
A Tabu Search approach for the Circle Packing Problem

Carrabs Francesco
Department of Mathematics

University of Salerno
Salerno, Italy

Email: fcarrabs@unisa.it

Carmine Cerrone
Department of Mathematics

University of Salerno
Salerno, Italy

Email: ccerrone@unisa.it

Raffaele Cerulli
Department of Mathematics

University of Salerno
Salerno, Italy

Email: raffaele@unisa.it

Abstract—This paper concerns the problem to place N non
overlapping circles in a circular container with minimum
radius. This is a well known and widely studied problem with
applications in manufacturing and logistics and, in particular,
to problems related to cutting and packing. In this paper
we propose an algorithm that by applying a strength along
a selected direction on each circle, simulates the shifting of
circles on the plane and tries to reduce the radius of the
circular container during this movements. The algorithm is
based on a multistart technique where the starting solutions are
produced by a tabu search heuristic that uses also the current
best solution. The algorithm takes part in a public international
contest in order to find optimal solutions to a special case in
circle packing. The contest saw the participation of 155 teams
and our algorithm achieved the tenth position.

Keywords-Circle Packing, Tabu Search, MultiStart

I. INTRODUCTION

The problem we study in this paper has important appli-
cations in activity related to cutting and packing, wireless
communication networks, container loading, manufacturing,
logistics, see [1] for a recent survey. In this context the most
widely studied case is the packing of equal circles in the
unit square. Packing different disks in a smallest container
is a NP-complete combinatorial optimization problem and
are been developed for it exact approaches, like branch-and-
bound algorithm [3], and different heuristics and metaheuris-
tics procedure [2][4][5].
The particular problem we address is the problem of packing
n different circles (disk) in a circumference with minimum
radius. We suppose that each disk has a different radius and
we have to put them in a circumference of minimum radius.
For this particular problem we propose several algorithms
that can be classified in three main categories: constructive
algorithms, shrinking algorithms and improvement algo-
rithms. Each kind of algorithm is developed for a specific
aim and we embedded these algorithms in a tabu search
framework in order to obtain an effective algorithm for the
circle packing problem.

In this paper we propose several algorithms that can be
classified in three main categories: constructive algorithms,
shrinking algorithms and improvement algorithms. Each
kind of algorithm is developed for a specific aim and we
embedded these algorithms in a tabu search framework in

order to obtain an effective algorithm for the circle packing
problem. The remainder of the paper is organized as follows.
Section II introduces definitions and notations that are used
in the paper. In sections III-V the algorithms of the three
categories above mentioned are introduced and in section VI
our tabu search is described. Finally, the computational
results are presented in Section VII and some concluding
remarks are given in Section VIII.

II. DEFINITIONS AND NOTATIONS

Given a set N = {c1, c2, . . . , cn} of circles, a circumfer-
ence C is a feasible solution if it contains all the n circles of
N without overlapping. The circle packing problem consists
of finding a feasible circumference C with minimum radius.
Let us define the function r : N → R that, given a circle in
input, returns the length of its radius. Moreover, let r(C) be
the radius length of circumference C. The position of each
circle is identified by the coordinates of its center. Moreover,
a position in C is available, for a circle ci, if this circle can
be placed in this position without crossing the perimeter of
the circumference and overlapping other circles. Finally, let
us define the starting sequence S = {cs1 , . . . , csn} as any
permutation of the n circles of N .

III. THE CONSTRUCTIVE ALGORITHMS

The constructive algorithms are used to quickly generate
feasible solutions. In this section we introduce two con-
structive algorithms: the Greedy and the Spiral. The Greedy
builds a circumference, step by step, by adding at each
iteration a new circle that touches at least one of the circles
already inserted. Among all the available positions, this
algorithm selects the best in that moment, i.e. the position
that minimizes the growing of circumference radius. The
Spiral algorithm starts from a fixed circumference and tries
to place circles, first along the C perimeter and, when it is
not possible anymore, inside the circumference by invoking
the Greedy algorithm. In the next subsections further details
about these two algorithms are given.

A. The Greedy Algorithm

The first replacement strategy is a greedy algorithm that
tries to build a circumference as small as possible by

cs2

cs1

cs3

cs3

Figure 1. Greedy Algorithm example. There are two available positions
where the circle cs3 can be placed. The algorithm will select the position
that minimizes the radius of circumference containing the three circles.

placing the circles in the best position on the plane. At
the first iteration, the algorithm selects the first circle cs1
of the starting sequence S and the current circumference
C coincides with cs1 , i.e. r(C) = r(cs1). At each iteration
i, the algorithm selects the i-th circle csi and places it in
C = {cs1 , . . . , csi−1} assuring that csi touches at least one of
the circles already placed. Among all the available positions
the algorithm selects the best one which is the position that
increases as less as possibile the C radius. Figure 1 shows
how the Greedy algorithm works.

The circles cs1 and cs2 are already placed and have a
single contact point. There are two available positions where
to place cs3 . The former is over cs1 and cs2 and the latter
under these two circles. Notice that every time a new circle
is placed the number of available positions increases by one.
For instance, let us suppose to place cs3 over cs1 and cs2 so
that an available position is lost but two new positions are
generated: one between cs1 and cs3 and another one between
cs2 and cs3 .

During the development of the algorithm we discovered
that better results can be obtained by placing the smallest
circles at the end of the procedure. Indeed, most of the time,
the insertion of a large circle at the end of the procedure
increases r(C). On the contrary, by inserting first the biggest
circles and later the smallest ones, there will be more
chances to find available positions where the smallest circles
can be placed without increasing r(C). For this reason, we
fix a threshold equal to 20% of n and when the algorithm
reads the starting sequence S, it jump all the circles with a
radius under this threshold to place them at the end of the
procedure.

B. The Spiral Strategy

This strategy takes in input the starting sequence S and
an empty circumference C with a fixed radius R and tries
to insert all the circles in C. In this case, it is forbidden

cs1

cs2
cs3

cs4

cs5
cs6

Figure 2. Spiral Algorithm. The first six cicles are placed along the
circumference. The remaining circles have to be placed on the other
available positions.

to change the radius R of C. At each iteration the algo-
rithm places in C the current circle csi assuring that this
circle touches both the circumference and the circle csi−1

(Figure 2).
If the radius R is enough large, all the circles will be

placed along the circumference C and a lot of free space
is wasted particularly in the center of C. For instance, the
result of the Spiral strategy is shown in Figure 2 when n = 6.
It is evident that the chosen radius R is too large and a
lot of space is wasted in the center of circumference but
also between cs4 and cs5 , cs5 and cs6 , cs6 and cs1 . In these
positions could be possible to place cs2 and cs3 to obtain a
smaller circumference. Since our aim is to find the smallest
circumference, the value of R is usually small and the case
described above rarely occurs. A more realistic case happens
when the radius R is so small that not all the circles can be
placed along the perimeter of circumference. In this case, the
Spiral algorithm invokes a modified version of the Greedy
algorithm, described in section III-A, to place the remaining
circles in C.

Since R cannot be changed, the modified Greedy algo-
rithm chooses the best position for a circle csi by evaluating
the distance between its center and the center of C. The
greater this distance is the better the position chosen is.
With this polity, we try to place the circles in the cavities
between the perimeter of circumference and the circles
already placed, leaving, in this way, freer space in the center
of C where to place the remaining largest circles. Since the
results of this algorithm depends on the starting sequence S
and the radius R, it can happen that not all the circles are
placed in C. In this case, the algorithm fails and the partial
solution produced is rejected.

IV. THE SHRINKING ALGORITHM

Given a starting sequence S and a radius R, the Shrinking
algorithm tries to generate a new circumference as small as
possible and with a radius lower than R. The idea behind

cs6 cs5

cs4

cs3
cs2

cs1 cs1

cs2
cs3

cs4

cs5
cs6

α

(a) (b)

Figure 3. Shrinking Algorithm. (a) The angle α obtained after the
positioning of circles along the circumference. If this angle is enough width,
there are good chances to shrink the current circumference leaving all the
circles in it. (b) The new better circumference obtained after the shrinking.
The dotted circumference is the original one.

this algorithm is the following. Let us suppose to use the
Spiral algorithm to place the circles along the perimeter of
C, with radius R. If there is not enough space to do that, the
remaining circles are placed in the available positions in C.
It is easy to see that between the first and last circle placed
along C there is an angle α (Figure 3(a)). The greater this
angle is the greater the chances to “shrink” C are by leaving
all the circles in it. In order to obtain a better circumference,
the Shrinking algorithm reduces by 2% the current radius R
and tries to insert all the circles in the new circumference
by using the Spiral strategy (Figure 3(b)). This process is
repeated until the Spiral strategy does not reach to insert all
the circles in the smaller circumference.

Let us see in more details all the steps of the Shrinking
algorithm. Given the starting sequence S and the radius R,
in the first step the Shrinking algorithm invokes the Spiral
algorithm with the previous parameters. There can be two
possible cases to consider:

1) The Spiral algorithm does not find a circumference
with radius R.
Since no circumferences to improve are available, the
Shrinking algorithm stops.

2) The Spiral algorithm returns a circumference with
radius R.
In this case the Shrinking algorithm define two pa-
rameters: rMax = R and rMin = R− (R ∗ 2)/100.
In order to improve the current circumference, the
Shrinking algorithm carried out a binary research
within the range [rMin, rMax] and, for each value
selected R′ ∈ [rMin, rMax], it invokes the Spiral
algorithm with the parameters S and R′. If a new bet-
ter solution is found, the Shrinking algorithm restarts
from the new radius R′ and the same starting sequence
S and so on until no more improvements are carried
out or when the difference rMax-rMin is lower than a
tolerance equal to ε = 10−5.

The Algorithm 1 shows the pseudocode of the Shrinking

Algorithm.

Algorithm 1: Shrinking
Input: starting sequence S and the radius R;
Output: Circumference Ĉ or null;

1 C ← Spiral(S,R), Ĉ ← null;
2 if C = null then
3 return null;
4 rMax← R, rMin← R−R ∗ 2/100;
5 while rMin ≤ rMax do
6 R′ ← (rMax− rMin)/2;
7 C ← Spiral(S,R′);
8 if C 6= null then
9 Ĉ ← C;

10 rMax← R′, rMin← R′ −R′ ∗ 2/100;

11 else
12 rMin← R′;

13 return Ĉ;

V. THE IMPROVEMENT STRATEGIES

The Greedy and the Spiral algorithms are able to quickly
generate feasible solutions, for the circle packing problem,
while the Shrinking algorithm requires more computational
time but it often produces better solutions than the Greedy
and the Spiral algorithms. However, in order to find solutions
very close or equal to the optimal one, it is necessary
to provide new strategies able to relocate the circles in
the current circumference when it is very small and the
movements are very hard to carry out. To this end, in the next
two sections we will introduce two improvement strategies
that are able to heavily improve the solutions generated by
constructive algorithms.

A. The Bounce Strategy

The Bounce strategy is based on a physical simulation on
circles movement in the circumference. We developed two
versions of this strategy that will be used in two different
contests. The only difference between these versions regards
the starting feasible solution. In the first version, the strategy
builds a starting solution by placing, at random, all the
circles on the plane as a grid, and creating a circumference
that contains all of them (Figure 4(1)). On the constrary, the
second version takes in input a starting feasible solution.
The other steps are the same for both versions.

The first version can be used as a constructive algorithm
able to generate good solutions. The latter version is used to
improve the good solutions obtained by Shrinking algorithm.
Given a feasible solution C, the strategy applies on each
circle the same force but along a direction chosen at random.
Thanks to this force, the circles move in the circumference
and every time that two circles collide they “bounce back”
changing their direction and the same thing occurs when
a circle collides with the circumference. The simultaneous
movement of all the circles in different directions can create

Figure 4. Bounce strategy example

new spaces where to relocate, essentially, the small and
medium circles.

During this simulation, the strategy constantly tries to
reduce the radius r(C). This last operation can be carried
out if, during the simulation, there is a moment in which
all the circles do not touch the circumference. However,
it is evident that this condition rarely occurs, in particular
when the radius is already small. In order to solve this
problem and obtain better circumferences, we create an
“ideal” circumference C ′ with the same center as C and
a radius r(C ′) that is 0.1% smaller than r(C). We force
the circles in C ′ to remain in this last circumference. This
means that if one of these circles touch C ′, during the
simulation, it bounces back. On the contrary, the circles
that are on the perimeter of C ′ or between C and C ′ move
neglecting C ′ until they are not entirely placed in this last
circumference. When this happens, we trap them in C ′.
During the simulation, if all the circles are trapped in C ′, we
obtain a new feasible solution better than C. The algorithm
stops if no circles are trapped into the ideal circumference
C ′ within the time limit of 0.1 seconds.

In Figure 4 an example of how the Bounce Strategy works
is shown. At the beginning all the circles are placed like in a
grid (Figure 4(1)). Step by step the circumference is shrinked
until it reaches the final dimension (Figure 4(8)) where the
most of circles are blocked and no more improvements are
possible.

The Bounce Strategy is slower than the constructive
algorithms but, giving it enough time, it is able to find
very good solutions. Moreover, we further improved the
effectiveness of this strategy by this observation. When
the circumference becomes too small, groups of circles,
completely blocked, are formed in it. Since these circles
remain blocked forever, they prevent a possible improvement
of the current solution. We partially solve this standing off
through a “slap” that consist of set, for a very short time,
the same movement direction for all the circles. Obviously,
this is a new type of movement for the circles, in respect
to the movements generated by bounces and it simulate a

(a)

C

cs1

cs2
cs3

cs5

cs6

cs7 cs4

(c)

(b)

C−1

cs5

cs7

cs3
cs2

cs1

cs6

cs6

cs1

cs2
cs3

cs7

cs5

(d)

cs4cs4

cs5

cs7

cs3
cs2

cs1

cs6

Figure 5. Blocked Circles strategy. (a) The current feasible circumference
C. The circle ck = cs4 is removed from C. (b) The resulting smaller
circumference C−1 after the shrinking phase. (c) Perimetric Insertion
policy. (d) Growing Insertion policy.

slap given to the circumference. Sometimes this operation
can unblock at least a part of the blocked circles. However,
a more effective strategy to tackle this problem is proposed
in the next section.

B. Blocked Circles Strategy

By analyzing the simulation carried out by the Bounce
Strategy, it is evident that the smaller is r(C) the smaller are
the movements carried out by circles in the circumference. In
particular, we find out that several circles never change their
position (or they change it but within a tolerance ε) from a
certain point onward. We call these circles “blocked” circles,
and due to their presence the improvement of C becomes
hard to carry out or impossible when these circles are located
along the circumference. For this reason, we tackle this
problem by introducing a second improving strategy named
Blocked Circles. The idea behind this strategy is to identify
the blocked circles in the current circumference C and
remove one of them, let us say ck. In this way, we increase
the free space in the resulting infeasible circumference C−1

and make the relocation of the remaining n− 1 circles in it
easier. Thanks to the free space left by removing ck, we often
reduce the radius of C−1 easily because this circumference
has to contain one less circle (Figure 5(b)).

However, we are interested only in feasible solutions and
then we have to develop some reinsertion policies to put
ck back in C−1. The aim of the reinsertion policies is to
generate a new circumference C ′ = C−1 ∪ {ck} so that
r(C ′) < r(C). The two key aspects of the Blocked Circles

strategy are the selection of the circle ck to remove and the
reinsertion policies of ck.

Regarding the selection of ck, we identify the set B of
blocked circles in C and introduce the smallest circles of
B, in a candidates list `. The size of ` is equal to 20% of
|B|. The circle ck will be selected at random from `. We
focus our attention on the smallest circles of B because on
one hand our aim is to unblock the situation in C and, on
the other hand, to reinsert ck so that a new better feasible
circumference C ′ is obtained. Obviously, the removal of
large blocked circles assures freer space in C−1 and then
it is easier to reduce its radius. However, it is very hard to
reinsert these large circles in C−1 and obtain a new feasible
solution C ′ with r(C ′) < r(C).

After the construction of C−1, the next step consists of
defining the policies to use to reinsert the circle ck in this
circumference and obtain a better solution, when possible.
To this end, we propose three different reinsertion policies.
These policies are applied in sequence and the next one is
invoked only if the current one does not produce a solution
better than C. Let us see in detail how these policies work.
• Direct Insertion

This is the easiest reinsertion policy. In practice, it
checks if there is enough space in C−1 to reinsert
the circle ck. Since we use the free space generated
by removing ck, to shrink C−1 we will rarely find
enough space in this circumference to directly insert ck.
Anyway, if ck is enough small and r(C−1) is enough
large, this policy could be successful. In Figure 5(b)
it is evident that there are no available places where
directly reinsert the circle cs4 . For this reason, we have
to apply the next policy.

• Perimetric Insertion
This policy places the circle ck along the perimeter of
C−1 assuring that the distance between the center of
circumference and ck is the minimal one. Obviously,
whatever is the selected position, ck cannot be entirely
in C−1 because otherwise ck would have been already
inserted in C−1 by the previous Direct Insertion policy.
The Figure 5(c) shows the situation after the placement
of ck along the perimeter of C−1. In order to generate
a feasible solution C ′ with r(C ′) = r(C−1), we
try to “pull” the circle ck towards the center of the
circumference assigning it that movement direction. At
this point, we invoke the Bounce strategy where the
perimeter of C−1 represents the ideal circumference in
which the circle ck have to be inserted. If Bounce fails
then the infeasible solution is rejected otherwise a new
feasible solution C ′ with r(C ′) = r(C−1) is obtained.

• Growing Insertion
The Growing Insertion policy finds in C−1 the largest
position where to place the circle ck without crossing
the perimeter of the circumference. Obviously, we
know that there is not enough space in C−1 to directly

place ck and then we insert in this position a smaller
version of this circle (Figure 5(d)). However, to obtain
a feasible solution we need to restore the correct size of
ck in C−1. To this end, we invoke the Bounce strategy
and, during the simulation, the policy tries to expand
ck within the limit of C−1. As soon as the size of ck
is restored, a new feasible solution C ′ better than C
is obtained. The policy stops after 10 iterations of the
Bounce strategy without expansion of ck.

VI. TABU SEARCH ALGORITHM

The algorithms described in previous sections build their
feasible solutions according to the starting sequence S and
it is evident how this sequence heavily affect the solutions
quality found. For this reason, our tabu search heuristic will
use several starting sequences in order to widely explore the
space solutions and makes more stable the final results. To
this end, our heuristic uses a multistart strategy to generate
several starting sequences. Moreover, after the individuation
of the best solution for S, the tabu search selects a new
starting sequence in the neighborhoods of S generated by
the 2-Opt and 3-Opt operators.

The Algorithm 2 shows the pseudocode of our tabu search
heuristic. The initialization step is carried out on the line 1.
Here we fix to dn/10e the number of iterations carried by
multistart strategy. The while loop (line 2) implements the
multistart strategy in which a starting sequence S is gener-
ated at random and the radius R̂ of the best circumference
found so far is retrieved by invoking the getBestSol
function. If there are not circumferences available yet, this
function returns the radius R̂ ← 1

2

∑
i∈N r(i) of the trivial

circumference obtained by placing on a line all the n circles
side by side. At line 5 the initial radius R is set to the value
of R̂ increased by 5%.

The while loop of the line 6 is the core of tabu search
heuristic. This loop is repeated until n minutes, without
improvements of Ĉ, have gone. The first operation of this
loop is to invoke the Shrinking algorithm on the sequence
S and the circumference with radius R. The resulting
circumference C is further improved by invoking on it the
two improvement strategies (line 8) described in section V.
If the new circumference C is better than the incumbent
one Ĉ, then Ĉ is update and the setBestSol function
is invoked. The application of the setBestSol function
regards the parallelization of the algorithm and we will
give more details about this in Section VII. The next step
consist of finding the best solution in the neighborhood of
S by invoking the NextMove function. The best solution
found by NextMove is put into the tabu list. In our
implementation the size of the tabu list is equal to dn/2e.

The first step of NextMove function is to set R′ ←
1
2

∑
i∈N r(i). At the end of this procedure, R′ will represent

the radius of the best circumference found. The NextMove
is composed by the 2-opt and 3-opt operators that are used to

Algorithm 2: Tabu Search
Input: The set N ;
Output: Circumference, as small as possible, containing all the

circles of N ;

1 ms← dn/10e;
2 while ms ≥ 0 do
3 ms← ms− 1;
4 Generate the starting sequence S and sets

R̂← getBestSol();
5 R← R̂+ R̂ ∗ 5/100;
6 while stopCriterion=false do
7 C ← Shrinking(S,R);
8 C ← Improvements(C);
9 if r(C) < r(Ĉ) then

10 Ĉ ← C and R̂← r(C);
11 setBestSol(Ĉ);

12 (S,R)← NextMove(S,r(C));
13 Save the move into the tabu list;

14 return Ĉ;

15 Function NextMove(S,R)
16 R′ ← 1

2

∑
i∈N r(i);

17 forall the Si ∈ 2−Opt(S) do
18 if Si /∈ TabuList then
19 C ← Shrinking(Si, R

′);
20 C ← Improvements(C);
21 if r(C) < R′ then
22 R′ ← r(C), S′ ← Si;

23 if r(C) < R then
24 R′ ← r(C), S′ ← Si;
25 break;

26 forall the Si ∈ 3−Opt(S) do
27 if Si /∈ TabuList then
28 C ← Shrinking(Si, R

′);
29 C ← Improvements(C);
30 if r(C) < R′ then
31 R′ ← r(C), S′ ← Si;

32 if r(C) < R then
33 R′ ← r(C), S′ ← Si;
34 break;

35 return (S′, R′);

generate the neighborhoods of the starting sequence S given
in input. The 2-opt operator selects two circles of S and
swap their positions. The Figure 6(a) shows how the 2-opt
operator works. The circles selected are cs2 and cs4 . After
the swap operation, we have the new starting sequence, on
the right. The 3-opt operator selects three circles and carries
out a circular right shifting on them. The Figure 6(b) shows
how 3-opt operator works. The circles cs2 , cs4 and cs5 are
selected. The circular right shifting moves cs5 in place of
cs2 , cs2 in place of cs4 and cs4 in place of cs5 . The other
circles remain on their positions.

At the line 17 all the possible starting sequences derivable
from S by the 2-Opt operation are generated. If the new
sequence Si is not tabu then the Shrinking algorithm is
invoked on it and, later, the improving strategies are applied

cs5cs1 cs4cs3cs2

cs1 cs4cs3cs2 cs5

(a)

(b)

cs1 cs4 cs3 cs2 cs5

cs2cs3 cs4cs1 cs5

Figure 6. (a) The 2-Opt opetator and (b) the 3-opt operator.

on the resulting circumference C. If r(C) < R′ then we
update the best radius R′ found so far and the sequence
Si that generated it. If same operations are carried out
if r(C) < R. In this last case, we stop (line 25) the
generation of other sequences by 2-opt operator to speed up
the procedure and because the solution found improves the
incumbent one. The same operations are carried out in the
for loop of lines 26-34. The only difference here is that the
starting sequences are generated by using the 3-opt operator.
At the end, the NextMove returns the best solution found.
Notice that if the conditions of line 23 and 32 never hold, the
solution returned is worst than the solution given in input.
By accepting worst solutions, we allow tabu search to escape
from local minimums.

VII. COMPUTATIONAL RESULTS

All the algorithms described in this paper,
were developed during an international contest
(http://www.recmath.org/contest/CirclePacking/index.php)
based on the circle packing problem. The challenge was to
pack N non-overlapping discs with radii from 1 to N into
as small a circle as possible. 155 competitors from around
the world, have posted the best solutions produced for 45
instances containing from 5 to 50 circles.

In the table VII we report our results. The first column n
represents the number of circles in input while the second
column reports the best known solution. The third and fourth
column reports the solution of our tabu search and the gap
(in percentage) from the best known solution, respectively.
Our results are in bold when our solution coincides with the
best known solution. The eventual mismatch on the last digit
of the solutions depends on tolerance used by algorithms
of the site that evaluate the solutions proposed. Finally, the
last column shows what is the algorithm in our tabu search
that found our final solution. The smallest two instances
were so easy that the best known solution was found by
Greedy algorithm while the next10 instances could be solved
by using only the Shrinking algorithm. Starting from the
instance with n = 17, it is necessary to use the whole

n Best Solution Our Solution Gap % Algorithm
5 9.00139775 9.00139774 – Greedy
6 11.05704040 11.05704039 – Greedy
7 13.46211068 13.46211067 – Shrinking
8 16.22174668 16.22174667 – Shrinking
9 19.23319391 19.23319390 – Shrinking

10 22.00019301 22.00019301 – Shrinking
11 24.96063429 24.96063428 – Shrinking
12 28.37138944 28.37138943 – Shrinking
13 31.54586702 31.54586701 – Shrinking
14 35.09564714 35.09566220 0.0 Shrinking
15 38.83799551 38.83799550 – Shrinking
16 42.45811644 42.45811643 – Shrinking
17 46.29134212 46.29134211 – Tabu search
18 50.11976262 50.11977669 0.0 Tabu search
19 54.24029359 54.24033451 0.0 Tabu search
20 58.40056748 58.43294249 0.1 Tabu search
21 62.55887709 62.56009885 0.0 Tabu search
22 66.76028624 66.76032481 0.0 Tabu search
23 71.19946161 71.30052907 0.1 Tabu search
24 75.75270412 75.86175714 0.1 Tabu search
25 80.28586444 80.30468209 0.0 Tabu search
26 85.07640122 85.30345567 0.3 Tabu search
27 89.79218157 89.91645449 0.1 Tabu search
28 94.54998647 95.00402128 0.5 Tabu search
29 99.51231790 99.93118117 0.4 Tabu search
30 104.57855509 104.82125659 0.2 Tabu search
31 109.77194699 110.21549729 0.4 Tabu search
32 114.86543833 115.67839664 0.7 Tabu search
33 120.21695715 120.88145711 0.6 Tabu search
34 125.43350176 126.14675162 0.6 Tabu search
35 131.15635463 131.73294513 0.4 Tabu search
36 136.53490083 137.47533684 0.7 Tabu search
37 142.17498054 142.94453249 0.5 Tabu search
38 147.85769136 148.46830833 0.4 Tabu search
39 153.55530120 154.44087433 0.6 Tabu search
40 159.48902487 160.35050100 0.5 Tabu search
41 165.29190969 166.23178297 0.6 Tabu search
42 170.92576162 172.34970548 0.8 Tabu search
43 177.07434007 178.37606878 0.7 Tabu search
44 183.17606157 184.75709672 0.9 Tabu search
45 189.63543911 190.80324992 0.6 Tabu search
46 195.91076340 197.18468348 0.7 Tabu search
47 202.18561174 203.56945416 0.7 Tabu search
48 208.63594673 209.74976500 0.5 Tabu search
49 214.66195201 216.25530807 0.7 Tabu search
50 221.08975259 222.97536695 0.9 Tabu search

Table I
DATA EXTRACTED FROM: AL ZIMMERMANN’S PROGRAMMING

CONTESTS

tabu search to find good solutions. The results of the Gap
column prove the effectiveness of our heuristic because the
gap between our solutions and the best known is always

lower than 1%. Moreover, the algorithms of the contest have
ranked our solutions set tenth on 155 competitors.

The computational tests were carried out by running our
algorithm for a week, in parallel mode, on 20 desktop
computers, with a single-core 2.4GHz processor. The func-
tions getBestSol and setBestSol were designed to
communicate with a central repository to share the best
solution R′ to the 20 instances of the algorithm running
on different PC.

VIII. CONCLUSION

In this paper we discussed a tabu search approach for the
problem of packing unequal circles into a circular container
with minimum radius. Our heuristic uses several algorithms
and strategies that we developed to tackle the problems
that arise during the shrinking of the circumference. We
proposed the constructive and the Shrinking algorithms to
quickly generate feasible solutions but the computational
results shown that these algorithms are very effective on the
small instances, up to n=16, where they find the best known
solution, most of time. Moreover, we introduced some
improvements strategies that, by simulating the movements
of circles in the circumference, when they bounce with each
other, try to free some space in the circumference to allow a
reorganization of the circles and to produce better solutions.

The computational results prove the effectiveness of our
heuristic with 12 instances solved in the best way, a gap
on the other instances always lower than 1% and the tenth
position gained in the final classification.

REFERENCES

[1] I. Castillo, F.J. Kampas, J.D. Pinter, Solving circle packing
problems by global optimization: Numerical results and in-
dustrial applications, 191, Issue 3, 786802, 2008.

[2] P.G. Szab, M. C. Markt, T. Csendes, Global optimization
in geometrycircle packing into the square, in: C. Audet, P.
Hansen, G. Savard (Eds.), Essays and Surveys in Global
Optimization, Kluwer, Dordrecht, 233266, 2005.

[3] M. Locatelli, U. Raber, Packing equal circles in a square:
a deterministic global optimization approach, Discrete Appl.
Math. 122, 39166, 2002.

[4] B. Addisa, M. Locatellib, F. Schoen, Efficiently packing un-
equal disks in a circle, Operations Research Letters 36, 3742,
2008.

[5] A. Grosso, A.R.M.J.U. Jamali,M. Locatelli,F. Schoen Solving
the problem of packing equal and unequal circles in a circular
container, J. Global Optimization, 47, 6381, 2010.

