, the results show that there is a large difference in running times between these

two algorithms. Indeed, in all cases for which BBL is faster than Assignment the gap is at

least equal to 25%. Moreover, BBL solves instances with four more vertices than Assignment

on brd14051, d18512, fnl4461, nrw1379, ts225 and eight more vertices on both att532 and

pr1002.

Another aspect that we have studied is the impact of filters on BBL. To this end we

have removed from the algorithm all the filters except the basic one (i.e., f 1). We denote

by BBL nf this new algorithm. Table 3 reports the results obtained with BBL nf. These

21

Instance Size UB BBL BBL nf GAP

Visited nodes Time Visited nodes Time
a280 19 402 2.985 0,02 44.475 0,39 94,87

23 468 8.915 0,13 157.903 2,15 93,95
27 505 42.789 1,00 1.375.702 27,68 96,39
31 560 126.018 4,21 6.099.268 173,44 97,57
35 647 545.528 24,42 41.132.729 1599,31 98,47
39 691 5.329.064 299,11 n.d. n.d.
43 752 55.792.327 3918,54 n.d. n.d.

att532 19 4250 4.263 0,03 103.354 0,76 96,05
23 5038 40.643 0,46 1.187.710 13,19 96,51
27 5800 388.248 6,95 13.284.313 242,45 97,13
31 6173 3.352.943 83,33 289.092.559 6759,83 98,77
35 6361 54.144.429 1671,03 n.d. n.d.
39 6725 206.598.551 8478,59 n.d. n.d.
43 10714 n.d. n.d. n.d. n.d. n.d.

brd14051 19 4555 247.539 1,22 1.580.565 8,71 85,99
23 4655 806.696 8,56 2.484.690 29,61 71,09
27 4936 10.925.699 149,00 65.132.547 1042,48 85,71
31 5186 14.874.093 367,95 221.053.635 5656,15 93,49
35 5196 149.453.979 4958,67 n.d. n.d.
39 5629 n.d. n.d. n.d. n.d. n.d.
43 5719 n.d. n.d. n.d. n.d. n.d.

d15112 19 76203 13.068 0,10 70.979 0,62 83,87
23 88272 200.554 2,20 3.508.314 41,25 94,67
27 93158 814.850 15,82 25.521.575 510,44 96,90
31 109166 13.998.866 391,49 n.d. n.d.
35 115554 45.984.827 1935,22 n.d. n.d.
39 119863 n.d. n.d. n.d. n.d. n.d.
43 128798 n.d. n.d. n.d. n.d. n.d.

d18512 19 4446 7.436 0,04 13.364 0,09 55,56
23 4658 634.066 6,24 1.366.535 12,37 49,56
27 4704 12.023.434 141,47 29.251.676 356,69 60,34
31 5120 24.459.889 527,21 107.338.428 2379,15 77,84
35 5186 335.729.113 9252,33 n.d. n.d.
39 5419 n.d. n.d. n.d. n.d. n.d.
43 5634 n.d. n.d. n.d. n.d. n.d.

fnl4461 19 1866 996 0,01 3.510 0,03 66,67
23 2067 9.444 0,15 86.757 1,12 86,61
27 2483 154.020 3,56 5.761.975 103,17 96,55
31 2672 575.082 18,93 197.112.308 4822,09 99,61
35 2852 4.124.716 178,50 n.d. n.d.
39 3109 120.707.943 6372,41 n.d. n.d.
43 3269 n.d. n.d. n.d. n.d. n.d.

nrw1379 19 2691 5.571 0,05 17.489 0,15 66,67
23 2919 11.722 0,18 150.690 2,11 91,47
27 3366 18.347.920 311,32 n.d. n.d.
31 3554 299.732.802 7232,92 n.d. n.d.
35 3652 n.d. n.d. n.d. n.d. n.d.
39 4002 n.d. n.d. n.d. n.d. n.d.
43 4282 n.d. n.d. n.d. n.d. n.d.

pr1002 19 12947 1.306 0,01 1.328 0,01 0,00
23 13872 2.202 0,04 2.962 0,05 20,00
27 15566 13.882 0,43 14.988 0,45 4,44
31 16255 117.976 4,59 241.025 9,66 52,48
35 17564 557.678 28,75 1.752.401 91,24 68,49
39 18862 9.266.715 563,59 54.715.192 3527,35 84,02
43 20173 29.966.621 2435,54 n.d. n.d.

ts225 19 21000 3.698 0,03 21.743 0,19 84,21
23 25000 11.146 0,16 103.669 1,31 87,79
27 32395 345.338 5,32 4.414.244 69,39 92,33
31 33395 686.365 20,74 10.573.610 304,26 93,18
35 36784 3.366.853 149,39 56.651.571 2429,08 93,85
39 39395 12.705.633 752,21 n.d. n.d.
43 43082 85.718.933 6120,99 n.d. n.d.

Table 3: Performance comparison between the BBL algorithm and the version without filters.

22

results show the effectiveness of the filters and how much they affect the performance of BBL.

Except for pr1002-d23 and pr1002-d27, all remaining instances are solved at least 50% faster

with BBL than with BBL nf. In particular, on the a280, brd14051, att532, d15112 and ts225

instances the improvement provided by the filters is at least 70%. Even more relevant is the

dimension of instances that can be solved by using the filters. BBL solves instances with

four more vertices on brd14051, d18512 and pr1002, and with eight more vertices on a280,

att532, d15112, fnl4461, nrw1379 and ts225.

Making direct comparisons with existing branch-and-bound algorithms for the TSPPDL

is difficult because of the different computers and test instances used. The algorithm of

Pacheco [1995] was able to solve instances with at most 17 vertices, on a 486 DX2 50MHz,

in 700 seconds. That proposed by Cassani [2004] was able to solve, on a 500 MHz Intel

PENTIUM 3 Processor, instances with the same dimension in less than 20 seconds. On the

fnl4461 instance with at most 23 vertices, this algorithm computed the exact solution in

less than 160 seconds. Finally the dynamic programming approach introduced by Ficarelli

[2005] solved instances with up to 23 vertices in less than 1150 seconds on a 1.4 GHz Intel

Pentium-M 710. Unfortunately, none of these authors reported results for larger instances.

With our algorithm, we were able to solve all instances with 23 vertices in less than 10

seconds. With the exception of nrw1379-d31, we were also able to solve all instances with 31

vertices in less than 600 seconds. It thus seems fair to say that our new branch-and-bound

algorithm outperforms all previous branch-and-bound approaches and that the improvement

in performance cannot be attributed solely to an increase in computing speed.

Finally, Cordeau et al. [2008] have tested their branch-and-cut algorithm on the same

instances used in this paper and they have compared their results with those reported here.

The branch-and-cut algorithm could solve most instances with up to 43 vertices within one

hour of computing time. In addition, some instances with 51 vertices could be solved within

that time limit. This comparison shows that the branch-and-bound algorithm introduced

here is outperformed by the branch-and-cut algorithm. However, the implementation of the

latter algorithm appears to be much more involved. It also relies on the availability of a

powerful solver such as CPLEX. In addition to being easier to implement, the branch-and-

bound algorithm introduced here can be easily adapted to handle further restrictions on the

construction of tours.

23

6. Adaptation to the TSPPDF

An interesting aspect of our additive branch-and-bound algorithm is its flexibility. With

slight modifications this algorithm is able to manage additional restrictions such as vehicle

capacity constraints or FIFO constraints. Capacity constraints can be handled during the

branching by creating only nodes that correspond to paths that satisfy the vehicle capacity.

In the following we explain how the algorithm can be adapted to the TSPPDF. There are two

things to change to replace the LIFO constraints with FIFO ones: the branching strategy

and the filters.

Regarding the branching strategy, the extension of a consistent path by a pickup vertex

is performed in the same way as in the TSPPDL. The only difference concerns the extension

with a delivery vertex. Indeed, in this case one must select the delivery vertex x− whose

pickup x+ is the first (instead of the last) pickup vertex in ρ(τ) with x− /∈ ρ(τ).

The modifications performed to the filters are described in the next section.

6.1. Filters

The filters for the TSPPDF are similar to those introduced in Section 4.3. Before listing

them we define the FIFO queue FQ = {a+ : a+ ∈ N(ρ(τ)) and a− /∈ N(ρ(τ))}. It is easy

to see that the insertion order of pickup vertices in this queue coincides with their insertion

order in ρ(τ). Consequently, the vertex at the bottom of FQ is the first pickup vertex whose

delivery is not in the current path (see Figure 7).

c+
d+

FQ

top

bottom0 a+ b+ a- c+ b- d+

Figure 7: On the left: the consistent path composed by vertices a
+, b

+, a
−, c

+, b
−, d

+. On the right: the
corresponding FIFO queue FQ.

The filters for the TSPPDF are:

f ’1. (Basic) Remove the arcs (a−, a+), (0, b−), (a+, 0) and (a, a) ∀a+ ∈ P and b− ∈ D.

This filter removes from G all arcs that cannot belong to any feasible tour for the

24

TSPPDF. It can be directly applied to the graph prior to the construction of the search

tree.

f ’2. If a+
 b+ in ρ(τ) or if a+ ∈ N(ρ(τ)) and b+ 6∈ N(ρ(τ)), then remove (b−, a−).

If a+
 b+ we have two cases to consider: a− b+ and b+ a−. In the first case we

can trivially remove (b−, a−) because, from the precedence constraints, b+ b−. In the

second case, both a+ and b+ are in FQ and in particular b+ is over a+ in the queue.

This implies that a− has to precede b− to satisfy the FIFO constraints and then the

arc (b−, a−) cannot be in the tour we are constructing. Similar reasoning holds when

a+ ∈ N(ρ(τ)) and b+ 6∈ N(ρ(τ)).

f ’3. If a+, b+ ∈ FQ and a+ is just under b+ in FQ, then remove (a−, c−) ∀c− ∈ Nτ \ {b−}

and (c−, b−) ∀c− ∈ Nτ \ {a−}.

For each pickup vertex that precedes a+ or follows b+, its delivery precedes a− or follows

b−, respectively. This means that between a− and b− there cannot be delivery vertices.

For this reason, we can remove all the arcs outgoing from a− toward the delivery vertices

of the residual graph, except b− and all the arcs ingoing to b− from the delivery vertices

of the residual graph, except a−.

f ’4. Let a+ be the vertex at the bottom of FQ and b+ ∈ FQ. Then remove (b+, c−) ∀c− ∈

Nτ \ {a−}.

Because of the FIFO constraints, if a+ is at the bottom of FQ then the only delivery

vertex that can be inserted immediately after b+ is a−. Any other delivery vertex of

the residual graph produces an infeasible tour. For this reason, we can remove all the

arcs outgoing from b+ toward the delivery vertices of the residual graph, except a−.

f ’5. If a+
 b+ then remove (a−, 0).

Using the arc (a−, 0) under the previous conditions means completing the tour without

inserting in it the vertex b−. Consequently, the tour produced is not feasible.

f ’6. If `(τ) = b− then remove (b−, c−) ∀c− ∈ Nτ \{a−} where a+ is the vertex at the bottom

of FQ.

Since the vertex a+ is at the bottom of FQ, the only delivery vertex that can be inserted

immediately after b− is a−. Any other delivery vertex of the residual graph produces

25

an infeasible tour. For this reason, we can remove all the arcs outgoing from b− toward

the delivery vertices of the residual graph, except a−.

f ’7. Remove (a, `(τ)) ∀a ∈ Nτ .

Since each vertex in a tour has only one ingoing arc and `(τ) already has one because

it is inserted in the current path, we can remove all the arcs coming from the residual

graph and ingoing to `(τ).

f ’8. If `(τ) ∈ D and |N ∩N(ρ(τ))| 6= 2n+ 1, then remove (`(τ), 0).

If there are other vertices to introduce in the current path to construct a feasible tour,

we can clearly remove the arc (`(τ), 0) that produces an infeasible tour.

Notice that the FIFO constraints do not allow us to remove from the starting graph G the

arcs (a+, b−) as does filter f1 for the TSPPDL. These arcs are in part removed by f ′4 during

the construction of a tour. Even if this could be a negligible aspect, in practice it heavily

affects the performance of the algorithm because we start with a residual graph containing

approximatively n× (n− 1) more arcs with respect to the TSPPDL. This weakens the lower

bounds and slows down the algorithm as is apparent from the computational results reported

in the following subsection.

6.2. Computational results

In Section 5 we have shown the impact of the additive approach and filters on algorithmic

performance in the context of the TSPPDL and we do not repeat these experiments here.

In Table 4 we report in column BBF the results obtained on the instances used for the

TSPPDF. To the best of our knowledge the only other exact approach for the TSPPDF is the

CPLEX implementation of a mathematical formulation introduced by Erdogan et al. [2007].

In Table 4 we report the computing time required by this algorithm in column CPLEX. The

upper bounds reported in column UB were computed with the heuristics of Erdogan et al.

[2007]. The last column, GAP, shows the percentage difference in computing time between

BBF and CPLEX. These results show that, within the maximum time limit, CPLEX can

solve instances with at most 23 vertices while BBF succeeds in solving 16 instances with more

than 23 vertices, including one instance with 39 vertices. For all instances that were solved

by both algorithms, BBF is usually several orders of magnitude faster than the CPLEX

implementation of Erdogan et al. [2007].

26

Instance Size UB BBF CPLEX GAP

Nodes visited Time

a280 19 402 16.404 0,17 284,04 99,94
23 468 67.000 1,08 5130,02 99,98
27 505 1.060.629 25,86 n.d
31 560 7.153.930 244,02 n.d
35 647 18.407.525 897,8 n.d
39 691 125.794.822 7863,27 n.d

att532 19 4250 44.058 0,31 1103,08 99,97
23 5038 145.537 2,01 1896,11 99,89
27 5800 4.028.821 88,92 n.d
31 6173 20.321.304 683,51 n.d
35 6361 169.472.851 7313,19 n.d
39 6725 n.d. n.d n.d n.d.

brd14051 19 4555 941.600 5,01 46,28 89,17
23 4655 5.618.833 52,67 652,92 91,93
27 4936 268.489.184 3998,82 n.d
31 5186 n.d. n.d n.d n.d.
35 5196 n.d. n.d n.d n.d.
39 5629 n.d. n.d n.d n.d.

d15112 19 76203 115.896 1,04 6329,87 99,98
23 88272 1.321.367 18,89 n.d
27 93158 62.744.515 1259,75 n.d
31 109166 n.d. n.d n.d n.d.
35 115554 n.d. n.d n.d n.d.
39 119863 n.d. n.d n.d n.d.

d18512 19 4446 158.974 1,18 376,63 99,69
23 4658 4.941.047 45,22 n.d
27 4704 68.754.702 961,23 n.d
31 5120 n.d. n.d n.d n.d.
35 5186 n.d. n.d n.d n.d.
39 5419 n.d. n.d n.d n.d.

fnl4461 19 1866 32.321 0,26 354,59 99,93
23 2067 556.081 7,2 n.d
27 2483 6.198.073 128,54 n.d
31 2672 45.726.987 1401,5 n.d
35 2852 n.d. n.d n.d n.d.
39 3109 n.d. n.d n.d n.d.

nrw1379 19 2691 1.959.041 11,39 603,65 98,11
23 2919 37.121.719 365,42 n.d
27 3366 n.d. n.d n.d n.d.
31 3554 n.d. n.d n.d n.d.
35 3652 n.d. n.d n.d n.d.
39 4002 n.d. n.d n.d n.d.

pr1002 19 12947 9.483 0,09 155,08 99,94
23 13872 85.261 1,22 2857,78 99,96
27 15566 1.282.958 25,98 n.d
31 16255 5.359.043 167,02 n.d
35 17564 102.771.998 3420,42 n.d
39 18862 n.d. n.d n.d n.d.

ts225 19 21000 47.732 0,44 7707,40 99,99
23 25000 318.781 4,34 n.d
27 32395 17.849.184 289,92 n.d
31 33395 n.d. n.d n.d n.d.
35 36784 n.d. n.d n.d n.d.
39 39395 n.d. n.d n.d n.d.

Table 4: Performance comparison between the BBF and CPLEX algorithms.

27

Another interesting aspect that we want to highlight is the difference in performance

between BBL and BBF despite the similarity of the TSPPDL and TSPPDF. BBF solves

instances with at most 39 vertices compared to 43 vertices for BBL. As can be seen in

Table 4, even on instances with 27 vertices the size of the search tree is composed of millions

of nodes. The difference in performance between the two algorithms depends essentially on

their filters. We saw that f ′1 is weaker than f1 because it cannot remove the arcs (a+, b−)

from the starting graph G. This implies that there are more arcs in the residual graph and

that the lower bounds are weaker. For the TSPPDF however, the filter f ′3 is stronger than

f3 and the introduction of f ′4 gradually removes the arcs (a+, b−) during the construction

of the tours. Despite this, the number of prunings performed is lower.

7. Conclusion

This paper has introduced a new branch-and-bound algorithm for the TSPPD with LIFO

or FIFO loading. Following the additive lower bounding paradigm, this algorithm computes

lower bounds at each node of the search tree by solving two relaxations: the assignment

problem and the shortest spanning r-arborescence problem. Combined with the use of filters

to reduce the size of the residual graph, this approach yields an effective algorithm capable of

consistently solving instances with up to 35 vertices for the TSPPDL and 27 vertices for the

TSPPDF. In addition, some instances with 43 vertices have also been solved to optimality

for the LIFO version.

Acknowledgements

This work was partly supported by the Canadian Natural Science and Engineering Research

Council under grant 227837-04. This support is gratefully acknowledged.

References

R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice Hall, 1993.

P.M. Camerini, L. Fratta, and F. Maffioli. A note on finding optimum branchings.

Networks, 9:309–312, 1979.

28

G. Carpaneto, M. Fischetti, and P. Toth. New lower bounds for the symmetric travelling

salesman problem. Mathematical Programming (Series B), 45:233–254, 1989.

F. Carrabs, J.-F. Cordeau, and G. Laporte. Variable neighborhood search for the pickup

and delivery traveling salesman problem with LIFO loading. INFORMS Journal on

Computing, 19:618–632, 2007.

L. Cassani. Algoritmi euristici per il TSP with rear-loading. Degree Thesis, Università di

Milano, Italy. http://www.crema.unimi.it/˜righini/Papers/Cassani.pdf, 2004.

Y.J. Chu and T.H. Liu. On the shortest arborescence of a directed graph. Science Sinica,

14:13961400, 1965.

J.-F. Cordeau, M. Iori, G. Laporte, and J.-J. Salazar-González. A branch-and-cut

algorithm for the pickup and delivery traveling salesman problem with LIFO loading.

Networks, 2008. Forthcoming.

J.-F. Cordeau, G. Laporte, J.-Y. Potvin, and M.W.P. Savelsbergh. Transportation on

demand. In C. Barnhart and G. Laporte, editors, Transportation, Handbooks in

Operations Research and Management Science, Volume 14, pages 429–466. Elsevier,

Amsterdam, 2007.

J. Edmonds. Optimum branching. Journal Research of the National Bureau of Standards,

71B:233–240, 1967.

G. Erdogan, J.-F. Cordeau, and G. Laporte. The pickup and delivery traveling salesman

problem with first-in-first-out loading. Technical Report CIRRELT-2007-61, HEC

Montréal, 2007.

F. Ficarelli. Mathematical programming algorithms for the TSP with rear-loading. Degree

Thesis, Università di Milano, Italy. http://optlab.dti.unimi.it/Papers/Ficarelli.pdf, 2005.

M. Fischetti and P. Toth. An additive bounding procedure for combinatorial optimization

problems. Operations Research, 37:319–328, 1989.

M. Fischetti and P. Toth. An additive bounding procedure for the asymmetric travelling

salesman problem. Mathematical Programming, 53:173–197, 1992.

29

M. Fischetti and P. Toth. An efficient algorithms for the min-sum arborescence problem on

complete digraph. ORSA Journal on Computing, 5:4:426–434, 1993.

H. Gabow, Z. Galil, T. Spencer, and R.E. Tarjan. Efficient algorithms for finding minimum

spanning trees in undirected and directed graphs. Combinatorica, 6:2:109–122, 1986.

H.N. Gabow, Z. Galil, and T.H. Spencer. Efficient implementation of graph algorithms

using contraction. Journal ACM, 36:3:540–572, 1989.

G. Gutin and A.P. Punnen. The Traveling Salesman Problem and Its Variations. Kluwer,

Boston, 2002.

P. Healy and R. Moll. A new extension of local search applied to the dial-a-ride problem.

European Journal of Operational Research, 83:83–104, 1995.

B. Kalantari, A.V. Hill, and S.R. Arora. An algorithm for the traveling salesman problem

with pickup and delivery customers. European Journal of Operational Research, 22:

377–386, 1985.

S.P. Ladany and A. Mehrez. Optimal routing of a single vehicle with loading and

unloading constraints. Trasportation Planning and Technology, 8:301–306, 1984.

G. Levitin. Organization of computations that enable one to use stack memory optimally.

Soviet Journal of Computer & System Science, 24:151–159, 1986.

G. Levitin and R. Abezgaouz. Optimal routing of multiple-load AGV subject to LIFO

loading constraints. Computers & Operations Research, 30:397–410, 2003.

J.D.C. Little, K.G. Murty, D.W. Sweeney, and C. Karel. An algorithm for the traveling

salesman problem. Operations Research, 11:972–989, 1963.

I. Or. Traveling salesman type combinatorial problems and their relations to the logistics of

blood banking. PhD thesis, Department of Industrial Engineering and Management

Sciences, Northwestern University, 1976.

J.A. Pacheco. Problemas de rutas con ventanas de tiempo. PhD thesis, Department of

Estadistica and Investigation Operativa, Universitad complutense de Madrid, 1994.

30

J.A. Pacheco. Problemas de rutas con carga y descarga en sistemas LIFO: solutiones

exactas. Estudios de Econimia Aplicada, 3:69–86, 1995.

J.A. Pacheco. Heuristico para los problemas de ruta con carga y descarga en sistemas

LIFO. SORT, Statistics and Operations Research Transactions, 21:69–86, 1997a.

J.A. Pacheco. Metaheuristic based on a simulated annealing process for one vehicle pick-up

and delivery problem in LIFO unloading systems. In Proceedings of the Tenth Meeting of

the Europen Chapter of Combinatorial Optimization (ECCO X). Tenerife, Spain, 1997b.

J. Renaud, F.F. Boctor, and G. Laporte. Perturbation heuristics for the pickup and

delivery traveling salesman problem. Computers & Operations Research, 29:1129–1141,

2002.

J. Renaud, F.F. Boctor, and J. Ouenniche. A heuristic for the pickup and delivery

traveling salesman problem. Computers & Operations Research, 27:905–916, 2000.

K.S. Ruland and E.Y. Rodin. The pickup and delivery problem: Faces and branch-and-cut

algorithm. Computer and Mathematics with Applications, 33:1–13, 1997.

M.W.P. Savelsbergh. An efficient implementation of local search algorithms for contrained

routing problems. European Journal of Operational Research, 47:75–85, 1990.

R.E. Tarjan. Finding optimum branching. Networks, 7:25–35, 1977.

S.G. Volchenkov. Organization of computations utilizing stack storage. Engineering

Cybernetics, Soviet Journal of Computer & System Science, 20:109–115, 1982.

31

