
The Labeled Maximum Matching Problem

Francesco Carrabs, Raffaele Cerulli, Monica Gentili
Department of Mathematics and Computer Science

University of Salerno
Via Ponte Don Melillo, 84084 Fisciano (SA), Italy.

{fcarrabs, raffaele, mgentili }@unisa.it

Abstract

Given a graph G where a label is associated with each edge, we address the problem of looking for a maximum
matching of G using the minimum number of different labels, namely the Labeled Maximum Matching Problem. It is
a relatively new problem whose application is related to the timetabling problem [15]. We prove it is NP-complete
and present four different mathematical formulations. Moreover, we propose an exact algorithm based on a branch-
and-bound approach to solve it. We evaluate the performance of our algorithm on a wide set of instances and compare
our computational times with the ones required by CPLEX to solve the proposed mathematical formulations. Test
results show the effectiveness of our procedure, that hugely outperforms the solver.

Key words: Matching, Label, Color, Exact Approach, Branch and Bound.
PACS:

1. Introduction

Matching problems are considered among the most important combinatorial problems. The classic ap-
plication of matching deals with pairing of objects from two disjoint sets, however, pairings do not always
deal with disjoint sets. Matchings have applications also in connection with relaxation and heuristics for
many well-known problems (e.g., traveling salesman problem, the postman problem, among others). In this
paper we deal with a variant of the classical maximum matching problem, namely the Labeled Maximum
Matching Problem (LMM). Given an undirected and labeled graph G = (V, E, C) where a label c ∈ C is
assigned with each edge, we look for a maximum matching of G using the minimum number of different
labels. A practical application of the problem is presented in [15] and [16] where its relationship with the
timetabling problem is shown. Indeed, a solution of the timetabling problem may be seen as a matching
between classes and teachers that satisfies additional restrictions. For example, we can assume the classes
to belong to different schools spread out on a given area and a professor may teach in different schools. Let
us represent a school with a given label. An inspector needs to maximize the number of assessed teachers
during their lectures without visiting the same class more than once. Hence, the lectures to be attended
would form a maximum matching. For convenience the inspector would like these lectures to take place in
the smallest possible number of different schools. Then, clearly the inspector has to construct a maximum
matching meeting a minimum number of labels in the graph associated with the lectures.

The class of labeled problems is a recent research area. Problems in this class may be used to model many
real world problems arising, for example, in communication networks, multimodal transportation networks,

Preprint submitted to Elsevier 19 September 2008

etc. The Minimum Labeled Spanning Tree Problem (MLST) was the first problem introduced in this area
and defined by [1] and [8]. It is shown to be NP-hard and many heuristics and approximation results are
provided in the literature to solve it [2, 4, 14, 17, 18, 19]. Many other labeled problems are recently ad-
dressed in the literature: the Minimum Labeled Steiner Problem [5], the Minimum Labeled Hamiltonian
Problem [6, 7, 20], the Labeled Shortest Path Problem [3].

To the best of our knowledge, the existing papers in the literature studying the specific problem addressed
in this paper are [15] and [16], where its complexity and approximability was studied on bipartite graphs.
In this paper, we study the problem on general graphs. We assess its complexity and provide different
mathematical formulations. Since the problem is proved to be NP-complete, an exact branch and bound
approach is proposed to solve it. We compare our results with those provided by a solver. Our extensive
experimentation shows the effectiveness of the proposed approach.

The sequel of the paper is organized as follows. Section 2 introduces the basic notation. The complexity
of the problem is addressed in Section 3, and, the proposed mathematical models are described in Section 4.
Section 5 contains the detailed description of our branch and bound algorithm. Computational results are
reported in Section 6. Finally, concluding remarks are discussed in Section 7.

2. Basic Notation

Let G = (V, E, C) be an undirected and labeled graph where V is the vertex set, E the edge set and C
a set of labels. A label C (i, j) ∈ C is associated with each edge (i, j) ∈ E. Given a subset S ⊆ E of edges
the set C (S) =

⋃
(i,j)∈S C (i, j) is the corresponding set of labels. The subgraph induced by a given label

c ∈ C is denoted by Gc, i.e. Gc = (V, Ec, c) with Ec = {(i, j) ∈ E : C (i, j) = c}. Similarly, we define Gc

the subgraph of G without edges whose label is c, i.e Gc = (V, E \ Ec, C \ {c}). The set of edges incident
to a vertex i ∈ V is denoted by δ(i) = {j : (i, j) ∈ E}. Given a set of vertices X ⊆ V , we denote by
G[X] = (V \X, E[X], C (E[X])) the subgraph of G induced by X where E[X] = {(i, j) : i, j ∈ V \X}.

A matching M of G is a set of edges that meets each vertex of G at most once. We denote by V(M) the
set of vertices covered by M . A matching is called a perfect matching if all vertices are covered by M, i.e
|V(M)| = |V |, while it is called near-perfect if it covers all vertices but one. We say an edge (i, j) ∈ E is
feasible for M if and only if i, j /∈ V(M), otherwise it is infeasible. A maximum matching of G, denoted by
M(G), is a matching of maximum size. A minimum labeled maximum matching of G, denoted by M̂(G), is
a maximum matching with the minimum number of labels, i.e. |C (M̂(G))| is minimum.

3. Complexity

In this section we prove the addressed problem is NP-complete. Let us define the decision version of our
problem, namely, the Bounded Labeled Maximum Matching Problem (BLMM):

Bounded Labeled Maximum Matching Problem: Given an undirected and edge labeled graph G =
(V, E,C) and a positive integer k: is there a maximum matching M(G) of G such that the total number of
different labels in M(G) is less than or equal to k, i.e. |C (M(G))| ≤ k?

Theorem 1 The Bounded Labeled Maximum Matching Problem is NP-Complete.

Proof. It is easy to see that BLMM ∈ NP since a nondeterministic algorithm needs only to guess a subset
M of edges and to check in polynomial time whether each vertex has degree less than or equal to 1, the size
of M is equal to the size of a maximum matching and C (M) has size less than or equal to k.

We prove the theorem by reduction from the well known Minimum Set Covering Problem (MSC). Let
S = {s1, s2, . . . , sn} be a set of n elements, F = {F1, F2, . . . , Fm} be a family of m subsets of S, i.e.
Fi ⊆ S, i = 1, 2, . . . , m, and k be a positive integer. The decisional version of MSC consists in selecting no

2

S F
s1

s2

s3

s4

s5

F1 = {s1, s2}

F2 = {s1, s3, s4}

F3 = {s2, s4}

F4 = {s1, s3}

F5 = {s1, s5}

F6 = {s4, s5}

F1 F2 F4 F5

s1

F1 F3

s2

F2 F4

s3

F2 F3 F6

s4

F5

s5

F6

1 2 4 5 1 3 42 2 3 6 5 6

(a) (b)

Fig. 1. (a) A generic instance of the Minimum Set Covering Problem, and, (b) the corresponding instance of the Bounded
Labeled Maximum Matching Problem.

more than k subsets in F that cover all the elements in S. We now define from the generic instance of MSC
a graph G = (V, E), a labeling function of the edges and show that there exists a covering of S with at most
k subsets if and only if there exists a maximum matching of G using at most k labels.

Let us denote by F(si) = {Fj ∈ F : si ∈ Fj} the collection of sets in F containing the element si and let
ni be its size. For each element si we define in G a vertex si and the set of ni vertices corresponding to the
subsets Fj ∈ F(si). We define an edge in G between each vertex si and the corresponding vertices Fj ∈ F(si)
with associated label j (Figure 1). Therefore, G contains |V | = n +

∑n
i=1 ni vertices, and, |E| =

∑n
i=1 ni

edges. This construction can be accomplished in polynomial time.
Note that, any maximum matching M(G) of G contains exactly n edges, one for each vertex si. Consider

now a cover of S of size k, that is a selection of k subsets {Fj1 , Fj2 , . . . , Fjk
}, such that

⋃k
h=1 Fjh

= S. We
can define a maximum matching M(G) that uses at most k different labels, by selecting for each vertex si

an edge (si, Fj) whose label belongs to the set {j1, j2, . . . , jk}. On the contrary, let M(G) be a maximum
matching of G using k different labels. We can build a cover of S of size at most k by selecting for each label
j ∈ C (M(G)) the corresponding set Fj . 2

4. Mathematical Formulations

In this section we provide four different mathematical formulations for the problem. In particular, we
propose three integer linear programming (ILP) formulations and a lagrangean relaxation one (LR). All of
them will be used to evaluate the performance of our branch and bound approach.

Let xe be a set of binary variables, associated with each edge e ∈ E, whose value is equal to 1 if edge e
is selected and 0 otherwise. Given an edge e = (i, j), we denote its extremes by ←−e = i and −→e = j. Let yk,
k ∈ C, be a set of binary variables whose value is equal to 1 if label k is selected and 0 otherwise. We define
a binary parameter ak

e that is equal to 1 if label k is associated with edge e and 0 otherwise. Finally, let θ
be the size of a maximum matching of G, i.e. |M(G)| = θ.

The first integer linear programming formulation we propose is the following:

(ILP0) zILP0 = min
∑

k∈C

yk (1)

subject to

3

∑

e∈δ(i)

xe ≤ 1 ∀ i ∈ V (2)

∑

e∈E

xe = θ (3)

yk ≥ xea
k
e ∀ k ∈ C, ∀ e ∈ E (4)

yk ∈ {0, 1} ∀ k ∈ C (5)
xe ∈ {0, 1} ∀ e ∈ E (6)

The objective function (1) requires the minimization of the total number of used labels. Constraints (2) and
(3) ensure the selected edges form a maximum matching. Constraints (4) are logical constraints linking the
two set of binary variables.

To strengthen the formulation we considered other three mathematical models: (i) a lagrangean relaxation
(LR) of ILP0, (ii) an alternative integer linear programming formulation (ILP1) and (ii) a formulation based
on the binding degree and blossom inequalities (ILP2).

By introducing a lagrangian multiplier λ ∈ R, and relaxing constraint (3), we obtain the following relaxed
problem:

(LR) zLR(λ) = min
∑

k∈C

yk + λ(
∑

e∈E

xe − θ) (7)

subject to constraints (2), (4), (5) and (6).
From lagrangian duality theory, we know zLR(λ) ≤ zILP0 , for each λ ∈ R, i.e. the optimum solution of

the lagrangean relaxation is a valid lower bound to the optimum solution value zILP0 for any λ ∈ R. The
best attainable lower bound is the solution of the following lagrangian dual problem:

(LD) zLD = max
λ∈R

zLR(λ) (8)

The following theorem holds.

Theorem 2 The optimum solution λ∗ of (LD) is such that λ∗ < 0.

Proof. It is easy to see that, when λ ≥ 0 the optimum solution of (LR) is obtained by setting xe =
0, ∀ e ∈ E. This implies from constraints (4) that

∑
k∈C yk = 0, and it follows zLR = −λθ ≤ 0. On the

contrary, when λ < 0, we have zLR =
∑

k∈C yk + λ(
∑

e∈E xe − θ) > 0. Indeed, constraints (2) impose∑
e∈E xe − θ ≤ 0. 2

Let {xe(λ), yk(λ)} be any pair of optimal solutions to LR. If this solution is feasible for the original
problem ILP0, it is also ε-optimal for ε defined as:

ε = θ −
∑

e∈E

xe

The next theorem shows that when λ < −θ then ε = 0, that is {xe(λ), yk(λ)} is feasible for ILP0 and
therefore is also optimal.

Theorem 3 If λ < −θ then
∑

e∈E xe(λ) = θ.

Proof. Let {x∗e, y∗k} be the optimum solution of ILP0, and zILP0 =
∑

k∈C y∗k the corresponding objective
function value. Let us suppose there exists an optimum solution of (LR), say {x̂e(λ), ŷk(λ)} such that∑

e∈E x̂e(λ) < θ, and, let ẑLR(λ) be the corresponding objective function value. By lagrangean theory we
know ẑLR(λ) ≤ z∗ILP0

, that is:

4

∑

k∈C

ŷk(λ) + λ(
∑

e∈E

x̂e(λ)− θ) ≤
∑

k∈C

y∗k ≤ θ

by binary constraints,
∑

e∈E x̂e(λ)− θ < −1 that implies ẑLR(λ) > θ, a contradiction. 2

Therefore, we have the following:

Corollary 4 If λ < −θ then zLR(λ) = zILP0 .

An alternative integer linear programming formulation is the following:

(ILP1) zILP1 = max ϕ
∑

e∈E

xe −
∑

k∈C

yk (9)

subject to constraints (2), (4), (5) and (6).

Equation (9) defines the objective function as the weighted difference between the cardinality of a match-
ing and the total number of used labels. Note that, by opportunely setting the value of the weight ϕ, the
optimum solution of ILP1 is achieved with a maximum matching. Let M(G) be a maximum matching of
G, i.e. |M(G)| = θ, and |C (M(G))| = h the size of its label set. The corresponding objective function value
is zILP1(M(G)) = ϕθ − h. Let M be a matching of G with |M | < θ, C (M) the corresponding label set,
and, zILP1(M) = ϕ|M | − |C (M)| the objective function value. We want to define a value for ϕ such that
zILP1(M(G)) > zILP1(M), for each matching M of G such that |M | < θ. The maximum value of zILP1(M)
is equal to ϕ(θ − 1) − 1, obtained considering a matching M such that |M | = θ − 1 and a corresponding
label set with size equal to 1. Therefore, zILP1(M(G)) > zILP1(M) for each matching M of G ⇔ ϕθ − h >
ϕ(θ−1)−1 ⇔ ϕ > h−1. The following results are then proved. Let {x∗e, y∗k} be an optimum solution of ILP1.

Theorem 5 If ϕ > h− 1 then
∑

e∈E x∗e = θ.

Corollary 6 If ϕ > h− 1 then
∑

k∈C y∗k = zILP0 .

The last integer linear programming formulation is obtained by replacing constraint (3) with binding
degree and blossom inequalities. These constraints can be derived analyzing the dual solution computed
by Edmonds Cardinality Matching Algorithm [10]. The following theorem shows how to generate the new
constraints from a dual solution:

Theorem 7 [13] Given any graph G = (V, E), denote by Y the set of vertices not covered by at least one
maximum matching of G, by X the neighbours of Y in V \ Y , and by W all other vertices. Then:
any maximum matching of G contains a perfect matching of G[W], near-perfect matchings of the connected
components of G[Y], and, matches all vertices in X to distinct connected components of G[Y].

The partitioning of V in W , X, Y is known as the Gallai-Edmonds decomposition of G. This decomposition
is produced by Edmonds’ Cardinality Matching Algorithm at the end of the computation. Let us denote
by CC(G) = {C1, . . . ,Cp} the set of connected component of G, and by |Ci| the number of vertices in the
component. The mathematical formulation that uses the Gallai-Edmonds decomposition is:

(ILP2) zILP2 = min
∑

k∈C

yk (10)

subject to

5

∑

e∈δ(i)

xe ≤ 1 ∀ i ∈ V (11)

yk ≥ xea
k
e ∀ k ∈ C, ∀ e ∈ E (12)∑

e∈δ(i),−→e ∈W

xe = 1 ∀ i ∈ W (13)

∑

e∈δ(i),−→e /∈W

xe = 0 ∀ i ∈ W (14)

∑

e∈δ(i),−→e ∈Y

xe = 1 ∀ i ∈ X (15)

∑

e∈δ(i),−→e /∈Y

xe = 0 ∀ i ∈ X (16)

∑

e∈E[Ci]

xe =
⌊ |Ci|

2

⌋
∀ Ci ∈ CC(G[Y]) (17)

yk ∈ {0, 1} ∀ k ∈ C (18)
xe ∈ {0, 1} ∀ e ∈ E (19)

Constraints (13)-(17) are the binding degree and blossom inequalities derived from the Gallai-Edmonds
decomposition. These constraints guarantee exactly θ edges are selected, i.e. a maximum matching of G is
selected. In particular, constraints (13) and (14) guarantee that for each vertex i ∈ W exactly one edge (i, j)
with j ∈ W is selected while all the other edges (i, j), where j /∈ W are not selected. Constraints (15) and
(16) ensure that for each vertex i ∈ X exactly one edge (i, j) such that j ∈ Y is selected, while all the other
edges (i, j) with j /∈ Y are not selected. Finally, constraints (17) ensure that for each connected component
in G[Y] a near-perfect matching is selected.

We compare the computational times required by CPLEX to solve LR, ILP1 and ILP2 models in section 6.
Table 1 shows the ILP2 model, on average, turned out to have the best computational times. For the sake of
clearness of the exposition we decided to show only the most significant results. Therefore, due to the very
poor performance of the ILP0 model, the corresponding computational times are not reported in section 6.

5. The Branch and Bound Algorithm

In this section we describe our branch and bound approach to solve the problem. Note that, the branching
strategy is not based on the integer linear programming formulations provided in the previous sections, as
it will be clear in the sequel. The following subsections describe in details the basic choices for the imple-
mentation of our branch-and-bound algorithm, that is:

(i) the branching strategy and the characterization of the search tree (subsection 5.1);
(ii) the exploration strategy (subsection 5.2);

(iii) the pruning operations (subsection 5.3);
(iv) the edge choice policy (subsection 5.4).

5.1. The Branching Strategy and the Search Tree

Our algorithm explores a search tree T that represents all the matchings of a given graph G and selects
a maximum matching of G using the minimum number of labels. To avoid confusion, from now on, we use
the term “vertex” to denote a vertex in G, and, “node” to denote a decision node of T .

6

u

v w

Gv

(i, j)

S
el
ec
t

R
eject

(i
, j
)

Gw

r

Fig. 2. A branch operation on a generic node u carried out by choosing edge (i, j) ∈ `u.

The following structures are associated with each node u ∈ T :

- the set ρ(u) ⊆ E corresponding to the selected edges along the path in T from the root r to u. By
construction, ρ(u) defines a matching of G;

- the set ρ(u) ⊆ E corresponding to the rejected edges along the path in T from the root r to u;

- the set Zu ∈ C of labels associated with the selected edges ρ(u), i.e. Zu = C (ρ(u));

- the candidate edge set `u, that is the set of feasible edges that can be chosen to perform a branch
operation from u;

- a residual graph Gu = (Vu, Eu, Cu) such that:

• vertex set Vu ⊆ V contains all the vertices not covered by ρ(u), i.e. Vu = V \ V(ρ(u));

• edge set Eu contains all the not rejected edges induced by Vu, i.e Eu = {(i, j) ∈ E : i, j ∈
Vu and (i, j) /∈ ρ(u)};

• label set Cu contains all the labels associated with edges in Eu, i.e. Cu =
⋃

(i,j)∈Eu
C (i, j).

On the root r we have: ρ(r) = ρ(r) = ∅, Zr = ∅, `r = E and Gr = G. Given a generic node u ∈ T
a branching on it consists in either selecting a new edge (i, j) ∈ `u to be part of a matching or not. This
branching generates two children, the left-child v and the right-child w (see Figure 2). The former corre-
sponds to the selection of the edge (i, j), the latter to the rejection of (i, j). For this reason, we define v as
a selection node (s-node) and w as a rejection node (r-node).

In general, left children in T are s-nodes, while right children are r-nodes. On s-node v, the matching ρ(v)
is obtained by adding (i, j) to ρ(u), the set ρ(v) is equal to ρ(u) and, the residual graph Gv, is derived from
Gu by removing vertices i and j. On the other hand, for r-node w we have: ρ(w) = ρ(u), ρ(w) = ρ(u)∪{(i, j)}
and Gw is obtained from Gu by deleting edge (i, j).

Consider for example the simple graph of 4 vertices shown in Figure 3a, where a label ci is associated

7

r

b

(1
, 2)

e

(2
,

3)

f

g

(1
,

4
)

h

(1
,

4
)

i l

(2
, 3)

a

(4
,

3)
(4

, 3)

(1
,

2)

(1
,

4
)

(1
,

4
)

1 2

4 3

(a) (b)

c d

c1

c2

c3

c4

Fig. 3. (a) A simple graph with 4 vertices, and, (b) the associated decision tree T .

with each edge. The associated decision tree is shown in Figure 3b. With node a the sets ρ(a) = {(1, 2)},
ρ(a) = ∅, Za = {c1} and `a = {(4, 3)} are associated. With node b these sets are ρ(b) = ∅, ρ(b) = {(1, 2)},
Zb = ∅ and `b = {(2, 3), (1, 4), (4, 3)}. With node h we have ρ(h) = {(2, 3)}, ρ(h) = {(1, 2), (1, 4)}, Zh = {c2}
and `h = ∅. Note that, by construction, for a generic node u of the search tree, ρ(u) is a matching of G and
all the edges in Gu are feasible edges for it, then `u = Eu.

To better understand the interactions among the next subsections we give now an outline of the algorithm.
A more detailed description will be given in subsection 5.7.

5.1.1. Outline of the Algorithm

At a given node u, if ρ(u) is a maximum matching of G and |Zu| < |C (M∗)|, where M∗ is the incumbent
solution, then the algorithm sets M∗ = ρ(u). At this point a new node of the tree is exploited according to
the exploration strategy, described in subsection 5.2. On the contrary, if ρ(u) is not a maximum matching of
G, then the size of a maximum matching M(Gu) of Gu is computed to check whether a feasible solution of
the original problem can be obtained. Indeed, observe that the subset of edges ρ(u)∪M(Gu) is a matching
of G. If the cardinality of this matching is lower than the cardinality of a maximum matching of G, then it
is not possible to find a feasible solution of the problem in the subtree rooted in u: u is pruned and a new
node is explored. Otherwise, a lower bound lbu (see subsection 5.3) is computed. If this lower bound is such
that there does not exist a better solution than the incumbent one on the subtree rooted in u, then u is
pruned. Otherwise a branching from u is carried out by selecting an edge in `u. The algorithm stops when
there are no more nodes to be explored.

5.1.2. Reduction of the Candidate Edge Set

In the previous section we showed the candidate edge set `u coincides with the edge set of the residual
graph Gu. The number of branchings performed in the subtree Tu rooted in u is at most equal to |`u|.
Therefore, lower the size of `u, lower the size of Tu. In this section, we define two rules, namely the used
label rule and the necessary label rule, to reduce the size of `u. Theorem 12, in subsection 5.3, will prove this
reduction does not affect the correctness of the algorithm.

The first rule consists in choosing edges in `u whose label has not yet been used:

R1. (Used label Rule): Choose (i, j) ∈ `u such that C (i, j) /∈ Zu.

8

The application of R1 has two main consequences. The former is that we can remove from `u all those
edges whose label belongs to Zu, i.e. `u = Eu \{(i, j) : C (i, j) ∈ Zu}. Moreover, the number of s-nodes along
a path from r to any node u can be upper bounded to the number |C (M∗)| of labels associated with the
incumbent solution M∗. Indeed, by applying R1, Zu is increased by one every time an edge is selected, that
is every time an s-node is generated. Hence, the selected edges ρ(u) in the path from r to any node u have
all distinct label, i.e. |ρ(u)| = |Zu|. Since at any node u the condition |Zu| < |C (M∗)| holds (otherwise u
would be pruned) then it follows |ρ(u)| < |C (M∗)|. Therefore, the size of T mainly depends on the number
of generated r-nodes.

The second rule used to reduce the set `u is based on the following definition of a necessary label.

Definition 8 Given an undirected and labeled graph G = (V, E, C), a label c ∈ C is necessary if all the
maximum matchings of G use it.

Note that, to check whether a given label c is necessary we need to compute the size |M(Gc)| of a
maximum matching on the subgraph Gc obtained from G by removing all those edges whose label is c. If
|M(Gc)| < |M(G)| then c is necessary.

Given a node u ∈ T , we denote by Iu the necessary label set associated with the residual graph Gu. Note
that some of the labels in Zu could be necessary, then for performance reasons, we compute Iu considering
only those labels not belonging to Zu, i.e. Iu ⊆ C (`u) \ Zu. This will make Zu and Iu two disjoint sets
, i.e. Zu ∩ Iu = ∅, and |Zu ∪ Iu| a lower bound to the value of any feasible solution generated from u.
Recall that, these solutions can be obtained joining the set ρ(u) with a maximum matching M(Gu). Since
Iu ⊆ C (M(Gu)), a solution produced by any maximum matching algorithm contains at least one edge for
each label in Iu. Therefore, it is convenient to remove from `u all the edges whose label is necessary. We
perform this reduction by applying the following necessary label rule:

R2. (Necessary label Rule): Choose (i, j) ∈ `u such that C (i, j) /∈ Iu.

Because of this new rule the candidate edge set becomes `u = Eu \ {(i, j) : C (i, j) ∈ {Zu ∪ Iu}}.

Finally, we describe how we computed the necessary label set Iu associated with node u. From Defini-
tion 8, we need to compute the maximum matching M(Gc

u) ∀c ∈ {C \Zu} and to check whether |M(Gc
u)| <

|M(Gu)|. However, to compute the necessary label set Iu, we can restrict the search of the necessary la-
bels to those ones belonging to {C (M(Gu))\Zu} as stated by the following remark, derived from Definition 8:

Remark 9 Given a node u ∈ T , the necessary label set Iu is included in the label set of any maximum
matching of Gu, i.e. Iu ⊆ {C (M(Gu)) \ Zu} for any M(Gu).

5.2. The Exploration Strategy

Our branch and bound approach applies a depth-first strategy (DFS) which explores the tree by visiting at
each step the left-child of the last visited node. After reaching a leaf node or after the execution of a pruning
operation, this strategy backtracks to the father node and then visits its right-child. Once both children are
visited, the exploration restarts from their grandfather and so on.

There are two main reasons for choosing such an exploration strategy. First of all, it is computationally
more efficient than either a best-first strategy or a breadth-first one. By applying the DFS, the structures
associated with any children of u (see subsection 5.1) are quickly computed. These updating operations are
computationally more expensive when the other two alternative strategies are applied.

Moreover, we decided not to apply the best-first strategy since it turned out to be not efficient for our

9

specific search tree T . Usually, this strategy is better than other ones in reducing the size of the search
tree, since, the choice of the most promising node to be explored, speeds up the identification of an optimal
solution. However, in our case, as we will see in subsection 5.3, the lower bounds associated with the nodes
are in many cases very close to each other.

5.3. Pruning Operations

In this section we give a detailed description of the four pruning operations (steps) we apply at each node
of the search tree when it is exploited.

Let M∗ be the incumbent solution. Initially, M∗ is a generic maximum matching of G that is updated, dur-
ing the computation, each time a maximum matching with fewer labels is found. From now on, we say that
a pruning step, applied on a node u, fails if it does not prune u. Our four pruning steps namely P1, P2, P3
and P4 are carried out subsequently: a step is performed if the previous one failed.

Let u be a node of T and ρ(u) be the associated matching. Any feasible solution ρ(u) contains all the labels
in Zu ∪Iu. If |Zu ∪Iu| ≥ |C (M∗)| then u is pruned. On the contrary, if |Zu ∪Iu| < |C (M∗)|, our algorithm
checks whether it is possible to obtain a feasible solution, containing ρ(u), by using the edges of Gu. Then,
a maximum matching M(Gu) is computed. If |M(Gu)| = |M∗| − |ρ(u)| then M(Gu) ∪ ρ(u) is a maximum
matching of G otherwise u is pruned. We denote P1 this first pruning step that is formally defined as follows:

P1. If |M(Gu)| < |M∗| − |ρ(u)| then node u is pruned.

If P1 fails, next pruning step P2, checks whether it is possible to build a feasible solution by using only
labels in Zu ∪ Iu.

P2. Build the subgraph GZu∪Iu
u and computeM(GZu∪Iu

u). If |M(GZu∪Iu
u)|+|ρ(u)| = |M∗| thenM(GZu∪Iu

u)∪
ρ(u) is a maximum matching of G with |Zu ∪ Iu| labels. Since |Zu ∪ Iu| < |C (M∗)|, update M∗ and
prune node u.

If P2 fails, then at least a new label c ∈ C \ {Zu ∪ Iu} needs to be added to Zu ∪ Iu to obtain a feasible
solution. Pruning step P3 tries to build such a feasible solution.

P3. If |Zu∪Iu|+1 ≥ |C (M∗)| then prune u, otherwise compute M(GZu∪Iu∪c
u), for each c ∈ C \{Zu∪Iu}.

If |M(GZu∪Iu∪c
u)|+|ρ(u)| = |M∗|, for some c ∈ C\{Zu∪Iu}, then M(GZu∪Iu∪c

u)∪ρ(u) is a maximum
matching of G with |Zu ∪ Iu|+ 1 labels: M∗ is updated and u is pruned.

Let us define lbu as the lower bound, associated with node u, to the number of labels in C \ {Zu ∪ Iu}
needed to obtain any maximum matching M(Gu). Formally, lbu ≤ |C (M(Gu))\{Zu∪Iu}| for any M(Gu).
Note that when P2 fails lbu = 1, while when P3 fails lbu = 2. Pruning step P4 to follow checks whether it
is possible to obtain a feasible solution better than M∗. Formally:

P4. If |Zu ∪ Iu|+ lbu ≥ |C (M∗)| then u is pruned.

When all the four pruning steps fail, the algorithm performs a branch operation on u. Therefore, any
branching in the search tree is carried out if and only if lbu ≥ 2.

Obviously, the greater the value of lbu, the greater the chance node u is pruned after the execution of P4.
We will see how the value of lbu can be increased by the application of the heredity property, the lower
bounding technique and the upper bounding technique described in subsections 5.5 and 5.6.

10

We can now introduce, as mentioned in subsection 5.4, Theorem 12 to prove the correctness of our algo-
rithm when the candidate edge set `u is reduced to be equal to Eu \ {(i, j) : C (i, j) ∈ (Zu ∪ Iu)}, ∀u ∈ T .

We focus now on special nodes of the search tree T , we refer to as closing nodes.

Definition 10 Let G = (V, E, C) be an undirected and labeled graph and let M̂(G) be a maximum matching
of G with the minimum number of labels (i.e. an optimum solution). A node u ∈ T is a closing node if the
following two conditions are satisfied:

1. ρ(u) ⊆ M̂(G) and ρ(u) ∩ M̂(G) = ∅;
2. |Zu ∪ Iu| = |C (M̂(G))| − 1;

Closing nodes are such that, if explored, the application of the pruning steps updates M∗ to the optimum
solution. This is proved in the following Lemma.

Lemma 11 Let G = (V,E,C) be an undirected and labeled graph, M̂(G) be a optimum matching of G and
u a closing node of T . If node u is explored then M∗ = M̂(G).

Proof. From condition 1 it follows: (i) the edge set Eu contains all the edges of M̂(G) that have not yet
been selected, and, (ii) all the labels in Zu and Iu are used by the optimum solution M̂(G). Hence, both
P1 and P4 fail on u. Consequently, from condition 2, it follows that C (M̂(G)) \ {Zu ∪ Iu} = {c′}, that is,
exactly a single additional label needs to be added to {Zu ∪ Iu} to obtain an optimum solution. Then, the
application of P3 on GZu∪Iu∪c′

u returns a maximum matching M(Gu) of Gu that contains label c′ and such
that M(Gu) ∪ ρ(u) is a maximum matching of G. Moreover, since |C (M(Gu) ∪ ρ(u))| = |C (M̂(G))| then
M(Gu) ∪ ρ(u) is an optimum solution of G. Note that such a matching M(Gu) exists because we could
always set M(Gu) = M̂(G) \ ρ(u). 2

We prove now the correctness of our algorithm by the following Theorem.

Theorem 12 Let G = (V, E, C) be an undirected and labeled graph, M∗ be the initial feasible solution and
M̂(G) be an optimum matching of G. Our branch and bound algorithm finds the optimum solution of G.

Proof. Obviously, if |C (M∗)| = |C (M̂(G))| no closing node exists in T and the algorithm stops without
updating M∗. Otherwise if |C (M∗)| > |C (M̂(G))|, we need to show our algorithm defines a search tree
T containing at least one closing node u. That is, we need to prove there exists a path P (r, u) in T that
connects the root r to u, where u is the first closing node. Let us suppose this path does not exist, i.e. there
exists a node x ∈ T such that P (r, x) ⊂ P (r, u), where a pruning operation is carried out.

Note that each node in P (r, u) satisfies condition 1 of Definition 10, therefore, ρ(x) ⊆ M̂(G) and
ρ(x) ∩ M̂(G) = ∅. A pruning operation on node x is carried out either because one of the four pruning
steps successes or because `x = ∅. Let us analyze first the pruning steps at node x.

Condition 1 implies P1 fails on x. Moreover, since x does not satisfy condition 2, then |Zx ∪ Ix| <
|C (M̂(G))| − 1. Hence, P2 and P3 fail, since at least two additional labels are needed to obtain a feasible
solution from x. Additionally, P4 fails on x too. Indeed, by definition: lbx ≤ |C (M̂(Gx)) \ {Zx ∪ Ix}|.
Therefore, we have the following relationships:

|{Zx ∪ Ix}|+ lbx ≤ |{Zx ∪ Ix}|+ |C (M̂(Gx)) \ {Zx ∪ Ix}|
= |C (M̂(Gx))|
≤ |C (M̂(G))|
< |C (M∗)|

11

Finally, the application of rules R1 and R2, implies `x = Ex \ {(i, j) : C (i, j) ∈ {Zx ∪ Ix}}. Since,
condition 2 does not hold on x, then |Zx ∪ Ix| < |Zu ∪ Iu| that is, there exists a label set C ′ 6= ∅ such that
C ′ = (Zu ∪ Iu) \ (Zx ∪ Ix). Therefore, `x contains at least all the edges whose label is in C ′. 2

5.4. Edge Choice Policy

In this section we describe the rule we applied to choose edges from the candidate edge set `u. Since the
search tree T represents all the matchings of G, the idea consists of choosing first the edges that have more
chances to belong to a maximum matching of G. In this way, when such an edge is selected, the conver-
gence of the incumbent solution M∗ to the optimum is faster. On the other hand, when it is rejected, the
success probability of P1 (on the r-nodes) is increased since building feasible solutions results more difficult.

The chance of a given edge to belong to a maximum matching of G is evaluated by considering its inci-
dence value defined as follows:

Definition 13 Given an undirected and labeled graph G = (V, E, C) and an edge (i, j) ∈ E, we denote by
π(i, j) its incidence in G, corresponding to the degree sum of its vertices. Formally, π(i, j) = |δ(i)|+ |δ(j)|.

Note that, if (i, j) belongs to a maximum matching and it is rejected then any other maximum matching
must cover at least one vertex between i and j. Therefore, the lower π(i, j), the lower the chance to find such
an alternative maximum matching. For instance, if π(i, j) = 2 then it is not possible to produce a maximum
matching if (i, j) is rejected. Hence, we apply the following rule to choose edges in `u:

R3. (Incidence Rule): Choose edge (i, j) ∈ `u such that π(i, j) ≤ π(i′, j′), ∀(i′, j′) ∈ `u.

5.5. Heredity property

In this section we introduce the heredity property that shows the strict relationship between the lower
bound value lbu of a node u, the necessary label set Iu and the corresponding elements of its children. We will
show that when the heredity property can be applied then the operations needed to compute both the nec-
essary label set Iu and the lower bound on any node u of the search tree can be hugely reduced (Theorem 15).

Given a node u ∈ T , let v and w be its left and right children, respectively. The heredity property holds on
v and w when the pruning step P1 fails on them. In particular, we recall that if P1 fails on v, then condition
|M(Gv)| = |M(Gu)|−1 is verified; on the other hand, if P1 fails on w, then condition |M(Gw)| = |M(Gu)|
is verified.

The heredity property states that the necessary label set Iu is a subset of Iv and Iw, i.e. Iu ⊆ Iv and
Iu ⊆ Iw. Consequently, the children of u can directly inherit the necessary label set of their father, that is
Iv = Iu ∪Nv and Iw = Iu ∪Nw, where Nv and Nw are the additional necessary labels to be computed on v
and w, respectively. We saw in subsection 5.3 that the necessary label sets are used into the pruning steps,
to reduce the size of the search tree. However, we experimentally verified that this reduction is consistent
only on the r-nodes. Therefore, we decided to compute the set of additional necessary labels only on these
nodes and to set Nv = ∅, that is Iv = Iu. We formally state this by the following rule:

R4. (Necessary label Set Rule): Let u ∈ T be a node in the search tree, v and w be its right and left children,
respectively: set Iv = Iu and Iw = Iu ∪Nw.

Moreover, the heredity property states that lbv ≥ lbu − 1 and lbw ≥ lbu − |Nw|. That is, the lower bound
of a given node in the search tree can be computed by considering the lower bound of its father, reducing,

12

u

v w

Gv Gw

u

v w

Gv Gw

u

v w

Gv Gw

lbu

lbv ≥ lbu − 1 lbw ≥ lbu − |Nw|

Iu

Iu = Iv Iu ⊆ Iw

(a) (b) (c)

Fig. 4. (a) A node u ∈ T of the search tree and its right and left children. (b) The relationships among the necessary label sets
Iu, Iv and Iw. (c) The relationships among the lower bound values lbu, lbv and lbw.

therefore, the number of applied pruning steps on the node.

Before introducing the heredity property Theorem, consider the following lemma:

Lemma 14 Let G be an undirected and labeled graph and let G′ be the subgraph of G obtained removing an
edge (i, j) of G. If |M(G′)| = |M(G)| then |C (M̂(G′))| ≥ |C (M̂(G))|.

Proof. The proof is straightforward by observing that, from the hypothesis, every maximum matching of
G′ is a maximum matching of G. 2

Theorem 15 (Heredity Property) Let u be a node of T where a branching operation on the edge (i, j)
is performed, and let v and w be its left and right children, respectively (Figure 4a). The following conditions
hold:

Case 1: If |M(Gv)| = |M(Gu)| − 1 then Iu ⊆ Iv (Figure 4b).
Case 2: If |M(Gw)| = |M(Gu)| then Iu ⊆ Iw (Figure 4b).
Case 3: If |M(Gv)| = |M(Gu)| − 1, then lbv ≥ lbu − 1 (Figure 4c).
Case 4: If |M(Gw)| = |M(Gu)|, then lbw ≥ lbu − |Nw| (Figure 4c).

Proof.

Case 1: We need to prove that any label c ∈ Iu is necessary for v, that is Iu ⊆ C (M(Gv)) for any
M(Gv). Let us suppose, by contradiction, there exists a maximum matching M(Gv) such that c ∈ Iu

and c /∈ C (M(Gv)). Since |M(Gv)| = |M(Gu)| − 1, then {M(Gv) ∪ (i, j)} is a maximum matching
of Gu. However, from rule R2 we have that C (i, j) 6= c and therefore c /∈ C (M(Gv) ∪ (i, j)), that is a
contradiction because c is necessary.

Case 2: The proof is straightforward by applying the same reasoning of the previous case.

Case 3: First we need to prove that lbu−1 is a lower bound for v, i.e. lbu−1 ≤ |C (M(Gv))\{Zv∪Iv}|
for each M(Gv). Let us suppose, by contradiction, lbu − 1 > |C (M(Gv)) \ {Zv ∪ Iv}|, then we have
the following relationships:

13

lbu > |C (M(Gv)) \ {Zv ∪ Iv}|+ 1 (20)

= |C (M(Gv)) \ {Zu ∪ C (i, j) ∪ Iu}|+ 1 (21)

= |C (M(Gv) ∪ (i, j)) \ {Zu ∪ C (i, j) ∪ Iu}|+ 1 (22)

> |C (M(Gu)) \ {Zu ∪ Iu}| (23)

Relationship (21) follows from rule R4, i.e. Iv = Iu, and from R1, i.e. Zv = Zu ∪ C (i, j). Relation-
ship (22) holds regardless of whether C (i, j) belongs to C (M(Gv)) or not. Finally, since |M(Gv)| =
|M(Gu)| − 1 then M(Gv) ∪ (i, j) is a maximum matching of Gu and relationship (23) follows. From
this last inequality a contradiction follows since, by definition, lbu is a lower bound of node u.

Since any branching on the search tree is performed if and only if lbu ≥ 2, then we need to analyze
the value of lbv in the following two cases: lbu − 1 ≥ 2 and lbu − 1 = 1. In the former case, since the
pruning steps P2, P3 and P4 fail, the algorithm sets lbv = lbu − 1. In the latter case, the application
of P3 sets lbv = 2. In both cases lbv ≥ lbu − 1.

Case 4: First we need to prove that lbu − |Nw| is a lower bound for w, i.e. lbu − |Nw| ≤ |C (M(Gw)) \
{Zw ∪Iw}| for each M(Gw). Let us suppose, by contradiction, lbu− |Nw| > |C (M(Gw)) \ {Zw ∪Iw}|
then we have the following relationships:

lbu > |C (M(Gw)) \ {Zw ∪ Iw}|+ |Nw| (24)

≥ |C (M̂(Gw)) \ {Zw ∪ Iw}|+ |Nw| (25)

= |C (M̂(Gw)) \ {Zu ∪ Iu ∪Nw}|+ |Nw| (26)

≥ |C (M̂(Gu)) \ {Zu ∪ Iu ∪Nw}|+ |Nw| (27)

≥ |C (M̂(Gu)) \ {Zu ∪ Iu}| (28)

Relationship (25) holds since |C (M(Gw))| ≥ |C (M̂(Gw))|. Relationship (26) follows by observing that:
i) by construction Zw = Zu and, ii) from rule R4 we have Iw = Iu ∪Nw. Inequality (27) follows from
Lemma 14, i.e. C (M̂(Gu)) ≤ C (M̂(Gw)). Since at most Nw labels can be removed from C (M̂(Gu))
then relationship (28) follows, that is a contradiction.

We need, now, to analyze the value of lbv in the following two cases: lbu−|Nw| ≥ 2 and lbu−|Nw| < 2.
In the former case, since the pruning steps P2, P3 and P4 fail, the algorithm sets lbw = lbu−|Nw|. In
the latter case, the application of the pruning steps sets lbw = 2. In both cases lbw ≥ lbu − |Nw|. 2

The advantages derived from the heredity property in terms of performed operations should be evident.
Given a generic node u ∈ T , the standard sequence of operations performed on it when it is explored is: P1,
computation of Nu, P2, P3 and P4. Pruning step P1 is carried out on every node of the search tree. If this
step fails then the hypotheses of Theorem 15 hold, and, by using the relationships derived from the heredity
property, some of the remaining steps could be avoided.

5.6. Combined Matching Property

In this section we introduce a simple property (Theorem 16) that outlines the relationships among the
cardinality of the maximum matchings computed on the subgraphs of G induced by different subsets of
labels. Two consequences derive from Theorem 16: (i) an improved lower bound lbu can be obtained at each
node u of the tree (lower bounding technique in subsection 5.6.1), and, (ii) the total number of maximum
matching problems to be solved during the execution of the algorithm can be reduced (upper bounding
technique in subsection 5.6.2). We show in Section 6 the effectiveness of the application of these techniques
in improving the computational times.

14

Theorem 16 Let G = (V,E, C) be an undirected and labeled graph and M(Gci) be a maximum matching
of the subgraph Gci induced by label ci. Then |M(Gc1∪...∪cp)| ≤ ∑p

i=1 |M(Gci)|.

Proof. Let us consider the set Si of the edges inM(Gc1∪...∪cp) whose label is ci, that is Si = M(Gc1∪...∪cp)∩
Eci with 1 ≤ i ≤ p. Obviously, we have

⋃
i Si = M(Gc1∪...∪cp), and |Si| ≤ |M(Gci)|. Consequently,

|M(Gc1∪...∪cp)| = ∑p
i=1 |Si| ≤

∑p
i=1 |M(Gci)|. 2

5.6.1. Lower Bounding Technique

According to Theorem 16 we can derive a simple lower bound to the optimum solution value |C (M̂(G))|
as outlined in the following remark.

Remark 17 Let h = |C| be the size of the set of labels associated with G. Consider the maximum matchings
M(Gci) ordered according to their non decreasing size, i.e. |M(Gci1)| ≥ |M(Gci2)| ≥, . . . , |M(Gcih)|. Let
k be the highest index value such that

∑k
j=1 |M(Gcij)| < |M(G)|, then k is a lower bound to the optimum

solution value, i.e. |C (M̂(G))| > k.

By applying Remark 17, we could compute a lower bound lbu greater than 2, for each node of the search
tree. We decided, however, to compute such a lower bound only at the root node r. Indeed, the computation
of the maximum matchings M(Gc

u) ∀c ∈ C \ {Zu ∪ Iu} and their subsequent sorting results too expensive,
if carried out at each node of the tree.

5.6.2. Upper Bounding Technique

Remark 17 can also be used to reduce the total number of maximum matching problems to be solved by
our algorithm, resulting in a great improvement of its performance. Indeed, our experimental results show
that the 85% of the computational time of the algorithm is spent in the resolution of maximum matching
problems. The idea consists in introducing a test into the pruning step P3 that checks whether it is possible
to obtain a feasible solution of G that contains the edges of a maximum matching M(GZu∪Iu∪c

u) without
computing it. Let us consider a generic node u of the search tree where the pruning step P3 has to be carried
out. By Remark 17, we can avoid the computation of M(GZu∪Iu∪c

u) if the following condition is satisfied:

|M(GZu∪Iu
u)|+ |M(Gc

u)| < |M(Gu)| (29)

Note that, both the two matchings M(Gu) and M(GZu∪Iu
u) are already known since they were computed

during the execution of the pruning steps P1 and P2. Hence, to check whether condition (29) is satisfied we
need only to compute the maximum matchings M(Gc

u) ∀c ∈ C \ {Zu ∪ Iu}.

This operation is expensive as above mentioned. Therefore, we evaluated an upper bound U c
u of |M(Gc

u)|
whose computation is cheaper. Hence, in the pruning step P3 the maximum matching M(GZu∪Iu∪c

u) will be
computed only in case inequality |M(GZu∪Iu

u)| + U c
u ≥ |M(Gu)| holds. Obviously, the lower U c

u, the lower
the number of maximum matchings to be computed.

In our implementation, we computed two different upper bounds and we set the value of U c
u equal to the

minimum one.
A first upper bound is the size of the maximum matching M(Gc) computed on the root of search tree.

This value will be a good upper bound when the number of edges having the same label in the graph is
low. The second upper bound is obtained computing a minimum vertex cover (MVC) on the residual graph
Gu. MVC is an NP-complete problem [12], therefore, we did not compute its exact solution value, but an
approximate one. In particular, we applied a simple two-approximate algorithm [9] whose running time is
O(V + E) that is cheaper than the computation of M(Gc

u) that requires O(V 3) time.

15

5.7. The Algorithm

Let G = (V,A, C) be an undirected and labeled graph and let M∗ be an initial feasible solution of our
problem returned by a given heuristic. Our branch and bound algorithm starts by analyzing the root node
r and setting Zr = ∅, `r = E and Ir = ∅. Pruning step P3 is then applied to check whether the optimal
solution M̂(G) is composed by a single label. If this is the case the algorithm stops and returns the optimum
solution. Otherwise, by applying Remark 17, the value of the lower bound lbr is computed and the pruning
step P4 is carried out. If it successes then no feasible solution better than M∗ can be found in the tree and
the algorithm stops. Otherwise, an edge in the set `r is selected to perform the first branch on the tree.

Let us consider now a generic iteration. Let u be a generic node of the search tree and v and w be its left
and right children, respectively.

When the s-node v is explored, pruning step P1 is carried out. If P1 successes, then v is pruned and the
algorithm backtracks to u. Otherwise, by the heredity property, the necessary label set and the lower bound
value at the node are Iv = Iu and lbv = lbu − 1. If lbv ≥ 2 then an edge in `v is selected to perform the
branch. Otherwise, since lbv = 1, pruning steps P2, P3 and P4 are applied. If all these pruning steps fail,
then lbv is set equal to 2 and an edge of `v is chosen to perform the branch. Otherwise, if P3 successes, then a
new feasible solution better than M∗ is found, the incumbent solution is updated and a backtrack to u is car-
ried out (i.e. node v is pruned). On the other hand, if P3 fails and P4 successes the algorithm backtracks to u.

Let us consider now the visit of the r-node w. Step P1 is carried out first. If it successes then w is pruned
and a backtrack operation is carried out. Otherwise, if it fails, then by the heredity property, the set Nw is
computed. Two cases may occur now. If Nw = ∅, then Iw = Iu. Since by construction Zw = Zu, then no
additional pruning steps are carried out on w (indeed, they would fail as happened on the father u). In this
case, an edge in `w is chosen to carry out the branch. On the other hand, if Nw 6= ∅ then lbw is set equal
to max{0, lbw − |Nw|}. If lbw ≥ 2 then an edge in `w is selected to perform a branch. Otherwise, according
to the value of lbw, the remaining pruning steps are applied such that either a feasible solution is found or
lbw is set equal to 2. In the former case, if the found feasible solution is better than the incumbent one M∗,
then M∗ is updated, w is pruned and a backtrack is carried out. In the latter case, an edge in `w is selected
to perform a branch.

The algorithm stops when all the nodes of the tree are explored.

6. Computational results

Our branch-and-bound algorithm is coded in C and run on a 2.8 GHz Intel Xeon processor. All the
proposed formulations were coded in C++ and solved using the mixed-integer optimizer of ILOG CPLEX
version 10.1. The computation of the classical maximum matching is performed in O(|V |3) time following
the implementation described by Gabow in [11]. We performed our tests on random graphs generated ac-
cording to three parameters: the number of vertices n, the density of the graph d and the number of labels
C. The value of n ranges from 10 to 100 with a step equal to 10. Parameter d is equal to 0.25, 0.5, 0.75 and
1 so that the total number of edges in the graph is m = dn(n − 1)/2. Parameter C is equal to 25%, 50%,
75% and 100% of n. We have a total of 160 different scenarios. We fixed a maximum running time equal to
3600 seconds, when the optimal solution is not found within this threshold the term n.d. (not determined)
is reported in the tables.

Table 1, 2 and 3 report our results for n = 40, 60, 80, 100. All the values are average values over five
different instances.

Comparison of the computational times required by CPLEX to solve the mathematical models is given

16

in Table 1. The first three columns report the scenario characteristics. Column Card reports the size of a
maximum matching, column UB contains the initial upper bound to the solution value returned by a greedy
heuristic, while column OPT the optimum solution value. Subsequent three columns contain the average
CPU times (in seconds) required by CPLEX to solve the corresponding model. Finally, the last three columns
report the percentage gap between the computational time of any couple of models. In particular, let A1

and A2 be two algorithms and t1 and t2 their execution times, respectively. To evaluate how much A1 is
faster than A2 we computed the following gap value: A1 → A2 = t1−t2

max{t1,t2} . If A1 is faster than A2, then
the gap is negative and represents the percentage of saved time of A1 respect to A2. Otherwise, the gap is
positive and represents the percentage of additional time spent by A1 respect to A2. When the difference
in time between a couple of models was less than 1 second we set the corresponding gap equal to 0%. The
average values reported in the last row are computed neglecting these cases.

Table 1: Comparison of CPLEX computational times to solve the proposed mathematical formulations.

n d C Card UB OPT Time Gap

LR ILP1 ILP2 LR → ILP1 LR → ILP2 ILP1 → ILP2

40 0.25 10 20 3.6 3.2 0.33 0.29 0.36 0.00% 0.00% 0.00%

40 0.25 20 20 5 4.8 0.71 0.90 0.74 0.00% 0.00% 0.00%

40 0.25 30 20 6.2 5.6 1.14 1.14 0.96 0.00% 0.00% 0.00%

40 0.25 40 20 8.8 6.6 1.05 0.92 0.99 0.00% 0.00% 0.00%

40 0.50 10 20 2 2 0.14 0.27 0.11 0.00% 0.00% 0.00%

40 0.50 20 20 3.2 3 1.49 1.73 1.56 0.00% 0.00% 0.00%

40 0.50 30 20 3.8 3.2 1.06 1.85 2.50 0.00% -57.60% 0.00%

40 0.50 40 20 4.8 3.8 2.05 2.97 2.10 0.00% 0.00% 0.00%

40 0.75 10 20 1.6 1.6 0.14 0.16 0.31 0.00% 0.00% 0.00%

40 0.75 20 20 2.4 2 0.82 1.93 1.49 -57.51% 0.00% 0.00%

40 0.75 30 20 3 3 3.47 4.69 3.73 -26.01% 0.00% 0.00%

40 0.75 40 20 3.6 2.8 2.89 3.87 2.75 0.00% 0.00% 28.84%

40 1 10 20 1.2 1 0.19 0.21 0.24 0.00% 0.00% 0.00%

40 1 20 20 2 2 0.48 0.85 1.09 0.00% 0.00% 0.00%

40 1 30 20 2.6 2 2.47 3.77 3.05 -34.48% 0.00% 0.00%

40 1 40 20 3 3 6.38 7.19 7.42 0.00% -14.02% 0.00%

60 0.25 15 30 3.2 3 1.73 1.12 0.99 0.00% 0.00% 0.00%

60 0.25 30 30 6 4.8 7.79 5.32 4.21 31.71% 45.93% 20.83%

60 0.25 45 30 7.2 6 26.47 38.57 28.63 -31.37% -7.55% 25.77%

60 0.25 60 30 9 7 12.84 18.03 17.72 -28.79% -27.53% 0.00%

60 0.50 15 30 2 2 1.89 1.07 1.26 0.00% 0.00% 0.00%

60 0.50 30 30 3.2 3 7.50 10.68 7.68 -29.78% 0.00% 28.09%

60 0.50 45 30 4.4 4 22.09 29.99 82.76 -26.34% -73.31% -63.76%

60 0.50 60 30 5.2 4.4 352.69 377.94 114.77 -6.68% 67.46% 69.63%

60 0.75 15 30 1.8 1.8 0.95 2.05 0.54 -53.66% 0.00% 73.76%

60 0.75 30 30 2.2 2 5.09 11.56 3.87 -55.97% 24.05% 66.56%

60 0.75 45 30 3.2 3 26.23 35.79 29.73 -26.71% -11.78% 16.92%

60 0.75 60 30 4 3 59.00 55.06 53.14 6.68% 9.94% 3.49%

60 1 15 30 1.2 1 0.86 0.99 1.07 0.00% 0.00% 0.00%

60 1 30 30 2 2 6.88 2.74 5.93 60.17% 0.00% -53.83%

60 1 45 30 3 2.2 23.62 45.31 40.53 -47.87% -41.72% 10.56%

60 1 60 30 3.4 3 53.87 63.95 70.72 -15.76% -23.83% -9.58%

80 0.25 20 40 3.4 3 6.17 6.63 5.06 0.00% 17.99% 23.68%

80 0.25 40 40 5.6 5 150.60 26.60 65.34 82.34% 56.61% -59.29%

80 0.25 60 40 7.4 6.2 826.62 677.78 636.80 18.01% 22.96% 6.05%

80 0.25 80 40 9.4 7.6 1381.21 1484.52 2388.18 -6.96% -42.16% -37.84%

80 0.50 20 40 2.4 2 12.05 8.16 11.63 32.28% 0.00% -29.82%

80 0.50 40 40 4 3 53.74 55.95 48.83 -3.95% 9.14% 12.73%

80 0.50 60 40 4.4 4 1495.27 964.45 1557.55 35.50% -4.00% -38.08%

80 0.50 80 40 5.6 5 2752.41 3128.96 2459.19 -12.03% 10.65% 21.41%

continued on next page

17

Table 1 – continued from previous page

80 0.75 20 40 2 2 4.09 13.12 8.72 -68.83% -53.12% 33.51%

80 0.75 40 40 2.6 2 51.27 83.91 54.64 -38.90% -6.17% 34.88%

80 0.75 60 40 3.4 3 133.40 315.47 113.84 -57.71% 14.66% 63.91%

80 0.75 80 40 4.2 3.8 2536.69 2944.65 2815.67 -13.85% -9.91% 4.38%

80 1 20 40 1.4 1 10.87 12.45 17.85 -12.69% -39.11% -30.26%

80 1 40 40 2.2 2 55.11 105.20 37.86 -47.61% 31.29% 64.01%

80 1 60 40 2.8 2.6 150.37 224.45 115.89 -33.01% 22.93% 48.37%

80 1 80 40 3.8 3 371.85 270.27 393.42 27.32% -5.48% -31.30%

100 0.25 25 50 4 3.2 36.30 25.08 24.43 30.91% 32.71% 0.00%

100 0.25 50 50 7 5 1656.39 2149.56 2516.45 -22.94% -34.18% -14.58%

100 0.25 75 50 8.6 n.d. 3600.34 3600.32 3602.33 n.d. n.d. n.d.

100 0.25 100 50 9.2 n.d. 3600.43 3600.60 3602.42 n.d. n.d. n.d.

100 0.50 25 50 2.6 2 51.88 41.96 37.29 19.12% 28.13% 11.14%

100 0.50 50 50 3.6 3 160.15 146.32 161.79 8.64% -1.01% -9.56%

100 0.50 75 50 5 4 3290.95 3224.37 2260.96 2.02% 31.30% 29.88%

100 0.50 100 50 5.4 5 3600.87 3600.81 3602.83 n.d. n.d. n.d.

100 0.75 25 50 2 2 45.31 33.30 30.04 26.51% 33.70% 9.78%

100 0.75 50 50 3 2 200.42 203.45 136.43 -1.49% 31.93% 32.94%

100 0.75 75 50 3.8 3 690.92 918.05 925.41 -24.74% -25.34% -0.80%

100 0.75 100 50 4 4 3601.36 3601.26 3603.23 n.d. n.d. n.d.

100 1 25 50 1.4 1 46.20 47.70 53.64 -3.14% -13.87% -11.07%

100 1 50 50 2.6 2 200.50 308.96 88.45 -35.10% 55.89% 71.37%

100 1 75 50 3 2.6 750.60 636.88 727.82 15.15% 3.03% -12.50%

100 1 100 50 3.4 3 976.44 3100.79 787.90 -68.51% 19.31% 74.59%

Avg. -10.55% 1.81% 11.02%

Table 1 shows that CPLEX computational times grow with the number of nodes n and with density d,
as it was expected. Some of the instances with n = 100 were not solved within the fixed maximum running
time. Column LR → ILP1 shows that LR requires less CPU time than ILP1 in 29 scenarios and greater
time in 14 scenarios. On average, CPLEX requires a computational time that is 10% less to solve LR than
to solve ILP1. From column LR → ILP2 we observe that CPLEX resulted faster in solving ILP2 than in
solving LR in 20 scenarios and slower in 19 scenarios. On average, CPLEX requires 1% less of CPU time
to solve ILP2 respect to LR. However, ILP2 seems to have a better behavior when n increases. Indeed, for
16 out of 20 scenarios where it results faster than LR the value of parameter n is greater than or equal to
80. Finally, let us analyze the results for ILP1 and ILP2 reported in the last column of Table 1. On the
average, ILP2 is about 11% faster than ILP1. In 26 scenarios ILP2 results faster than ILP1 and slower in
14. From these results we considered ILP2 to be the best of the proposed models.

Table 2 and Table 3 show the computational times of our branch and bound. Table 2 compares the com-
putational times of the algorithm in case the upper bounding technique is applied or not. Table 3 evaluates
the performance of our branch and bound by comparing its computational times with those required by
CPLEX to solve the ILP2 formulation.

Consider Table 2. Column BB− corresponds to the case when the upper bounding technique is not applied
and column BB when it is applied. For each implementation two values are given: the total number of solved
maximum matching problems (column MM) and the total computational time (in seconds). Last column
reports the percentage gap between these values, respectively. We can see there are only three scenarios where
the optimum solution was not found within the given threshold (n = 80, d = 0.25, C = 80 and n = 100,
d = 0.25 and C = 75, 100). We can say the implementation with the upper bounding technique hugely
reduces the total number of matchings in most of the scenarios and always results in better computational
times. On the average, this implementation solves a number of maximum matchings that is 17% less than
the other. There are five scenarios where this percentage is greater than 50%. For those few instances with
a number of matchings greater in column BB− than in column BB, the gap is less than 3%, and, in these

18

scenarios, the computational time does not worsen.

Table 2: Comparison of the computational times of our branch and bound when the upper bounding technique is applied (BB)
and when it is not applied (BB−).

n d C Card UB OPT BB− BB BB → BB−

MM Time MM Time MM Time

40 0.25 10 20 3.6 3.2 768.60 0.01 746.40 0.01 -2.89% 0.00%

40 0.25 20 20 5 4.8 15117.40 0.16 10063.40 0.12 -33.43% 0.00%

40 0.25 30 20 6.2 5.6 126981.00 1.26 48715.80 0.57 -61.64% 0.00%

40 0.25 40 20 8.8 6.6 2049191.60 18.18 564350.00 6.72 -72.46% -63.04%

40 0.50 10 20 2 2 10.00 0.00 10.00 0.00 0.00% 0.00%

40 0.50 20 20 3.2 3 475.20 0.00 386.60 0.00 -18.64% 0.00%

40 0.50 30 20 3.8 3.2 3412.80 0.06 2524.20 0.04 -26.04% 0.00%

40 0.50 40 20 4.8 3.8 29684.20 0.47 14479.80 0.25 -51.22% 0.00%

40 0.75 10 20 1.6 1.6 7.40 0.00 7.40 0.00 0.00% 0.00%

40 0.75 20 20 2.4 2 40.40 0.00 41.40 0.00 2.42% 0.00%

40 0.75 30 20 3 3 1047.80 0.02 828.40 0.02 -20.94% 0.00%

40 0.75 40 20 3.6 2.8 1536.40 0.03 806.20 0.02 -47.53% 0.00%

40 1 10 20 1.2 1 2.00 0.00 2.00 0.00 0.00% 0.00%

40 1 20 20 2 2 20.00 0.00 20.00 0.00 0.00% 0.00%

40 1 30 20 2.6 2 335.00 0.01 333.40 0.01 -0.48% 0.00%

40 1 40 20 3 3 2319.80 0.06 1731.00 0.05 -25.38% 0.00%

60 0.25 15 30 3.2 3 698.40 0.01 637.80 0.01 -8.68% 0.00%

60 0.25 30 30 6 4.8 276727.40 6.67 171028.60 4.55 -38.20% -31.78%

60 0.25 45 30 7.2 6 6206103.00 129.51 2632610.00 61.25 -57.58% -52.71%

60 0.25 60 30 9 7 85862828.20 1643.34 41993329.80 1048.81 -51.09% -36.18%

60 0.50 15 30 2 2 15.00 0.00 15.00 0.00 0.00% 0.00%

60 0.50 30 30 3.2 3 1124.60 0.04 973.20 0.04 -13.46% 0.00%

60 0.50 45 30 4.4 4 50377.00 2.46 36943.80 1.43 -26.67% -41.87%

60 0.50 60 30 5.2 4.4 1479888.60 50.89 821907.00 30.81 -44.46% -39.46%

60 0.75 15 30 1.8 1.8 14.60 0.00 14.60 0.00 0.00% 0.00%

60 0.75 30 30 2.2 2 90.80 0.00 92.20 0.00 1.52% 0.00%

60 0.75 45 30 3.2 3 2566.80 0.13 2039.80 0.10 -20.53% 0.00%

60 0.75 60 30 4 3 17107.60 1.07 13347.20 0.66 -21.98% 0.00%

60 1 15 30 1.2 1 2.60 0.00 2.60 0.00 0.00% 0.00%

60 1 30 30 2 2 30.00 0.00 30.00 0.00 0.00% 0.00%

60 1 45 30 3 2.2 1895.80 0.11 1896.60 0.12 0.04% 0.00%

60 1 60 30 3.4 3 5122.60 0.30 3977.00 0.25 -22.36% 0.00%

80 0.25 20 40 3.4 3 948.60 0.04 897.00 0.04 -5.44% 0.00%

80 0.25 40 40 5.6 5 376025.80 15.70 253360.20 12.97 -32.62% -17.39%

80 0.25 60 40 7.4 6.2 57837961.00 2151.72 40620075.00 1620.24 -29.77% -24.70%

80 0.25 80 40 9.4 7.6 105835006.40 3601.93 85050540.80 3601.98 n.d. n.d.

80 0.50 20 40 2.4 2 29.80 0.00 30.40 0.00 1.97% 0.00%

80 0.50 40 40 4 3 2516.60 0.22 2262.40 0.17 -10.10% 0.00%

80 0.50 60 40 4.4 4 202484.20 14.19 166515.80 12.20 -17.76% -14.02%

80 0.50 80 40 5.6 5 7950753.20 571.87 4774864.20 398.79 -39.94% -30.27%

80 0.75 20 40 2 2 20.00 0.00 20.00 0.00 0.00% 0.00%

80 0.75 40 40 2.6 2 1073.20 0.13 1088.80 0.10 1.43% 0.00%

80 0.75 60 40 3.4 3 6325.20 0.62 5655.60 0.51 -10.59% 0.00%

80 0.75 80 40 4.2 3.8 505501.80 44.86 453524.40 38.29 -10.28% -14.65%

80 1 20 40 1.4 1 6.00 0.00 6.00 0.00 0.00% 0.00%

80 1 40 40 2.2 2 45.80 0.00 46.00 0.00 0.43% 0.00%

80 1 60 40 2.8 2.6 4327.20 0.49 4345.80 0.48 0.43% 0.00%

80 1 80 40 3.8 3 10966.00 1.23 9193.20 1.03 -16.17% 0.00%

100 0.25 25 50 4 3.2 11896.40 1.46 12045.80 1.58 1.24% 0.00%

100 0.25 50 50 7 5 5513712.60 649.38 5001211.60 400.15 -9.30% -38.38%

100 0.25 75 50 8.6 n.d. 52354040.60 3601.83 34334121.80 3601.77 n.d. n.d.

continued on next page

19

Table 2 – continued from previous page

100 0.25 100 50 9.2 n.d. 62095015.80 3602.11 48802153.00 3601.92 n.d. n.d.

100 0.50 25 50 2.6 2 38.40 0.00 39.20 0.01 2.04% 0.00%

100 0.50 50 50 3.6 3 4249.40 0.87 3863.40 0.88 -9.08% 0.00%

100 0.50 75 50 5 4 494050.80 101.69 419359.80 81.49 -15.12% -19.86%

100 0.50 100 50 5.4 5 20192236.60 3339.44 13808429.60 2834.44 -31.62% -15.12%

100 0.75 25 50 2 2 25.00 0.00 25.00 0.01 0.00% 0.00%

100 0.75 50 50 3 2 1999.00 0.52 2022.60 0.51 1.17% 0.00%

100 0.75 75 50 3.8 3 13282.20 3.27 12136.60 2.98 -8.63% 0.00%

100 0.75 100 50 4 4 1023879.60 241.29 939194.80 230.62 -8.27% -4.42%

100 1 25 50 1.4 1 4.60 0.00 4.60 0.00 0.00% 0.00%

100 1 50 50 2.6 2 56.60 0.02 57.20 0.02 1.05% 0.00%

100 1 75 50 3 2.6 8846.60 3.02 8916.80 2.82 0.79% 0.00%

100 1 100 50 3.4 3 15489.80 5.20 12661.20 3.73 -18.26% -28.27%

Avg. -17.77% -24.85%

Consider now Table 3 where the comparison between the computational times of our branch and bound
and those of the solver CPLEX, is reported. Last column shows the gap between the computational time of
the algorithms is huge. Our algorithm is faster than CPLEX on 48 scenarios, and, in most of the cases the
percentage gap is over 95%. Our branch and bound is slower in only 5 cases that correspond to the hardest
solvable instances: sparse graphs and a great number of labels (see for example, instances where n = 80,
d = 0.25 and C = 60, 80). Indeed, the size of the branch and bound tree grows with the optimum solution
value, and therefore, the total number of nodes to be explored is greater. Note that, when the optimum
solution value is low, our exact approach is faster and is able to solve instances in less than 4 seconds where
CPLEX requires more than 700 seconds (e.g., n = 100, d = 1, C = 75, 100).

Table 3: Comparison of the computational times of our branch and bound and those of CPLEX.

n d C Card UB OPT ILP2 BB GAP

40 0.25 10 20 3.6 3.2 0.36 0.01 0.00%

40 0.25 20 20 5 4.8 0.74 0.12 0.00%

40 0.25 30 20 6.2 5.6 0.96 0.57 0.00%

40 0.25 40 20 8.8 6.6 0.99 6.72 -85.33%

40 0.50 10 20 2 2 0.11 0.00 0.00%

40 0.50 20 20 3.2 3 1.56 0.00 100.00%

40 0.50 30 20 3.8 3.2 2.50 0.04 98.40%

40 0.50 40 20 4.8 3.8 2.10 0.25 88.10%

40 0.75 10 20 1.6 1.6 0.31 0.00 0.00%

40 0.75 20 20 2.4 2 1.49 0.00 100.00%

40 0.75 30 20 3 3 3.73 0.02 99.46%

40 0.75 40 20 3.6 2.8 2.75 0.02 99.27%

40 1 10 20 1.2 1 0.24 0.00 0.00%

40 1 20 20 2 2 1.09 0.00 100.00%

40 1 30 20 2.6 2 3.05 0.01 99.67%

40 1 40 20 3 3 7.42 0.05 99.33%

60 0.25 15 30 3.2 3 0.99 0.01 0.00%

60 0.25 30 30 6 4.8 4.21 4.55 0.00%

60 0.25 45 30 7.2 6 28.63 61.25 -53.25%

60 0.25 60 30 9 7 17.72 1048.81 -98.31%

60 0.50 15 30 2 2 1.26 0.00 100.00%

60 0.50 30 30 3.2 3 7.68 0.04 99.48%

60 0.50 45 30 4.4 4 82.76 1.43 98.27%

60 0.50 60 30 5.2 4.4 114.77 30.81 73.16%

60 0.75 15 30 1.8 1.8 0.54 0.00 0.00%

60 0.75 30 30 2.2 2 3.87 0.00 100.00%

continued on next page

20

Table 3 – continued from previous page

60 0.75 45 30 3.2 3 29.73 0.10 99.66%

60 0.75 60 30 4 3 53.14 0.66 98.76%

60 1 15 30 1.2 1 1.07 0.00 100.00%

60 1 30 30 2 2 5.93 0.00 100.00%

60 1 45 30 3 2.2 40.53 0.12 99.70%

60 1 60 30 3.4 3 70.72 0.25 99.65%

80 0.25 20 40 3.4 3 5.06 0.04 99.21%

80 0.25 40 40 5.6 5 65.34 12.97 80.15%

80 0.25 60 40 7.4 6.2 636.80 1620.24 -60.70%

80 0.25 80 40 9.4 7.6 2388.18 3601.98 -33.70%

80 0.50 20 40 2.4 2 11.63 0.00 100.00%

80 0.50 40 40 4 3 48.83 0.17 99.65%

80 0.50 60 40 4.4 4 1557.55 12.20 99.22%

80 0.50 80 40 5.6 5 2459.19 398.79 83.78%

80 0.75 20 40 2 2 8.72 0.00 100.00%

80 0.75 40 40 2.6 2 54.64 0.10 99.82%

80 0.75 60 40 3.4 3 113.84 0.51 99.55%

80 0.75 80 40 4.2 3.8 2815.67 38.29 98.64%

80 1 20 40 1.4 1 17.85 0.00 100.00%

80 1 40 40 2.2 2 37.86 0.00 100.00%

80 1 60 40 2.8 2.6 115.89 0.48 99.59%

80 1 80 40 3.8 3 393.42 1.03 99.74%

100 0.25 25 50 4 3.2 24.43 1.58 93.53%

100 0.25 50 50 7 5 2516.45 400.15 84.10%

100 0.25 75 50 8.6 n.d. 3602.33 3601.77 n.d.

100 0.25 100 50 9.2 n.d. 3602.42 3601.92 n.d.

100 0.50 25 50 2.6 2 37.29 0.01 99.97%

100 0.50 50 50 3.6 3 161.79 0.88 99.46%

100 0.50 75 50 5 4 2260.96 81.49 96.40%

100 0.50 100 50 5.4 5 3602.83 2834.44 21.33%

100 0.75 25 50 2 2 30.04 0.01 99.97%

100 0.75 50 50 3 2 136.43 0.51 99.63%

100 0.75 75 50 3.8 3 925.41 2.98 99.68%

100 0.75 100 50 4 4 3603.23 230.62 93.60%

100 1 25 50 1.4 1 53.64 0.00 100.00%

100 1 50 50 2.6 2 88.45 0.02 99.98%

100 1 75 50 3 2.6 727.82 2.82 99.61%

100 1 100 50 3.4 3 787.90 3.73 99.53%

Figure 5 compares the behavior of both the algorithms respect to the size n of the instances. The average
weighted time is computed considering the ratio between the average time of our algorithm and the number
of times it is faster than CPLEX.

7. Conclusions

We addressed an NP-complete variant of the well know maximum matching problem, namely the Min-
imum Labeled Maximum Matching: given a graph G where a label is associated with each edge, we look
for the maximum matching using the minimum number of different labels. It is a relatively new problem
whose application is related to the timetabling problem [15]. We assessed its complexity and provided four
alternative mathematical formulations, namely ILP0, LR, ILP1 and ILP2. The LR and ILP2 models were
better than the others in terms of solver computational time. The former was the one we derived from the
study of the lagrangean relaxation for which we characterized the optimal value of the lagrangean multipli-
ers. The latter was obtained by using the blossom inequalities and binding degree ones derived from the dual
solution associated with a maximum matching. Moreover, we proposed a branch and bound approach that

21

0

20

40

60

80

100

120

40 50 60 70 80 90 100

BB

IP

Fig. 5. Comparison of the computational times of our branch and bound and those of CPLEX in solving ILP2.

deeply analyzes the relationship between the cardinality of the matching and the corresponding objective
function value. Our wide experimentation shows our resolution approach finds on the average the solution
in less than 25 seconds and it hugely outperforms solver CPLEX on instances with more than 70 vertices.

Acknowledgements

The authors thank the anonymous referee for his valuable comments in improving the provided mathe-
matical formulations.

References

[1] Broersma, H. and X. Li. Spanning trees with many or few colors in edge-colored graphs. Discussiones
Mathematicae Graph Theory, Vol. 17, pp. 259-269, 1997.

[2] Brüggemann, T. and J. Monnot and G.J. Woeginger. Local search for the minimum label spanning tree
problem with bounded color classes. Operations Research Letters, Vol. 31, pp. 195-201, 2003.

[3] Carr, R.D. and S. Doddi and G. Konjedov and M. Marathe. On the red-blue set cover problem. In Proc.
11th ACN-SIAM Symposium on Discrete Algorithms, pp. 345-353, 2000.

[4] Cerulli, R. and A. Fink and M. Gentili and S. Voß. Metaheuristics comparison for the minimum labelling
spanning tree problem. In The Next Wave on Computing, Optimization, and Decision Technologies, B.L.
Golden, S. Raghavan, and E.A. Wasil, editors, Springer, New York, pp. 93-106, 2005.

[5] Cerulli, R. and A. Fink and M. Gentili and S. Voß. Extensions of the Minimum Labeling Spanning Tree
Problem. Journal of Telecommunications and Information Technology, Vol. 4, pp. 39-45, 2006.

[6] Cerulli, R. and P. Dell’Olmo and M. Gentili and A. Raiconi. Heuristic approaches for the Minimum
Labelling Hamiltonian Cycle Problem. Electronic Notes in Discrete Mathematics, Vol. 25, pp. 131-138,
2006.

[7] Cerulli, R. and M. Gentili and B. Golden and J.Silberholz. Comparison of Heuristics for the Colorful
Traveling Salesman Problem. Submitted to Computers and Operations Research.

22

[8] Chang, R.-S. and S.-J. Leu. The minimum labeling spanning trees. Information Processing Letters, Vol.
63, pp. 277-282, 1997.

[9] Cormen, T.H. and C.E. Leiserson and R.L. Rivest. Introduction to algorithms. MIT Press, Cambridge,
MA, 2001.

[10] Edmonds, J. Paths, trees, and flowers. Canadian Journal of Mathematics, Vol. 17, pp. 449-467, 1965.
[11] Gabow, H.N. An efficient implementation of Edmonds’ algorithm for maximum matching on graphs.

Journal of the ACM, Vol. 23(2), pp. 221-234, 1976.
[12] Karp, R.M. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations,

R. E. Miller and J. W. Thatcher (editors), New York: Plenum, pp. 85-103, 1972.
[13] Korte B. and J. Vygen. Combinatorial Optimization: Theory and Algorithms. 3st edition, Springer, pp.

238, 2005.
[14] Krumke, S.O. and H.-C. Wirth. On the minimum label spanning tree problem. Information Processing

Letters, Vol. 66, pp. 81-85, 1998.
[15] Monnot, J. The labeled perfect matching in bipartite graphs. Information Processing Letter, Vol. 96, pp.

81-88, 2005.
[16] Monnot, J. On Complexity and Approximability of the Labeled Maximum/Perfect Matching Problems.

ISAAC, Vol. 3827, pp. 934-943, 2005.
[17] Wan, Y. and G. Chen and Y. Xu. A note on the minimum label spanning tree. Information Processing

Letters, Vol. 84, pp. 84-99, 2002.
[18] Xiong, Y. and B. Golden and E. Wasil. Worst-case behavior of the MVCA heuristic for the minimum

labeling spanning tree problem. Operations Research Letters, Vol. 33, pp. 77-80, 2005.
[19] Xiong, Y. and B. Golden and E. Wasil. A one-parameter genetic algorithm for the minimum labeling

spanning tree problem. IEEE Transactions on Evolutionary Computation, Vol. 9(1), pp. 55-60, 2005.
[20] Xiong, Y. and B. Golden and E. Wasil. The Colorful Traveling Salesman Problem. Operations Research-

Computer Science Interfaces Series. Extending the Horizons: Advances in Computing, Optimization,
and Decision Technologies, Vol. 37, pp. 115-123, 2007.

23

