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Abstract

This paper studies the double traveling salesman problem with two stacks. A number of requests
have to be served where each request consists in the pickup and delivery of an item. All the pickup
operations have to be performed before any delivery can take place. A single vehicle is available that
starts from a depot, performs all the pickup operations and returns to the depot. Then, it performs
all the delivery operations and returns to the depot. The items are loaded in two stacks, each served
independently from the other with a LIFO policy. The objective is the minimization of the total cost
of the pickup and delivery tours. We propose a branch-and-bound approach to solve the problem. The
algorithm uses properties of the problem both to tighten the lower bounds and to avoid the exploration of
redundant subtrees. Computational results performed on benchmark instances reveal that the algorithm
outperforms the other exact approaches for this problem.

Keywords: Double traveling salesman problem; Pickup and delivery problems; Branch-and-Bound;
LIFO; Multiple stacks.

1. Introduction

Most of the literature on vehicle routing problems studies the problem of creating routes that minimize the
routing costs. In practice, the problem of how to load the vehicles is considered to have an important impact
on the costs. In a sequence of delivery operations, the driver may need to spend time in rearranging the
content of the vehicle if the items to be delivered have not been properly loaded. The loading and the routing
problems influence each other. If the loading problem is solved independently of the routing problem, it may
happen that the items are loaded in such a way that the driver has to rearrange them before any delivery
operation can take place. Thus, although the route may be shortest in terms of traveling cost, the solution
obtained may not be the best possible. In the case of a pickup and delivery problem, the loading problem
becomes even more relevant.

Recently, although the literature is still quite limited, a number of contributions appeared that treat
combined routing and loading problems. Several different combinations of the routing and loading problems
have been considered. Mainly heuristic solution approaches have been proposed but some contributions are
also available on exact approaches. Heuristics for the vehicle routing problem with two dimensional loading
constraints have been proposed in [15] and [18] . An exact approach is available for the same problem [19].
A heuristic for the extension of the problem to the case of three dimensional loading constraints has been
presented in [16]. Other loading constraints for the vehicle routing problem have been studied in [9], [17]
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and [25]. Whereas in [9] and [17] a heuristic has been proposed, in [25] both a heuristic and an exact solution
approach have been presented.

Pick-up and delivery routing problems combined with loading constraints have also received attention.
However, in this case the case of one vehicle only has been considered. Heuristic and exact solution approaches
have been proposed for the pickup and delivery traveling salesman problem (TSP) with different types of
loading constrains in [2], [4], [6], [7] and [11].

In this paper we consider the Double Traveling Salesman Problem with Two Stacks (DTSP2S). This is
a pickup and delivery problem where a set of requests has to be satisfied by a vehicle at minimum cost.
Satisfying a request means that an item has to be picked up at a customer and delivered to a destination
customer. All the pickup operations have to be performed before any delivery operation can take place. A
vehicle is available to perform the pickup and the delivery operations, respectively. The vehicle starts from
the depot, visits all the pickup customers and returns to the depot. Then, it visits all the delivery customers
and returns to the depot. The vehicle carries a container that is structured in two horizontal stacks. Each
stack can accommodate a given maximum number of items and is served with a Last-In-First-Out (LIFO)
policy. When an item is picked up, it can be loaded into any of the two stacks that has still space available.
In the delivery phase, each of the two stacks must be emptied according to a LIFO policy. No repacking is
allowed between the pickup and the delivery phases. Thus, whenever a delivery operation takes place, at
most two items are available to be unloaded, one per stack. If a stack is empty only one item is available.
The problem consists in identifying a pickup tour, a loading policy and a delivery tour in such a way that
the sum of the costs of the two tours is minimum.

The DTSP2S is derived from the more general double traveling salesman problem with multiple stacks
(DTSPMS). The DTSPMS is a generalization of the TSP with pickup and delivery (TSPPD) and is similar to
the TSP with pickup and delivery and LIFO constraints (TSPPDL). Indeed, the latter problem can be seen
as a DTSPMS where the vehicle contains a single stack with infinite capacity and no precedence constraint
is set between the pickup and the delivery operations. For the TSPPDL, a variable neighborhood search
(VNS) heuristic has been introduced in [4], while two exact approaches have been proposed in [3] and [7].
The results obtained so far suggest that the introduction of multiple stacks makes the problem much harder
to solve.

Although the DTSPMS has been only recently introduced, in the last years it has received a growing
interest, probably because, in spite of the simple structure, it is computationally very challenging. The
problem was introduced in [22], where the authors proposed a mathematical model and developed two
neighborhoods used in four metaheuristics (Iterated Local Search, Tabu Search, Simulated Annealing and
Large Neighborhood Search). In [12] the authors introduced four new neighborhoods that, together with
the ones proposed in [22], were embedded in a new VNS metaheuristic. Computational results show that
the new VNS metaheuristic outperforms previous metaheuristics presented in the literature. Finally, a large
neighborhood search heuristic has been proposed in [8]. Many benchmark instances for both the TSPPDL
and DTSPMS are used by the authors to prove that their algorithm overcomes the ones proposed in the
literature. An interesting analysis of basic subproblems of the DTSPMS has been carried out in [5] and [24].
To the best of our knowledge only two exact solution approaches for the DTSPMS have been presented([20]
and [21]). In [20] an exact solution approach based on matching k-best TSP solutions for each of the separate
pickup and delivery tours was proposed. In [21] the authors introduced various formulations of the problem
and solved them with a branch-and-cut approach. It is very interesting to notice that for both these previous
exact approaches, the difficulty of an instance depends on the capacity of the stacks, given the number of
requests. Since the capacity is equal to ⌈requests/stacks⌉, the performance of the algorithms improves,
given the number of requests, when the number of stacks increases. This is probably due to the fact that
the construction of the tours becomes less constrained. On the contrary, the performance of the algorithm
we propose in this paper improves when the number of stacks decreases, because, thanks to the precedences
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Figure 1: The graphs G+ and G− (a) and a solution (b).

generated inside the same stack, the branch-and-bound we present is able to find tighter lower bounds. The
number of stacks considered in the benchmark instances for the DTSPMS is two or three, which are the most
realistic cases. In this paper we focus on the case of two stacks and propose an additive branch-and-bound
solution approach that improves previously known results on benchmark instances. While the theorems,
properties and strategies introduced in this paper hold for any number of stacks, preliminary tests showed
that the proposed branch-and-bound approach is not competitive with the other known approaches in the
case of three stacks.

The remainder of the paper is organized as follows. In Section 2 we formally define the problem with
two stacks. The additive branch-and-bound algorithm is described in Section 3. Finally, the computational
results are presented in Section 4 and some concluding remarks are given in Section 5.

2. Definitions and Notation

In the DTSP2S we have n requests, each composed by a pickup vertex v+ and a delivery vertex v−. In order
to satisfy a request we have to load an item in v+ and unload it in v−. We define N+ = {v+1 , . . . , v+n } and
N− = {v−1 , . . . , v−n } the sets of pickup and delivery vertices, respectively. The sets N+ and N− are the sets
of vertices of two complete, directed and unconnected graphs: The pickup graph G+(N+, A+), with A+ =
{(u+, v+), u+, v+ ∈ N+} and the delivery graph G−(N−, A−), with A− = {(u−, v−), u−, v− ∈ N−}. The
vertices of the two graphs are connected to a depot, v0, as shown in Figure 1a. Let {(v0, v+), (v+, v0), v+ ∈
N+} and {(w−, v0), (v0, w

−), w− ∈ N−} be the sets of arcs that have v0 as one of the extremes. A cost
c(u, v) is associated to each arc (u, v), where both u and v may be pickup vertices or delivery vertices, or
one between u and v may be the depot and the other either a pickup or a delivery vertex.

A tour for the DTSP2S starts from the depot v0, visits a sequence of n pickup vertices, returns to
the depot, visits a sequence of n delivery vertices and finally returns again to the depot (Figure 1b). This
means that the depot v0 appears three times in a tour. In order to simplify the description of some important
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aspects of the branch-and-bound approach we propose, such as the barrier vertex, the residual graph and the
filters, it is convenient to work with the classical tour structure, i.e. a sequence of different vertices, starting
and ending at the depot. To this end, we replace all the arc pairs (v+, v0), (v0, w−) with a single direct arc
(v+, w−) where c(v+, w−) = c(v+, v0) + c(v0, w−). We denote by A± this new set of arcs. In Figures 2a
and 2b the new structure of the input graph and of a complete classical tour are shown, respectively. For
each tour in the original graph, which in fact is composed by a pair of pickup and delivery tours, we have
an equivalent tour with the same cost in the new graph and vice versa.

Hence, we will solve the DTSP2S on a directed and weighted graph G = (V,A), where V = {{v0}∪N+∪
N−} and A = {{(v0, v+)} ∪A+ ∪A± ∪A− ∪ {(v−, v0)}}. We define a pickup route R+ (delivery route R−) as
any sequence of n pickup (delivery) vertices. For instance, in Figure 2b we have R+ =< v+3 , v

+
4 , v

+
2 , v

+
5 , v

+
1 >

and R− =< v−5 , v
−
1 , v

−
4 , v

−
3 , v

−
2 >.

The transportation is carried out using a single rear-loaded vehicle. The container of the vehicle is divided
in 2 stacks {S1, S2}, each of given capacity L. We denote by |Si| the number of items in stack Si. Any possible
partial or complete loading of the two stacks is called a loading configuration. A loading configuration also
includes the sequence of the items within each stack. The loading configuration {< v+3 , v

+
4 , v

+
5 >,< v+2 , v

+
1 >}

at the end of the pickup tour is shown in Figure 2b. This is a complete loading configuration because all the
pickup vertices have been visited and the pickup items have been accommodated into the stacks. With a
little abuse of the language, we will sometimes say that a vertex is loaded in a stack.

The loading and unloading operations of each stack must be carried out in LIFO order, i.e. only the
items visible from the rear of the container can be unloaded. We will use the representation of stacks as
depicted in Figure 2b. Here, the items visible from the rear of the container are the items on top of the
stacks.

Let R+ and R− be a pickup and a delivery route, respectively. These routes are feasible if and only if

4



the sequence of vertices in R− satisfies the LIFO policy for the complete loading configuration associated
with R+. A tour T is feasible for DTSP2S if and only if the pickup and delivery routes contained in it are
feasible. Our aim is to find the shortest feasible tour T ∗ in G.

We introduce now the definition of consistent path needed for the description of the search tree. A path
p of G is called consistent if i) it starts from the depot v0; ii) there exists a feasible tour T of G such that p
is a subpath of the tour T ; iii) it is associated with a loading configuration.

From the definition, it is easy to see that, in a consistent path, all precedence constraints are verified.
Given the tour T depicted in Figure 2b, any subpath starting from v0 is a consistent path, when a loading

configuration is associated to it. Notice that a stack has to be selected for each pickup vertex, where the
picked up item is accommodated. Since, unless a stack is full, it is possible to choose between the two stacks,
then different loading configurations may be associated with the same path. For instance, given the path
p1 =< v0, v

+
3 , v

+
4 , v

+
2 >, possible loading configurations are {< v+3 , v

+
4 >,< v+2 >}, {< v+3 , v

+
4 , v

+
2 >,< ∅ >},

{< v+3 >,< v+4 , v
+
2 >}, {< v+3 , v

+
2 >,< v+4 >}. A consistent path p is characterized by two components:

The sequence of vertices and a loading configuration. Two consistent paths are identical if both components
coincide. Given a consistent path p, we define the following:

• V(p) is the set of vertices in p;

• L (p) is the last vertex of p;

• C (p) is the loading configuration associated with p.

Given the last vertex of p, L (p) = v, we define the residual graph Gv(p) as the subgraph of G induced
by v and by the vertices that do not belong to p, i.e. Gv(p) = (Vv(p), Av(p)) where Vv(p) = {V \V(p)}∪{v}
and Av(p) = {(x, y) : x, y ∈ Vv(p)}.

3. The Additive Branch-and-Bound Algorithm

In this section we briefly introduce the structure of the Additive Branch-and-Bound (ABB) algorithm and
describe the various aspects that characterize it. Let T̂ be the initial best solution computed by some
heuristic. The search tree T built by ABB contains all the feasible tours of G. A vertex is added at each
level of the search tree. The depot v0 is added at level 0. From level 1 to level n the pickup vertices are
added and from level n+1 to 2n the delivery vertices are added. The algorithm starts the construction of T
from the depot v0 and then extends any consistent path adding new vertices until a feasible tour is obtained.
From level 0 to n − 1 the branching strategy selects a new pickup vertex to add to the current path and a
stack where to accommodate it. At the following levels it selects one of the delivery vertices whose pickup
is on top of one of the two stacks. The exploration of the search tree is performed using the depth-first
strategy. Before any branching operation, the ABB computes a lower bound on the residual graph induced
by the current vertex and by the vertices that do not belong to the current path. To enforce the quality of
lower bounds, we introduce a set of elimination rules (the filters) whose aim is to find and to remove from
the residual graph the arcs that cannot belong to any feasible tour starting with the current path. Since the
filtered graph contains less arcs than the original one, there are more chances to find tighter lower bounds.
For the computation of the lower bounds, ABB applies an additive approach [13] based on two relaxations of
the classical TSP: The assignment and arborescence problems. After the computation of the lower bounds,
the algorithm checks whether the cost of the current path plus the best lower bound is lower than c(T̂ ). If
this is the case, the exploration continues, otherwise a pruning operation is performed. When the exploration
reaches the level 2n, a feasible tour T ′ is obtained and, if c(T ′) < c(T̂ ), then T̂ is updated with T ′.
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To improve the performance of the basic additive branch-and-bound algorithm, we use the following
three tools: The barrier vertex, the polynomial computation of the delivery tours and the hashing strategy.
Given a tour T , the barrier vertex z of T is the last pickup vertex. For any pickup vertex v+i , we build
the subtree Tv+

i
containing all the paths starting from v0 and having v+i as barrier vertex z. We use a

dynamic programming algorithm introduced in [5] that, given a complete loading configuration computes, in
polynomial time, the optimal delivery tour that is compatible with this configuration. We implemented and
embedded this algorithm into the ABB to complete the tour from the barrier vertex. The hashing strategy
is used to identify redundant nodes of the search tree. As a result, more pruning operations are carried out
in the search tree.

In the next parts of this section we describe in details the main features of ABB and in Section 4 we will
show their impact on the performance of the algorithm.

3.1 Branching Strategy and Barrier Vertex

The ABB algorithm builds a search tree T containing all the feasible tours of G. A consistent path of G,
denoted by ρ(τ), is associated with each node τ of T . The loading configuration of the consistent path is
C (ρ(τ)). Any feasible tour T of G is a consistent path with 2n+1 vertices. At level 2n of T we will find all
the feasible tours of G. We denote by ℓ(τ) the level of a node τ in T . To avoid confusion, from now on, we
will use the term vertex to indicate one of the vertices of the graph G and the term node to indicate one of
the elements of the search tree T .

Since any consistent path starts from the depot, the root r of T corresponds to the trivial path containing
v0 only. This trivial path is extended on level 1 with one of the n pickup vertices, placing the corresponding
item in S1. No item is placed in S2 on level 1 to avoid the creation of redundant nodes. Consequently,
the branching of r generates n children, each one associated to a pickup vertex with its item placed in S1

(Figure 3a).
After selecting a node τ on level 1, with L (ρ(τ)) = v+1 , the consistent path ρ(τ) =< v0, v

+
1 > can be

extended with one of the remaining n− 1 pickup vertices {v+2 , . . . , v+n } and assigning the item to one of the
two stacks (Figure 3b). In general, given any node τ ∈ T , the branching on it produces a set of nodes Cτ

according to the following rules:

• if ℓ(τ) = 0, then, ∀v+ ∈ N+ ∃φ ∈ Cτ ;

• if ℓ(τ) < n, then, ∀Si that is not full and ∀v+ outside ρ(τ),∃φ ∈ Cτ ;

• if ℓ(τ) ≥ n, then, ∀v− outside ρ(τ) and having v+ on top of a stack, ∃φ ∈ Cτ .

The search tree T is divided in two parts. At the levels from 1 to n we find nodes associated with the
pickup vertices while the following n levels are associated with the delivery vertices. It is important to notice
here that the number of nodes created when branching at the early levels of the tree is considerably greater
than the number of nodes generated from the delivery nodes that is equal to two, unless one of the stacks is
empty.

We use the depth first policy to visit the tree. This policy was observed to be extremely efficient in terms
of computational time.

The number of pruning operations performed on the search tree depends on the quality of the lower
bounds computed on each node of T . Since the nodes are largely located on the first n+ 1 levels, we focus
the attention on how to compute the lower bounds at these levels. To this aim, we introduce the concept
of barrier vertex that changes the construction of the search tree to reduce the number of nodes at the first
n+ 1 levels.
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Figure 3: The branching strategy. (a) The branching on the root r generates n nodes. (b) The branching on
node τ , associated with pickup vertex v+1 , generates 2(n− 1) children, associated with the remaining (n− 1)
pickup vertices placed in S1 and S2.

By construction, while |A±| = n2, obviously any feasible tour T of G contains only one arc (v+, w−) ∈ A±.
We focus the attention on the last pickup vertex that we define to be the barrier vertex z. We first select a
pickup vertex as possible barrier vertex z and later build all the feasible tours having z at level n. Obviously,
the selection of the barrier vertex is carried out n times, one for each pickup vertex because the barrier
vertex inside the optimal tour is unknown. After the barrier vertex z has been chosen at the root node,
the algorithm proceeds with the normal branching, using the remaining n − 1 pickup vertices, to build the
subtree Tz containing all the feasible tours that have z at level n. Therefore, we can divide the new search
tree T in n subtrees Tv+

1
, . . . , Tv+

n
each one rooted in r and having v+i , with 1 ≤ i ≤ n, as barrier vertex

(Figure 4).
We have two important advantages derived from the introduction of the barrier vertex. The first is the

identification of new filters, described in Section 3.3, that improve the lower bounds. The second advantage
concerns the introduction of a stopping criterion that avoids the complete exploration of the subtree Tv+

i
.

To this end, the sequence of barrier vertices is carefully generated. For each v+i ∈ N+, we compute the
cheapest Hamiltonian tour T ∗

v+
i

of G where v+i is the last pickup vertex. This can be done by setting

c(v+, w−) = ∞, ∀v+ ∈ N+ \ {v+i },∀w− ∈ N−, in the cost matrix of G and then solving the classical TSP
on this modified matrix. The resulting n tours are sorted according to their non-decreasing cost and the
subtrees Tv+

i
will be explored according to this order. Obviously, c(T ∗

v+
i

) is a lower bound to the value of any

feasible tour in Tv+
i
. For this reason if, during the exploration of this subtree, the algorithm finds a feasible

tour T with c(T ) = c(T ∗
v+
i

), then the algorithm stops, returning the optimal tour. Indeed, any feasible tour
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Figure 4: The new search tree after the introduction of the barrier vertex.

in the remaining subtrees will have a cost at least equal to c(T ). Moreover, before starting the exploration
of any subtree Tv+

i
, the algorithm checks whether c(T ∗

v+
i

) is lower than the cost of the incumbent solution.

If this is the case, the exploration starts, otherwise the algorithm stops.
A drawback of the introduction of the barrier vertex is the duplication of nodes on levels from 1 to n

of the search tree. Let us consider Figure 5a in which the first n = 3 levels of the search tree T ′ generated
by the original branching strategy are shown. For sake of simplicity, we do not consider the stacks here.
The total number of nodes of T ′ is equal to 16. In Figure 5b the search tree T ′′ built using the barrier
vertex is shown. Each node vi, with 1 ≤ i ≤ 3, appears two times on the level 1 of T ′′ while in T ′ only
once and T ′′ contains three nodes more than T ′. This problem worsens when introducing the stacks and
adding other vertices. Despite that, the test results reveal that the improvements introduced by the barrier
vertex overcome this drawback. This happens essentially because many of the duplicated vertices are quickly
pruned on the first levels of the search tree, thanks to the tighter lower bounds derived by the use of the
barrier vertex. Moreover, for each node τ , with ℓ(τ) < n − 1, the set of children Cτ cannot contain the
barrier vertex. This implies that the size of each subtree Tv+

i
is much smaller than that of the original tree.

To see that, let us consider again Figure 4 and let v+1 be the current barrier vertex. Then, at level 1 of Tv+
1

we will have n− 1 nodes associated with the vertices v+2 , . . . , v
+
n . At level 2, since there are two stacks, we

have two nodes less for each node of level 1, that is on level 2 there are (n− 1)× 2(n− 2) nodes while in the
original tree there was n× 2(n− 1).

3.2 Lower Bound Computation

We describe here the computation of the lower bounds performed at each node of the search tree. This is
a crucial aspect because the performance of ABB depends on the size of the search tree and the pruning
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operations reduce this size.
Given a node τ ∈ T with L (ρ(τ)) ̸= v0, let T̂ be the best tour found so far and Gτ be the residual

graph induced by ρ(τ). In order to build a feasible tour T , we have to find a path ρ(τ) from L (ρ(τ)) to
v0 such that ρ(τ) and ρ(τ) are together a feasible tour of DTSP2S. A path ρ(τ) is called a residual path of
Gτ . Now, let lbτ be a lower bound to the cost of all residual paths in Gτ . If c(ρ(τ)) + lbτ ≥ c(T̂ ), then it
is useless to continue the exploration of the subtree rooted in τ because it does not contain feasible tours
better than T̂ . In this situation the algorithm prunes τ and backtracks to its father. The computation of the
lower bounds is performed using two classical relaxations of the TSP: The assignment problem (AP) and the
r-shortest spanning arborescence problem (r-SAP), respectively. The first problem can be solved in O(|V |3)
using the Hungarian algorithm [1], while the second one in O(|A|log|V |) using the efficient implementation
of Edmonds’ algorithm [10] proposed by Tarjan [23]. Unfortunately, the lower bounds computed by these
two relaxations are good for the classical TSP but poor for the DTSP2S.

In order to obtain an effective lower bound, we apply an additive approach that uses the two relaxations
simultaneously. This approach can be outlined as follows in the context of the TSP (for a detailed description
we refer to [13, 14]). Let B(1),B(2), . . . ,B(q) be q bounding procedures available for the TSP. The application
of one of these procedures, say B(h), on the cost matrix c = (cij) produces a lower bound l(h) and a residual
cost matrix c(h) such that:

• c
(h)
ij ≥ 0 for all i, j ∈ V ;

• l(h) + c(h)(T ) ≤ c(T ) for any feasible tour T . In other words, the sum of the lower bound and the cost
of T on c(h), is not greater than the cost of T on c.

Given a node τ ∈ T and the residual graph Gτ induced by ρ(τ), we solve the assignment problem computing
a first lower bound l1 and a residual cost matrix c1. Then on this matrix c1 the r-SAP problem is solved
obtaining another lower bound l2. From the properties of the residual cost matrix mentioned above, l1 + l2

is a lower bound to the cost of all residual paths in Gτ . A more detailed description of our implementation
can be found in [3].

9



3.3 Filters

In this section we show how to improve the lower bounds generated by the additive approach by using the
specific structure and constraints of the problem. During the construction of a consistent path ρ(τ), prece-
dence constraints among the vertices loaded in the same stack are generated. Because of these constraints,
several arcs of the residual graph Gτ cannot belong to any residual path ρ(τ). However, if these arcs are
selected in the solutions produced by the AP and the r-SAP relaxations, the quality of the lower bounds
worsens. To avoid this problem, we introduce a set of elimination rules, called filters, whose aim is to remove
as many arcs as possible from the residual graph before computing the lower bounds. Since the filtered
residual graph contains a reduced set of arcs with respect to the original one, the relaxations will in general
produce better lower bounds.

Before describing the filters, we introduce some definitions. Given a consistent path p and a vertex v, we
denote by pos(v) the position of v in p. In Figure 2b, for example, pos(v+3 ) = 1 and pos(v−3 ) = 9. We define
pos(v0) = 0. Given two vertices v and w in p, if pos(v) < pos(w), then v precedes w in the path. Obviously,
pos(v+) < pos(w−) ∀v+ ∈ N+, w− ∈ N−. We denote by S(v+) and P(v+) the stack where v+ is loaded and
the position of v+ in the stack, respectively. If v+ is not loaded in any stack then the stack and the position
take value -1.

We are now ready to describe the seven filters applied in our branch-and-bound algorithm. Here p denotes
the consistent path we are building, with z as barrier vertex.

f1. Remove (v+, w−), and (z, v+), ∀v+ ∈ N+ \ {z}, w− ∈ N−, before starting the construction of p.
Since the barrier vertex z is the last pickup vertex in p, all the arcs from a pickup vertex, different from
z, to a delivery vertex can be removed. Moreover, also the arcs from z to the other pickup vertices can
be removed because no pickup vertex can follow z in p.

f2. If L (p) = v+ and pos(v+) < n− 1, then remove (v+, z).
Since pos(z) = n, any pickup vertex v+ located in a position lower than n − 1 cannot be inserted
immediately before z. Therefore, the arc (v+, z) can be removed.

f3. If L (p) = v+ and another vertex will be added in S(v+) after v+, then the arc (z, v−) can be removed.
Because of the LIFO constraints, from z we can reach one of delivery vertices whose pickup vertex
is on top of some stack. Since v+ will not be on top of S(v+) when z is reached, then (z, v−) can be
removed. To verify whether other vertices will be added to the same stack of v+, we check whether
there is enough space, inside the other stack, to load the pickup vertices in N+ \ V(p).

f4. If there are no empty stacks, then remove (v−, v0), ∀v+ ∈ N+ : P(v+) > 1 or P(v+) = −1.
A delivery vertex w− can be inserted immediately before the depot only if P(w+) = 1. Therefore, once
the first position of both stacks has been filled, then it is possible to remove all the arcs to v0 except
for the arcs coming from a delivery vertex whose pickup vertex is in position 1 of some stack. Notice
that this filter removes also arcs originating at delivery vertices whose pickup is not yet loaded.

f5. If L (p) = v+ and P(v+) > 1, then remove (v−, v0).
The difference with respect to the previous filter is that this one is applied also with empty stacks.

f6. If S(v+) = S(w+) and P(v+) < P(w+), then remove (v−, w−).
Since v+ is under w+ in the stack, then w− has to precede v− in p (Figure 6a). Hence the arc (v−, w−)
can be removed.

f7. If S(v+) = S(w+) and P(v+) = P(w+)−1, then remove (z, v−) and (w−, u−), ∀u− such that S(u+) =
S(v+) and P(u+) < P(v+).
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Figure 6: Graphical representation of filters f6 and f7.

The loading constraints impose that w− is visited before v− and then v− cannot be visited immediately
after z. Moreover, v− has to precede any other delivery vertex whose pickup vertex is under v+ in
S(v+) (Figure 6b) and then any arc from w− to one of these delivery vertices can be removed.

From now on, we will consider the residual graph Gτ obtained after the application of the filters. The
filters f1 and f2 are generated thanks to the introduction of the barrier vertex and they are the only filters
that are able to remove arcs from a pickup vertex to another pickup vertex. Notice that the filters are only
applied to consistent paths ending with a pickup vertex. This is due to the fact that, thanks to the dynamic
programming algorithm described in Section 3.4, we avoid the exploration of the levels of the search tree
associated with delivery vertices and then the construction of consistent paths stops at the barrier vertex.

3.4 Polynomial Computation of Delivery Tours

When a barrier vertex is reached in the search tree, the optimal delivery tour is calculated with the polynomial
algorithm presented in [5]. The authors showed that, given a complete loading configuration, it is possible
to compute in polynomial time a delivery tour which is feasible with respect to the loading configuration
and has minimum cost.

We briefly describe here the dynamic programming algorithm, DPA, that runs in polynomial time and
computes the optimal delivery tour. The construction of the delivery tour is carried out by adding at the
end of a partial tour one of the delivery vertices whose pickup is on top of a stack. Let us define f(x1, x2, i)
the value of the shortest path starting from v0, having x1 items in the stack S1, x2 items in the stack S2,
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and whose next vertex is the delivery vertex v− whose pickup vertex is on top of Si. If v− is the first
delivery vertex of the tour then f(x1, x2, i) = c(v0, v

−). Otherwise, f(x1, x2, i) = min{f(x1 + 1, x2, 1) +
c(w−

1 , v
−), f(x1, x2 + 1, 2) + c(w−

2 , v
−)}, where w−

j is the delivery vertex whose pickup vertex is on top of
Sj . Using this dynamic programming recursion, it is possible to compute all the values of f(), and then the
best delivery tour, in O(n3).

After the computation of the best delivery tour, it is sufficient to add c(z, v0) to its cost to obtain the
value of the best residual path starting from z. Notice that setting f(x1, x2, i) = c(z, v−), for the base case
of recursion, the DPA returns directly the value of the best residual path. However, we do not proceed in
this way because, as we will see in the next section, we apply the hashing strategy to DPA.

Thanks to the DPA, the branch-and-bound stops the construction of the search tree at the barrier vertices
avoiding the exploration of the subtrees rooted in them. Indeed, every time the ABB reaches the level n, it
invokes DPA to compute the best delivery tour and then the residual path. To evaluate the impact of the
dynamic programming algorithm for the calculation of the delivery tours, we also implemented the complete
exploration of the search tree including the explicit exploration of the nodes associated with delivery vertices.
The dynamic programming algorithm reduces the computational time of the complete algorithm but not as
much as we expected. This is probably due to the fact that the second half of the search tree contains much
fewer nodes (all the subtrees rooted into the barrier vertices are binary trees) than the first half. Moreover,
most of them are pruned because the lower bounds are tighter on these levels. In the next section we will
describe the real advantage derived from the application of DPA.

3.5 Hashing Strategy

In this section we introduce an important aspect of our branch-and-bound approach, the hashing strategy.
During the exploration of the search tree, important information, such as the lower bounds and the cost

of the consistent path associated with each node, is computed and later lost. This is a normal situation in
a classical branch-and-bound approach because the information cannot be reused. This is not the case for
the DTSP2S problem. By analyzing the search tree, we discovered that there are several nodes where it is
possible to reuse this information to quickly decide if they can be pruned because no better solution can be
found in the subtree rooted in them. The nodes on which it is possible to reuse the information are defined
redundant nodes.

In order to identify the redundant nodes, we use the concept of equivalent paths. Given a loading
configuration, different consistent paths may share this loading configuration. The subset of these paths
that end with the same vertex are called equivalent. Formally:

Definition 1. Consistent paths p1, p2 . . . , pt are equivalent if and only if C (p1) = C (p2) = . . . = C (pt) and
L (p1) = L (p2) = . . .L (pt).

For instance, the loading configuration {< v+3 , v
+
4 , v

+
2 >,< v+1 , v

+
5 >} depicted in Figure 7a is generated

by the six equivalent paths shown in Figure 7b. Once one of these equivalent paths has been built, the nodes
associated with the remaining five paths become redundant.

The equivalent paths share an important property.

Lemma 1. Let z be a barrier vertex and p1 and p2 two equivalent paths with L (p1) = v+. Then, the filters
remove exactly the same arcs from the residual graphs induced by p1 and p2.

Proof. The only difference between p1 and p2 is the sequence of the vertices that belong to them.
Whereas, during the construction of the two paths, the loading configurations may be different, they coincide
when the two paths reach v+. To prove that the set of arcs of the two residual graphs induced by p1 and
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Figure 7: (a) A loading configuration and (b) the equivalent paths derivable from it.

p2 coincide, we analyze the behavior of the filters. Let us start from the first filter f1. This filter is applied
immediately after the selection of the barrier vertex z and before starting the construction of any consistent
path with this barrier vertex. Since the arcs removed depend only on z, they are the same for p1 and p2.
The filter f2 removes only one arc outgoing from the last vertex of the path. Since p1 and p2 end with the
same vertex v+, if the arc (v+, z) satisfies the condition of f2, it is removed in both cases. The proof for f3
is a bit more complicated. Let u+ be a vertex belonging to p1 and p2 and w.l.o.g. let us assume that it is
located in two different positions in these two paths. Moreover, let p′1 and p′2 be the subpaths of p1 and p2
ending with u+. Obviously, S(u+) = S1 is the same for p′1 and p′2, while the other stack S2 can be loaded
in different way. After p′1 has been built, in order to check whether u+ will be covered in the stack, the
filter f3 verifies the following condition: L − |S2| < |V \ V(p′1)|. If this condition holds, then there is not
enough space in S2 to contain all the pickup vertices outside p′1 and then at least another vertex will be
inserted in S1 after u+. It is easy to see that for each vertex added in S2 both members of the inequalities
are decreased by one while for each vertex removed from S2 both members are increased by one. This means
that the loading of S2 cannot change the result of the condition and then if the condition holds for u+ in p′1
then it holds also for u+ in p′2. The case when the condition does not hold is proven in the same way. About
the filter f4, since C (p1) = C (p2), whatever the position of a vertex u+ is in the two paths, if P(u+) > 1
or P(u+) = −1 in p1, the same holds also in p2 and vice versa. During the construction of p1 and p2, only
the iteration when the arc (v−, v0) is removed could be different, because it depends on the position of u+

in these paths. A similar reasoning holds also for f5, f6 and f7.

Lemma 2. Let z be a barrier vertex and p1, . . . , pt a set of equivalent paths in Tz. Then the residual graphs
induced by these paths coincide.

13



Proof. Since p1, . . . , pt contain the same vertices and L (p1) = . . . = L (pt) = v, by definition, the
vertex set Vv of the induced residual graphs is the same. It remains to be proved that also the set of arcs
Av is the same. Obviously, without the application of the filters we have that Av = {(u, v) : u, v ∈ Vv} for
all the residual graphs. Therefore, only the application of the filters could generate difference sets of arcs.
However, this is not possible, due to Lemma 1.

From the above Lemma, we can derive the following important result.

Theorem 1. Let z be a barrier vertex and p1, . . . , pt a set of equivalent consistent paths in Tz. If τ1, . . . , τt
are the nodes of the search tree associated with these consistent paths, then lbτ1 = . . . = lbτt .

Proof. Since, from Lemma 2, p1, . . . , pt induce the same residual graph, also the lower bounds computed
on the residual graphs coincide.

Since the computation of the lower bounds is a computationally intensive operation, the above result has
a relevant computational impact. To take advantage of this result, we need a data structure where to save
the value of the lower bound associated with a consistent path p1 in such a way that when a new equivalent
path p2 is built, we can retrieve this value. To this end we use a hash table H and define the function κ(p)
that, given a consistent path p, generates the hash key using C (p) and L (p). Obviously, p1 and p2 are
equivalent if and only if κ(p1) = κ(p2). Let us see, in more details, how the hash key is generated. For
each stack Si, we generate a string containing the vertices of the stack from the bottom to the top. Then,
we sort the strings obtained according to the index of the first vertex of the string and concatenate them.
Finally, we add to the end of the complete string just built the vertex L (p). For instance, the hash key for
the configuration shown in Figure 7a is: v+1 , v

+
5 /v

+
3 , v

+
4 , v

+
2 |v

+
2 . Notice that, thanks to the strings sorting,

swapping the content of two stacks generates the same hash key.
The advantages of the hashing strategy are not limited to the saving of the lower bound computations.

As described at the beginning of this section, we aim at pruning as many redundant nodes as possible.
Therefore, we use the cost of the path associated with the redundant node and Lemma 2. Given the barrier
vertex z, let ρ(τ1) and ρ(τ2) be two equivalent consistent paths. From Lemma 2, the residual graph associated
with the two paths is the same and then a feasible solution T2 = ρ(τ2) · ρ(τ2) with ρ(τ1) = ρ(τ2) corresponds
to each feasible solution T1 = ρ(τ1) · ρ(τ1) and vice versa. Since the residual paths coincide, the different
values of c(T1) and c(T2) depend on c(ρ(τ1)) and c(ρ(τ2)) only. W.l.o.g., if c(ρ(τ1)) ≤ c(ρ(τ2)) then the cost
of any feasible solution containing ρ(τ2) is at least equal to the cost of the corresponding solution containing
ρ(τ1). Therefore, if the algorithm visits the node τ1 first, the exploration of the subtree rooted in τ2 becomes
useless and then τ2 can be pruned. Vice versa, if τ2 is visited first, then the algorithm has to explore also the
subtree rooted in τ1. However, this happens only if c(ρ(τ1)), summed to lbτ1 , is lower than c(T̂ ). To carry
out the pruning of redundant nodes we need to know the cost of any consistent path p1 whose lower bound
is saved in H. To this goal, we save two data in the hash table: The cost of the path and the value of the
lower bound computed on the residual graph. This information represents an element of the hash table.

We illustrated with an example the use of the hash table. Given a hash key κ(p1), let α(κ(p1)) and
β(κ(p1)) be the cost and the lower bound saved in the cell κ(p1) of H, respectively. Given the barrier vertex
z, let us suppose that in Tz the algorithm builds the equivalent paths p1, . . . , p6 depicted in Figure 8a, where
p1 is built before p2 and so on. The cost of each path is shown on the right of the path. Moreover, let T̂ be
the best solution found so far with c(T̂ ) = 164. When the algorithm builds p1, there is no information saved
in the cell κ(p1). For this reason, the lower bound lb is computed on the residual graph induced by p1 and
saved together with c(p1) in κ(p1) (Figure 8b). Then, the algorithm checks whether the cost of the current
path summed to the just computed lower bound is lower than the cost of current best solution. Since in this
case c(p1)+ lb > c(T̂ ), then the current node is pruned. After some iterations, ABB builds the path p2, that
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Figure 8: The hash table

is equivalent to p1. Since κ(p2) = κ(p1), the associated cell in the hash table is not empty and then the value
of the lower bound can be directly retrieved from κ(p2). Since c(p2) < α(κ(p2)) = 79, then the new value is
saved in the cell (Figure 8c). However, also in this case the current node is pruned because c(p2)+ lb > c(T̂ ).
When p3 is built, the algorithm immediately prunes the associated node because c(p3) > α(κ(p3)) = 67.
This is done also for p4 and p5. Finally, when p6 is built, since c(p6) < α(κ(p6)), the new value is saved in
the hash table (Figure 8d). Moreover, since the condition c(p6) + lb < c(T̂ ) holds, the subtree is explored.

As it should be clear from the above description, the number of elements inserted in the hash table
is related to the number of loading configurations generated by different consistent paths of the search
tree. Since this number grows exponentially, it is impossible to save all of them in the hash table. To
face this problem, we select some levels of the search tree and save in the hash table the information
associated with the nodes on these levels only. The selection of the levels is based on the probability to
carry out pruning operations on them. For instance, let p1 =< v0, v

+
1 , v

+
2 , v

+
3 > be a consistent path with

C (p1) = {< v+1 , v
+
3 >,< v+2 >} and let τ be the node of the search tree associated with this path. Obviously,

τ is located on level 3 of T . It is easy to see that only another consistent path p2 =< v0, v
+
2 , v

+
1 , v

+
3 > exists

which is equivalent to p1. Therefore, at most one pruning operation can be performed by saving in the hash
table the information associated with p1. For this reason, it is unattractive to select level 3 of the search tree.
Obviously, whereas the probability to carry out pruning operations is greater at earlier levels of the search
tree, also the number of elements to be saved in the hash table increases at those levels. On the other hand,
a pruning operation performed at later levels has a greater impact on the performance of the algorithm.
The best situation occurs when there is enough space in the hash table to save all the elements. However,
when this is not possible it is necessary to find a tradeoff between the quantity and quality of the selected
levels and the limited available memory. Here, the importance of DPA becomes more evident. Without this
algorithm, the hash table should handle 2n levels while with this algorithm the number of levels is reduced to
n. As a consequence, more elements of the first n levels can be saved and the number of pruning operations
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performed on the first n levels of T increases.
Another interesting use of the hash table concerns the level n. As explained above, the elements of H

contain the cost of the path and the lower bound computed on the residual graph. Since on the level n the
DPA is invoked, by changing the hash key generation (as we will see below, L (p) here is useless) and the
kind of elements to store, it is possible to reduce the total number of DPA invocations. Let us see how.

Let p1 and p2 be two equivalent paths containing all the pickup vertices and w.l.o.g. let us suppose that
p1 is built before p2 in T . Since C (p1) = C (p2), the DPA returns the same delivery tour when invoked on
L (p1) and L (p2). Therefore, if we save the cost of this delivery tour then, when p2 is built, we can directly
retrieve from the hash table its cost instead of invoking again DPA to compute the same tour. We denote
by Hn the hash table used at level n. Its elements are composed of a single information: the value of the
best delivery tour associated with the given loading configuration. Since the solution computed by DPA
depends only on the loading configuration C (p) associated with the consistent path p, the hash key for Hn

is generated using this information only (L (p) here is useless).
So far we have described the hashing strategy, given a fixed barrier vertex z. It is interesting now to see

the behavior of ABB algorithm when the barrier vertex changes. Let us start from the hash table H. All
the lower bounds on the nodes of Tz are computed by forcing z to be the last pickup vertex. Consequently,
when the barrier vertex changes, the lower bounds previously computed do not hold. On the contrary, the
cost of the consistent paths, which is saved in the hash table, always holds whatever the barrier vertex is.
This cost can be reused to carry out pruning operations. Indeed, let us suppose that c(p1) is the cost of a
consistent path in Tz, saved in H, and let p2 be an equivalent path in Tz′ built later. If c(p2) ≥ c(p1) + 1,
then we can prune the node associated with p2 because we know that there is a cheaper consistent path
equivalent to p2 whose cost is equal to c(p1). Instead, if c(p2) < c(p1) + 1, then the algorithm updates the
value in the hash table and continues the exploration. From previous observations, every time the barrier
vertex changes, ABB performs one of following two operations: it empties the hash table, if it is full, or it
sets to 0 the lower bounds saved in H and increases by one the cost of the consistent paths. We need to
increase this cost by one to avoid a incorrect pruning operation when the cost corresponds with the cost of
the cheapest consistent path.

It is interesting to note the consequence of the change of the barrier vertex on Hn. Let p1 and p2 be
two paths containing all the pickup vertices and such that C (p1) = C (p2) while L (p1) ̸= L (p2) because we
changed the barrier vertex. W.l.o.g. let us suppose that p1 is built before p2 in T . Since C (p1) = C (p2), the
DPA returns the same delivery tour when invoked on L (p1) and L (p2). Therefore, the possibly different
cost of residual paths starting from L (p1) and L (p2) depends only on c(L (p1), v0) and c(L (p2), v0). This
means that we can reuse the costs stored in Hn also after changing the barrier vertex. For this reason, no
operations are performed on this table when the barrier vertex changes.

4. Computational Results

The ABB algorithm was coded in C and run on a 2.33 GHz Intel Core2 Q8200 processor. Following both
Lusby et al. [20] and Petersen et al. [21], the ABB algorithm was tested on a set of benchmark instances used
in [22] and available at: http://www.imm.dtu.dk/∼hlp/data/. These data sets have 33 customers (i.e. 66
vertices plus the depot) randomly located on a 100×100 grid. The depot is located at the point (50.0, 50.0).
The cost of the arcs is the Euclidean distance rounded to the nearest integer. All the tests were carried out
with a capacity of each stack equal to ⌈n/2⌉. A maximum CPU time of 1 hour was imposed for the solution
of each instance. An initial upper bound for the ABB algorithm is computed using the large neighborhood
search (LNS) proposed by Côté et al. [8]. This heuristic is run 10 times. The initial upper bound is the best
value increased by one. In this way, when the LNS finds the optimal solution, also the ABB algorithm can
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Size → 25 27 29
Inst. ↓ UB Best Ndpa Nbar Nhash ABB UB Best Ndpa Nbar Nhash ABB UB Best Ndpa Nbar Nhash ABB
R00 727 726 107,32 121,63 199,23 109,18 749 748 924,9 1886,9 1792,4 904,17 775 774 3604,96 3602,9 3606,12 3603,63
R01 742 741 69,69 98,55 147,33 69,54 759 758 679,22 1532,07 1637,36 589,28 762 761 2178,35 3602,91 3606,01 1793,42
R02 661 660 198,16 196,31 437,05 196,74 688 687 1890,17 3602,88 3606,14 1742,01 691 690 3605,16 3602,89 3606,14 3603,98
R03 691 690 3,49 6,44 6,18 3,46 697 696 4,45 9,8 7,35 4,29 792 791 427,88 486,01 1118,5 426,17
R04 660 659 63,34 71,15 110,93 62,86 685 684 1090,26 1692,56 1934,47 917,24 757 756 3605,14 3602,81 3606,13 3604,71
R05 632 631 175,63 203,38 529,67 172,26 724 723 939,74 3087,72 3027,82 782,26 776 775 3603,26 3602,79 3606,14 3052,79
R06 794 793 113,61 123,27 280,29 111,94 808 807 1174,39 2112,75 2922,84 903,15 825 824 3494,37 3602,74 3606,08 2655,48
R07 594 593 61,72 70,76 143,57 61,15 613 612 514,04 882,08 1397,27 458,14 698 697 348,52 534,53 859,46 341,83
R08 750 749 74,85 107,92 118,2 74,96 766 765 646,35 2080,23 1226,47 613,45 825 825 3605,17 3602,86 3606,15 3604,46
R09 693 692 221 303,31 449,77 219,22 704 703 233,86 437,36 413,56 233,21 740 739 1232,79 3602,85 2545,73 1225,67
R10 664 663 16,8 20,76 29,34 16,69 686 685 286,63 298,45 589,23 282,82 734 733 3604,88 3602,82 3606,14 3603,03
R11 626 625 53,33 45,05 84,9 53,9 682 681 597,33 594,46 1046,54 556,61 726 725 3604,58 3602,79 3606,17 3603,09
R12 742 741 7,32 17,24 10,59 7,45 758 757 8,78 22,48 13,79 8,87 804 803 346,4 641,33 633,76 349,24
R13 695 694 8,18 11,95 13,14 8,29 700 699 14,07 22,76 24,24 14,26 747 746 244,01 372,99 628,05 242,5
R14 681 680 109,73 147 288,27 109,84 727 726 1798,95 3602,74 3606,07 1705,58 766 766 3605,41 3602,8 3606,1 3604,55
R15 629 628 84,43 105,59 167,85 84,67 695 694 101,01 145,89 178,84 99,59 766 765 437,24 822,86 1015,73 438,97
R16 611 610 4,11 4,56 5,71 4,08 643 642 90,64 119,89 179,88 90,32 686 685 285,24 466,42 698,15 286,44
R17 781 780 599,95 566,85 1781,59 554,53 800 799 2411,4 3602,68 3605,97 2037,25 819 818 3605,04 3602,78 3606,06 3604,39
R18 736 735 14,07 21,55 20,08 14,32 749 748 63,12 127,28 97,48 63,47 775 774 829,39 2883,34 1451,15 772,42
R19 790 789 147,84 154,41 383,69 149,18 812 811 833,99 1424,4 1811,91 756,88 837 837 3605 3602,79 3606,14 3604,38
Avg. 106,73 119,88 260,37 104,21 715,17 1364,27 1455,98 638,14 1220,68 1874,43 1797,16 1053,18
Solved 20 20 20 20 20 17 17 20 10 7 8 11

Table 1: Test results of the ABB algorithm and its variants.

find this solution.
We carried out a first set of tests to verify the impact of the polynomial dynamic programming algorithm,

the barrier vertex and the hashing strategy, on the performance of the ABB algorithm. To this aim, we
tested three variants of the ABB algorithm: Ndpa, Nbar, and Nhash that are the ABB algorithm without the
dynamic programming algorithm, the barrier vertex and the hashing strategy, respectively. Table 1 reports
the results of the ABB algorithm and of these variants. We tested instances of three different sizes, 25, 27
and 29. For example, the size 25 means 12 pickup and delivery vertices and the depot. The first line shows
the size (25, 27, 29) of the tested instances. The first column of the table gives the name of the data set
from which the instance is generated. Given a data set and a size s, the instance is generated by taking the
first s vertices from each data set.

For each instance, the initial upper bound (UB), the best solution (Best) found and the total CPU time,
in seconds, spent by each of the algorithms to find the optimal solution, are reported. A time over 3600
indicates that the algorithm was unable to find the optimal solution within one hour. The last two lines
show, for each algorithm, the average computational time Avg, taken over the instances solved to optimality
by at least one algorithm, and the number of times the optimal solution was found (Solved) within the time
limit, respectively. We do not compute the average over all instances because the time limit reached when
the optimal solution cannot be found within one hour is non-informative of the computational time really
needed to reach optimality.

On the instances of size 25, the Ndpa and ABB algorithms require a similar average time, the Nbar is
slightly slower, while the Nhash is around 60% slower than the ABB. On the instances with 27 vertices,
the gap between ABB and Ndpa increases to 10% and both algorithms solve all the instances to optimality
within the time limit. Instead, Nbar and Nhash require more than twice the time required by the ABB and
in three cases (R02, R14 and R17) these algorithms fail to find the optimal solution within the time limit.
Finally, on the instances with 29 vertices the ABB solves to optimality the largest number of instances,
11, with the smallest average computational time. The variant Ndpa solves 10 instances, Nhash solves 8
instances while Nbar only 7. In terms of computational time, the Ndpa, Nbar and Nhash result, on average,
13%, 43% and 41% slower than the ABB, respectively.

The above comparison shows that the barrier vertex and the hashing strategy are the algorithm charac-
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Size → 25 27 29
Inst. ↓ #barrier b best t best HP #barrier b best t best HP #barrier b best t best HP
R00 12 1 0,14 2332669 13 3 263,61 18672256 4 1 266,56 58393816
R01 12 1 0,43 1546610 13 1 0,79 11382154 14 1 1,76 34858879
R02 12 2 52,17 4547075 13 2 420,45 41375752 5 2 2375,34 59305399
R03 8 3 1,01 49608 9 3 1,18 32535 14 3 84,06 5326858
R04 12 1 0,54 1196169 13 1 42,08 18700250 3 1 256,84 13856687
R05 12 1 2,01 3711473 13 1 0,73 14373612 14 2 648 58403667
R06 12 1 9,79 2555311 13 1 125,54 20158123 14 1 253,78 57529531
R07 12 2 6,61 1656589 13 2 42,2 9640423 14 2 45,05 6411029
R08 12 2 14,3 1589626 13 2 116,75 12734862 2 n.d n.d 28113971
R09 12 1 6,81 4418858 13 1 3,88 3658302 10 1 59,97 19975908
R10 12 1 0,56 264023 13 1 38,31 5488285 14 2 817,4 89384908
R11 12 2 9,36 608860 13 1 72,81 8138901 13 2 496,02 66509800
R12 12 1 0,42 79238 12 1 0,9 106131 14 1 23,9 4829730
R13 12 2 1,96 137001 13 2 3,31 232851 14 2 51,19 4870708
R14 12 1 24,19 2428126 13 1 299,69 43346328 1 n.d n.d 20414556
R15 12 3 40,84 1529953 13 1 19,15 1517196 14 1 61,93 7460913
R16 11 2 1,16 33286 13 2 23,79 1457122 13 6 179,95 4684746
R17 12 2 80,19 11275322 13 2 289,58 45940761 2 2 2447,17 32080246
R18 11 1 2,92 192020 12 1 14,59 770993 14 2 255,03 10446746
R19 12 2 39,68 4004924 13 2 129,43 16685116 2 n.d. n.d. 29990015

Table 2: Additional information regarding the behaviour of ABB during the computation.

teristics with the greatest impact on the performance of the ABB while the dynamic programming algorithm
for the computation of the delivery tours the one with the smallest impact. We also tested the computa-
tional effectiveness of the filters. With a time limit of 1 hour, ABB on 20 instances with 29 vertices finds the
optimal solution 11 times while removing the filters it finds the optimal solution 5 times only. Besides, on
these 5 instances the time required by the version without the filters is more than five times greater than the
time required when the filters are used. This explains why it is important to find as many filters as possible
and why we modified the branching strategy, with the introduction of the barrier vertex, to generate new
filters.

In order to quantify the impact of the stop criterion, the sequence of barrier vertices chosen and the
hashing strategy, we show in Table 2 some relevant information. For each instance, the number of total
barrier vertices visited (#barrier), the barrier vertex on which the best solution (b best) is found, the time
(t best) when this solution is found and the number of pruning operations carried out through the hashing
strategy (HP ), are reported. The values in italic indicate the instances not solved by ABB within the time
limit. The column #barrier shows that the stop criterion is successful three times on instances with size 25
and 27 and two times on 29. Therefore, on these instances, on average, in the 13% of cases ABB does not
visit all the n barrier vertices. This average grows up to 41% on the smaller instances with size 17, 19, 21 and
23. Column b best reports that in 43% of instances ABB finds the best solution on the first barrier vertex
and in 83% within the first three barrier vertices. These results highlight the effectiveness of the chosen
sequence. Moreover, from the values of t best column, we find out that, in 81% of cases, the best solution
is found within the first 5 minutes of computation. Finally, the column HP reveals the effectiveness of the
hashing strategy. On average, ABB performs 2, 13 and 30 millions of pruning operations on the instances
of size 25, 27 and 29, respectively.

From the results of Table 1 we know what are the instances hardest to solve for the ABB. Since the
DTSP2S can be solved in reverse order, that is starting the construction of the tour from the delivery
vertices, it is interesting to investigate whether the hardness of instances changes if solved in reverse order.
We implemented a variant of ABB, denoted as ABB rev, that builds the tour in reverse order. In Table 3
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Size → 25 27 29
Inst. ↓ ABB ABB rev ABB ABB rev ABB ABB rev
R00 109,18 24,14 904,17 283,59 3603,63 1663,65
R01 69,54 36 589,28 407,06 1793,42 1518,5
R02 196,74 104,97 1742,01 615,45 3603,98 951,69
R03 3,46 11,36 4,29 84,2 426,17 3613,21
R04 62,86 222,46 917,24 2453,76 3604,71 3614,68
R05 172,26 506,7 782,26 3613,41 3052,79 3614,68
R06 111,94 230,49 903,15 2401,16 2655,48 3614,56
R07 61,15 70,3 458,14 2091,42 341,83 2808,89
R08 74,96 15,93 613,45 86,4 3604,46 788,28
R09 219,22 2,24 233,21 3,25 1225,67 39,01
R10 16,69 79,62 282,82 982,07 3603,03 3614,45
R11 53,9 50,37 556,61 1366,6 3603,09 3614,56
R12 7,45 17,68 8,87 11,01 349,24 1416,33
R13 8,29 11,55 14,26 93,82 242,5 3125,75
R14 109,84 50,58 1705,58 1143,09 3604,55 3614,7
R15 84,67 162,74 99,59 231,54 438,97 3614,11
R16 4,08 87,6 90,32 2410,67 286,44 3614,58
R17 554,53 1211,29 2037,25 3613,93 3604,39 3614,72
R18 14,32 11,74 63,47 219,38 772,42 1159,05
R19 149,18 11,71 756,88 49,88 3604,38 836,5

Avg. 104,21 145,97 638,14 1108,08 2201,06 2522,6

Table 3: Performance comparison between the ABB and the reverse version that build the tour starting
from delivery vertices.

we compare the performance of this variant with the original algorithm.
The results show that often the computational time changes according to the direction of search. It is

interesting to highlight that ABB rev is able to solve within the time limit four instances (R00, R02, R08
and R19) on which the original one fails. Unfortunately, given a generic instance, we cannot establish, a
priori, which search direction is the most effective one.

From the results, it is evident that the heuristic upper bound used is often optimal. In order to test
the sensitivity of the algorithm to the quality of this UB, we have increased the value of the UB by 5%
and ran the algorithm on the largest instances (29 vertices). The results show that the instances solvable
to optimality within the time limit remain the same, with the exception of R05, that is not solved when
the UB is increased. The average CPU time, for the solved instances, increases of 20%. Having completed
the description of ABB characteristics, we compare now the performance of this algorithm with the others
available in the literature. To the best of our knowledge, there are only two exact approaches for the DTSP2S.
The approach proposed by Lusby et al. [20], that we indicate by EM, is based on the generation of pairs of
pickup and delivery tours of minimum cost and on verifying whether a feasible loading configuration exists
for these tours. A branch-and-cut approach to different mathematical programming formulations of the
problem was proposed by Petersen et al. [21]. We indicate the branch-and-cut applied to the most effective
formulation by B&C.

In Table 4 we compare the performance of the ABB with the performance of these two algorithms. The
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Inst. Size ABB B&C EM
Best Time Gap Time Gap Time

R05 17 501 0,25 0% 1 n.d. n.d.
R06 17 694 0,51 0% 31 n.d. n.d.
R07 17 487 0,56 0% 27 n.d. n.d.
R08 17 642 0,57 0% 38 n.d. n.d.
R09 17 558 0,76 0% 17 n.d. n.d.
R05 21 546 2,28 0% 196 0% 4
R06 21 774 5,66 0% 678 0% 5
R07 21 547 1,60 0% 115 0% 1
R08 21 670 2,00 0% 392 0% 5
R09 21 610 4,65 0% 44 0% 1
R05 25 631 172,26 7,92% 3602 0% 2126
R06 25 793 111,94 2,77% 3602 0% 310
R07 25 593 61,15 4,05% 3602 0% 485
R08 25 749 74,96 4,65% 3602 0,13% 3602
R09 25 692 219,22 0% 1680 0% 45
R05 29 775 3052,79 7,08% 3602 1,98% 3602
R06 29 824 2655,48 5,22% 3602 0,73% 3602
R07 29 697 341,83 6,95% 3602 2,20% 3602
R08 29 825 3604,46 8,01% 3602 5,73% 3602
R09 29 739 1225,67 1,53% 3602 0% 211
Avg. 566,54 2280,07 1257,21
Solved 19 11 15

Table 4: Performance comparison between the EM, B&C and ABB algorithms.

first two columns report the name of the data set and the size of the instance, respectively. Since the B&C
was tested only on 5 instances (R05-R09) out of 20 available and using the sizes 17, 21, 25 and 29, in Table 4
only the results for these instances and sizes are reported. The column ABB is divided in two sub-columns:
Best and Time. The former shows the solution value computed by the algorithm and the latter the total
CPU time, in seconds, spent to compute this solution. The columns B&C and EM are divided in two sub-
columns: Gap and Time. The former shows the gap, in percentage, between the solution value found by the
algorithm and the optimal value while the latter is the total CPU time, in seconds, spent to compute this
solution. In each line we indicate in bold the fastest algorithm. Finally, the last line shows the number of
times the optimal solution was found (Solved) within the time limit. The smallest instance used for the tests
has 17 vertices. Unfortunately, for this size no result for the EM algorithm is available. The comparison
between the ABB and the B&C reveals a significative difference in terms of computational time. The ABB
algorithm solves all the instances in less then one second while the B&C requires at least 17 seconds, with
the exception of R05. This behavior is emphasized when the size of the instances increases. On the instances
with 21 vertices, the time required by the B&C ranges from 44 to 678 seconds while ABB never requires
more than 6 seconds. Instead, the performance of the EM algorithm is similar to that of the ABB. When
we consider the instances with 25 vertices the B&C finds the optimal solution only once (R09) within the
time limit. On this instance the time required is 1680 seconds, approximately eight times the 214 seconds
required by the ABB. On the remaining instances, R05-R08, the quality of the solutions found by the B&C
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Figure 9: Histograms of three exact approach performance available in literature on the size 25 and 29.

is quite poor with a percentage gap that ranges from 2,77% to 7,92%. The EM fails once, on R08, while on
R09 it is faster than the ABB. On the other three instances it is from 3 to 12 times slower than the ABB.
Finally, on the largest instances with 29 vertices, the B&C never finds the optimal solution while the EM
does only once on R09 where it is faster than the ABB. On average, the gap from the optimal solution for
the B&C and EM is around 5,75% and 2,66%, respectively. In the worst case, this gap reaches 8% for the
B&C and almost 6% for the EM. With the exception of R08, the ABB solves all the instances in one hour.
Since no results are available for the EM on size 17, we computed the average from size 21. The Avg line
gives an idea of the different performance of the three algorithms, although we have to take into account that
the several 3602 values that contribute to the average (in particular for B&C) tend to flatten the average.
The last line of the table shows that on 20 instances the ABB, B&C and EM solve 19, 11 and 15 of them
in one hour, respectively. The histograms depicted in Figure 9 give a graphical representation of the three
algorithms performance on the size 25 and 29 and show that ABB outperforms the other two approaches in
terms of computational time.

The tests presented by Lusby et al. [20] are carried out on all the 20 kinds of instances R00-R19 with a
time limit equal to 3 hours. In order to have a complete comparison on all the instances available, we fixed
the same time limit to 3 hours for the ABB and we ran again all the tests.

Table 5 shows the new results. On the instances with 21 vertices, with the exception of some particular
case like R10 and R16, the performance of the two algorithms is similar. The different average is essentially
due to the bad result on R16 produced by EM. On 25 vertices the difference starts to be relevant. Here,
there is a first failure of the EM algorithm to find the optimal solution on instance R08. Moreover, only
in three cases (R01, R09, R12) the EM is faster than the ABB. On the remaining 17 instances, the ABB
turns out to be at least 10 times faster than the EM in 6 cases (R02, R04, R05, R08, R10 and R16) with an
impressive time gap on R08, R10 and R16. The Avg line gives a clear idea of the different level of efficiency
of the two algorithms. On average, the ABB is around 14 times faster than the EM. Finally, on the size 29
the different ability of the two algorithms to find the optimal solution within the time limit becomes evident.
The EM only in five cases finds this solution while the ABB 16 times. Moreover, only in two cases (R01,
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Size → 21 25 29
Inst. ↓ EM ABB EM ABB EM ABB
R00 5 5,12 142 108,48 10802 7592,21
R01 3 4,11 17 68,51 653 1787,94
R02 6 7,57 2432 197,68 10802 5638,48
R03 1 0,98 4 3,43 10802 423,42
R04 3 1,28 1151 62,28 10802 6437,22
R05 4 2,29 2126 173,91 10802 3040,04
R06 5 5,72 310 109,72 10802 2657,65
R07 1 1,61 485 61,8 10802 339,85
R08 5 2,02 10802 75,36 10802 10802
R09 1 4,68 45 220,29 211 1209,25
R10 7 0,88 2452 16,62 10802 3924,84
R11 2 0,56 356 53,16 10802 3658,66
R12 3 1,72 7 7,32 10802 343,56
R13 2 1,3 16 8,1 1499 240,62
R14 13 4,78 205 110,49 10802 10802
R15 2 2,52 306 85,37 1152 436,3
R16 114 0,99 3537 4,04 10802 284,46
R17 11 4,52 3832 551,97 10802 10802
R18 1 0,58 16 14 3607 757,32
R19 1 0,58 171 150,8 10802 10802
Avg. 9,50 2,69 1420,60 104,17 7871,50 2423,24
Solved 20 20 19 20 5 16

Table 5: Comparison between the EM and ABB algorithms on all 20 instances with a time limit equal to 3
hours.

R09) the EM is faster than the ABB. Notice that from Avg line the ABB turns out to be around 4 times
faster than the EM. The histogram of the performance of these two algorithms is depicted in Figure 10.

Finally, using the threshold of three hours and keeping track of the time when ABB finds the best
solution, we discovered that only on R08, R14 and R19 the algorithm does not obtain the optimal solution
within one hour, while we were unable to solve R17 within the three allowed hours and thus cannot state
anything. This means that 16 out of 20 solutions obtained by the ABB, on 29 vertices, are optimal. This
analysis suggests that there is a high probability for the ABB to obtain the optimal solution within the time
limit, though possibly without optimality proof.

5. Conclusions

In this paper we have presented an additive branch-and-bound algorithm for the solution of the Double
TSP with Two Stacks. The problem is one of the most interesting combined routing and loading problems.
Although the problem is simple to describe, it is computationally extremely hard. Previous papers have
presented different formulations for the problem, solved with a branch-and-cut approach, and an exact
approach based on the enumeration of pairs of pickup and delivery tours. The algorithm we present in this
paper outperforms, on a set of benchmark instances, the previous exact approaches in terms of computational
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Figure 10: Performance comparison between EM and ABB using a time limit equal to 3 hours.

time and number of optimal solutions. This is due to the ideas, like the barrier vertex and the hashing
strategy, that, embedded into the additive approach, allowed us to raise to 29 the size of the instances
solvable to optimality within one hour. Moreover, test results reveal that, even when the ABB reaches the
time limit, often the solution returned is the optimal one. The size of the instances solved to optimality
remains quite small, confirming the fact that even the simplest combined routing and loading problems can
be computationally extremely hard.

In this work we focused the attention on the case with two stacks. Although the ABB can work for
any number of stacks, when the number of stacks increases, the effectiveness of the filters decreases and
the performance of the algorithm worsens. Indeed, on the instances R05-R09 with size 12 and three stacks,
ABB turns out to be faster than B&C in two cases. However, increasing the size to 15, ABB never finds
the optimal solution within the time limit while the B&C always does. Comparison with results reported
in [20] and [21] reveals that, currently, the EM algorithm is the fastest exact approach for DTSPMS with
three and four stacks. A possible direction for future work is to improve the quality of the lower bounds or
to introduce new ideas that improve the performance of the algorithm when the number of stacks is greater
than two.
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