
Blo

UNIVERSITÀ DI SALERNO
Dipartimento di Matematica e Informatica

D.M.I.
Via Ponte don Melillo – 84084 Fisciano (SA) – Italy

 Experimental Comparison of Algorithms for

 Bounded-Degree Spanning Tree Problems

R. Cerulli, M. Gentili, A. Iossa

Preprint n. 23 – 2005

Experimental Comparison of Algorithms for

Bounded-Degree Spanning Tree Problems

R. Cerulli a, M. Gentili a,∗, A. Iossa b

aDipartimento di Matematica ed Informatica, Università di Salerno, 84081
Baronissi (SA), Italy

{raffaele, mgentili }@unisa.it
bDipartimento di Statistica, Probabilità e Statistiche Applicate, Università degli

studi di Roma “La Sapienza”, 00185 Roma (RM), Italy
aiossa@unisa.it

Abstract

Given a connected graph G a vertex is said to be branch if its degree is greater
than 2. We consider two problems arising in the context of optical networks:

(i) finding a spanning tree of G with the minimum number of branch vertices and
(ii) finding a spanning tree of G such that the degree sum of the branch vertices

is minimized.
For these NP-hard problems, heuristics, that give good quality solutions, do not

exist in the literature. In this paper we analyze the relation between the problems,
provide a single commodity flow formulation to solve the problems by means of a
solver and develop different heuristic strategies to compute feasible solutions that
are compared with the exact ones. Our extensive computational results show the
algorithms to be very fast and effective.

Key words: Spanning trees, Spanning Spiders, Branch Vertices, Heuristics,
Optical Networks

1 Introduction

There are several variants of the spanning tree problem that are useful to
model problems arising in communication networks. For example, the network
may be required to connect a specified subset of nodes (Steiner Tree Problem
[5]); if a measure is assigned with each link, one could be interested in looking

∗ Corresponding author.

for homogeneous subgraphs of the network (Minimum Labelling Spanning
Tree Problem [1],[3]); in optical networks it is useful to connect the nodes in
a way such that the number of connections of each node is limited (Spanning
Tree with Minimum Number of Branch Nodes [2]). In this paper we focus
both on this latter problem and a related problem arising in optical networks.

In particular, in an optical network, the wave division multiplexing technol-
ogy allows to propagate different light beams on the same optical fiber, as long
as they use a different fixed wavelength. Multicast technology on an optical
network permits to replicate the optical signal from one source to many desti-
nation nodes by means of a network device (switch) that permits to replicate
a signal, splitting light. Many applications, such as world wide web browsing,
video conferences etc., require such a technology for efficiency purposes. A
light-tree connects a node to a subset of nodes in the network, allowing multi-
casting communications. The nodes of the tree whose degree is greater than 2
are called branch nodes. Switches are located on such branch nodes of the tree.
Since, optical networks have a limited number of these switches, it is impor-
tant to determine the minimum number of switches to locate on the network
in order to guarantee all the multicast connections. Given a connected graph
G representing a network, the minimum number of light-splitting switches can
be determined by looking for the spanning tree of G with the minimum num-
ber of branch vertices (in the sequel the problem will be referred to as MBV).

Such a problem has been recently addressed in Gargano et al. [2] where the
computational complexity of the problem is studied. In particular, let s(G)
denote the smallest number of branch vertices in any spanning tree of G. A
graph G with s(G) ≤ 1 is said to admit a spanning spider. The problem of
deciding whether a graph G admits a spanning spider is shown to be NP-
complete. However, when the degree sum of any three independent vertices of
G is greater than the total number of nodes minus one, i.e., δ3(G) ≥ n − 1,
then G is proved to admit a spanning spider and a polynomial time algorithm
to find it is provided. The more general decisional problem of deciding whether
s(G) ≤ k, for any integer k, is also addressed and shown to be NP-complete
on general graphs and cubic graphs.

The only existing algorithm to solve MBV is the one given in [2], that ex-
actly computes in polynomial time the solution on a class of graphs satisfying
the above mentioned density conditions. Such an algorithm cannot be used
(neither extended) to solve the problem on general graphs and, moreover, in
applications that arise in real-world situations, it is often the case that the
network does not satisfy such density conditions. Therefore, it is of great im-
portance to be able to deal with such real-case situations and to have effective
heuristics to compute good solutions on any graph.

In this paper, we provide a set of three different strategies to solve the prob-

2

lem. We carry out an intensive experimental evaluation of them by comparing
the heuristic solutions with the exact solution obtained solving, by means of
the solver Cplex, a mathematical formulation that is provided next on the
paper (see section 2).

Moreover, in this paper we study a related problem, that is more suitable
to model real costs of such location problem on optical networks: finding a
spanning tree of a graph such that the degree sum of the branch vertices in
the tree is minimized.
Indeed, many devices can only duplicate laser beams, and the effective num-
ber of devices to be located on a branch node, in order to replicate lights,
is directly related to the number of edges incident to the node. Consider, for
example, the generic branch node j in Figure 1(a). In order to transmit the
signal, coming from node i, to any of the nodes j1, j2, j3, j4, we need to locate
on j exactly 3 devices that split the signal, as illustrated in Figure 1(b).

j
1

j
2

j
3

j
4

j

i

j
1

j
2

j
3

j
4

j

i

(a) (b)

Fig. 1. Devices that have to be located on the node j.

That is, at a branch node j with degree δ(j) we need to locate δ(j) − 2
different devices. Therefore, the related arising problem consists in minimizing
the degree sum of the branch vertices of any spanning tree of G (in the sequel
this problem will be referred to as MDS).
Let us denote by q(G) the optimum solution of MDS on a connected graph G.
Note that MBV and MDS are strictly related but are not equivalent. Indeed,
the optimum solution q(G) cannot always be directly derived by the optimum
solution s(G). Consider for example the simple network in Figure 2, with
8 vertices and 12 edges. The spanning tree with the minimum number of
branch vertices is given in Figure 3(a) where vertex 1 is the only vertex with
degree greater than two, (i.e., s(G) = 1), and equal to δ(1) = 7. However (see
Figure 3(b)), the optimum spanning tree for MDS has two branch vertices,
i.e., vertices 1 and 4, whose degree sum is equal to q(G) = 6 < 7.

This problem is new and not known. In this paper, we address the problem

3

1

2 3 4 5 6 7 8

Fig. 2. MBV and MDS are not equivalent on this network.

1

2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

(a) (b)

Fig. 3. (a):Optimal solution of MBV. (b):Optimal solution of MDS.

by analyzing its complexity. We propose heuristic strategies to solve the prob-
lem and evaluate the results by comparing them with the optimum solutions
provided by a solver.

The sequel of the paper is organized as follows. Next section contains some
complexity results about MDS and the mathematical formulation for both
the problems. Section 3 describes the heuristics we developed. In section 4, we
analyze the experimental results on an extensive set of scenarios. Conclusions
are object of section 5.

2 Complexity and Mathematical Formulations

In this section we first clarify the relationship between s(G) and q(G) by
stating the NP-completeness of MDS problem and some bounds on the opti-
mal value. Then, we provide a mathematical formulation for both MBV and
MDS. We provide a mixed integer single commodity formulation in order to
have a polynomial number of constraints (see [6]) and, therefore, to be able
to optimally solve, by reasonable computation times, a significant number of
instances in order to better evaluate the heuristic results provided by our al-
gorithms.

4

2.1 Complexity results

Let G = (V, E) be an undirected and connected graph, where V is the vertex
set and, E is the edge set. For each v ∈ V , we denote with δG(v) the degree of v
in G and with ∆(G) the maximum degree of a vertex in G. We prove now that
the problem to decide whether q(G) ≤ k is NP-complete. Recall that deciding
whether a given graph admits a spanning spider, i.e. s(G) ≤ 1 is NP-complete
[2], and, that given a graph G and a vertex v of G it is NP-complete to decide
whether G admits a Hamilton path starting at v [4].

Theorem 1 Let k be any fixed positive integer. If P 6= NP , then there is no
polynomial time algorithm to check whether q(G) ≤ k.

Proof. Clearly MDS is in NP, because a non-deterministic algorithm needs to
guess a spanning tree T of G and verifies whether the sum of the degree of the
branch vertices of T is less then or equal to k. Since each branch vertex has
degree at least 3, then deciding whether q(G) ≤ 5 reduces to verifies whether
G admits a spanning spider. Thus, we may assume k ≥ 6. Let G be a given
graph and v a given vertex of G. We build a new graph H by making k − 2
copies of G and adding two new vertices z1, z2 connected by an edge. We then
make z1 adjacent to two of the k − 2 copies of the vertex v, and z2 adjacent
to the remaining copies of the vertex v. It is easy to check that H admits
a spanning tree with branch vertices degree sum at most k if and only if G
admits a Hamilton path starting at v. 2

Obviously, since each branch vertex has a minimum degree of three and a
maximum degree equal to ∆(G), we can state the following straightforward
bounds on q(G):

Proposition 1 3s(G) ≤ q(G) ≤ s(G)∆(G)

The lower bound 3s(G) is achieved on cubic graphs, on which the problem
of computing q(G) is equivalent to computing s(G). Since computing s(G) in
NP-complete even on cubic graphs, we have directly the following additional
complexity result:

Theorem 2 Let k be any fixed positive integer, and G be a cubic graph. If
P 6= NP , then there is no polynomial time algorithm to check whether q(G) ≤
k.

5

2.2 Mathematical models

Let us focus first on MBV. In order to define a spanning tree T of G we
can send from a source vertex s ∈ V one unit of flow to every other vertex
v ∈ V \{s} of the graph. Although the edges of G are undirected, we define two
variables for each edge e = {u, v} ∈ E: fuv and fvu that define, respectively,
the flow going from u to v and the flow going from v to u along edge {u, v}.
Also, for each edge e = {u, v} ∈ E, we consider a binary decisional variable
xe such that xe = 1 when the edge e belongs to T , xe = 0 otherwise; finally,
for each v ∈ V , we have a binary decisional variable yv that is equal to 1 if
the vertex v is branch, and is equal to 0 otherwise.

Let us denote by A+(v) = {(v, w) ∈ V × V | {v, w} ∈ E} and A−(v) =
{(w, v) ∈ V ×V | {v, w} ∈ E}, the set of edges outgoing from v and incoming
into v in the directed version of G, respectively. The mathematical formulation
of MBV is the following:

min
∑

v∈V

yv (2.1)

s.t. : ∑

e∈E

xe = n− 1 (2.2)

∑

(s,v)∈A+(s)

fsv −
∑

(v,s)∈A−(s)

fvs = n− 1 (2.3)

∑

(v,u)∈A+(v)

fvu −
∑

(u,v)∈A−(v)

fuv = −1 ∀ v ∈ V \ {s} (2.4)

fuv ≤ (n− 1)xe ∀ e = {u, v} ∈ E (2.5)

fvu ≤ (n− 1)xe ∀ e = {u, v} ∈ E (2.6)∑

e∈A(v)

xe − 2 ≤ (n− 1)yv, ∀ v ∈ V (2.7)

xe ∈ {0, 1} ∀ e ∈ E (2.8)

yv ∈ {0, 1} ∀ v ∈ V (2.9)

fuv ≥ 0 ∀ e = {u, v} ∈ E (2.10)

fvu ≥ 0 ∀ e = {u, v} ∈ E (2.11)

The objective function (2.1) requires to minimize the total number of branches
in the tree. Constraints (2.2) ensure that the graph defined by every feasible
solution has n − 1 edges. Equations (2.3) and (2.4) balance the flow at each
vertex and ensure the connectivity of any feasible solution. The constraints
(2.5) and (2.6) set the value of each variable xe equal to 1 whenever at least
one between fuv and fvu is positive, that is, when the edge e is selected for the

6

spanning tree. Finally, constraints (2.7) ensure each variable yv to be equal to
1, whenever v has more than two adjacent edges belonging to the optimum
spanning tree.

We emphasize here that we decide to provide such a flow formulation of the
problem, since we were interested in being able to solve MBV by means of a
solver with reasonable computation times on a large enough set of instances.
The study of the geometric properties, and therefore the study of a more
“strict” formulation, is out of the scope of this paper, that is instead focused
on efficiently solving the problem by means of different heuristic algorithms.

The mathematical formulation for MDS requires the additional integer de-
cisional variables counting the degree of the branch vertices of the solution:

zv =

0, if v is not branch;

δT (v), otherwise.
(2.12)

The mathematical model for MDS requires to minimize the objective function

∑

v∈V

zv (2.13)

subject to constraints (2.2)-(2.7) and the additional constraints

∑

e∈A(v)

xe − 2 + 2yv ≤ zv, ∀ v ∈ V. (2.14)

Observe that the left side of the above constraints is negative when yv is 0,
that is when vertex v is not branch, therefore zv is equal to 0 because of the
minimization of the objective function. When, on the other hand, a vertex v
is branch, zv is forced to be equal to the left side of (2.14), that is equal to
δT (v).

3 Different heuristic strategies to solve the problems

In this section we describe the heuristics we developed to solve the problems.
We considered three different strategies, namely, the edge weighting strategy,
the node coloring strategy, and, a combined strategy.

7

Algorithm 1 Edge weighting strategy
Input: A connected graph G = (V, E)
Output: A spanning tree T (V ′, E′)
1: Initialize T (V ′, E′) as (V,®)
2: for all (u, v) ∈ E do
3: w(u, v) ← 1
4: end for
5: A ← E
6: while |E′| 6= n− 1 do
7: L ← {(u′, v′) ∈ A | w(u′, v′) ≤ w(u, v), ∀ {u, v} ∈ A}
8: {u∗, v∗} ← select(L) {Selection criterion to tie break}
9: A ← A \ {{u∗, v∗}}

10: if u∗ and v∗ are in different components of T then
11: T ← T ∪ {{u∗, v∗}}
12: Update the weights of u∗ and v∗

13: cover({u∗, v∗}, G, T)
14: end if
15: end while

3.1 Edge weighting strategy for MBV

The idea behind the edge weighting heuristic is to create, from the original
unweighted graph G = (V, E), a weighted graph G′ = (V, E,w), where w :
E → N+ is a positive function on the edge set E. The weight w(u, v) of the
edge {u, v} is an hint on the possibility that such an edge could create a branch
vertex when selected for a spanning tree.
The algorithm begins by assigning weight 1 to each edge of G. Then, at each
iteration, a minimum weight edge among those not in the partial tree T , is
selected. If the selected edge {u∗, v∗} is such that u∗ and v∗ are in different
connected components of T , that is T ∪ {{u∗, v∗}} is acyclic, then {u∗, v∗} is
selected for T and the weight of the edges incident to u∗ and v∗ is increased
by 1. Increasing the weight of the edges incident in u∗ and v∗ has the effect
of making them less desirable for the algorithm selection in the subsequent
iterations. The algorithm stops when n−1 edges of G are selected. The pseudo-
code of the algorithm is given next.

Since at each iteration the weight of many edges is increased of the same
quantity, we may have multiple edges of minimum weight among which we
need to choose. Thus, it has great relevance the rule we adopted to break the
ties.

8

v

w

u

v

w

u

v

w

u

(a) (b) (c)

Fig. 4. Example of the breaking rule for MBV

Consider the situation in Figure 4(a), where the dashed edges are not yet se-
lected and where we suppose that {w, v} and {u, v} are the edges of minimum
weight at a generic iteration. By selecting {w, v} the final spanning tree will
have a single branch vertex of degree 4, that is vertex w (see Figure 4(b)).
On the other hand, by selecting the edge {u, v}, the final spanning tree T will
have two branch vertices, each of degree 3 (see Figure 4(c)). Then, in order to
utilize already branch vertices to cover newly vertices, it is suitable to choose,
among edges of the same minimum weight, the one having the endpoints with
the maximum degree (vertices u and w in the example). In this way, we try
to avoid the creation of new branch vertices, attempt to cover the maximum
number of vertices, with the edges incident in vertices that are already branch.
Finally, observe that during the execution of the algorithm, once a node be-
comes branch then it is profitable to select the greatest number of its edges.
That is, after selecting edge {u, v} to be inserted into T , if, for example, the
endpoint u becomes branch, we examine the edges in A(u) to select those to
be inserted directly into T , that, obviously, do not create new branch vertices
(cover criterion). This is carried out by the cover procedure.

3.2 Node Coloring Strategy for MBV

Unlike the edge weighting approach, the node coloring strategy assigns to
each vertex of the graph a label (color) c : V →{G(reen), B(lue), Y(ellow),
R(ed)}. The color c(v) of a vertex v indicates if such a vertex becomes branch
when an edge incident to it is selected to be inserted into the spanning tree.
The label is assigned to each vertex according to (3.1).

c(v) =

G, if dT (v) = 0;

B, if dT (v) = 1;

Y, if dT (v) = 2;

R, if dT (v) ≥ 3.

(3.1)

9

The algorithm starts with the initial forest T (V ′, E ′) = (V, ∅) and assigns the
green color to each vertex v ∈ V ′. At each iteration an edge is selected to be
inserted into the spanning tree according to the colors of its endpoints. Note
that the number of the new branch vertices created after the insertion of edge
{u, v} is the number of its yellow endpoints. Thus, the algorithm selects the
edge with the minimum number of yellow endpoints. Also, in order to minimize
the number of new potential yellow vertices (that can become branches), ties
are broken by choosing the edge with the minimum number of blue endpoints.
The algorithm stops when n−1 edges are selected. Obviously, also in this case
is called the cover procedure when a node becomes branch.

Let nY (u, v) and nB(u, v) be, respectively, the number of yellow and blue
endpoints of the edge (u, v) we formalize the algorithm as follows:

Algorithm 2 Node coloring heuristic
Input: A graph G = (V, E)
Output: A spanning tree T (V ′, E′)
1: Initialize T (V ′, E′) as (V,®)
2: for all v ∈ V do
3: c(v) ← G
4: end for
5: A ← E
6: while |E′| 6= n− 1 do
7: L ← {{u′, v′} ∈ A | nY (u′, v′) ≤ nY (u, v), ∀ {u′, v′} ∈ A}
8: {u, v} ← arg min{u,v}∈L{nB(u, v) }
9: A ← A \ {(u, v)}

10: if u and v are in different components of T then
11: T ← T ∪ {{u, v}}
12: Updates the color of u and v
13: cover({u, v}, G, T)
14: end if
15: end while

3.3 Combined approach for MBV

A combined approach is also implemented by considering both the two crite-
ria above mentioned. In particular, we decided to both assign weights to edges
according to the edge weighting strategy and labels to vertices according to the
node coloring strategy. The combined approach selects at each iteration the
edge with minimum weight and breaks the ties by applying first the minimum
blue criterion and then the maximum degree criterion.

10

3.3.1 Edge weighting, Node coloring and Combined approaches for MDS

The three resolution proposed strategies are suitable to solve MDS too.
There are, however, two main differences to take care of when applying such
strategies to solve MDS:

• obviously, the cover criterion after a vertex becomes branch is not applied;
• the tie breaking rule for MDS, based on the degree of the endpoints of the

edge, consists in selecting, among the edges of the same minimum weight, the
one whose endpoints have minimum degree, in order to try not to increase
the degree of the newly branch vertices.

4 Computational Results

In this section we describe the experimentation performed to evaluate the
solutions quality of our heuristics.
In order to create problem instances we used three different problem gen-
erators. In particular, we use the generators Netgen (see [7]), Genmax and
Random, all available by the ftp service from the host of the DIMACS, Cen-
ter for Discrete Mathematics and Theoretical Computer Science. Netgen and
Genmax are network flow problem generators, that generate instances with
random edges and uniform capacity. We adapted the instances obtained by
these generators to our problem, discarding the edge capacity and transform-
ing the network from directed to undirected.

For each generator, we considered 8 different size for the total number of the
vertices of the graph: n = 20, 30, 40, 50, 100, 300, 500, 1000. Fixed the value of
n, we considered 5 different values of density (the ratio between the number
of edges and the number of vertices): d = 1.5, 2, 4, 10, 15. Thus, for each gen-
erator, we considered 40 different scenarios. For a given scenario, we consider
5 different problem instances belonging to that scenario, so that the report
values are the average values obtained considering the 5 instances.
As mentioned before, in order to obtain solution values that we could compare
with the heuristic ones, we use the commercial mixed integer programming
software CPLEX to get either the exact solution of a given problem instance
(when this is reached in at most three hours) or a lower bound on the exact
value when the imposed time limit is reached. We denote this last case with
the term dnf (did not finish) in the column relative to the execution time, and
the lower bound is denoted with a “ * ” in the corresponding column.

Tables 1-3 summarize results, respectively for Netgen, Maxgen and Random
instances. Each table is divided into two parts: the first part is relative to MBV
problem and the second one to the MDS problem. For each problem we give

11

(i) the exact solution value provided by cplex and its running time and (ii)
the solution values provided by the heuristics Edge Weighting (E.W. column),
Node Coloring (N.C. column) and Combined Approach (C.A. column).

Computational times of the heuristics are negligible and are not reported.
The Combined approach always gives a better result than both the Edge
Weighting approach and the Node Coloring one, when applied to solve the
MBV problem. The solution value is optimum for 22 different scenarios out
of 99 (among those for which Cplex returns an optimum solution), and, in the
worst case it returns a value that is at most 3 times the optimum one. The
Edge Weighting approach is, on the other hand, always the best among the
three proposed approach in solving the MDS problem. It finds the optimum
value for 14 scenarios out of 75 (among those for which Cplex returns the
optimum). The worst case value is at most 4 times the optimum value and it
is achieved in only two scenarios: the random graph with n = 100 and d = 4
(see Table 3) and the graph generated by the maxgen generator when n = 100
and d = 15 (see Table 2). For all the other instances the solution value is
such that, on the average, the distance between the optimum solution and the
heuristic one is less than 0.37%.

12

Table 1: Test results on the Netgen instances.

Netgen instances

Scenario MBV MDS

CPLEX HEURISTICS CPLEX HEURISTICS

n d time (sec.) value E.W. N.C. C.A. time (sec.) value E.W. N.C. C.A.

20 1.5 0.024 0.4 0.6 0.5 0.4 0.03 1.4 1.4 1.6 1.8

20 2.0 0.058 0.4 0.6 0.6 0.5 0.03 1.6 1.8 3.0 2.4

20 4.0 0.204 0.2 0.6 0.4 0.4 0.35 1.2 2.4 3.0 2.8

20 10.0 0.307 0.2 0.4 0.4 0.2 0.25 1.6 1.8 2.4 2.0

20 15.0 0.781 0.4 0.8 0.6 0.4 0.17 1.6 1.6 1.8 1.8

30 1.5 0.076 1.2 2.2 1.8 1.4 0.05 3.8 4.0 4.2 4.2

30 2.0 0.298 0.4 1.0 0.6 0.6 0.22 2.2 2.6 5.2 4.2

30 4.0 0.556 0.4 1.0 0.6 0.6 0.15 2.2 2.4 3.0 2.8

30 10.0 0.562 0.2 1.0 0.6 0.4 0.66 0.6 0.8 1.2 1.0

30 15.0 0.620 0.4 0.8 0.8 0.6 0.71 1.4 1.6 2.0 2.0

40 1.5 0.236 1.4 2.0 2.0 1.8 0.07 4.2 4.6 5.2 4.8

40 2.0 0.800 0.2 0.4 0.6 0.2 0.27 6.2 7.2 9.0 8.4

40 4.0 1.474 0.8 1.2 0.8 0.8 0.46 2.6 3.4 3.4 3.4

40 10.0 2.986 0.2 0.4 0.4 0.4 0.51 1.2 1.6 3.0 1.8

40 15.0 3.384 0.2 0.8 0.8 0.4 3.26 0.6 0.8 1.2 1.0

50 1.5 0.210 0.6 2 1.8 1.6 0.50 2.8 3.0 3.4 3.2

50 2.0 0.902 0.2 1.2 0.8 0.4 1.04 2.2 2.8 4.0 4.0

50 4.0 2.888 0.8 1.6 1.2 1.0 3.34 0.4 1.0 3.4 3.4

50 10.0 5.674 0.2 0.4 0.4 0.2 6.82 0.8 1.2 2.8 2.6

50 15.0 6.862 0.2 0.6 0.8 0.4 8.35 0.6 0.8 1.2 1.0

100 1.5 0.712 0.6 2.8 1.4 1.6 2.57 2.8 3.4 4 3.8

100 2.0 9.816 0.8 2.3 1.6 1.4 5.52 2.4 2.8 4 4

100 4.0 22.210 0.6 1.4 1.0 0.8 7.22 3.8 4.2 5.6 5.2

100 10.0 54.608 0.4 1.4 1.4 0.8 8.51 3.6 4.2 4.2 4.4

100 15.0 83.920 0.2 0.4 0.4 0.4 9.18 1.6 1.8 3 2.8

300 1.5 21.520 1.2 2.0 1.4 1.4 dnf *0.0 3.8 4.0 4.0

300 2.0 104.722 1.4 2.4 1.6 1.4 dnf *0.0 4.6 4.8 4.6

300 4.0 304.670 1.0 2.0 1.2 1.0 dnf *0.0 3.2 5.2 5.0

300 10.0 dnf *1.4 3.4 2.2 1.8 dnf *0.0 4.8 4.8 4.6

300 15.0 dnf *1.2 2.6 1.4 1.4 dnf *0.0 4.6 5.2 5.0

500 1.5 154.200 1.4 2.2 1.2 1.4 dnf *0.0 4.8 5.6 5.4

500 2.0 211.837 1.2 1.8 1.6 1.4 dnf *0.0 6.6 7.2 7.0

500 4.0 dnf *0.8 2.0 1.4 1.0 dnf *0.0 4.4 8.2 8.2

500 10.0 dnf *2.2 3.8 3.4 2.4 dnf *0.0 7.4 8.2 8.2

500 15.0 dnf *2.4 5.0 3.2 2.6 dnf *0.0 7.6 8.2 8.2

1000 1.5 329.860 2.2 3.6 2.4 2.4 dnf *0.0 6.6 7.8 7.6

1000 2 dnf *1.8 3.2 2.8 2.0 dnf *0.0 8.6 9.6 9.4

1000 4 dnf *2.4 5.6 3.8 3.4 dnf *0.0 7.8 8.4 8.2

1000 10 dnf *2.6 4.0 3.0 2.8 dnf *0.0 8.2 8.8 8.8

1000 15 dnf *1.2 2.6 2.2 1.8 dnf *0.0 4.4 5.2 5.2

13

Table 2: Test results on the Maxgen instances.

Maxgen instances

Scenario MBV MDS

CPLEX HEURISTICS CPLEX HEURISTICS

n d time (sec.) value E.W. N.C. C.A. time (sec.) value E.W. N.C. C.A.

20 1.5 0.010 1.2 3.0 3.0 2.0 0.02 4.2 5.4 6.2 6.0

20 2.0 0.048 0.2 1.8 2.8 0.8 0.05 2.4 4.2 7.2 7.0

20 4.0 0.080 0.0 0.0 0.0 0.0 0.10 0.0 0.0 0.0 0.0

20 10.0 0.124 0.0 0.0 0.0 0.0 0.13 0.0 0.0 0.0 0.0

20 15.0 0.235 0.0 0.0 0.0 0.0 0.34 0.0 0.0 0.0 0.0

30 1.5 0.060 1.2 3.0 3.0 1.4 0.36 6.2 8.2 9.4 9.2

30 2.0 0.076 0.8 2.4 2.0 1.2 0.49 3.8 4.2 4.4 4.2

30 4.0 0.092 0.6 1.0 1.0 1.0 1.15 2.4 3.2 4.2 4.2

30 10.0 1.602 0.0 0.4 0.2 0.0 1.26 0.0 1.0 1.2 1.0

30 15.0 2.202 0.0 0.6 0.4 0.2 2.50 0.0 0.6 0.8 0.8

40 1.5 0.360 2.2 6.0 5.0 2.4 0.18 9.2 12.2 13.8 13.2

40 2.0 0.756 1.0 4.0 3.0 1.2 0.23 3.4 7.2 9.2 9.0

40 4.0 1.608 0.8 2.4 2.0 1.2 0.56 3.4 6.2 8.4 8.2

40 10.0 1.992 0.2 1.0 0.8 0.4 1.38 2.4 3.2 4.2 4.0

40 15.0 2.826 0.0 0.8 0.0 0.0 2.19 0.0 0.6 0.4 0.6

50 1.5 0.270 2.8 7.0 6.0 3.2 0.10 10.2 13.6 15.2 15.0

50 2.0 2.052 1.4 6.0 5.0 2.0 0.77 4.4 5.6 7.2 7.0

50 4.0 3.936 0.6 2.0 3.0 1.2 1.26 2.4 4.2 6.4 6.2

50 10.0 4.522 0.0 0.0 0.0 0.0 5.12 0.0 0.6 0.6 0.4

50 15.0 6.743 0.0 0.0 0.0 0.0 6.79 0.0 0.0 0.0 0.0

100 1.5 14.324 7.2 15.0 12.0 8.2 7.04 34.2 39.2 43.0 42.2

100 2.0 37.814 1.6 5.4 4.2 2.4 11.37 11.6 14.4 17.2 17.2

100 4.0 49.068 1.4 4.0 3.0 2.2 17.29 5.2 5.8 6.4 6.2

100 10.0 53.764 0.0 1.0 1.0 0.2 24.65 0.0 0.6 0.6 0.4

100 15.0 99.592 0.2 1.0 0.8 0.4 28.88 0.6 3.0 3.2 3.2

300 1.5 dnf *4.8 12.0 9.0 6.8 dnf *37.178 42.8 44.6 44.4

300 2.0 dnf *5.6 12.4 10.2 7.2 dnf *39.329 44.2 46.8 46.6

300 4.0 dnf *0.0 8.2 4.2 3.4 dnf *0.0 5.4 7.2 7.0

300 10.0 dnf *0.0 7.0 10.0 4.6 dnf *0.0 4.2 5.8 5.6

300 15.0 dnf *0.0 3.0 4.0 2.4 dnf *0.0 2.4 4.6 4.4

500 1.5 211.690 2.4 12.0 8.2 3.8 dnf *0.0 4.2 6.8 6.8

500 2.0 dnf *0.0 7.2 7.0 4.4 dnf *0.0 3.6 4.8 4.6

500 4.0 dnf *0.0 8.6 8.4 5.2 dnf *0.0 1.6 2.4 2.2

500 10.0 dnf *0.0 8.0 7.0 4.8 dnf *0.0 0.8 1.2 1.2

500 15.0 dnf *0.0 6.0 7.4 5.4 dnf *0.0 1.4 2.4 2.4

1000 1.5 dnf *0.0 3.6 2.8 1.2 dnf *0.0 7.2 9.4 9.2

1000 2.0 dnf *1.6 8.8 5.6 3.2 dnf *0.0 5.2 6.8 6.6

1000 4.0 dnf *0.6 7.0 5.0 1.8 dnf *0.0 3.4 4.6 4.4

1000 10.0 dnf *0.0 3.2 2.4 1.2 dnf *0.0 2.4 3.8 3.8

1000 15.0 dnf *0.0 2.0 1.4 0.8 dnf *0.0 1.2 2.6 2.4

14

Table 3: Test results on the Random instances.

Random instances

Scenario MBV MDS

CPLEX HEURISTICS CPLEX HEURISTICS

n d time (sec.) value E.W. N.C. C.A. time (sec.) value E.W. N.C. C.A.

20 1.5 0.094 1.2 2.4 2.8 1.8 0.02 4.2 7.2 12 11.8

20 2.0 0.166 0.6 1.8 1.2 0.8 0.05 2.6 4.2 7.2 6.8

20 4.0 0.198 0.0 0.4 0.4 0.2 0.10 0.0 0.0 0.6 0.4

20 10.0 0.212 0.0 0.0 0.0 0.0 0.13 0.0 0.0 0.6 0.4

20 15.0 0.404 0.0 0.0 0.0 0.0 0.34 0.0 0.0 0.0 0.0

30 1.5 0.496 1.8 3.4 4.6 2.2 0.36 5.6 6.2 7.4 7.2

30 2.0 0.966 2.4 3.8 3.8 2.6 0.49 7.4 7.6 7.6 7.4

30 4.0 1.342 0.2 0.4 0.4 0.2 1.15 3.0 3.2 4.2 4.0

30 10.0 2.432 0.0 0.0 0.0 0.0 1.26 0.0 0.0 0.0 0.0

30 15.0 3.212 0.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 0.0

40 1.5 1.074 2.6 5.8 5.6 3.2 0.18 9.2 11.2 13.0 12.8

40 2.0 2.466 0.8 3.2 3.8 1.4 0.23 3.4 4.2 9.2 8.8

40 4.0 3.608 1.6 2.4 2.2 2.2 0.56 5.4 7.8 10.2 9.8

40 10.0 4.213 0.2 0.6 0.6 0.4 1.38 3.0 3.6 6.6 6.0

40 15.0 5.230 0.0 0.0 0.0 0.0 2.19 0.0 0.0 0.0 0.0

50 1.5 3.306 3.6 6.0 7.4 4.6 0.10 10.8 13.6 15.2 14.8

50 2.0 3.852 1.8 4.8 4.8 2.2 0.77 5.6 5.6 7.2 6.8

50 4.0 3.936 0.8 2.0 2.4 1.2 1.26 4.2 5.2 6.2 5.8

50 10.0 4.288 0.2 0.4 0.4 0.4 5.12 3.2 4.4 5.2 4.8

50 15.0 5.754 0.0 0.0 0.0 0.0 6.79 0.0 0.0 0.0 0.0

100 1.5 180.638 7.6 10.8 10.8 8.8 7.04 34.2 39.2 43 40.2

100 2.0 185.348 2.2 5.6 4.2 3.2 11.37 11.8 14.4 17.2 16.8

100 4.0 190.314 0.0 4.6 3.4 1.2 17.29 0.0 4.2 6 4.8

100 10.0 274.604 0.0 0.6 1.0 0.4 24.65 0.0 3.4 4.2 3.8

100 15.0 297.134 0.0 0.4 0.4 0.4 28.88 0.0 3.2 4.4 4.0

300 1.5 118.000 20.4 29.2 28.6 21.8 dnf *37.178 62.8 64.6 62.4

300 2.0 187.005 2.2 6.4 5.2 4.0 dnf *39.329 44.2 46.8 44.8

300 4.0 287.105 1.2 4.0 2.4 2.2 dnf *0.0 5.4 7.2 6.8

300 10.0 dnf *0.0 4.8 7.6 4.6 dnf *0.0 4.2 5.8 5.4

300 15.0 dnf *0.0 3.6 5.0 3.2 dnf *0.0 2.4 4.6 4.2

500 1.5 dnf *4.4 11.0 8.2 5.8 dnf *0.0 14.2 16.8 16.2

500 2.0 dnf *0.4 4.4 3.4 2.4 dnf *0.0 3.6 4.8 4.4

500 4.0 dnf *0.0 6.4 6.0 2.2 dnf *0.0 1.6 2.4 2.2

500 10.0 dnf *0.0 5.4 4.2 2.8 dnf *0.0 0.8 1.2 1.0

500 15.0 dnf *0.0 5.6 6.8 2.4 dnf *0.0 1.4 2.4 2.0

1000 1.5 dnf *8.8 14.6 12.8 10.2 dnf *0.0 27.2 29.4 28.8

1000 2.0 dnf *0.6 5.2 4.8 3.2 dnf *0.0 5.2 6.8 6.6

1000 4.0 dnf *0.8 6.2 6.4 3.8 dnf *0.0 3.4 4.6 4.4

1000 10.0 dnf *0.0 5.4 4.8 2.4 dnf *0.0 2.4 3.8 3.6

1000 15.0 dnf *0.0 4.2 2.6 1.2 dnf *0.0 1.2 2.6 2.2

5 Conclusions

In this paper we addressed two combinatorial problems that have a great
relevance in the field of optical networks design. In particular, given a graph
G, the first problem consists in finding a spanning tree of G with the mini-

15

mum number of branch vertices, while the second problem consists in finding a
spanning tree of G such that the degree sum of its branch vertices is minimized.

The two problems are quite new. We analyzed their relation and provide sev-
eral heuristics to solve them. Our computational results show the effectiveness
of the proposed approaches, that return solutions near to the optimum ones
provided by a solver, in negligible computational times.

References

[1] H. Broesma, X. Li. Spanning Trees with many or few colors in in edge-colored
graphs. Discussiones Mathematicae Graph Theory, 17, 259-269, 1997.

[2] L. Gargano, P. Hell, L. Stacho and U. Vaccaro. Spanning trees with bounded
number of branch vertices. ICALP’ 02, Malága, Spain 2002.

[3] R. Cerulli, A. Fink, M. Gentili, S. Voβ, Metaheuristics comparison for the
minimum labelling spanning tree problem. In: B.L. Golden, S. Raghavan and
E.A. Wasil (eds.), The Next Wave on Computing, Optimization, and Decision
Technologies, Springer, New York (2005), 93 - 106. [ISBN: 0-387-23528-0].

[4] R.M. Karp. Reducibility among combinatorial problems. Complexity of
Computer C, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, (1972), 82-
103.

[5] P. Klein, R.Ravi. A Nearly Best-Possible Algorithm for Node-Weighted Steiner
Trees. Journal of Algorithms 19, 104-115 (1995).

[6] T. L. Magnanti and L. A. Wolsey, Optimal trees,Network Models (M. O. Ball,
T. L. Magnanti, C. L. Monma, and Nemhauser G. L., eds.), Handbooks in
Operations Research and Management Science, vol. 7, North Holland, 1995,
pp. 503–615.

[7] Klingman, D., A. Napier, and J. Stutz, ”NETGEN: A Program for Generating
Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow
Network Problems, Management Science 20, 5, 814-821 (1974)

[8] D. S. Johnson and C. C. McGeoch, editors. Network Flows and Matching: First
DIMACS Implementation Challenge. AMS, 1993.

16

EXPERIMENTAL COMPARISON OF ALGORITHMS FOR
BOUNDED-DEGREE SPANNING TREE PROBLEM

R. Cerulli, M. Gentili, A. Iossa

Keywords:

Spanning Trees
Spanning Spider
Branch Vertices
Heuristics
Optical Networks

17

EXPERIMENTAL COMPARISON OF ALGORITHMS FOR
BOUNDED-DEGREE SPANNING TREE PROBLEM

Corresponding author:

Monica Gentili
Dipartimento di Matematica ed Informatica
Universitá di Salerno
Via Ponte Don Melillo, 84084, Fisciano (SA)
Tel. +39 089 963326
Fax +39 089 963303
email: mgentili@unisa.it

18

	Copertina_n°23_2005.doc
	UNIVERSITÀ DI SALERNO
	Dipartimento di Matematica e Informatica
	
	 Experimental Comparison of Algorithms for
	 Bounded-Degree Spanning Tree Problems
	
	
	R. Cerulli, M. Gentili, A. Iossa
	Preprint n. 23 – 2005

	RT_CeGeIo_n°23_2005.pdf

