
Variable Neighborhood Search for the Pickup and
Delivery Traveling Salesman Problem

with LIFO Loading

Francesco Carrabs
Dipartimento di Matematica ed Informatica, Università di Salerno, 84084 Fisciano (SA), Italy

fcarrabs@unisa.it

Jean-François Cordeau
Canada Research Chair in Logistics and Transportation and Center for Research on Trasportation

HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7
cordeau@crt.umontreal.ca

Gilbert Laporte
Canada Research Chair in Distribution Management and Center for Research on Trasportation

HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7
gilbert@crt.umontreal.ca

This paper addresses a variation of the traveling salesman problem with pickup and delivery

in which loading and unloading operations have to be executed in a LIFO (Last-in-First-

Out) order. We introduce three new local search operators for this problem which are then

embedded within a variable neighborhood search heuristic. We evaluate the performance of

the heuristic on data adapted from TSPLIB instances.

Key words: Traveling salesman problem, pickup and delivery, LIFO loading, variable neigh-

borhood search

1. Introduction

This paper concerns a variation of the Traveling Salesman Problem with Pickup and Delivery

(TSPPD) called the TSPPD with LIFO Loading (TSPPDL). The TSPPD is well known. It

consist of determining a minimum length tour traveled by a vehicle to service n requests.

Each request is characterized by an origin vertex, the pickup location, where a load must

be picked up, and a destination vertex, the delivery location, where this load has to be

delivered. The vehicle starts from a fixed vertex, the depot, and returns to it after all requests

have been satisfied. Every other vertex has to be visited exactly once, with the additional

constraint that the pickup vertex associated with any given request must be visited before the

corresponding delivery vertex. This problem has been studied, among others, by Kalantari

et al. (1985), Fischetti and Toth (1989), Savelsbergh (1990), Healy and Moll (1995), Ruland

1

and Rodin (1997), Renaud, Boctor and Ouenniche (2000), Renaud, Boctor and Laporte

(2002). For a recent survey see Cordeau et al. (2006).

In the TSPPDL, the LIFO (Last-in-First-Out) constraint states that the loading and

unloading operations must be executed in a LIFO order. This means that when loading,

the goods are always placed at the rear of the vehicle. Similarly, unloading at a delivery

customer is only allowed if the goods of the current delivery are at the rear. The TSPPDL

can be formally stated as follows. Let R = {1, ..., n} be a set of n requests. A request x ∈ R

is composed of a pickup vertex x+ and a delivery vertex x−. Let P = {1+, ..., n+} be the set

of pickup vertices and D = {1−, ..., n−} the set of delivery vertices. We denote the depot by

0 or 2n + 1. The TSPPDL is defined on a weighted complete digraph G = (N, A, c), where

N = P ∪ D ∪ {0} is the vertex set, A is the arc set, and c is the cost function defined on

A. The cost of arc (x, y) is denoted by c(x, y). The problem is to determine a minimum cost

Hamiltonian cycle (or tour) on G, subject to the constraint that the pickup and delivery

operations are executed in a LIFO fashion.

The TSPPDL has several practical applications. Indeed, vehicles often have only one

door at the rear, which means that a LIFO policy is more convenient, especially when

delivering large objects like furniture. Avoiding unnecessary handling is also important when

delivering hazardous materials. There is only a limited literature on the TSPPDL. Cassani

and Righini (2004) have presented a variable neighborhood descent (VND) heuristic based

on four improvement operators called couple-exchange, block-exchange, relocate-couple and

relocate-block. These operators will be described in detail in the next section. Pacheco (1997)

has adapted to the TSPPDL the Or-opt operator (Or, 1976) for the Traveling Salesman

Problem (TSP). This operator relocates chains of one, two or three vertices in different

positions in the tour. The total number of possible exchanges is O(n2), but the Pacheco

adaptation runs in O(n3) time due to the checks needed to find feasible 3-exchanges for the

TSPPDL. Van Der Bruggen, Lenstra and Schuur (1993) have introduced a variable depth

search heuristic for the TSPPD with time windows, based on seven arc-exchange procedures.

We will use some of these procedures in our heuristic. Ladany and Mehrez (1984) have

studied a version of the TSPPDL in which the LIFO constraint is relaxed, and its violations

are penalized in the objective function. Computational results are presented for very small

instances only. Xu et al. (2003) have studied a multiple-vehicle pickup and delivery problem

with a LIFO constraint, multiple time windows, compatibility constraints, and a complex

cost structure. The authors have proposed a column generation based heuristic for this

2

problem. Volchenkov (1982) has analyzed a planar layout problem with LIFO constraints.

The results were later used by Levitin (1986) and Levitin and Abezgaouzb (2003). The

latter paper proposes an exact algorithm for the routing of multiple-load automated guided

vehicles. This problem is in fact a TSPPDL with the difference that each pickup customer

can be associated with more than one delivery customer, and vice-versa.

In this paper, we present three new operators: multi-relocate, 2-opt-L, and double-bridge.

The first one is derived from the relocate-couple operator introduced by Cassani and Righini

(2004), while the last two are adaptions of the classical 2-opt and double-bridge operators

for the TSP. These three new operators and the four operators of Cassani and Righini (2004)

are then embedded within a variable neighborhood search heuristic. As in most papers on

similar routing problems, we assume that the cost function is symmetric, but our operators

can easily be adapted to asymmetric instances. The remainder of this paper is organized

as follows. Section 2 contains a brief description of some basic operators including those of

Cassani and Righini (2004). Section 3 describes our three new operators, followed in Section

4 by the variable neighborhood search heuristic. Computational results are presented in

Section 5, followed by the conclusion in Section 6.

2. Basic operators

Let T be a feasible tour. In order to execute vertex insertions and deletions on T in constant

time, we represent T as doubly-linked circular list.

2.1. Definitions associated with a feasible tour T

A tour is a sequence (S0, ..., Si, ..., S2n+1), where S0 and S2n+1 are copies of the depot, and Si

is a pickup or a delivery vertex, otherwise. Let Si = x be a vertex of T , with x ∈ {P ∪D},
and let pos(x) be its position in T . The predecessor of x is denoted by pred(x) and its

successor by succ(x). Thus pred(x) = Si−1, succ(x) = Si+1, and pos(x) = i. Let p(Si, Sj)

be the path from Si to Sj in T . Following Cassani and Righini (2004), we define a block

Bx(Si, Sj) of T as the path p(Si, Sj), where Si = x+ and Sj = x−. When it is not necessary

to specify the two extreme positions Si and Sj of a block, we omit them. A block Bx is

simple if there are no blocks between x+ and x−, and it is composed if there exists at least

one block By such that pos(x+) < pos(y+) < pos(y−) < pos(x−). In this case we say that

Bx overlaps By (Figure 1).

3

z + x -y -y + z-x +

simple blocks

composed block

Bx

By Bz

Figure 1: The blocks By and Bz are simple while Bx is composed. Both By and Bz belong to SUB(Bx).

An overlapped block is called a subblock. We denote by SUB(Bx) the set of subblocks

overlapped by Bx, and by SUP(Bx) the block By such that Bx ∈ SUB(By) and � Bz ∈
SUB(By) : Bx ∈ SUB(Bz). If Bx is not overlapped, then SUP (Bx) = ∅. Note that

from the feasibility of T , a composed block Bx cannot contain a pickup vertex without its

corresponding delivery vertex, and vice-versa. When performing vertex insertion, we define

the destination position dp(x) of a vertex x in T as Si if x is inserted between Si and Si+1.

The same definition also applies to a block. The extremities of a block Bx are denoted by the

couple [x+, x−]. Two couples [x+, x−] and [y+, y−] in T are compatible if one of the following

four compatibility conditions is satisfied: 1) pos(x+) < pos(y+) < pos(y−) < pos(x−),

2) pos(y+) < pos(x+) < pos(x−) < pos(y−), 3) pos(x+) < pos(x−) < pos(y+) < pos(y−),

4) pos(y+) < pos(y−) < pos(x+) < pos(x−). The first two conditions state that if one couple

overlaps the other, the two couples are compatible. The last two conditions state that if

two couples have no vertex in common, they are compatible. When two couples [x+, x−] and

[y+, y−] are incompatible, we say that there exists a cross crs(x, y) in the tour (Figure 2).

Note that the presence of a cross implies that the LIFO constraint is not respected. Finally

a path p(Si, Sj) is reversible if x+ ∈ p(Si, Sj)⇔ x− ∈ p(Si, Sj) and the precedence and LIFO

constraints are respected in p(Si, Sj).

z- y -z+y + x -x +

Figure 2: The cross crs(x,y).

4

2.2. The four basic operators

We now describe four basic operators, couple-exchange, block-exchange, relocate-block, relocate-

couple, introduced by Cassani and Righini (2004). These four operators rely on simple moves

which preserve the feasibility. We prove this by introducing the following theorem.

Theorem 1 Let T be a feasible tour. Then the following statements hold: 1) the extraction

of couple [x+, x−] from T produces a new feasible tour T ′; 2) the extraction of a block Bx

from T produces a new feasible tour T ′; 3) the insertion of a block Bx between two vertices

in T produces a new feasible tour T ′ if p(x+, x−) is reversible; 4) the relocation of a block Bx

in T produces a new feasible tour T ′; 5) the insertion of a reversible path p(Si, Sj) between

two vertices in T produces a new feasible tour T ′.

Proof. 1) The proof is by contradiction. Suppose the new tour T ′ obtained by removing the

couple [x+, x−] from T is infeasible. This means that there is at least a cross crs(w, z) in T ′.

Since [x+, x−] /∈ T ′, it follows that w �= x and z �= x. Moreover, we know that the removal

of [x+, x−] from T does not change the order relation among the positions of the remaining

vertices. Hence if requests w and z produce a cross in T ′, this cross is also in T and T is

thus infeasible. 2) The removal of a block Bx from T can be executed by removing one by

one all couples [y+, y−] belonging to Bx, and then removing the couple [x+, x−]. From case

1, the extraction of a couple always yields a feasible tour and thus the final tour produced

by removal of block Bx is also feasible. 3) The proof is by contradiction. Suppose that

the new tour T ′ obtained by inserting Bx in T is infeasible. This implies that there is at

least a cross crs(w, z) in T ′. Since Bx contains no vertices of T , from the definition of a

cross we know that the insertion of this block into the tour cannot create crosses with the

vertices of T . This implies that crs(w, z) is either in Bx or in T . However, by hypothesis,

we know that p(x+, x−) is reversible and thus there are no crosses in Bx. Therefore, if there

is a cross in T ′ this cross is also in T , and T is thus infeasible. 4) The relocation operation

of a block Bx in T can be executed by removing this block from T and then reintroducing

it into the destination position, obtaining the new tour T ′. From cases 2 and 3, T ′ must

be feasible. 5) The insertion of a reversible path can be executed by inserting, one by one,

its non-overlapped blocks. From cases 3 and 4, we know that this operation always yields

feasible tours and thus the final tour T ′ will also be feasible. �

5

2.2.1. The couple-exchange operator

The couple-exchange operator selects two couples [x+, x−] and [y+, y−] of T , swaps the po-

sitions of x+ and y+ and of x− and y−, and computes the length of the resulting tour. The

operator repeats this operation for all x, y ∈ R, with x �= y, and implements the best swap

if it improves upon T (Figure 3 a,b). By using appropriate pointers, this operator runs in

O(n2) time.

2.2.2. The block-exchange operator

The block-exchange operator is similar to the previous one with the only difference that the

swap is applied to whole blocks rather than to their extremities. For each couple of blocks

Bx and By in T , such that Bx /∈ SUB(By) and By /∈ SUB(Bx), block-exchange swaps Bx

and By and computes the length of the resulting tour. It then implements the best swap if

the resulting tour improves upon T (Figure 3c). From cases 2 and 3 of Theorem 1, the new

tour is feasible. Again this operator requires O(n2) time.

x+ z+ z- x- w+ w- y+ y-

y+ z+ z- y- w+ w- x+ x-

a)

b)

y+ y- w+ w- x+ z+ z- x-c)

swap
swap

Bx By

By Bx

Figure 3: a) The initial tour T . b) The new tour created by couple-exchange. c) The tour created by
block-exchange.

2.2.3. The relocate-block operator

The relocate-block operator selects a block Bx in T and relocates it in a different position.

All blocks are considered for relocation and the best one is implemented if it improves upon

6

T (Figure 4). From case 4 of Theorem 1, the new tour is feasible. This operator also runs

in O(n2) time.

x+ y+ y- x- w+ w- z+ z-

w+ w- x+ y+ y- x- z+ z-

a)

b)

Bx

Bx

Figure 4: a) The initial tour T . Let dp(Bx) be equal to w−. b) New tour created by relocate-block.

2.2.4. The relocate-couple operator

The final operator used by Cassani and Righini (2004) is relocate-couple. This operator

is more complicated than the others. Because our multi-relocate operator is based on it,

we provide a detailed description of its functioning. The relocate-couple operator finds, for

each couple [x+, x−] of T , the best relocation position and implements the best improving

relocation. This operator runs in O(n3) time. It works as follows.

For each couple [x+, x−] of T , the vertices x+ and x− are first removed from T , creating

a new tour T ′ with 2n − 1 vertices (Figure 5a). For i = 0, . . . , 2n − 2, set dp(x+) = Si

and introduce x+ in its destination position. Let T ′′ be the new tour just created (Figure

5b). Note that Si+1 = x+ in T ′′. Having inserted x+ in T ′′, the operator seeks the best

position Sj in p(Si+1, S2n−1) to insert x−. Because of the LIFO constraint, not all positions

in p(Si+1, S2n−1) are feasible. Therefore, the operator must first identify all feasible positions

for x− and then select the best one. The position to the right of x+ is surely feasible for x−.

For this reason, once dp(x+) has been fixed to Si, relocate-couple always sets dp(x−) = Si+1

in T ′′ and computes the length of the new tour just obtained. In order to find the other

feasible destination positions in p(Si+2, S2n−1), the operator proceeds along this path, and for

each vertex Sj encountered, checks whether Sj is a pickup or a delivery vertex. If Sj = y+,

then the operator jumps block By and continues the search starting from y−. This is because

if x− is inserted in any block By ∈ p(Si+2, S2n−1), it produces the cross crs(x, y) which leads

to a LIFO constraint violation. If Sj = y− two cases are possible:

7

1) pos(y+) > pos(x+) in T ′′. In this case the operator has reached vertex y− by jumping

from y+ in the previous iteration. Hence Sj is a feasible destination position and the

operator inserts x− to the right of Sj and computes the cost of the new tour.

2) pos(y+) < pos(x+) in T ′′. In this case, the search terminates because there are no other

feasible destination positions for x− after Sj−1. Indeed the introduction of x− after Sj

creates the cross crs(x, y), which yields an infeasible tour. Using a stack, it is possible to

check in constant time whether a position is feasible for x−.

At the end the best exchange identified is implemented if it improves tour T . Because

we use a doubly-linked list to represent T , it is possible to execute various changes on T in

constant time. The time needed to find the best positions for each couple [x+, x−] is O(n2)

and this operation is repeated n times, once for each couple. Hence the complexity of this

operator is O(n3).

a) D

2+

1 - 4-

3-

2-

b)

4+

3+

D

2 +1+

1- 4-

3-

2-

4 +

3+
x+

feasible

feasible

feasible

T ' T' '

1+

Figure 5: a) The tour without the couple [x+, x−]. b) The vertex x+ is inserted between 1+ and 2+. The
feasible destination positions for x− are x+, 2− and 4−. The insertion of x− in B2 and B3 produces the
crosses crs(x, 2) and crs(x, 3), respectively. Note that there are no feasible positions for x− after 1−. Indeed
introducing x− after 1− always creates the cross crs(1,x) because x+ is in the block B1.

3. New operators

In this section we introduce two new operators for the TSPPDL: multi-relocate and 2-opt-L.

We also introduce two perturbation operators used within our VNS heuristic: double-bridge

and shake.

8

3.1. The multi-relocate operator

We first describe our multi-relocate operator, derived from the relocate-couple operator. As

explained in the previous section relocate-couple computes for each couple [x+, x−] in T the

best positions to relocate x+ and x−. However, this information is saved only if [x+, x−] is

the best couple to relocate, and the operator relocates only the best couple identified. This

implies that all the information computed by relocate-couple about the other couples is lost

after relocating the best one. It may pay, however, to save this information for further use.

The idea behind the multi-relocate operator is to save in a queue every couple [x+, x−] whose

relocation produces a new better tour, to relocate the best couple identified, and then to

attempt to relocate as many couples as possible from the queue in the new tour. Note that

when multi-relocate relocates only the best couple, this tour is exactly the same as the tour

produced by relocate-couple. For this reason we use only the multi-relocate operator in our

heuristic.

We can divide the multi-relocate operator in two phases. In the first phase, this operator

works like relocate-couple, the only difference being the construction of the queue. This first

phase ends with the relocation of the best couple. Before describing the second phase, we

discuss some issues associated with the relocation of several couples in T . Let impr([x+, x−])

be the improvement computed by multi-relocate during the first phase for the relocation of

couple [x+, x−] in T . All the information computed during the first phase, like the im-

provement associated with each couple and the destinations of its extremities, relates to the

tour T . When multi-relocate relocates the best couple in T it produces a new tour T1 for

which some of the previous information is no longer correct. The first problem concerns

the improvement value associated with each couple. This problem arises because T1 may

contain vertices whose insertion or extraction cost is changed. Moreover recomputing the

improvement of each couple after each relocation is computationally prohibitive. The second

problem concerns the need to maintain the feasibility of the tour after each relocation, i.e.,

ensuring that no crosses are created. In order to create a practically usable operator, we

force multi-relocate to satisfy three conditions: 1) for each couple relocated in the new tour,

the improvement produced has to be exactly the same as that computed by multi-relocate on

T in the first phase; 2) the tour produced after each relocation must remain feasible; 3) the

overall time complexity has to be the same as that of relocate-couple.

The idea behind the first condition is to mark as non-removable all couples in the queue

9

whose improvement cost has changed because of the last relocation. Since multi-relocate

relocates only the removable couples in the queue and the improvement value of these has

not changed, condition 1 will be satisfied at each relocation. The problem is now to find a

quick way to determinate whether a couple is removable or not.

Observation 1 Let T be a feasible tour and Tk the tour obtained by relocating k couples in

T . Given a couple [y+, y−], if the neighbors of y+ and y− and the successor of dp(y+) and

dp(y−) are the same in T and Tk then the improvement in Tk obtained by relocating [y+, y−]

is the same as impr([y+, y−]).

We know that if a couple satisfies the conditions introduced in Observation 1, then this

couple is removable. To check this we assign two flags, removable(y) and next available(y),

to each vertex y. The first flag indicates whether the vertex can be relocated and the second

whether it is possible to insert a vertex between y and succ(y). To see how these flags are

used, let [y+, y−] be the couple considered for a move in the current tour Ti, and let Ti+1 be

the new tour produced by this relocation. The operator sets the flag removable of pred(y+),

succ(y+), pred(y−) and succ(y−) to FALSE. Indeed, after the relocation of [y+, y−], the

extraction cost of these vertices in Ti+1 is changed and so is the improvement value of the

couple associated with these vertices. In addition, the flag next available of pred(y+) and

pred(y−) is set to FALSE because the insertion cost of eventual vertices in these two positions

in Ti+1 will be different from the previous cost in Ti (Figure 6a). The operator then relocates

[y+, y−] and sets the removable flags of these vertices to FALSE because these have just

been relocated. The same applies to the removable flags of new neighbors of y+ and y− in

Ti+1 (Figure 6b). Finally, multi-relocate sets to FALSE the next available flag of vertices

pred(y+), y+, pred(y−) and y−. Using these flags, it is possible to determine in constant

time whether a couple [y+, y−] is removable. Indeed, it is sufficient to check whether the

removable flags of y+ and y− and the next available flags of dp(y+) and dp(y−) take the

value TRUE.

To see whether the second condition is satisfied, it is necessary to ensure that relocations

do not produce crosses. The operator can check the compatibility of two couples in constant

time. However, given a couple [y+, y−], determining whether this couple satisfies condition 2

requires checking the compatibility between [y+, y−] and all other couples already relocated,

which cannot be achieved in constant time. At this point we can describe the second phase

10

a) b)D

1- y+

2-
2+

y-

3+

3-

4+4-

D

1-

3+
2-

3-

y+

4+

4-y-

2+

T i Ti+1

5+ 5+

Figure 6: a) The tour Ti. The couple to move is [y+, y−]. The flags removable(1−), removable(2+),
removable(2−) and removable(3+) are set to FALSE as well as next available(1−) and next available(2−).
b) The couple is relocated. The destination positions chosen are 3− and 4−. The flags removable(3−),
removable(4+), removable(4−), removable(5+), removable(y+) and removable(y−) are validated to
FALSE as well as next available(3−), next available(4−), next available(y+), next available(y−).

of multi-relocate: after the relocation of the best couple, the operator verifies whether each

couple in the queue satisfies conditions 1 and 2. If this is the case the couple is relocated,

otherwise it is rejected.

Finally, it remains to be shown that the complexity of multi-relocate is O(n3). The first

phase of the operator executes the same operations as relocate-couple and creates the queue.

The complexity of this phase is O(n3). In the second phase the operator reads the queue,

which contains O(n) couples, and checks conditions 1 and 2 for each couple. Determining

whether a couple [y+, y−] satisfies condition 1 can be achieved in constant time because it is

sufficient to verify a constant number of flags. The second check is more expensive. Indeed,

the operator must verify the compatibility of [y+, y−] with each of the O(n) couples already

relocated. The complexity of the second phase is therefore O(n2), which yields an overall

complexity of O(n3). Note that after the relocation of a couple, it is necessary to recompute

in O(n) time the positions of the vertices in the new tour in order to be able to check the

compatibility conditions. It is, however, possible to reduce the cost of this operation by using

a simple observation. To determine whether two couples [x+, x−] and [y+, y−] are compatible

in T , it is not necessary to know the exact positions of their extremities in the tour, but

only their visiting order. In other words, if one of following conditions holds then the two

couples are compatible: y− precedes x+; y+ follows x−; x+ precedes y+ and y− precedes x−;

y+ precedes x+ and x− precedes y−.

11

3.2. The 2-opt-L operator

We now show how to adapt the 2-opt operator to the TSPPDL. This operator involves

the substitution of two arcs, (Si, Si+1) and (Sj , Sj+1), with two other arcs, (Si, Sj) and

(Si+1, Sj+1), and the reversal of path p(Si+1, Sj). The new tour, produced after this 2-

exchange is T ′ = (p(S0, Si) · p(Si+1, Sj)
R · p(Sj+1, S2n+1)) (Figure 7). Because p(Si+1, Sj) and

p(Si+1, Sj)
R have the same length, the cost of T ′ will be less than the cost of T if and only if

c(Si, Si+1) + c(Sj , Sj+1) > c(Si, Sj) + c(Si+1, Sj+1). (1)

a) S0

y+

z-z+

x-

y -

x+

b) S0

y+

z-z+

x-

y-

x+

T T '
S i S i+1

S i+2

S v

S u

S jS j+1

S i S i+1

S i+2

S v

Su

S jS j+1

Figure 7: a) A feasible tour. b) A new tour created by the 2-opt operator. The inversion of p(Si+1, Sj)
produces an infeasible tour because pos(x−) < pos(x+) and pos(y−) < pos(y+).

The 2-opt operator considers the O(n2) 2-exchanges associated with a given tour and im-

plements the best one. It is easy to see that if T is a feasible tour for the TSPPDL, the

application of a 2-exchange will produce an infeasible tour T ′ because the precedence con-

straint will be violated (Figure 7b).

We must therefore create an operator that preserves the precedence and LIFO constraints.

Given a path p ∈ T , the idea is to reverse the visiting order of blocks in p, instead of single

vertices. This is achieved through the REVERSE procedure introduced in Section 3.2.1.

However this function works only on reversible paths and before invoking it we have to check

in O(n) time whether p is reversible. Since there are O(n2) possible 2-exchanges in the tour,

the feasibility check for each of them increases the complexity of the operator to O(n3).

Psaraftis (1983) and Savelsbergh (1990) have introduced strategies to check the feasibility of

a k-exchange without increasing the complexity of the operator in the presence of precedence

12

constraints. We apply these strategies to our problem in which we must also ensure that the

LIFO constraint is satisfied. The idea is to divide the operator in two phases. The first one

computes all feasible 2-exchanges in the current tour, and the second one considers only the

feasible ones in order to find the best exchange. In Section 3.2.2 we introduce the CHECK

procedure which computes in O(n2) time all reversible paths and feasible 2-exchanges in a

given feasible tour.

3.2.1. The REVERSE procedure

Inverting the visiting order of vertices of a reversible path p(Si, Sj) produces a new path

p(Si, Sj)
R in which the precedence and LIFO constraints are violated since the delivery

vertices come before the associated pickups. To solve this problem it is sufficient to reverse

the visiting order of the blocks of p(Si, Sj) rather than that of the vertices. We know that a

block belonging to a feasible tour is reversible. Moreover, from case 4 of Theorem 1 we know

that each permutation of the blocks of a reversible path produces a new reversible path.

Therefore in p(Si, Sj)
R the precedence and LIFO constraints hold. We now summarize the

three steps of the REVERSE procedure applied to p(Si, Sj):

Step 1. Let Ba, Bp and Bq be the first, second to last and last non-overlapped blocks of

p(Si, Sj), respectively. Remove the ingoing arc of q+ and set succ(q−) = p+ (Fig-

ure 8b). Then, q+ will be the first vertex of p(Si, Sj)
R and Bp becomes the current

block.

Step 2. Let Bp be the current block and Bx the non-overlapped block preceding Bp in

p(Si, Sj). Then set succ(p−) = x+. Bx becomes the current block (Figure 8c).

Step 3. If the current block is Ba set succ(a−) = NULL and stop; otherwise repeat Step 2.

REVERSE also computes the difference between the costs of the removed and added arcs

and returns the length of p(Si, Sj)
R. Note that even in the symmetric case this computation

cannot be avoided because p(Si, Sj)
R contains new arcs with respect to p(Si, Sj). Unfortu-

nately, this computation increases the complexity of the 2-opt-L operator. It is easy to see

that REVERSE runs in O(n) time.

13

q -q +p -a)

b)

c)

p +

Si Sj

BqBp

start

x -x +

Bx

a -a+

Ba

q -q +p -p +

Si Sj

x -x +a-a +

start

q -q +p -p +

Si Sj

x -x +a -a+

current block

current block

current block

Figure 8: a) The reversible path p(Si, Sj) where Ba, Bx, Bp and Bq are its first, third to last, second to
last and last non-overlapped blocks, respectively. b) The REVERSE function removes the arc (p−, q+) and
it adds the arc (q−, p+); Bp becomes the current block. c) REVERSE adds the arc (p−, x+) and sets Bx as
the current block.

3.2.2. The CHECK procedure

The CHECK procedure identifies all reversible paths in a feasible tour T in order to execute

feasible 2-exchanges. For each Si and Sj , such that 1 ≤ i ≤ 2n − 1 and i + 1 ≤ j ≤ 2n,

the procedure determines whether p(Si, Sj) is reversible. The results of these computations

are saved in a 2n× 2n matrix, called REV , in which REV [i, j] = TRUE if and only if the

path p(Si, Sj) is reversible. To perform this computation the procedure uses a stack and

a counter, top, representing the first free position in the stack. Given a path p(Si, Sj), the

function scans the vertices from Si to Sj. CHECK puts each pickup vertex x+ on top of the

stack and increments top by one. When a delivery vertex x− is encountered, the procedure

checks whether the pickup vertex x+ is in position top − 1 on the stack. If this is not the

case, then x+ /∈ p(Si, Sj) and p(Si, Sj) is not reversible. Otherwise, CHECK removes x+

from the stack, decrements top by one and proceeds to the next vertex. The path p(Si, Sj)

will be reversible if and only if vertex Sj is reached with top equal to zero. This procedure

can be accelerated as follows. A path starting with a delivery vertex or finishing with a

pickup vertex cannot be reversible. We can therefore reduce REV to an n × n matrix,

where the row indices are associated with the n pickup vertices in T , and the column indices

with the n delivery vertices. The time complexity of the CHECK procedure is O(n2). The

14

initialization of REV to FALSE requires O(n2) time. The operations executed on the stack

run in constant time. The time required to validate a row of REV is equal to O(n), and

operation is repeated n times. The total time needed to validate REV is therefore O(n2).

3.2.3. Description of the operator

The 2-opt-L operator first applies the CHECK function to a feasible tour T to identify all

feasible 2-exchanges. For each couple of vertices Si and Sj such that 1 ≤ i ≤ 2n − 3 and

i + 2 < j ≤ 2n, 2-opt-L executes one of following operations, according to the values of Si

and Si+1:

1) Si = z+ and Si+1 = z− (Figure 9a). If SUP (Bz) = ∅ or Bz ∈ SUB(Bk) and pos(k−) ≥
j + 1, 2-opt-L checks through the matrix REV whether p(Si+2, Sj) is reversible. If not,

the operator proceeds to the next j. Otherwise, let By(Si+2, Sv) and Bx(Su, Sj) be the

first and last block of p(Si+2, Sj), with SUP (Bx) = SUP (By) = ∅, respectively. The

operator applies the REVERSE function on p(Si+2, Sj) to obtain the path p(Si+2, Sj)
R.

It then removes the arcs (Si, Si+1), (Sj , Sj+1), and (z−, y+) and adds the arcs (z+, x+),

(y−, z−) and (z−, Sj+1) to create a new feasible tour (Figure 9b). If Bz ∈ SUB(Bk) and

pos(k−) ≤ j, then p(Si+2, Sj) is not reversible for any j > pos(k−) because pos(k+) < i+2.

The operator therefore proceeds to the next i.

2) Bz(Si, Sk) and i + 1 < k < j (Figure 10). In this case path p(Si+2, Sj) is not reversible

because z+ /∈ p(Si+2, Sj). We therefore focus our attention on the path p(Sk+1, Sj). If

p(Sk+1, Sj) is not reversible the operator proceeds to the next j. Otherwise it computes

p(Sk+1, Sj)
R and introduces it between Si and Si+1 (Figure 10b).

3) Bz(Si, Sk) and k ≥ j. In this case the operator proceeds to the next j and restarts

because it is preferable not to change the internal structure of composed blocks Bz.

4) Si = z−. The operator checks whether p(Si+2, Sj) is reversible. If not it proceeds to the

next j. Otherwise, it constructs p(Si+2, Sj)
R and inserts it between Si and Si+1 as in case

1.

During the computations, 2-opt-L saves the best 2-exchange identified and implements it

if it improves upon T . The complexity of the 2-opt-L operator is computed as follows. The

O(n2) CHECK function is called once at the beginning. For fixed Si and Sj, REVERSE runs

15

a) D

y+

z-z+

x-

y-

x+

b) D

y-

z-z+

x+

y+

x-

S i S i+1

S i+2

Sv

S u

S jS j+1

S i

S j+1

Figure 9: a) The feasible tour T. b) The resulting tour produced by 2-opt-L on Si and Sj.

a) D

z+

x-

z-

y+

b) D

z+

x+

z-

y-

S i S i+1

S jS j+1

Sk

Sk+1

S i

S j+1

Figure 10: a) The feasible tour T . b) The resulting tour produced by 2-opt-L by replacing the arcs (Si, Si+1)
and (Sj , Sj+1). In this case p(Si+2, Sj) is only partially reversed because z− ∈ p(Si+2, Sj).

in a time proportional to the length of p(Si+2, Sj) and has an O(n) complexity. (Note that

since the REVERSE function returns the length of the reversed path, 2-opt-L can compute

in constant time the eventual improvement yielded by the 2-exchange.) The change of three

arcs requires constant time and thus the complexity of each 2-exchange is O(n). Since the

number of possible couplings, Si and Sj , is equal to O(n2), the overall complexity of 2-opt-L

is O(n3).

3.3. Perturbation operators

We now introduce two operators used by our heuristic to perturb solutions. Other perturba-

tion heuristics that could be adapted to the TSPPDL can be found in Renaud, Boctor and

16

Laporte (2002).

3.3.1. The double-bridge operator

The double-bridge operator perturbs a local optimum identified by a local search algorithm.

The classical double-bridge operator, introduced by Lin and Kernighan (1973), selects four

breakpoints b1, b2, b3, b4 defining four paths A,B,C,D, in T and constructs a new tour T1 by

replacing the arcs (b1, succ(b1)), (b2, succ(b2)), (b3, succ(b3)), (b4, succ(b4)) with (b1, succ(b3)),

(b4, succ(b2)), (b3, succ(b1)), (b2, succ(b4)) (Figure 11). In order to simplify the description

we divide the path containing vertex 0 into two paths: A, from succ(0) to b1, and E, from

succ(b4) to 0. This last path does not exist if b4 = pred(0). The tour T = (A ·B ·C ·D ·E)

is then replaced with the tour T1 = (A ·D · C · B · E).

b1

0

b2

b3

b4

A

B

CD

E

Figure 11: The double bridge operator. The tour is broken in four points b1, b2, b3, b4.

Because of the precedence and LIFO constraints, T1 may not be feasible for the TSPPDL.

One must therefore select the four paths A, B, C and D to ensure the feasibility of T1. An

easy way to solve this problem is to restrict the search to reversible paths. However, this

will rarely be possible and it is necessary to allow the creation of non-reversible paths,

which complicates the operator. To describe how double-bridge selects the breakpoints, we

introduce the following theorem.

Theorem 2 Let p(Si, Sj) be a reversible path of a tour T and let i < k < j. If p(Si, Sk) is

reversible then p(Sk+1, Sj) is also reversible.

17

Proof. Without loss of generality, let Si = x+, Sk = y− and Sj = z−. The proof is by contra-

diction. Suppose that p(Si, Sk) is reversible and p(Sk+1, Sj) is not. This implies that at least

one of the following two cases holds: 1) there is at least one pickup vertex w+ ∈ p(Sk+1, Sj)

for which the corresponding delivery vertex is not in this path. This means that T contains

the cross crs(w, z) and thus p(Si, Sj) is not reversible; 2) there is at least one delivery vertex

w− ∈ p(Sk+1, Sj) for which the corresponding pickup vertex is not in this path. Here we

have to consider the following two subcases: w+ ∈ p(Si, Sk) and w+ ∈ p(S0, Si−1). In the

first subcase, since p(Si, Sk) contains a pickup vertex without its delivery vertex, the path is

not reversible. In the second subcase p(Si, Sj) contains a delivery vertex without its pickup

vertex and thus p(Si, Sj) is not reversible. �

The idea behind the selection of the breakpoints is to select them randomly in different

quarters of T , when possible. The first breakpoint b1 is selected randomly among the delivery

vertices, followed by a pickup vertex between succ(0) and S�n/2�. If there is no such delivery

vertex, then the first delivery vertex found after S�n/2� and followed by a pickup vertex

is selected. Having selected b1, the selection of the remaining three breakpoints is made

according to one of the following cases:

1) A is reversible. In this case whatever the selection of the remaining three pieces, the

vertices of A never violate the LIFO constraint in T1. For this reason the construction

of B, C and D depends on the selection of b2. The operator randomly selects a delivery

vertex b2 in p(succ(succ(b1)), Sn). If there are no deliveries in this path, then the operator

selects the first delivery vertex encountered after Sn. For a given breakpoint b2 we consider

the following two subcases: 1a) If B is reversible, it never violates the LIFO constraint in

T1. However the selection of b3 cannot be totally random. Indeed, since D comes before

C in T1, if C is not reversible then T1 can be infeasible. Feasibility occurs only if each

pickup vertex in C has its delivery vertex in C or E. To ensure feasibility, double-bridge

randomly selects the breakpoint b3 among all delivery vertices in p(succ(succ(b2)), S2n−3)

so that C is reversible (Figure 12a). Note that in this case one can randomly select b4,

in p(succ(succ(b3)), pred(2n + 1)). Indeed double-bridge inserts two reversible paths, B

and C, between b4 and its successor, and we know from Theorem 1 that this operation

never violates the precedence and LIFO constraints. The search for b3 is made as far as

S2n−3, in order to increase the probability of finding a reversible path C and to leave at

18

least two vertices in the remainder of T for b4.

1b) B is not reversible. Let INF PB be the set of pickup vertices of B for which the

delivery vertex is not in B, and let INF DB be the set of delivery vertices with pickups

belonging to INF PB. Let x+
B and y+

B be the first and last pickup vertices in B such

that x+
B , y+

B ∈ INF PB (Figure 12b). If |INF PB| = 1, then x+
B = y+

B . One cannot leave

any delivery vertices of INF DB in C or D because this would yield a violation of the

precedence or LIFO constraints. For this reason double-bridge sets succ(b4) = y−B , thus

fixing the fourth breakpoint, and inserts all vertices of INF DB in E . Moreover since

D comes before C in T1, one must ensure that both pieces are reversible. Thus double-

bridge chooses b3 randomly in p(succ(succ(b2), pred(pred(b4))) so that p(succ(b2), b3) is

reversible. Note that from Theorem 2, if p(succ(b2), b4) is reversible and b3 is fixed like

above, the p(succ(b3), b4) will be reversible.

2) A is not reversible. From the feasibility of T we know that A contains at least one pickup

vertex whose delivery vertex comes after b1. Let INF PA, INF DA, x+
A and y+

A be defined

as in case 1b. To choose the other three breakpoints double-bridge must determine in

which of the three paths B, C or D it will insert the vertices of INF DA. This choice

could be made arbitrarily, but the operator considers each possibility separately in order

to increase the likelihood of producing a feasible tour T1 (see Carrabs (2005) for a detailed

explanation of each case).

We now determine the complexity of this operator. The search for the four breakpoints

requires the scanning of the whole tour for a total complexity of O(n), and this operation is

repeated a constant number of times, once for each case described above. The reversibility

checks, executed during each case, are done in constant time using the REV matrix. How-

ever, this implies that before applying the operator we have to call the CHECK function,

for an additional computation time of O(n2). Having selected the four breakpoints in O(n)

time, the operator constructs T1 in constant time by changing a constant number of pointers.

The double-bridge operator therefore runs in O(n2) time.

3.3.2. The shake operator

While the double-bridge operator is rather efficient at perturbing solutions, it sometimes fails

and another operator, called the shake operator, is then applied. It randomly selects one of

the following four operators: couple-exchange, block-exchange, relocate-couple, relocate-block.

19

b1

0

b3

A
B

CD

E

b4

b1

b3

A
B

CD

E

a) b)

b2 b2

b4

rev
ers

ibl
e

rev
ers

ibl
e reversible rev

ers
ibl

e
xB

+

yB
+

yB
-

rev
ers

ibl
e

reversible

0

Figure 12: a) A and B are reversible. Double-bridge selects b3 randomly in p(succ(succ(b2)), S2n−3) and
so that C is reversible. b) B is not reversible. Double-bridge sets succ(b4) to y−

B , inserting all vertices of
INF DB in E. It then selects b3 so that C and D are reversible.

According to the type of operator selected, shake randomly selects a couple or a block for

a random relocation or swap in the tour. Because of the randomness involved, shake can

be applied several times without running the risk of cycling. To prevent our local search

algorithm from undoing the work of shake, the couple or block moved by this operator is

declared tabu for a number of iterations.

4. Variable neighborhood search heuristic

Variable neighborhood search (VNS) was introduced by Mladenović and Hansen (1997). The

idea is to apply a perturbation to the current neighborhood operator at a local minimum.

The perturbation enables the search to reach a solution that could not have been reached

by the current local search mechanism and thus yields a broader exploration of the search

space. Several enhancements of the original method have since been proposed (see, e.g.,

Hansen and Mladenović (2005)). Our VNS heuristic is summarized in Figure 13.

Local search is first applied to a starting solution s until a local minimum s1 is encoun-

tered. A loop made up of three operations is then executed until a termination condition is

met. The first operation perturbs the current local optimum s1 to obtain a new solution s2.

20

Procedure: VNS
1: s← Generate starting tour;
2: s1 ← LocalSearch(s);
3: while termination condition is false do
4: s2 ← Perturbation(s1);
5: s3 ← LocalSearch(s2);
6: s1 ← AcceptanceCriterion(s∗, s3);
7: end while

Figure 13: Variable neighborhood search procedure

The second operation reapplies the local search algorithm on s2 to obtain a locally optimal

solution s3. Finally the last operation determines whether the next iteration will start from

the current solution s3 or from the best one s∗.

In our VNS implementation, the starting solution is obtained by using one of the eight

construction heuristics proposed by Cassani and Righini (2004). These heuristics are de-

scribed in Figure 14. The neighborhoods are defined by the following operators: couple-

exchange, block-exchange, relocate-block, 2-opt-L and multi-relocate, which are applied in a

predefined order. Whenever an operator produces a new improving solution, the search

restarts from the first operator. Otherwise, the next operator is applied. The heuristic stops

when no operator improves the current solution. We have created two VNS heuristics using

a different ordering of the operators. The first one, V NS1, applies the operators in the

following order: couple-exchange, block-exchange, relocate-block, 2-opt-L, multi-relocate. The

second one, V NS2, applies the operators in the following order: 2-opt-L, couple-exchange,

block-exchange, relocate-block, multi-relocate. V NS2 is used in line 5 of Figure 13. We have

used two different heuristics because of the type of solutions produced by 2-opt-L. Indeed, the

solutions produced by this operator do not usually significantly differ in terms of cost, but

may have very different structures because of the path reversion. This implies that applying

V NS2 to the starting tour can produce random jumps, especially during the first iterations.

In order to avoid this we apply V NS1 to the starting tour. However, the solutions produced

by 2-opt-L can turn out to be useful after the perturbation of the local minimum. Indeed,

the repeated application of the first three operators of V NS1 on a solution perturbed by the

shake operation can easily bring the search back to the last local optimum found. If this

happens, then the remaining two operators become useless because they cannot improve this

local optimum. The application of 2-opt-L to the perturbed solution decreases the proba-

bility of returning to the last local minimum. To further reduce this risk we also use a tabu

list that saves all the operations executed by couple-exchange, block-exchange, relocate-block

21

and multi-relocate during the intensification phase. Note that relocate-couple is not used

in our VNS heuristic because relocate-couple and multi-relocate are two mutually exclusive

operators. Both compute the best couple to relocate in the current tour.

Heuristic Description
CI Cheapest Insertion: At each iteration the heuristic computes for each

couple [x+, x−] not yet selected the best position where to insert it into
the tour. It then inserts the couple whose insertion minimizes the length
of the current tour.

LI Largest Insertion: Like the CI heuristic but at each iteration the
couple whose insertion maximizes the length of current tour is selected.
The first couple is selected as in the CI heuristic.

FI Fastest Insertion: In the first iteration the heuristic selects the couple
whose insertion maximizes the length of the current tour. In the follow-
ing iterations for each couple not yet selected, the heuristic computes
the distances from the two vertices of the couple and all vertices of the
current tour. It selects the couple with the maximal minimum distance
and inserts it in its best position in the tour.

NI Nearest Insertion: Like the FI heuristic but the couple selected is the
one closest to the vertices of current tour.

NN Nearest Neighbor: At each iteration insert the nearest neighbor of the
last vertex inserted. The insertion starts with a pickup vertex.

RAN NN Randomized Nearest Neighbor: For a fixed parameter λ, at each
iteration one of the λ nearest vertices to the last one is randomly selected
and inserted.

REV NN Reversed Nearest Neighbor: Similar to the NN heuristic but the
insertion starts with a delivery vertex.

REV RAN NN Reversed Randomized Nearest Neighbor: Similar to RAN NN, but
with a different random selection of vertices.

Figure 14: List of heuristics used to generate the starting tour.

4.1. Perturbation phase

The perturbation phase is implemented with the double-bridge operator. This operator

changes only four arcs of a tour and does not execute reverse operations. This implies

that usually the cost of the new tour is close to the original one. Another good property of

the double-bridge operator is that it is not easy for the other operators to undo the changes it

performs on the tour, which means there is little chance of going back to the last perturbed

local minimum. For this reason the operations of double-bridge are not inserted in the tabu

list. When the operator fails, we perturb the local optimum with the shake operator. These

moves are introduced in the tabu list and, because V NS2 uses the same operator, we reapply

the double-bridge operator to the tour produced by shake in order to reduce the likelihood

22

of going back to the same perturbed local optimum. For the same reason double-bridge is

applied after the shake in the diversification phase.

4.2. Acceptance criterion

The last part of the heuristic concerns the acceptance criterion. Here we have to decide

whether the solution produced by V NS2 will be accepted as a starting solution for the

next iteration. Obviously, if the new tour computed by V NS2 is better then the current

best, we save it and accept this new solution. Otherwise we accept the new solution only if

current cost − α/distance ≤ best cost, where current cost and best cost are, respectively,

the length of the tour produced by V NS2 and the best one computed so far, distance is

the number of different arcs between the two tours, and α = size × iteration2. The idea

behind this formula is the following. Since the heuristic is executed within an intensification

phase, we do not want to move too far away from the current local optimum. Consequently,

the larger the cost and the number of different arcs between the new solution and best one,

the lower is the probability of accepting this new solution. If the above condition is not

satisfied the heuristic restarts from best solution. Figure 15 shows the pseudocode of our

VNS heuristic.

5. Computational results

The algorithm just described was coded in C and run on a 3.4 Ghz PENTIUM 4 Processor.

We compare our variable neighborhood search heuristic to the VND heuristic proposed

by Cassani and Righini (2004). We first report additional details about the parameters

used in the VNS heuristic. The termination condition of the heuristic is the number of

consecutive iterations without improvement in the current best solution. The shake operator

is applied three times during the perturbation phase while the number of applications of

double-bridge depends on instance size. More precisely, let size be equal to 2n + 1: if

size < 251 this operator is applied only once in the diversification phase, otherwise it is

applied 2 +
⌊
(size − 251)/500

⌋
times. Our implementation of double-bridge ensures that

every time the operator is applied, the four selected breakpoints are different from those

of the previous application. In the diversification phase shake is applied six times and the

double-bridge the same number of times as in the perturbation phase, plus one. The size of

the tabu list is equal to 20 if size < 75, and (size × 25)/100, otherwise.

23

Procedure: VNS

1: s← Starting solution();
2: si ←V NS1(s);
3: diversification← 0;
4: for iteration = 0 to MAX ITER do
5:
6: /* perturbation phase */
7: if sj ← double bridge(si) fails then
8: s′i ← shake(si);
9: sj ← double bridge(s′i);
10: end if
11:
12: if (cost(sj) < best cost) then
13: s∗ ← sj

14: best cost← cost(sj);
15: iteration← 0;
16: end if
17:
18: sk ←V NS2(sj);
19:
20: if (cost(sk) < best cost) then
21: s∗ ← sk

22: best cost← cost(sk);
23: iteration← 0;
24: else
25: sk ← Acceptance criteria(s∗, sk);
26: end if
27: si ← sk;
28:
29: /* diversification phase */
30: if (iteration = MAX ITER AND diversification = 0) then
31: iteration← 0;
32: diversification← 1;
33: s′i ← shake(si);
34: si ← double bridge(s′i);
35: end if
36: end for

Figure 15: Pseudocode of VNS heuristic.

Test instances were created from the six files fnl4461, brd14051, d15112, d18512, nrw1379,

pr1002 of TSPLIB. In each case, seven subsets of customers were considered to yield in-

stances containing 25, 51, 75, 101, 251, 501 and 751 vertices. For each instance size

a random matching was performed among the vertices to create pickup and delivery pairs.

Also, for each instance, eight different starting tours were obtained by applying the heuristics

described in Figure 14. The use of different starting tours allows us to see how the quality of

the starting solution affects the final results of the heuristics. All test instances and solution

files are available on the following website: http://www.hec.ca/chairelogistique/data.

We have divided the test results into two tables. In Table 1 we report the solution values

computed by our V NS for each starting solution. Obviously the change of starting tour

implies a different final result. In each line we indicate in bold the best value computed for

that instance. The last line reports, for each starting tour, how many times the V NS has

24

Instance Size CI LI NI FI NN RAN NN REV NN REV RAN NN
fnl4461 25 2168.0 2168.0 2168.0 2168.0 2168.0 2168.0 2168.0 2168.0

51 4022.8 4064.1 4048.1 4022.8 4039.7 4020.0 4142.1 4051.4
75 5931.3 5768.4 5838.0 5858.1 5850.4 5865.0 5823.7 5758.9

101 8807.8 8774.9 8935.4 8884.3 8715.7 8852.8 8782.3 8853.0
251 29501.7 29446.1 29525.6 29594.1 29881.9 29330.6 29718.1 29703.2
501 72652.5 72217.1 73040.7 72443.6 73886.0 71208.5 71828.1 72684.3
751 118756.1 119315.6 118828.1 118443.2 119722.3 118383.1 119460.7 119226.2

brd14051 25 4682.2 4680.0 4685.6 4678.8 4680.6 4682.2 4685.6 4695.8
51 7746.3 7864.0 7811.7 7765.5 7749.1 7763.2 7759.0 7782.4
75 7300.7 7262.5 7269.2 7242.6 7364.5 7309.1 7242.4 7270.3

101 9927.7 9865.8 9948.9 9818.3 9915.6 10005.2 10156.8 10216.0
251 23662.2 24120.9 24131.6 24269.8 24346.4 24119.3 24152.2 23775.0
501 52496.6 52238.0 53248.4 52636.9 52415.9 52806.8 52637.8 52769.2
751 85699.8 86690.8 85922.2 86047.3 85486.2 86230.1 85934.5 85940.7

d15112 25 93981.0 94307.1 94614.2 93981.0 94297.6 93981.0 94028.3 94028.3
51 142537.3 142179.2 142377.8 143752.7 146058.3 143575.2 143575.2 145614.9
75 203073.8 203498.5 200904.9 203336.3 201818.6 201385.4 204391.4 203669.3

101 274304.6 274183.3 273181.3 273615.9 276765.0 276876.8 274580.3 276711.9
251 581953.1 588996.4 588573.1 582951.2 582872.9 589066.9 584883.0 590505.6
501 956892.3 960192.3 960239.2 953650.9 954507.7 953764.5 963289.6 957983.9
751 1354634.5 1354651.7 1363911.1 1357396.9 1343621.8 1352866.6 1341634.8 1360229.3

d18512 25 4678.8 4685.6 4686.8 4692.4 4685.6 4683.4 4679.4 4685.6
51 7541.9 7569.5 7561.5 7539.5 7601.4 7565.6 7562.3 7554.8
75 8791.7 8742.6 8658.2 8677.4 8669.8 8781.5 8813.7 8797.4

101 10442.1 10390.6 10417.1 10605.4 10397.2 10332.4 10390.9 10404.9
251 24551.3 24376.9 24894.3 24874.5 25214.8 24855.4 24931.4 24717.9
501 51262.7 51554.3 51964.1 51350.9 51508.7 52295.6 51825.4 51203.3
751 84359.8 84025.1 83787.7 84253.8 83875.0 83763.3 84420.7 83737.6

nrw1379 25 3193.4 3193.4 3196.2 3193.4 3193.4 3194.8 3193.4 3192.0
51 5078.4 5067.7 5055.0 5055.0 5089.7 5095.0 5071.8 5086.8
75 7034.2 7050.3 6931.5 7033.0 7079.3 6865.1 6952.4 6965.4

101 10167.8 10004.6 10032.1 10132.5 10189.7 10197.5 10158.7 10205.6
251 27699.9 27712.2 27925.6 27652.5 27782.3 27936.2 27934.4 27939.5
501 60925.1 60928.0 60529.6 60387.2 60890.0 60584.5 60671.6 60222.5
751 104902.5 105547.0 105182.7 105966.2 105155.0 105136.1 105400.1 105543.2

pr1002 25 16221.0 16221.0 16221.0 16221.0 16221.0 16221.0 16221.0 16221.0
51 31151.9 31067.3 32506.4 30936.0 31162.9 31186.6 30983.2 31243.9
75 47371.0 47066.1 47894.7 47401.8 47024.7 46911.0 47108.3 46980.3

101 62753.9 62527.5 63458.6 62802.5 63610.3 63611.1 62787.3 62721.6
251 200022.1 198226.3 200114.7 199210.4 201451.8 200028.5 198501.0 199296.3
501 485685.3 482324.0 485204.5 486390.5 487077.0 485042.3 484402.2 481850.6
751 815096.1 818410.3 812640.2 816053.0 807311.8 819197.7 818935.6 816962.1

Nb best 8 8 5 9 5 9 4 7

Table 1: Test results of VNS applying the eight different starting tours.

found the best solution starting from this solution. In particular we can see that the best

results are obtained for the FI and RAN NN heuristics. We have therefore selected one

of these two heuristics (the RAN NN) to produce the starting tour on which were applied

both the V ND heuristic of Cassani and Righini (2004) and our V NS heuristic. Table 1

shows that even if our heuristic produces different results depending on the starting tour,

the average gap between the best and worst solutions computed is around 2%. Our heuristic

is thus quite stable. In contrast, the results produced by V ND with the different starting

tours (not reported here for the sake of brevity) show an average gap of 8%.

25

Instance Size RAN NN VND VNS Gap (%)
cost time cost time

fnl4461 25 5273 2168 0.00 2168.0 0.00 0.00
51 11634 4301 0.00 4020.0 0.06 6.53
75 15503 6226 0.01 5865.0 0.17 5.80

101 21897 10171 0.04 8852.8 0.70 12.96
251 74129 30927 3.75 29330.6 23.92 5.16
501 275688 77315 86.69 71208.5 458.56 7.90
751 517555 122848 573.37 118383.1 2172.49 3.63

brd14051 25 11758 4779 0.00 4682.2 0.00 2.03
51 17365 8091 0.00 7763.2 0.06 4.05
75 28863 8762 0.01 7309.1 0.25 16.58

101 34617 12900 0.05 10005.2 0.74 22.44
251 93483 25469 4.37 24119.3 36.68 5.30
501 219684 57504 82.84 52806.8 478.69 8.17
751 351172 88667 511.24 86230.1 2169.77 2.75

d15112 25 138643 100230 0.00 93981.0 0.00 6.23
51 259473 155554 0.00 143575.2 0.04 7.70
75 445627 221948 0.01 201385.4 0.18 9.26

101 579279 293492 0.04 276876.8 0.46 5.66
251 1354723 621836 3.20 589066.9 24.64 5.27
501 2401410 974488 81.63 953764.5 385.88 2.13
751 3725560 1425598 444.69 1352866.6 1968.56 5.10

d18512 25 11758 4779 0.00 4683.4 0.00 2.00
51 26039 7894 0.00 7565.6 0.06 4.16
75 30249 9997 0.01 8781.5 0.20 12.16

101 45269 11314 0.06 10332.4 0.52 8.68
251 106116 28244 4.43 24855.4 32.89 12.00
501 216088 54336 84.96 52295.6 485.96 3.76
751 340729 86957 569.27 83763.3 2508.53 3.67

nrw1379 25 4368 3356 0.00 3194.8 0.00 4.80
51 13135 5195 0.00 5095.0 0.05 1.92
75 17889 7385 0.01 6865.1 0.18 7.04

101 27311 10802 0.04 10197.5 0.53 5.60
251 71614 29178 3.08 27936.2 24.54 4.26
501 168928 63038 78.56 60584.5 380.11 3.89
751 281104 110650 462.62 105136.1 2447.09 4.98

pr1002 25 30758 16221 0.00 16221.0 0.00 0.00
51 67278 36394 0.00 31186.6 0.07 14.31
75 91232 47287 0.01 46911.0 0.28 0.80

101 138225 65110 0.04 63611.1 0.83 2.30
251 569919 210595 3.37 200028.5 31.28 5.02
501 1275796 501520 82.65 485042.3 471.86 3.29
751 2308307 843629 486.26 819197.7 2785.40 2.90

Table 2: Performance comparison between V ND and V NS.

Table 2 gives the results obtained with the RAN NN , V ND and V NS heuristics. For

each instance we report the cost of the final tour produced by the heuristics and, for V ND

and V NS, the CPU time in seconds. Because of the random choices made in the V NS

heuristic, this algorithm is not deterministic. It is therefore executed ten times on each

instance. We report average cost value and computing time over these ten executions. The

last column reports the percent difference between the solution values of the V ND and V NS

heuristics.

We can see that the results produced by V NS are always better than those produced

by V ND, and that half the time the gap between the solution of V NS and the solution

26

of V ND is larger than 5% (in bold). In two cases, (brd14051-75 and brd14051-101) this

gap exceeds 15%. In general, the improvement produced by V NS decreases on the larger

instances where the gap is less than 5%. Regarding CPU time, V ND is obviously faster

than V NS since its neighborhood is smaller and easier to compute. However, for instances

with up to 100 vertices the CPU time difference between the two heuristics is negligible since

both require less than one second. For V NS this time increases on average to 30 seconds for

instances of 251 vertices, to eight minutes for instances of 501 vertices, and to forty minutes

for instances of 751 vertices.

Another interesting aspect that we have studied is the impact of each operator on the

VNS performance. To this end, each operator was in turn removed from VNS, and all

instances were solved by means of the new modified heuristic. These new heuristics are

called: no-CE, no-BE, no-RB, no-MR and no-2optL. Table 3 reports the percent difference

between the solution values of the VNS and those of the modified versions. If this difference

is negative, then the modified version has produced a better solution than VNS for that

instance. Clearly a small number of negative values in each column reflects a greater impact

of the operator associated to the column. The second to last line of Table 3 reports the

proportion of the times the modified heuristic has produced a better solution than VNS. We

can see that the modified heuristics perform worse than the original VNS algorithm. The

last line of the table shows the percent average deterioration in the solution value resulting

from the removal of each operator. The last two lines of the table clearly justify the use of

each operator.

Regarding the impact of each operator, we can see that multi-relocate is really crucial to

our heuristic because no-MR never produces a better solution than VNS. In some cases, the

gap between no-MR and VNS can be larger than 4% (in bold). The couple-exchange and

2-opt-L operators seem the least useful because no-CE and no-2optL find better solutions

than the base algorithm in 13 and 16 cases, respectively, but the improvement produced

is always less than 1%. Finally, no-BE and no-RB improve the solution 7 and 6 times,

respectively, but this improvement is always less than 1%. In some cases, the deterioration

resulting from the use of these heuristics is larger than 4%.

27

Instance Size no-CE no-BE no-RB no-MR no-2optL
fnl4461 25 0.00 0.00 0.00 0.00 0.00

51 3.27 0.83 0.82 1.52 0.00
75 0.70 0.53 4.03 2.18 0.04

101 -0.66 1.86 3.43 2.93 -0.93
251 1.14 2.65 2.29 1.78 -0.13
501 3.71 6.40 2.85 3.81 0.88
751 1.42 4.11 2.23 3.15 0.19

brd14051 25 -0.22 -0.07 -0.13 0.75 0.07
51 0.75 0.39 1.53 2.15 0.36
75 0.98 -0.44 -0.05 2.42 1.38

101 1.73 0.18 1.77 3.08 1.55
251 -0.24 3.74 1.04 3.98 0.44
501 0.18 3.39 1.85 4.00 0.14
751 0.09 3.14 0.52 2.32 -0.37

d15112 25 0.00 0.10 0.00 2.84 0.39
51 -0.79 0.12 0.59 1.52 -0.17
75 1.15 2.55 1.89 4.70 0.51

101 -0.34 -0.62 -0.61 1.74 0.93
251 -0.02 0.59 1.27 2.77 -0.43
501 1.15 4.00 1.79 2.88 0.39
751 0.88 4.07 2.14 1.89 0.44

d18512 25 -0.24 0.07 -0.03 0.83 -0.01
51 0.29 0.42 0.05 2.78 -0.17
75 -0.74 0.40 1.00 2.67 -0.56

101 1.61 2.19 5.46 5.03 -0.26
251 0.97 3.41 2.72 3.08 -0.41
501 -1.36 3.45 0.61 3.40 0.08
751 1.16 4.59 1.02 3.04 0.52

nrw1379 25 0.04 -0.04 0.18 2.10 -0.09
51 -0.53 -0.79 -0.79 4.61 -0.49
75 2.54 3.11 2.86 5.10 0.07

101 -0.93 -0.86 -0.12 2.94 0.29
251 -0.25 1.14 0.21 2.84 -0.17
501 0.37 2.79 1.23 2.74 0.18
751 0.22 4.87 2.36 2.64 0.34

pr1002 25 0.00 0.00 0.00 0.00 0.00
51 -0.25 -0.12 5.56 0.62 -0.24
75 0.52 1.61 2.15 4.71 0.33

101 1.58 0.55 3.28 2.06 -0.68
251 0.58 1.94 2.01 2.06 0.02
501 0.57 2.53 1.46 2.18 0.39
751 0.45 3.37 1.36 2.05 -0.27

Impr. 13/42 7/42 6/42 0/42 16/42
Average 0.51 1.66 1.48 2.64 0.11

Table 3: The operators effect on the V NS heuristic.

6. Conclusion

We have studied a variation of the classical TSP with pickup and delivery in which a LIFO

constrained is imposed. This condition allows the elimination of costly reshuffling operations

often encountered in practice. This is a relatively new problem on which little research has

been carried out. We have introduced new operators whose complexity never exceeds O(n3).

These have been embedded within a variable neighborhood search heuristic. Test results

show that our heuristic outperforms previous heuristics.

28

Acknowledgments

This work was partially supported by the Canadian Natural Science and Engineering Re-

search Council under grants 227837-04 and OGP0039682. We thank Giovanni Righini for

providing his VND codes. We are also thankful to three anonymous referees for their valuable

comments.

References

Carrabs, F. 2005. Heuristics and exact approaches for transportation problems with pickup

and delivery. Ph.D. Thesis, Dipartimento di Matematica ed Informatica, Universitá di

Salerno, Fisciano, Italy.

Cassani, L., G. Righini. 2004. Heuristic algorithms for the TSP with rear-loading. 35th

Annual Conference of the Italian Operational Research Society (AIRO XXXV), Lecce,

Italy, September 2004. http://optlab.dti.unimi.it/Papers/Cassani.pdf.

Cordeau, J.-F., G. Laporte, J.-Y.Potvin, M.W.P. Savelsbergh. 2006. Transportation on de-

mand. In C. Barnhart and G. Laporte, eds., Transportation. Elsevier, Amsterdam.

Fischetti, M., P. Toth. 1989. An additive bounding procedure for combinatorial optimization

problems. Operations Research 37 319-328.

Hansen, P., N. Mladenović. 2005. Variable neighborhood search. In E.K. Burke and G.

Kendall, eds., Search Methodologies, Springer, New York, 211-238.

Healy, P., R. Moll. 1995. A new extension of local search applied to the dial-a-ride problem.

European Journal of Operational Research 83 83-104.

Kalantari, B., A.V. Hill , S.R. Arora. 1985. An algorithm for the traveling salesman problem

with pickup and delivery customers. European Journal of Operational Research 22 377-

386.

Ladany, S.P., A. Mehrez. 1984. Optimal routing of a single vehicle with loading and unloading

constraints. Trasportation Planning and Technology 8 301-306.

Levitin, G. 1986. Organization of computations that enable one to use stack memory opti-

mally. Soviet Journal of Computer & System Science 24 151-159.

29

Levitin, G., R. Abezgaouzb. 2003. Optimal routing of multiple-load AGV subject to LIFO

loading constraints. Computers & Operations Research 30 397-410.

Lin, S., B. W. Kernighan. 1973. An effective heuristic algorithm for the traveling salesman

problem. Operations Research 21 498-516.

Mladenović, N., P. Hansen. 1997. Variable neighborhood search. Computers & Operations

Research 24 1097-1100.

Or, I. 1976. Traveling salesman type combinatorial problems and their relations to the logis-

tics of blood banking. Ph.D. Thesis, Department of Industrial Engineering and Manage-

ment Sciences, Northwestern University, Evanston, IL, U.S.A.

Pacheco, J.A. 1997. Heuristico para los problemas de ruta con carga y descarga en sistemas

LIFO Statistics and Operations Research Transactions 21 69-86.

Psaraftis, H.N. 1983. K-interchange procedures for local search in a precedence-constrained

routing problem. European Journal of Operational Research 13 391-402.

Renaud, J., F.F. Boctor, J. Ouenniche. 2000. A heuristic for the pickup and delivery traveling

salesman problem. Computers & Operations Research 27 905-916.

Renaud, J., F.F. Boctor, G. Laporte. 2002. Perturbation heuristics for the pickup and de-

livery traveling salesman problem. Computers & Operations Research 29 1129-1141.

Ruland, K.S., E.Y. Rodin. 1997. The pickup and delivery problem: faces and branch-and-cut

algorithm. Computers and Mathematics with Applications 33 1-13.

Savelsbergh, M.W.P. 1990. An efficient implementation of local search algorithms for con-

trained routing problems. European Journal of Operational Research 47 75-85.

Van Der Bruggen, L.J.J., J.K. Lenstra, P.C. Schuur. 1993. Variable depth search for the

single-vehicle pickup and delivery problem with time windows. Transportation Science 27

391-402.

Volchenkov, S.G. 1982. Organization of computations utilizing stack storage. Engineering

Cybernetics, Soviet Journal of Computer & System Science 20 109-115.

Xu, H., Z. Chen, S. Rajagopal, S. Arunapuram. 2003. Solving a practical pickup and delivery

problem. Transportation Science 37 347-364.

30

