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Abstract. Given a connected undirected graph G = (V;E), the Minimum Branch Vertices 

Problem (MBVP) asks for a spanning tree of G with the minimum number of vertices 

having degree greater than two in the tree. These are called branch vertices. This 

problem, which has an application in the context of optical networks, is known to be NP-

hard. We model the MBVP as an integer linear program, with undirected variables, we 

derive valid inequalities and prove than some these are facet defining. We then develop a 

hybrid formulation containing undirected and directed variables. Both models are solved 

by branch-and-cut. Comparative computational results show the superiority of the hybrid 

formulation. 
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1. Introduction

Given a connected undirected graph G = (V,E), with n = |V | vertices and m = |E| edges,
the Minimum Branch Vertices Problem (MBVP) aims to find a spanning tree T of G with the
minimum number of branch vertices, i.e. vertices having a degree greater than two. For the input

Figure 1: For a given graph on the left, two spanning trees with one and two branch vertices.

graph given on the left of Figure 1, we depict two spanning trees with different numbers of branch
vertices. The spanning tree in the middle has one branch vertex and the one on the right has two.
The best known application of MBVP arises in the context of optical networks. In such networks,
an optical signal has to be split whenever it enters a node having degree greater than two. The
split has to be performed using an appropriate network switch. These switches must be located at
all the branch vertices, which can significantly increase the cost of the network.
The MBVP was introduced by Gargano et al. [6], who proved that it is NP-hard. Since then,
the problem has been extensively investigated by several authors [2], [3], [4], [9], [10], [15], [16],
[17]. Carrabs et al. [2] consider four IP formulations. The first formulation contains the well-know
Dantzig et al. [5] subtour elimination constraints. Due to the exponential number of constraints,
the authors consider this formulation not suitable to be tested on instances of significant size, but
they solve it in a Lagrangian relaxation fashion. The second formulation is the most studied in
the literature. It guarantees connection by sending from a source vertex one unit of flow to every
other vertex of the graph. The third formulation is based on a multi-commodity flows. The fourth
formulation makes use of the Miller-Tucker-Zemlin subtour elimination constraints [11]. Finally,
Maŕın [9] presents a branch-and-cut algorithm based on a strengthened single commodity flow
formulation. The author also provides a two-stage heuristic to reduce the computational time and
to produce good feasible solutions when the optimum cannot be found within a reasonable time.
Our aim is to develop new formulations and a polyhedral-based exact branch-and-cut algorithm
for the MBVP. The remainder of the paper is organized as follows. In Section 2, the problem
is formulated as an integer linear program with undirected variables. In this section, we also
investigate some properties of the problem and we analyze its LP relaxation. In Section 3, we
derive the dimension of the polyhedron as well as some facet related results, and we introduce
some valid inequalities. In Section 4, we present a directed graph reformulation and we adapt to
this formulation several properties of the problem and some valid inequalities to yield an hybrid
formulation. The branch-and-cut algorithm is described in Section 5. Comparative computational
results and conclusions are presented in Section 6 and 7, respectively.

2. Undirected formulation, properties and bounds

The MBVP can be formulated as an integer linear program (ILP) with undirected variables as
follows. Let xe be a binary variable equal to 1 if and only if edge e ∈ E belongs to the spanning
tree T . For each vertex v ∈ V , let yv be a binary variable equal to 1 if and only if vertex v has

2

A Branch-and-Cut Algorithm for the Minimum Branch Vertices Spanning Tree Problem

CIRRELT-2015-60



degree greater than equal to 3 in T , i.e. v is a branch vertex. In addition, for S ⊂ V , define
E(S) = {e = (v, u) ∈ E : v, u ∈ S} and δ(S) = {e = (v, u) ∈ E : v ∈ S, u ∈ V \ S}. If S = {v}, we
simply write δ(v) instead of δ({v}). The ILP formulation is then

minimize z =
∑
v∈V

yv (1)

subject to ∑
e∈E(S)

xe ≤ |S| − 1 S ⊂ V, |S| ≥ 2 (2)

∑
e∈E

xe = n− 1 (3)∑
e∈δ(v)

xe − 2 ≤ (|δ(v)| − 2)yv v ∈ V (4)

2yv ≤
∑
e∈δ(v)

xe − 1 v ∈ V (5)

xe ∈ {0, 1} e ∈ E (6)

yv ∈ {0, 1} v ∈ V. (7)

In this formulation, constraints (2) are the classical Dantzig, Fulkerson and Johnson [5] subtour
elimination constraints. They guarantee that the edges in the solution cannot form cycles. Con-
straint (3) forces the selection of exactly n−1 edges. Constraints (4) and (5) are logical constraints
linking the binary variables xe with the binary variables yv. They ensure that yv is equal to 1 if
and only if vertex v is branch. The objective function (1) requires the minimization of the number
of branch vertices. Note that constraints (5) are necessary in order to make variables yv represent
exactly a set of branch vertices, but this condition is satisfied for any optimal solution even if we
remove them.

2.1. Spanning tree properties

We now present some properties that a spanning tree must satisfy and we make some observa-
tions that will allow us to preprocess the instances. For a given vertex v, we can write the set of
incident edges δ(v) as

δ(v) = δL(v) ∪ δI(v), (8)

where δL(v) = {(v, u) ∈ δ(v) : |δ(u)| = 1} and δI(v) = {(v, u) ∈ δ(v) : |δ(u)| > 1}. A first
observation is that each edge belonging to the set δL(v), for a given vertex v, must belong to the
optimal tree T :

xe = 1 v ∈ V, e ∈ δL(v). (9)

Moreover, it is easy to see that

yv = 0 v ∈ V : |δ(v)| ≤ 2 (10)

yv = 1 v ∈ V : |δL(v)| ≥ 2. (11)
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Note that for each vertex v such that |δL(v)| = 1, constraints (4) and (5) become respectively∑
e∈δI(v)

xe − 1 ≤ (|δI(v)| − 1)yv v ∈ V : |δL(v)| = 1 (12)

yv ≤
∑

e∈δI(v)

xe − 1 v ∈ V : |δL(v)| = 1. (13)

To ensure the connectivity property, the inequalities∑
e∈δI(v)

xe ≥ 1 v ∈ V (14)

must be satisfied.
Maŕın [9] defines a bridge as an edge e ∈ E such that the graph (V,E \ {e}) becomes disconnected
and defines 2-cocycle a set of two edges {e, f} ⊂ E such that the graph (V,E \ {e, f}) becomes
disconnected, but e and f are not bridges. It is easy to see that all bridges of a connected graph
must belong to the edge set of any spanning tree:

xe = 1 e ∈ E : (V,E \ {e}) is disconnected. (15)

Moreover, at least one of the edges of a 2-cocycle set must belong to any feasible solution:

xe + xf ≥ 1 e, f ∈ E : {e, f} is a 2-cocycle. (16)

Note that all edges belonging to the set
⋃
v∈V δL(v) are particular bridges. Removing any one of

them isolates a vertex. Identifying bridges and 2-cocycle sets can be achieved by means of the
algorithm proposed by Schmidt [14] which is used by Maŕın [9].
In this paper we extend the definition of bridge to the vertices. We define a bridge vertex as a
vertex v ∈ V such that the graph G \ v = (V \ {v}, E \ δ(v)) is disconnected. Let c̄v be the
number of components of the graph G \ v and let Ci(v) = (VCi(v), ECi(v)), i = 1, . . . , c̄v, be the
corresponding components, such that

⋃c̄v
i=1 VCi(v) = V \ {v} and

⋃c̄v
i=1ECi(v) = E \ δ(v). For a

given bridge vertex v, we can write the set of incident edges δ(v) as

δ(v) =

c̄v⋃
i=1

δCi(v)(v), (17)

where δCi(v)(v) = {(v, u) ∈ δ(v) : u ∈ VCi(v)}. If we denote VB the set of bridge vertices, it is easy
to see that

yv = 1 v ∈ VB : c̄v ≥ 3 (18)∑
e∈δCi(v)

(v)

xe − 1 ≤ (|δCi(v)(v)| − 1)yv v ∈ VB : c̄v = 2, i = 1, 2 (19)

∑
e∈δCi(v)

(v)

xe ≥ 1 v ∈ VB, i = 1, . . . , c̄v. (20)

Note that inequalities (19) and (20) are a restricted version of (4) and (14) respectively. Bridge
vertices are also called as cut vertices [1]. A connected graph G is 2-connected if G contains no cut
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vertex. A connected graph G is called 2-disconnected if it contains no bridge vertex v such that
G \ v is disconnected into more than two components. Note that if all the vertices of a graph are
bridge vertices or have degree equal to one, the graph is a tree. For this reason, in the remainder
of this section we assume that G contains at least one cycle.

Lemma 1. Let G = (V,E) be a 2-disconnected graph. Then, for any v ∈ V , there exists a
spanning tree T in G such that v is not a branch vertex in T .

Proof. Since G is 2-disconnected, G \ v can be connected or disconnected into two components. If
it is connected, there exists a spanning tree Tv in G \ v, therefore T = Tv ∪ {e} is a spanning tree
in G, for any e ∈ δ(v), such that δT (v) = 1. If G \ v is disconnected, there exist two spanning trees
T1 and T2 in C1(v) and C2(v), respectively. Hence, for an arbitrary e1 ∈ δC1(v) and e2 ∈ δC2(v),
T = T1 ∪ T2 ∪ {e1, e2} is a spanning tree in G such that δT (v) = 2.

2.2. Lower bounds

Let PSTP be the spanning tree polytope defined by (2), (3) and (6), and let Pu the intersection
of PSTP with constraints (4) and (7). As previously observed, constraints (4) guarantee that a
vertex v has to be branch whenever at least three edges incident to it are selected. Even if they do
not explicitly force yv = 0 when

∑
e∈δ(v) xe ≤ 2 holds, this will be the case because of the objective

function. Therefore, although Pu does not define the MBVP polytope,

min

{∑
v∈V

yv : (x, y) ∈ Pu

}
(21)

can be used to find optimal solutions for the problem. Moreover, valid lower bounds are given by
the LP relaxation of (21). One important property is provided in the following result.

Proposition 1. The value of the LP relaxation of (21) can be obtained by solving

min

{ ∑
e=(v,u)∈E

( 1

|δ(v)| − 2
+

1

|δ(u)| − 2

)
xe −

∑
v∈V

2

|δ(v)| − 2
: xe ∈ PSTP

}
. (22)

In other words, an optimal solution to the LP relaxation of (21) is given by a least cost spanning
tree of G, under the edge costs defined above. Note that, the right-most term in (22) is a constant.

Proof. It is easy to see that inequalities (4), suitably rewritten as

yv ≥
∑
e∈δ(v)

1

|δ(v)| − 2
xe −

2

|δ(v)| − 2
v ∈ V (23)

for the LP relaxation of (21), must be tight. Indeed, the objective function only contains variables
yv with positive cost coefficients. Therefore, replacing yv in the objective function by the right-
hand side of (23), for all v ∈ V , and dropping inequalities (4), MBVP can be obtained by solving
(22).
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3. Polyhedral analysis of the undirected formulation

We now derive some polyhedral results for the Spanning Tree Problem with Bounded Number
of Branch Vertices. In this section we assume that G = (V,E) is a complete graph on |V | = n
vertices, so that |E| = m = n(n− 1)/2. In order to provide our polyhedral results, we need some
preliminary results.

Definition 1. A polyhedron S = {x ∈ Rk : Ax ≤ b} is full-dimensional if dim(S) = k, where
(A, b) is an m× (k + 1) matrix.

Let M = {1, . . . ,m}, M= = {i ∈ M : aix = bi for all x ∈ S} and M≤ = {i ∈ M : aix <
bi for some x ∈ S} = M \ M=. Let (A=, b=) and (A≤, b≤) the corresponding rows of (A, b).
According to this notation, the following proposition holds true (see Proposition 2.4 of Nemhauser
and Wolsey [18]):

Proposition 2. If S ⊆ Rk, then dim(S) + rank(A=, b=) = k.

We represent subsets of vertices and edges by their characteristic vectors y ∈ Bn and x ∈ Bm,
respectively. Therefore, V ′ ⊆ V is represented by the vector yV

′
, where yV

′
v = 1 if v ∈ V ′ and

yV
′

v = 0 otherwise, and E′ ⊆ E is represented by the vector xE
′
, where xE

′
e = 1 if e ∈ E′ and

xE
′

e = 0 otherwise. Denote by P the polytope defined by the convex hull of feasible solutions, that
is,

P = {(x, y) ∈ R|E|+|V | : (x, y) satisfy (2)− (7)}. (24)

Proposition 3. The dimension of the polytope P is dim(P ) = |E|+ |V | − 1.

Proof. A Hamiltonian path of the graph is a feasible solution to the MBV and the corresponding
characteristic vector is (xH , ∅), where H ⊂ E contains all the edges of the path. In a complete
graph we can identify m Hamiltonian paths whose corresponding characteristic vectors are affinely
independent. Moreover, for each vertex v ∈ V , the point (xδ(v), y{v}) lies in P . It is easy to see
that the n points (xδ(v), y{v}), v ∈ V , and the m points corresponding to the Hamiltonian paths
are affinely independent. Hence dim(P ) ≥ |E| + |V | − 1. Because all points of P satisfy the
equality (3) we have rank(A=, b=) ≥ 1; hence, by Proposition 2, dim(P ) ≤ |E|+ |V |−1. Therefore
dim(P ) = |E|+ |V | − 1.

Proposition 4. The inequality yv ≥ 0 defines a facet of P .

Proof. It is easy to see that the characteristic vector associated to a Hamiltonian path satisfies
yv = 0. Therefore, if F = {x ∈ P : yv = 0}, dim(F ) ≥ m − 1. Moreover, (xδ(w), y{w}) ∈ F ,
for all w ∈ V such that w 6= v, hence dim(F ) ≥ m + n − 2. Being F a proper face of P ,
dim(F ) ≤ m + n − 2. This allow us to conclude that yv ≥ 0 is a facet for any v ∈ V .

Proposition 5. The inequalities xe ≥ 0 and xe ≤ 1 define facets of P .

Proof. Given a complete graph G = (V,E) and an edge e = (u,w) ∈ E, we can identify m − 1
Hamiltonian paths in G whose corresponding characteristic vectors are affinely independent and
such that xe = 0. Moreover, the points (x{δ(u)\{e}∪{(w,u1)}}, y{u}), (x{δ(w)\{e}∪{(u,w1)}}, y{w}), for
some u1, w1 ∈ V , (xδ(v), y{v}), v ∈ V \ {u,w} are n affinely independent points, feasible for P and
such that xe = 0. Therefore xe ≥ 0 defines a facet of P . The proof for the inequality xe ≤ 1
proceeds in the same way.
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The following theorem is useful to establish whether a valid inequality is a facet (see Theorem
3.6 of Nemhauser and Wolsey [18]).

Theorem 1. Let (A=, b=) be the equality set of S ⊆ Rk and let F = {x ∈ S : πx = π0} be a
proper face of S. The following two statements are equivalent:

• F is a facet of S.

• If λx = λ0 for all x ∈ F then

(λ, λ0) = (απ + uA=, απ0 + ub=) for some α ∈ R and some u ∈ R|M
=|. (25)

Proposition 6. The valid inequalities (5) are facets for the MBVP.

Proof. We prove the result by showing that the conditions of Theorem (1) hold. Consider a fixed
vertex v ∈ V . Without lost of generality, we can assume that v = v1, where V = {v1, . . . , vn} and
E = {e1, . . . , e|δ(v)|, . . . , em}, i.e. the first |δ(v)| edges of E belong to δ(v). We can therefore write
the valid inequality (5) associated to v as

(1, . . . , 1, 0, . . . , 0)xT + (−2, 0, . . . , 0)yT ≥ 1, (26)

and hence F = {(x, y) ∈ P : (1, . . . , 1, 0, . . . , 0)xT + (−2, 0 . . . , 0)yT = 1}. In order for (x, y) to
belong to F , only two cases are possible:

• If vertex v is a branch vertex, yv = 1, then
∑

e∈δ(v) xe has to be equal to 3, therefore∑
e∈E\δ(v) xe = n− 4.

• If vertex v is not a branch vertex, yv = 0, then
∑

e∈δ(v) xe has to be equal to 1, therefore∑
e∈E\δ(v) xe = n− 2.

Let T1 and T2 be two spanning trees of G such that, |δT1(v)| = 3 and |δT2(v)| = 2. The corre-
sponding characteristic vectors are feasible solutions for the MBVP ensuring that the inequalities
(5) are proper faces of P . Therefore, in order to prove that F represents a facet of P , from to
Theorem 1, it is sufficient to show that if λ(x, y)T = λ0 for all (x, y) ∈ F , then (λ, λ0) can be
expressed as (απ + uA=, απ0 + ub=), for some α ∈ R, u ∈ R|M=|. As showed above, in our case
(π, π0) = (1, . . . , 1, 0, . . . , 0,−2, 0, . . . , 0, 1), (A=, b=) = (1, . . . , 1, 0, . . . , 0, n− 1) and |M=| = 1. For
convenience, we represent (λ, λ0) as

(λ, λ0) = (s1, . . . , s|δ(v)|, r|δ(v)|+1, . . . , rm, t1, . . . , tn, λ0). (27)

Hence λ(x, y)T = λ0 can be expressed as∑
e∈δ(v)

sexe +
∑

e∈E\δ(v)

rexe + t1y1 +
∑

w∈V \v

twyw = λ0. (28)

Let T be a spanning tree of (V \{v}, E \δ(v)), and let Te and Tf be the spanning trees obtained by
adding to T the edges e = (v, u) and f = (v, w), respectively, where |δT (u)| 6= 2 and |δT (w)| 6= 2.
Note that |δTe(v)| = |δTf (v)| = 1 and hence yv = 0. It is then easy to see that (xETe , yVTe ) ∈ F and

(x
ETf , y

VTf ) ∈ F , and therefore they satisfy (28). Consequently, λ(xETe , yVTe )T −λ(x
ETf , y

VTf )T =
0. Through simple algebraic manipulations, we obtain se = sf . Because T is a generic spanning
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tree, we can conclude that s1 = . . . = s|δ(v)|. From now on, we will denote this coefficient vector as
s.
Let Tg be a spanning tree of G and a let g ∈ ETg be an edge such that g = (u,w), with |δTg(u)| 6= 3

and |δTg(w)| 6= 3. The characteristic vector (xETg , yVTg ) is feasible for the MBVP and (5) is
satisfied as an equality. Let Th be the spanning tree of G obtained by removing the edge g
from the set ETg and by adding an edge h = (ū, w̄), such that |δTh(ū)| 6= 3 and |δTg(w̄)| 6=
3. Again, (xETh , yVTh ) is feasible for the MBVP and (5) is satisfied as an equality. Therefore,
λ(xETg , yVTg )T−λ(xETh , yVTh )T = 0. Note that the two trees differ in just one edge and yVTg = yVTh .
Then through simple algebraic manipulations, we obtain rg = rh. Since Tg is a generic spanning
tree, and g and h are two generic edges, we can conclude that r|δ(v)|+1 = . . . = rm. From now on,
we will denote this coefficient vector as r.
Let Tb a spanning tree of G such that |δTb(v)| = 3. It is easy to see that (xETb , yVTb ) ∈ F . Without
loss of generality we can assume that δTb(v) = {e1, e2, e3}. The graph (V,ETb \ {e2, e3}) contains
three acyclic components C1, C2 and C3, one of which includes vertex v. We can assume v ∈ VC3 .
Let u1 ∈ {VC1 ∪ VC2} and u2 ∈ VC3 , such that |δTb(u1)| 6= 2 and |δTb(u1)| 6= 2. If e1 = (v, w1) and
e2 = (v, w2), the spanning tree Td = (V,EC1 ∪ EC2 ∪ EC3 ∪ {(u1, u2), (w1, w2)}) will be a feasible
solution for the MBV satisfying (5) as an equality. Therefore λ(xETb , yVTb )T − λ(xETd , yVTd )T = 0.
Note that yVTb = yVTd , then through simple algebraic manipulations, we obtain t1 = −2(s− r).
Let Tq be a spanning tree of G such that |δTq(v)| = 1 and let (ū, w̄) ∈ ETq , where |δTq(ū)| = 3 and
|δTq(w̄)| 6= 3. Let Tp be the spanning tree (V, {ETq \ {(ū, w̄)} ∪ {(ū1, w̄1)}}), where |δTp(ū1)| 6= 3

and |δTp(w̄1)| 6= 3. It is easy to see that (xETq , yVTq ) ∈ F and (xETp , yVTp ) ∈ F . Assuming without

loss of generality that ū = v2, by calculating λ(xETq , yVTq )T −λ(xETp , yVTp )T = 0, we obtain t2 = 0.
Note that this is true for a generic spanning tree Tq and a generic vertex ū. Therefore we conclude
that ti = 0, i = 2, . . . , n. Substituting (xETq , yVTq ) in (28), we obtain λ0 = −s+ nr and

(λ, λ0) = (s, . . . , s, r, . . . , r,−2(s− r), 0, . . . , 0,−s+ nu). (29)

Note that

(απ + uA=, απ0 + ub=) = (α+ u, . . . , α+ u, u, . . . , u,−2α, 0, . . . , 0, α+ un− u). (30)

Hence, setting α = s− r and u = r, we obtain

(λ, λ0) = (α+ u, . . . , α+ u, u, . . . , u,−2α, 0, . . . , 0, α+ un− u). (31)

Thanks to Theorem (1), the proof is thus complete.

Proposition 7. For v ∈ V and S ⊆ δ(v) with |S| ≥ 3,∑
e∈S

xe − 2 ≤ (|S| − 2)yv (32)

is valid for P .

Proof. It is easy to see that for any subset S of δ(v), if more than two edges belong to the optimal
solution, then vertex v has to be branch. Note that, for S = δ(v) we obtain constraints (4),
therefore (32) represent a generalized version.
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Proposition 8. For any bridge vertex v ∈ VB with c̄v = 2, for Ci(v), i = 1, 2 such that |VCi(v)| ≥ 2,
for D ⊆ δCi(v)(v) with |D| = 2, ∑

e∈D
xe ≤ 1 + yv (33)

is valid for P .

Proof. Note that, v being a bridge vertex with c̄v = 2, as stated above, at least one edge connecting
v with Ci(v) for i = 1, 2, has to be selected. As soon as a second edge connecting v with one of
the two components is selected, vertex v becomes a branch vertex and yv has to be activated.

Proposition 9. For v ∈ V and Q ⊂ δ(v) such that |Q| = |V | − 2

yv ≤
∑
e∈Q

xe (34)

is valid for P .

Proof. This inequality means that if there exists at least one Q ⊂ δ(v) such that all the edges in
Q do not belong to the spanning tree, then vertex v cannot be branch.

Proposition 10. Let R = (VR, ER) be a cycle of cardinality three, i.e. VR = {a, b, c} and
ER = {fab, fac, fbc}. For v ∈ VR such that |δ(v)| = 3, without lost of generality assume that v = a,

ya + xfbc ≤ 1 (35)

is valid for P . Moreover, if there exist at least two vertices a and b in the cycle having degree 3 in
the graph, then

ya + yb ≤ xfab (36)

is valid for P . Finally, if the three vertices all have degree 3, then

ya + yb + yc ≤ 1. (37)

Proof. Constraints (35) state that if a is branch, then the edge fbc cannot be selected for otherwise
the solution would contain a cycle. Conversely, if edge fbc belongs to the solution, then a will not
be a branch vertex. Constraints (36) impose that only one vertex between a and b can be branch
whenever edge fab is selected. If the three vertices have degree 3, then constraints (37) state that
only one of them can be a branch vertex.

4. Directed and hybrid reformulations

Problems originally defined over undirected graphs can often be reformulated over correspond-
ing directed graphs. In this section we consider a directed integer programming reformulation
(DIP) of MBVP as a spanning arborescence problem. To develop a model for this directed version
of the problem, we choose an arbitrary vertex r ∈ V as the root vertex and we consider the directed
graph D = (V,A) obtained by replacing each edge (v, u) ∈ E by arcs (v, u) and (u, v) in A. In
addition to the previously defined variables yv, v ∈ V , for each arc a ∈ A, we define za as a binary
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variable equal to 1 if and only if arc a belongs to the spanning arborescence A. In association with
graph D, we define δ+(w) = {(v, u) ∈ A : v = w} and δ−(w) = {(v, u) ∈ A : u = w}. The DIP
formulation is then

minimize z =
∑
v∈V

yv (38)

subject to ∑
e∈A(S)

za ≤ |S| − 1 S ⊂ V, |S| ≥ 2 (39)

∑
a∈A

za = n− 1 (40)∑
a∈δ−(v)

za = 1 v ∈ V \ {r} (41)

∑
a∈δ+(v)

za − 1 ≤ (|δ+(v)| − 2)yv v ∈ V \ {r} (42)

∑
a∈δ+(r)

za − 2 ≤ (|δ+(r)| − 2)yr (43)

2yv ≤
∑

a∈δ+(v)

za v ∈ V \ {r} (44)

2yr ≤
∑

a∈δ+(r)

za − 1 (45)

za ∈ {0, 1} a ∈ A (46)

yv ∈ {0, 1} v ∈ V. (47)

Constraints (39), (40) and (46) characterize the spanning arborescence polytope. Note that the
inequalities (4) and (5), for the undirected graph formulation, are split into inequalities (42), (43)
and (44), (45), respectively, for the directed graph reformulation. Also observe that due to (41), one
unit is subtracted in the left-hand side of (42) instead of two units in the corresponding inequalities
(4).
It is easy to see that several of the properties described for the undirected formulation are easily
adaptable to the directed one. Moreover, with the only exception of the root vertex r, no more
than one outwards pointing arc may be incident to a no branch vertex. Hence the inequalities∑

a∈W
za − 1 ≤ (|W | − 1)yv v ∈ V \ {r}, W ⊂ δ+(v) : |W | ≥ 2 (48)

are clearly valid for the directed formulation. Now, denote by PD the polytope defined by the
convex hull of feasible solution in the directed graph, that is:

PD = {(z, y) ∈ R|A|+|V | : (z, y) satisfy (39)− (47)}. (49)
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Proposition 11. The undirected and the directed formulation for the Minimum Branch Vertex
Spanning Tree Problem are equivalent if constraints xe ≥ 0 and

xe = zvu + zuv e = (v, u) ∈ E (50)

are introduced in the DIP model.

Proof. Constraints xe ≥ 0 and xe = zvu + zuv, for e = (v, u) ∈ E, together with (39), (40) and
(46), yield an alternative description of the PSTP (see [8] for the details). Moreover, because
xe = zvu + zuv, for any v ∈ V \ {r}, summing up (41) and (42) we obtain (4), and summing up
(41) and (44) we obtain (5). Therefore P and PD are equivalent and this concludes the proof.

Thanks to Proposition 11, the polytope defined by constraints (2)−(7), (42), (43), (46) and
(50) defines the set of feasible solutions for the MBVP. We refer to it as the hybrid reformulation.

5. Branch-and-cut algorithm

We solve the MBVP by means of a branch-and-cut algorithm which is summarized in Al-
gorithm 1. Before executing the algorithm we apply a preprocessing phase in which the graph
is reduced by exploiting the properties introduced in Section 2.1. In line 1, an initial feasi-
ble solution is identified by searching a minimum spanning tree using Prim’s algorithm [13].
With any edge e = (v, u) we associate weight we = n if min{|δ(v)|, |δ(u)|} ≤ 2, otherwise
we = n − max{|δ(v)|, |δ(u)|}. In line 3, the first subproblem is obtained by relaxing the subtour
elimination constraints (2), except for the case where |S| = 3, as well as the integrality constraints
on the variables. We also identify all the bridges, the cocycles and the bridge vertices of the graph
and we add the correspondent constraints (16), (19) and (20). In line 13, a search for violated con-
straints (2) is performed on the integer solutions by identifying the connected components and by
adding the subtour elimination constraints induced by the subsets of vertices of all the components
containing at least one cycle. In line 17, at a non-integer solution, constraints (2) are separated
using the max-flow algorithm proposed by Padberg and Wolsey [12]. The max-flow obtained with
this algorithm is f = |S̄|−

∑
e∈E(S̄) xe+kost, where {S̄, V \ S̄} represents the cut-set associated to

the max-flow and kost is a constant value depending on the vertex set V , therefore a constraint is
violated if f − kost is less than 1. To avoid adding constraints with a small violation, a constraint
is generated whenever f − kost is less than 1− ε, for a fixed ε depending on the instances. For the
non-integer solutions, we run the max-flow procedure only on the root node.
The branch-and-cut algorithm was applied to both undirected and hybrid formulations. In the first
case, in line 15, a search for violated inequalities (32) and (33) is performed. Valid inequalities (34),
(35), (36) and (37) turned out to be ineffective and were not considered. A subset of the most
violated inequalities (33) is added to the cut-pool. The separation procedure used for inequalities
(32) is that of Lucena et al. ([7]). Let (x̄, ȳ) be a feasible solution for the linear programming relax-
ation, and for every v ∈ V such that |δ(v)| ≥ 3, order the elements in {x̄e : e ∈ δ(v)} in decreasing
value. Then, for (x̄, ȳ), v ∈ V , and every k ∈ {3, . . . , |δ(v)| − 1}, compute

∑k
1 x̄ek − (k − 2)ȳv.

This procedure identifies a set S of cardinality k with the largest value for the left-hand side of
(32) for vertex v. If that value is greater than 2, it has identified the most violated inequality,
otherwise, no violated inequality (32) exists for v. For any vertex v ∈ V , having |δ(v)| ≥ 3, we
first consider all S ⊆ δ(v) such that |S| = 3 and we add a subset of the most violated inequalities
(32) by the current relaxed solution. Moreover, we run the procedure previously described for
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Algorithm 1: Branch-and-cut algorithm

Input: integer program P .
Output: an optimal solution of P .

1 Identify initial feasible solution T0. Get number b0 of branch vertices in T0

2 ub← b0, L = ∅
3 Define a first subproblem and insert it in the list L
4 while L is not empty do
5 chose the subproblem and remove it from L
6 solve the subproblem to obtain the lower bound lb
7 if lb < ub then
8 if the solution is integer then
9 if the solution is feasible then

10 ub← lb
11 update incumbent solution

12 else
13 search and add SEC on integer solutions

14 else
15 search violated constraints
16 if root node then
17 search SEC on non-integer solutions

18 if violated constraints are identified then
19 add them to the model

20 else
21 branch on a variable and add the corresponding subproblems in L
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k ∈ {4, . . . , |δ(v)|−1} and we add at most one violated constraint for each value of k. In line 19 all
the violated constraints identified are added to the model. In the implementation for the hybrid
formulation, in line 15, a search for violated inequalities (48) is also performed. The separation
procedure is the same described for inequalities (32). As for the previous case, we first look for
all subsets W ⊂ δ+(v) such that |W | = 2 and a subset of the most violated inequalities is added
to the cut-pool, then the separation procedure is performed for k ≥ 3. In line 21, branching takes
place in priority on the yv variables.

6. Computational results

The branch-and-cut algorithm was coded in C and solved using IBM ILOG CPLEX 12.5.1.
The computational experiments were performed on a 64-bit GNU/Linux operating system, 96 GB
of RAM and one processor Intel Xeon X5675 running at 3.07 GHz. In our tests the MIPEmphasis
parameter is set on the best bound value and the others parameters as default. For all the instances
the constant ε introduced to identify violated constrains (2) on the non-integer solutions is set equal
to 0.7. Experiments for the MBVP were conducted on benchmark instances. Carrabs et al. [2]
generated instances with n between 20 and 1000 and different densities. Note that dense graphs
often can contain a Hamiltonian path, therefore the authors generated sparse graphs. These
instances were also used by Maŕın [9]. In his paper the author divides the instances into two
groups: medium instances (with n ≤ 500) and large instances (with n ≥ 600). Here we call small
the instances with n ≤ 200, medium those with 250 ≤ n ≤ 5000 and large those with n ≥ 600.
Table 1 and 2 report the results for the undirected formulation applied to the small and medium
instances. In the tables each line represents an average over five instances having the same number
of vertices and of edges. In both tables the first two columns represent the instances, columns ub,
opt and sec report the average of the upper bounds found with Prim’s algorithm, the average of
the optimal solution values and the average of the computational time needed to compute them.
Moreover, whenever α instances of a group are not solved to optimality within the time limit of
one hour, we write (α) appears close to the solution value. The numbers of bridges, cocycles and
bridge vertices are also reported. Columns nodes and cuts represent the number of nodes in the
search tree and the number of cuts added.
Results for small, medium and large instances for the hybrid formulation are reported in Table 3
and Table 4. In Table 3 each line represent an average over 25 instances having the same number
of vertices. The table reports the results for both small and medium instances. In Table 4 each
line represents an average over five instances having the same number of vertices and edges. The
two tables have the same structure described above. Note that in this case, all the instances
were solved optimally. Our experimental results show that the hybrid formulation is most efficient
and faster. It allows us to solve all the small and medium instances within less than 10 seconds,
while the undirected formulation could not find an optimal solution on 13 instances after one
hour. Moreover, we can solve all the large instances, up to n = 1000 within an average time of
90.5 seconds. Finally, note that the number of nodes in the search tree is relatively small and all
families of cuts are useful.

6.1. LP lower bounds and duality gaps

We present the LP lower bounds obtained by adding one valid inequality each time to the
hybrid formulation. In Table 5 each line is an average over 25 instances, while in Table 6 the
average is computed over five instances. In both the tables the first two columns represent the
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Table 1: Undirected formulation: computational results for small instances

n m ub opt bridge cocycle bridge vertex nodes cuts sec

20 27 4.6 2.4 6.2 5.6 4.2 0.0 3.2 0.0
20 34 5.4 1.2 2.4 5.0 2.2 0.0 5.2 0.0
20 42 3.6 0.2 0.8 2.2 0.8 0.0 0.0 0.0
20 49 3.6 0.0 0.0 1.2 0.0 0.0 0.4 0.0
20 57 3.0 0.0 0.2 0.0 0.2 0.0 1.8 0.0

40 50 12.2 7.4 16.2 13.4 9.2 0.0 15.8 0.0
40 60 9.2 3.4 7.4 13.6 5.6 0.4 22.2 0.0
40 71 10.8 1.6 5.2 7.4 4.6 0.0 18.2 0.0
40 81 8.4 0.8 2.2 6.6 2.2 0.0 19.4 0.0
40 92 8.2 0.6 2.2 4.4 2.2 0.0 13.8 0.0

60 71 19.6 13.0 28.4 27.6 15.6 0.0 16.0 0.0
60 83 18.0 8.2 17.8 21.0 11.6 1.8 56.0 0.1
60 95 15.4 5.4 12.0 18.8 9.8 25.0 189.8 0.4
60 107 15.6 3.4 7.2 13.2 6.4 1.0 126.4 0.2
60 119 12.8 1.6 4.8 11.6 4.8 7.6 151.6 0.3

80 93 24.0 16.4 40.8 35.0 21.2 1.6 27.0 0.1
80 106 23.6 12.0 27.4 30.0 17.4 7.0 77.8 0.1
80 120 22.4 8.8 19.4 23.4 13.8 36.4 195.4 0.5
80 133 21.0 5.6 12.4 25.0 10.6 12.8 186.6 0.8
80 147 18.6 3.4 9.8 19.2 8.4 17.2 199.6 0.4

100 114 31.6 23.8 56.8 38.6 27.4 4.2 25.4 0.1
100 129 32.0 16.4 38.6 35.6 22.4 8.0 109.2 0.5
100 144 29.8 11.8 26.2 32.2 18.0 18.8 189.2 0.6
100 159 27.4 8.4 18.6 32.4 14.8 47.4 334.2 1.1
100 174 24.4 6.2 15.4 25.2 11.8 4937.0 2220.6 126.9

120 136 39.6 29.6 69.8 45.6 33.4 10.4 36.4 0.1
120 152 38.8 21.8 48.4 48.4 27.8 19.2 124.4 0.4
120 169 34.6 16.0 36.4 38.4 23.2 28.6 214.4 0.8
120 185 33.2 11.6 25.4 41.4 18.2 162.0 455.4 1.8
120 202 31.8 8.6 20.4 34.6 15.0 93.4 442.8 2.3

140 157 45.4 34.2 79.8 71.0 38.6 14.0 64.0 0.3
140 175 43.6 25.8 59.0 57.6 33.4 15.4 141.6 0.7
140 193 40.6 18.8 41.6 52.8 28.4 124.8 329.8 1.8
140 211 39.2 15.2 35.6 41.2 24.0 128.2 466.4 1.9
140 229 36.0 10.6 23.8 43.0 19.2 253.0 750.4 4.8

160 179 52.6 39.8 94.0 64.6 44.8 0.0 28.8 0.2
160 198 49.4 31.2 69.2 68.2 37.8 45.6 179.8 1.1
160 218 47.2 23.4 50.2 62.8 31.2 112.6 359.2 1.9
160 237 44.6 17.4 39.4 50.8 27.4 198.0 542.6 2.9
160 257 44.0 13.4 32.2 43.0 24.8 248.4 799.0 6.6

180 200 58.6 46.4 111.6 76.4 51.4 12.0 52.4 0.4
180 221 55.6 35.0 79.8 67.0 44.2 99.6 215.0 1.5
180 242 54.2 25.4 58.8 69.6 37.0 204.4 491.2 3.7
180 263 53.2 21.0 46.6 61.0 32.4 805.0 905.8 14.5
180 284 47.6 17.6 39.4 56.0 29.6 528.2 1100.8 11.9

200 222 63.6 50.6 127.8 74.8 57.0 14.6 69.4 0.6
200 244 62.0 39.4 92.4 77.8 49.6 49.8 174.0 1.3
200 267 59.4 30.4 69.0 72.0 40.2 130.8 390.0 3.7
200 289 56.4 24.8 56.8 68.8 38.4 2166.4 1185.8 56.6
200 312 57.2 (1)25.8 42.2 57.6 30.2 5464.6 3942.2 732.5
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Table 2: Undirected formulation: computational results for medium instances

n m ub opt bridge cocycle bridge vertex nodes cuts sec

250 273 81.4 66.0 164.4 100.2 71.4 1.4 51.0 0.8
250 297 78.6 53.0 120.8 110.8 60.8 312.0 318.8 5.0
250 321 75.8 43.4 101.8 93.8 57.6 277.4 514.8 7.4
250 345 74.6 34.4 76.2 90.0 47.8 1616.2 930.2 47.9
250 369 70.8 26.2 60.0 85.2 40.2 732.4 1352.8 42.7

300 326 97.4 81.0 203.0 121.8 87.4 30.2 127.2 1.9
300 353 95.0 67.8 160.2 116.4 78.6 171.4 323.6 6.2
300 380 92.6 54.6 124.8 114.0 69.0 572.4 785.4 21.9
300 407 89.6 46.2 104.6 103.4 61.8 1808.0 1619.6 75.9
300 434 85.0 37.2 86.4 89.4 56.2 1657.2 1933.0 143.8

350 378 113.4 94.6 238.8 143.2 102.8 70.2 152.6 5.0
350 406 111.6 80.6 190.0 145.6 93.6 452.4 476.8 10.1
350 435 108.0 65.6 151.0 150.8 84.4 2016.2 1379.4 85.6
350 463 107.2 56.6 124.2 128.4 75.8 11731.0 1945.2 663.4
350 492 102.6 45.4 103.6 123.8 67.2 5569.6 2322.0 444.0

400 429 130.8 111.8 282.6 167.2 119.6 56.2 123.6 3.9
400 459 128.0 94.0 226.4 165.0 109.4 851.6 782.6 21.0
400 489 126.2 (1)88.4 184.8 152.4 99.0 2315.8 5068.8 742.9
400 519 122.2 68.4 154.2 154.4 88.4 9878.8 2517.8 979.4
400 549 118.4 56.0 131.2 141.2 80.2 3204.6 2962.6 350.2

450 482 148.6 125.8 318.6 177.8 135.4 33.6 116.0 4.8
450 515 146.0 107.4 250.6 202.8 121.6 1298.6 846.2 75.4
450 548 140.0 90.4 208.8 184.2 110.4 3686.0 4059.0 835.4
450 581 139.2 (1)77.6 176.6 167.8 100.4 12719.2 2901.4 1363.9
450 614 133.2 (3)66.4 151.8 153.8 93.8 17717.4 3686.4 2766.6

500 534 164.6 141.6 361.0 191.2 150.6 70.4 149.2 10.2
500 568 160.8 120.8 294.2 187.0 137.2 948.6 770.0 53.8
500 603 158.2 105.6 246.0 198.4 126.8 3089.4 1981.2 260.3
500 637 151.6 (2)117.2 210.6 181.2 116.8 4850.8 6615.4 1902.9
500 672 148.4 (5)122.8 170.0 194.6 104.4 13407.2 11163.8 3600.0

Table 3: Hybrid formulation: computational results for small and medium instances

n m ub opt bridge cocycle bridge vertex nodes cuts sec

20 41.8 4.0 0.8 1.9 2.8 1.5 0.0 1.8 0.0
40 70.8 9.8 2.8 6.6 9.1 4.8 0.2 33.6 0.1
60 95.0 16.3 6.3 14.0 18.4 9.6 0.0 67.4 0.5
80 119.8 21.9 9.2 22.0 26.5 14.3 1.0 83.9 0.7

100 144.0 29.0 13.3 31.1 32.8 18.9 1.7 108.7 1.0

120 168.8 35.6 17.5 40.1 41.7 23.5 2.6 135.0 1.1
140 193.0 41.0 20.9 48.0 53.1 28.7 6.2 178.8 2.0
160 217.8 47.6 25.0 57.0 57.9 33.2 2.8 165.6 1.9
180 242.0 53.8 29.1 67.2 66.0 38.9 9.0 212.3 2.5
200 266.8 59.7 32.6 77.6 70.2 43.1 6.8 213.4 3.1

250 321.0 76.2 44.6 104.6 96.0 55.6 5.8 209.8 3.1
300 380.0 91.9 57.4 135.8 109.0 70.6 6.0 230.2 4.2
350 434.8 108.6 68.6 161.5 138.4 84.8 7.9 298.8 6.9
400 489.0 125.1 81.8 195.8 156.0 99.3 21.0 355.2 9.1
450 548.0 141.4 93.4 221.3 177.3 112.3 17.5 333.7 9.5
500 602.8 156.7 106.7 256.4 190.5 127.2 10.3 332.0 9.8

15

A Branch-and-Cut Algorithm for the Minimum Branch Vertices Spanning Tree Problem

CIRRELT-2015-60



Table 4: Hybrid formulation: computational results for large instances

n m ub opt bridge cocycle bridge vertex nodes cuts sec

600 637 197.6 183.8 493.6 68.8 188.0 0.0 74.0 3.2
600 674 192.6 167.2 437.4 71.6 176.4 0.0 148.8 8.7
600 712 188.0 150.6 394.4 68.6 168.6 1.6 229.0 10.3
600 749 182.2 138.8 363.4 55.6 161.0 21.2 335.6 17.6
600 787 173.8 125.8 333.6 49.4 153.2 18.2 333.8 16.2

700 740 232.0 214.4 576.8 91.4 218.6 0.0 100.4 8.7
700 780 224.8 198.0 518.4 89.2 206.8 2.6 176.6 11.0
700 821 218.0 180.0 470.2 79.4 198.2 0.6 257.2 12.5
700 861 212.4 164.0 436.6 62.8 191.4 3.2 291.0 17.4
700 902 205.0 154.2 403.2 63.6 183.2 1.0 293.6 14.7

800 843 265.4 245.6 666.8 90.6 252.2 0.0 102.0 10.3
800 886 256.8 227.6 599.4 98.8 237.4 1.8 169.0 11.2
800 930 253.6 208.4 546.6 89.2 228.8 10.2 321.6 22.7
800 973 245.2 194.2 505.8 82.0 221.4 72.4 658.4 48.8
800 1017 232.2 176.2 468.2 71.4 212.8 23.8 479.8 37.1

900 944 300.6 279.6 756.4 105.4 284.8 0.0 118.4 12.6
900 989 290.0 259.2 685.6 110.4 271.4 188.8 339.6 66.2
900 1034 286.6 240.6 633.0 105.0 262.2 28.2 405.4 30.2
900 1079 281.4 223.2 583.6 98.0 251.2 12.6 489.8 90.5
900 1124 269.0 206.0 547.6 83.2 242.4 2.0 372.0 30.7

1000 1047 332.6 312.0 849.6 110.2 317.0 8.4 148.8 26.2
1000 1095 323.2 290.0 767.0 121.0 303.2 0.0 209.2 17.0
1000 1143 318.6 271.2 705.0 121.2 290.2 74.2 613.4 57.1
1000 1191 310.4 251.0 657.6 109.8 279.8 53.6 621.2 75.4
1000 1239 303.8 235.2 609.8 105.6 268.4 45.8 735.4 62.6

Table 5: Hybrid formulation: lower bounds for MBVP on small and medium instances

n m opt w(H) w(H1) w(H2) w(H3) w(H4) w(H5)

20 41.8 0.8 0.59 0.65 0.64 0.60 0.61 0.62
40 70.8 2.8 2.16 2.31 2.29 2.21 2.23 2.25
60 95.0 6.3 5.18 5.64 5.56 5.33 5.42 5.44
80 119.8 9.2 7.79 8.44 8.25 8.05 8.19 8.10
100 144.0 13.3 11.75 12.47 12.28 12.06 12.23 12.16

120 168.8 17.5 15.60 16.46 16.24 16.02 16.20 16.14
140 193.0 20.9 18.64 19.64 19.36 19.18 19.47 19.17
160 217.8 25.0 22.74 23.75 23.55 23.25 23.55 23.31
180 242.0 29.1 26.39 27.62 27.30 27.08 27.41 27.06
200 266.8 32.6 30.00 31.22 30.91 30.55 30.94 30.68

250 321.0 44.6 41.72 43.06 42.68 42.43 42.96 42.42
300 380.0 57.4 53.74 55.55 54.93 54.73 55.23 54.51
350 434.8 68.6 63.96 65.93 65.36 65.40 66.16 65.00
400 489.0 81.8 77.31 79.33 78.68 78.96 79.62 78.21
450 548.0 93.4 88.32 90.66 89.75 90.04 90.79 89.29
500 602.8 106.7 101.75 104.26 103.43 103.48 104.16 102.86
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instances and the third one the optimal solution. The next columns provide lower bounds w(H),

Table 6: Hybrid formulation: lower bounds for MBVP on large instances

n m opt w(H) w(H1) w(H2) w(H3) w(H4) w(H5)

600 637 183.8 180.40 180.94 180.70 182.03 182.79 180.63
600 674 167.2 163.83 164.63 164.47 164.97 166.11 164.45
600 712 150.6 147.24 148.31 147.99 148.10 148.96 147.73
600 749 138.8 136.09 136.97 136.82 136.50 136.83 136.75
600 787 125.8 123.87 124.66 124.66 124.17 124.46 124.85

700 740 214.4 211.03 211.56 211.30 212.89 213.68 211.08
700 780 198.0 193.67 194.79 194.56 195.11 196.52 194.30
700 821 180.0 175.72 177.14 176.91 177.11 178.28 176.56
700 861 164.0 160.81 161.82 161.73 161.29 161.87 161.77
700 902 154.2 151.16 152.43 152.42 151.71 152.17 152.50

800 843 245.6 242.02 242.55 242.25 244.04 245.08 242.17
800 886 227.6 223.44 224.24 224.15 224.82 226.47 223.67
800 930 208.4 204.26 205.36 205.26 205.55 206.92 204.82
800 973 194.2 189.87 191.48 191.15 190.73 191.68 191.12
800 1017 176.2 172.37 173.72 173.63 172.99 173.49 173.79

900 944 279.6 275.15 275.76 275.33 277.72 278.88 275.17
900 989 259.2 253.97 255.29 254.81 256.15 257.71 254.26
900 1034 240.6 235.66 236.88 236.84 237.38 239.09 236.37
900 1079 223.2 218.02 219.98 219.59 219.52 220.61 219.09
900 1124 206.0 202.19 203.78 203.50 202.87 203.41 203.47

1000 1047 312.0 307.48 308.28 307.97 310.08 311.33 307.63
1000 1095 290.0 283.03 284.62 284.23 286.72 288.50 283.78
1000 1143 271.2 265.37 266.94 266.76 267.40 269.43 266.37
1000 1191 251.0 244.99 246.92 246.68 246.82 248.22 246.29
1000 1239 235.2 230.27 232.16 231.90 231.10 231.92 231.74

w(H1), w(H2), w(H3), w(H4) and w(H5), where H denotes the polytope obtained by relaxing
the integrality constraints in the hybrid formulation, while H1 and H2 denote the intersection of H
with (48) for W ⊂ δ+(v) such that |W | = 2 and |W | ≥ 3, respectively. Moreover, H3 denotes the
intersection of P with (33), while H4 and H5 with (32) for S ⊆ δ(v) such that |S| = 3 and |S| ≥ 4,
respectively. It is easy to see from the tables that all the cuts help improve the lower bound, in
particular w(H1) and w(H4) seems to yield the best lower bounds in most cases. Inequalities (48)
for W ⊂ δ+(v) such that |W | = 2 and (32) for S ⊆ δ(v) such that |S| = 3 are the most useful
cuts. This is evident in Table 7 and 8 which provide the duality gap with respect to the optimal
solution on the six polytopes.

7. Conclusions

We have modeled and solved the Minimum Branch Vertices Spanning Tree Problem. We have
provided two mathematical formulations based on an undirected and on a directed graph, respec-
tively and an hybrid formulation obtained by merging the first two. Moreover, we have derived
some properties and some valid inequalities for the problem. A branch-and-cut approach was pro-
posed on the undirected and on the hybrid formulations. Results show that the hybrid formulation
is superior to the undirected formulation and that our branch-and-cut algorithm applied to it solves
all benchmark instances to optimality.
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Table 7: Hybrid formulation: duality gap on small and medium instances

n m opt gH(%) gH1(%) gH2(%) gH3(%) gH4(%) gH5(%)

20 41.8 0.8 29.1 16.8 17.9 26.4 25.6 23.3
40 70.8 2.8 28.0 19.5 20.7 24.8 23.9 22.4
60 95.0 6.3 22.1 12.1 13.6 18.5 16.6 16.3
80 119.8 9.2 18.6 9.5 11.9 14.7 12.9 14.1

100 144.0 13.3 13.4 6.8 8.5 10.4 8.9 9.5

120 168.8 17.5 12.3 6.4 7.9 9.4 8.2 8.6
140 193.0 20.9 12.3 6.5 8.1 9.1 7.5 9.1
160 217.8 25.0 10.1 5.4 6.3 7.7 6.3 7.4
180 242.0 29.1 10.2 5.3 6.5 7.4 6.1 7.5
200 266.8 32.6 8.8 4.5 5.6 6.8 5.5 6.4

250 321.0 44.6 6.9 3.6 4.5 5.1 3.8 5.1
300 380.0 57.4 6.7 3.3 4.4 4.8 3.9 5.2
350 434.8 68.6 7.2 4.0 4.9 4.8 3.6 5.5
400 489.0 81.8 5.9 3.2 4.0 3.6 2.8 4.6
450 548.0 93.4 5.7 3.0 4.0 3.7 2.8 4.6
500 602.8 106.7 4.9 2.4 3.2 3.1 2.5 3.8

Table 8: Hybrid formulation: duality gap on large instances

n m opt gH(%) gH1(%) gH2(%) gH3(%) gH4(%) gH5(%)

600 637 183.8 1.9 1.6 1.7 1.0 0.6 1.8
600 674 167.2 2.1 1.6 1.7 1.4 0.7 1.7
600 712 150.6 2.3 1.5 1.8 1.7 1.1 1.9
600 749 138.8 2.0 1.3 1.4 1.7 1.4 1.5
600 787 125.8 1.6 0.9 0.9 1.3 1.1 0.8

700 740 214.4 1.6 1.3 1.5 0.7 0.3 1.6
700 780 198.0 2.2 1.6 1.8 1.5 0.8 1.9
700 821 180.0 2.4 1.6 1.7 1.6 1.0 1.9
700 861 164.0 2.0 1.3 1.4 1.7 1.3 1.4
700 902 154.2 2.0 1.2 1.2 1.6 1.3 1.1

800 843 245.6 1.5 1.3 1.4 0.6 0.2 1.4
800 886 227.6 1.9 1.5 1.5 1.2 0.5 1.8
800 930 208.4 2.0 1.5 1.5 1.4 0.7 1.7
800 973 194.2 2.3 1.4 1.6 1.8 1.3 1.6
800 1017 176.2 2.2 1.4 1.5 1.9 1.6 1.4

900 944 279.6 1.6 1.4 1.6 0.7 0.3 1.6
900 989 259.2 2.1 1.5 1.7 1.2 0.6 1.9
900 1034 240.6 2.1 1.6 1.6 1.4 0.6 1.8
900 1079 223.2 2.4 1.5 1.6 1.7 1.2 1.9
900 1124 206.0 1.9 1.1 1.2 1.5 1.3 1.2

1000 1047 312.0 1.5 1.2 1.3 0.6 0.2 1.4
1000 1095 290.0 2.5 1.9 2.0 1.1 0.5 2.2
1000 1143 271.2 2.2 1.6 1.7 1.4 0.7 1.8
1000 1191 251.0 2.5 1.7 1.8 1.7 1.1 1.9
1000 1239 235.2 2.1 1.3 1.4 1.8 1.4 1.5
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