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Abstract Given an undirected and vertex weighted graph G=(V,E,w), the Weighted
Feedback Vertex Problem (WFVP) consists of finding a subset F ⊆V of vertices of
minimum weight such that each cycle in G contains at least one vertex in F . The
WFVP on general graphs is known to be NP-hard and to be polynomially solvable
on some special classes of graphs (e.g., interval graphs, co-comparability graphs, di-
amond graphs). In this paper we introduce an extension of diamond graphs, namely
the k-diamond graphs, and give a dynamic programming algorithm to solve WFVP
in linear time on this class of graphs. Other than solving an open question, this
algorithm allows an efficient exploration of a neighborhood structure that can be
defined by using such a class of graphs. We used this neighborhood structure inside
our Iterated Tabu Search heuristic. Our extensive experimental results show the ef-
fectiveness of this heuristic in improving the solution provided by a 2-approximate
algorithm for the WFVP on general graphs.

1. Introduction

Given an undirected graph G = (V,E), a Feedback Vertex Set (fvs) of G is a subset
F ⊆V of vertices such that each cycle in G contains at least one vertex in F , i.e. the
residual graph induced by the set of vertices V \F is acyclic. The Feedback Vertex
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Problem (FVP) consists of finding an fvs of minimum cardinality. When a weight
w(v) is associated with each vertex v of G then we have a vertex weighted graph.
The Weighted Feedback Vertex Problem (WFVP) on a weighted graph G consists
of finding an fvs of minimum weight, where the weight of the set is the sum of
the weights of its elements. Both FVP and WFVP are NP-complete problems and
have application in several areas of computer science such as circuit testing, dead-
lock resolution, placement of converters in optical networks, combinatorial cut de-
sign. This problem becomes polynomial when addressed on diamond graphs [5],
co-comparability graphs [6], convex bipartite graphs [6], permutation graphs [14],
interval graphs [15]. The best known approximation algorithm for WFVP has ap-
proximation ratio 2. The MGA algorithm introduced in [3] was the first one having
such an approximation ratio. Other approximation algorithms for the WFVS are
proposed in [1, 18] for general graphs and in [2, 8, 13] for special graph classes.
There are also exact algorithms finding a minimum FVS in a graph on n vertices in
time O(1.9053n) [17] and in time O(1.7548n) [9].

In this paper we focus on the weighted feedback vertex set problem (WFVP).
In particular, we introduce an extension of diamond graphs, namely the k-diamond
graphs, and give a linear time algorithm to solve WFVP on it based on a dynamic
programming approach. Moreover, we show how this new class of graphs can be
used to define a neighborhood structure (namely, the k-diamond Neighborhood) of
a given feasible solution and, successively, we show how to solve the problem on
general graphs by means of a tabu search technique using the k-diamond neighbor-
hood. Such a class of neighborhood was already introduced in [4], where, however,
the computational complexity of finding an optimum WFVP on a k-diamond graph
was left open and a heuristic approach was used to solve the problem. We solve such
an open problem (by giving a linear time algorithm) and also show the effectiveness
of the chosen neighborhood in improving a given initial feasible solution when ex-
plored by means of our exploration strategy. In order to do this, experimental results
are given to show how our Iterative Tabu Search can improve the initial feasible
solution, returned by the 2-approximate MGA algorithm [3], when the k-diamond
neighborhood is defined and efficiently explored.

The sequel of the paper is organized as follows. Section 2 introduces the basic
notation. Section 3 describes the class of k-diamond graphs and contains the main
properties to solve WFVP in linear time on this class. The role of k-diamonds to de-
fine a neighborhood structure is described in Section 4, together with the proposed
Iterated Tabu Search heuristic. Computational results are reported in Section 5. Fi-
nally, concluding remarks are discussed in Section 6.

2. Definitions and Notation

Let G = (V,E,w) be an undirected and vertex weighted graph, where V is the set
of n vertices, E is the set of m edges, and, w(v) is a positive weight associated with
each vertex v ∈ V . Given a subset X ⊆ V of vertices, let us define its weight W (X)



Tabu Search to solve the Weighted Feedback Vertex Set Problem 3

as the sum of the weights of its elements, i.e. W (X) = ∑v∈X w(v) and X̄ = V \X
its complementary set. If X = /0 then W (X) = 0. We denote by G[X ] the subgraph
of G induced by the set of vertices X ⊆ V . Formally, G[X ] = (X ,E[X ],w) where
E[X ] = {(x,y)∈ E : x,y∈ X}. A tree Tr rooted in r is an acyclic and connected graph.
We define a forest F as a graph where any connected component is a tree. A subset
of vertices X is a feedback vertex set of G if and only if G[X̄ ] is a forest. From now on
we denote by F(G) and F∗(G), any feedback vertex set and the minimum weight
feedback vertex set of G, respectively. When no confusion may arise we simply
denote these sets by F and F∗ respectively. Moreover, we define Fv̄ a feedback
vertex set of G not containing vertex v. A vertex v ∈ F is redundant if and only if
F \{v} is a feedback vertex set of G. Any vertex v ∈ V is said to be appended if it
is not included in any cycle of G. Obviously, a set of vertices is an fvs of G if and
only if it is an fvs of the graph G′ obtained from G after deleting all the appended
vertices. We say a graph is reduced if it does not contain any appended vertex. The
reduction operation of a graph can be performed in linear time. W.l.o.g., from now
on we suppose graph G to be a reduced graph. For any additional definition and
notation we refer to [7].

3. The class of k-diamond graphs

In this section we first recall the definition of the class of diamond graphs intro-
duced in [5], and successively we formally describe the extended class of k-diamond
graphs. Then, we prove the basic properties that are useful to optimally solve WFVP
on this new class in linear time.

A weighted diamond Dr,z = (Vr,Er,w) is an undirected and vertex weighted
graph where (i) each vertex v ∈ Vr is included in at least one simple path between
r and z and (ii) Dr,z[z̄] is a tree. The two vertices r and z are called the upper and
lower apex of a diamond Dr,z, respectively, and, the subgraph Dr,z[z̄] is referred to
as the tree Tr rooted in r associated with Dr,z. In Figure 1(a) the diamond D1,10 with
upper apex r = 1 and lower apex z = 10 is shown. Note that by deleting vertex z we
obtain the tree T1 = D1,10[1̄0].

As shown in [5], WFVP can be solved in linear time on a diamond graph by a
dynamic programming algorithm. Let us refer to such an algorithm as DP. In the
sequel we show how to use DP to solve WFVP in linear time on a k-diamond. A k-
diamond is a generalization of a diamond where multiple upper apices are allowed,
formally:

Definition 1. A weighted k-diamond DR,z =(VR,ER,w), where k≥ 1, R= {r1,r2, . . .
,rk}⊆VR and z∈VR, is an undirected and vertex weighted graph where (i) each ver-
tex v ∈ VR is included in a simple path between exactly one of the k apices ri ∈ R
and z and (ii) DR,z[z̄] is a forest with k connected components.

Following the definition introduced for diamond graphs, we refer to the set of ver-
tices R and to vertex z of DR,z as the set of upper apices and the lower apex of
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Fig. 1: (a) A diamond with upper apex r = 1 and lower apex z = 10. (b) A 3-diamond with upper
apices R = {1,8,14} and lower apex z = 19. Note that, as stated by property 1, it is composed by
the three diamonds D1, D8 and D14.

DR,z, respectively. The subgraph DR,z[z̄] is referred to as the forest FR, associated
with DR,z, whose connected components are the k trees Tri rooted in ri ∈ R. Fig-
ure 1(b) shows a 3-diamond. The set of upper apices is composed of the three ver-
tices R = {1,8,14}, while the lower apex is vertex z = 19. The graph obtained from
DR,z, after deleting the lower apex, is a forest with the three connected components
T1, T8 and T14 . To keep notation simple, in the sequel of the paper and when no
confusion may arise, we denote a k-diamond DR,z, with R = {r1, . . . ,rk}, just by DR
and a diamond graph Dr,z by Dr. Note that for k = 1 a k-diamond is a diamond.
Moreover, it is easy to see that the following property holds:

Property 1 (Decomposition). Any k-diamond DR is composed by k distinct dia-
monds Dri , with ri ∈ R, having all the same lower apex z.

For instance, the 3-diamond depicted in Figure 1(b) is composed by three diamonds
D1, D8 and D14. We will see in the following how to use the decomposition prop-
erty to solve WFVP on DR. By definition of k-diamond, the following properties
obviously hold.

Property 2. The singleton {z} is an fvs of DR.

Property 3. Every cycle of DR contains vertex z and vertices belonging to the same
connected component of FR.

Observe that, by property 2, a minimum weight feedback vertex set F∗(DR) of DR
either contains vertex z or not. Therefore, to find F∗(DR) we can proceed as follows:
(i) compute the minimum weight feedback vertex set F∗z̄ (DR) that does not contain
z; (ii) if W (F∗z̄ (DR)) < w(z) then set F∗(DR) = F∗z̄ (DR) otherwise set F∗(DR) =
{z}. The computation of F∗z̄ (DR) can be carried out by finding the fvs F∗(DRi) of
minimum weight on each of the k diamonds Dri that compose DR as proven by the
following lemma:
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Lemma 1. Given the k-diamond DR, let F∗z̄ (Dri), ∀ri ∈ R, be a minimum weight
feedback vertex set of diamond Dri not containing vertex z. Then: F∗z̄ (DR) =∪
ri∈R

F∗z̄ (Dri).

Proof. Let X =
∪

ri∈R F∗z̄ (Dri). We need to prove that X is a minimum fvs of DR not
containing z, i.e. X = F∗z̄ (DR). From property 3 and by definition of F∗z̄ (Dri), it is
evident that X is an fvs of DR therefore we have only to prove that X is minimum.
Let us suppose, by contradiction, there exists another fvs, say Y , such that z /∈Y and
W (Y )<W (X). Let Yi =Y ∩Dri . By property 3, each set Yi is an fvs of Dri that does
not contain vertex z. Therefore, since Y =

∪
ri∈R Yi and W (Y ) < W (X), there must

exist at least a set, say Yh such that W (Yh)<W (F∗z̄ (Drh)): a contradiction. ⊓⊔

Corollary 1. Given the k-diamond DR, a minimum weight feedback vertex set
F∗(DR) is either the set F∗z̄ (DR) or the singleton {z}.

From Corollary 1, the problem of finding an optimum WFVS on a k-diamond is
reduced to compute F∗z̄ (Dri) on each of the k diamonds that compose DR. These fvs
can be computed using the DP algorithm given in [5]. Fig. 2 reports the pseudo-code
of our algorithm DPmulti that solves WFVP on k-diamonds. Theorem 1 to follow
proves that this algorithm runs in linear time.

Procedure: DPmulti

Step 1. for all Dri compute F∗z (Dri);
Step 2. Set F∗z (DR)←

∪
ri∈R

F∗z (Dri );

Step 3. if W (F∗z (DR))< w(z) then F∗(DR)← F∗z (DR) otherwise F∗(DR)←{z};
Step 4. Return F∗(DR);

Fig. 2: Pseudo code of algorithm DPmulti.

Theorem 1. Given a k-diamonds DR = (VR,ER,w), the DPmulti algorithm computes
F∗(DR) in O(|VR|) time.

Proof. The computation of F∗z̄ (Dri) carried out in step 1 of DPmulti algorithm takes
O(|Vri |) time (see [5]). Since this computation is repeated for each root ri ∈ R, then
the total cost of step 1 is equal to O(|VR|) time. The joining operation carried out
at step 2 requires O(k) time, while step 3 and step 4 require constant time. Conse-
quently, DPmulti runs in O(|VR|) time. ⊓⊔

Next sections contain a description of a general neighborhood structure based on
the class of k-diamonds and introduce an operator that, using DPmulti, efficiently
explores such a neighborhood. This operator will be later embedded into our Iterated
Tabu Search.
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4. The Neighborhood Structures and the Iterative Tabu Search

The basic paradigm of tabu search is to use information about the search history to
guide local search approaches to overcome local optimality. Based on some sort of
memory certain moves may be forbidden, we say they are set tabu (and appropriate
move attributes are put into a list, the so-called tabu list). The search may imply
acceptance deteriorating moves when no improving moves exist or all improving
moves of the current neighborhood are set tabu. We implemented an extension of
the standard Tabu Search [10, 11, 12] (TS), namely the Iterated Tabu Search [16]
(ITS), whose central idea is based on the concept of intensification and diversifica-
tion. The intensification phase is focused in finding a better (locally optimal) solu-
tion in “surroundings”, i.e. neighborhood, of the current solution. The ITS method
uses the classical TS to achieve such an improvement. The Diversification phase is
used whenever the tabu memory indicates that one is trapped in a certain basin of
attraction and then allows to escape from the current local optimum and to move
towards new regions in the solution space.

In the following subsections the main components of the algorithm are described:
(i) the neighborhood structures (namely, the k-diamond neighborhood and the 2-
exchange neighborhood), (ii) the corresponding exploration strategies (namely, the
Single− Insert and the Double− Insert operators, respectively); (iii) the tabu list
and (iv) the diversification phase. The pseudo-code of our Iterative Tabu Search
(ITS) is given in Fig. 5.

4.1 The k-diamond Neighborhood

Given a graph G, let F be any not redundant fvs of G and F = G[F̄ ] the forest
induced by vertices not in F . By inserting a vertex z ∈ F in F a k-diamond DR is
obtained. Let Iz be an fvs of DR not containing z, then the set F ′ = Iz∪{F \{z}} is
a new fvs of G. Note that, F ′ could contain redundant vertices. Let Oz be the set of
the redundant vertices of F ′. Note that, by construction of Iz, we have Oz ⊆ F \{z}.
Add z to Oz and consider the vertex set Fnew = Iz∪{F \Oz}. Fnew is a not redundant
fvs of G and: if W (Iz) < W (Oz), its weight is lower than the weight of F . Given a
vertex z ∈ F , we define the couple (Iz,Oz) an exchange set of z, formally:

Definition 2. Given a vertex z ∈ F , the couple (Iz,Oz), where Iz ⊆ V \F , Oz ⊆ F
and z ∈ Oz, is a exchange set of z if the set Iz∪{F \Oz} is a not redundant fvs of G.

Let us denote by E (F,z) the collection of all the exchange sets associated with z∈F ,
i.e. E (F,z) =

{
(Iz,Oz) : Iz ∪{F \Oz} is a not reduntant fvs of G

}
. The k-diamond

neighborhood is defined as follows:

Definition 3. Given a graph G and an fvs F , the k-diamond neighborhood N (F)
is the set of all not redundant fvs of G that can be obtained from F through the
exchange sets associated with each vertex z ∈ F :
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N (F) =
{

Iz∪{F \Oz} : (Iz,Oz) ∈ E (F,z),∀z ∈ F
}

Note that, given a vertex z ∈ F , finding the minimum cost set Iz associated with it
corresponds to find the minimum weight feedback vertex set on the k-diamond asso-
ciated with z. Hence, by applying the DPmulti algorithm we can perform an implicit
exhaustive exploration on the neighborhood to find a local optimum in polynomial
time. This exploration is carried out by our first operator Single− Insert that is de-
scribed next.

4.1.1 The Single− Insert operator

Given a not redundant fvs F of G and the incumbent solution F∗, the Single−
Insert operator builds, for each z ∈ F , the k-diamond DR by introducing z in F =
G[F̄ ]. Successively, it computes an exchange set (Iz,Oz) where Iz = F∗z̄ (DR), i.e Iz
is the minimum feedback vertex set of DR not containing z. The operator selects
the best exchange set (I∗z ,O

∗
z ) such that W (I∗z )−W (O∗z ) = min(Iz,Oz):z∈F{W (Iz)−

W (Oz)}. More in detail (see Fig. 3), the operator builds the k-diamond DR (step
1), finds the fvs F∗z̄ (DR) by applying algorithm DPmulti and sets Iz← F∗z̄ (DR) (step
2). The operator (step 3) finds redundant vertices (if any) of the new fvs Fnew =
F \{z}∪{Iz} to be inserted in Oz (initially Oz = {z}). To this end, Single− Insert
builds the forest F ′ = G[F̄new] and reintroduces, one by one, each vertex z′ ∈ F \{z}
to check whether z′ is redundant or not. If z′ is redundant then it is moved from Fnew
to Oz. The final fvs Fnew = Iz∪{F \Oz} is then obtained after all the vertices in F \
{z} are checked for redundancy. Note that the pair (Iz,Oz) is the move corresponding
to the transition from solution F to its neighbor Fnew.

Procedure: Single− Insert(G,F, F∗)
Set W (I∗z )← ∞, W (O∗z )← 0
for all z ∈ F do

Step 1. Insert z in G[F̄] and reduce the obtained graph to produce the k-diamond DR;
Step 2. Set Iz← F∗z̄ (DR);
Step 3. Find the set of redundant nodes Oz, add z to Oz, and set Fnew← Iz∪{F \Oz};
Step 4. if W (Fnew)<W (F∗) do // aspiration criterion //

I∗z ← Iz,O∗z ← Oz;
else if W (Iz)−W (Oz)<W (I∗z )−W (O∗z ) and (Iz,Oz) is not tabu do

I∗z ← Iz,O∗z ← Oz;

end for
return (I∗z ∪{F \O∗z});

Fig. 3: Pseudo-code of operator Single− Insert.

The weight of the new set Fnew is then compared with the weight of the incum-
bent solution F∗ found so far. If W (Fnew) < W (F∗), then the operator sets the best
move (I∗z ,O

∗
z ) equal to (Iz,Oz) even if this move is tabu (this represents the ap-
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plication of an aspiration criterion [12]). Otherwise, if (Iz,Oz) is not tabu and the
corresponding solution is better than the solution associated with (I∗z ,O

∗
z ), the al-

gorithm sets (I∗z ,O
∗
z ) equal to (Iz,Oz). Finally, if both previous cases do not hold,

(Iz,Oz) is neglected.

4.2 The 2-exchange Neighborhood and the Double− Insert
operator

Additional neighborhoods similar to the k-diamond neighborhood above described
can be considered if more than one vertex of F is selected to be introduced in
F = G[F̄ ]. Indeed, a drawback of the Single− Insert operator concerns the diver-
sification of the explored solutions. In fact, when there are not redundant vertices,
only one vertex (the lower apex z) is moved from F to F = G[F̄ ]. Hence, in the
worst case, several applications of the operator Single− Insert are necessary to re-
move more than one vertex from F . In order to overcome this issue, we consider a
new neighborhood, namely the 2-exchange neighborhood, to diversify the explored
solutions, that is, we considered the case when two vertices {zi,z j} are selected to be
inserted in F . This neighborhood is explored by the operator Double− Insert (see
Fig. 4) that differs from Single− Insert since it inserts two lower apices {zi,z j} into
F , and finds the fvs Izi,z j by applying algorithm MGA. MGA is a greedy algorithm
that selects at each iteration the vertex v such that the ratio w(v)/d(v) is minimum,
where d(v) is the degree of the vertex. When a vertex is selected, it is removed from
G and G is then reduced to obtain the subgraph G′. The degree of each vertex v in G′

is updated and for each edge (u,v) that was removed during the reduction process,
the weight of its endpoints is decreased by the quantity w(v)/d(v). The selection of
a new vertex is then carried out on G′ until it is not empty. For more details on MGA
the reader can refer to [3].

Procedure: Double− Insert(G,F,F∗)
Set W (I∗C)← ∞, W (O∗C)← 0
for all pair C = (zi,z j) with zi,z j ∈ F do

Step 1. Insert zi and z j in G[F̄ ] and reduce it to obtain G′;
Step 2. Apply MGA to find an fvs IC of G′;
Step 3. Find the set of redundant nodes OC, add zi and z j to OC and set Fnew← IC ∪{F \OC};
Step 4. if W (Fnew)<W (F∗) do // aspiration criterion //

I∗C ← IC, O∗C ← OC;
else if W (IC)−W (OC)<W (I∗C)−W (O∗C) and (IC,OC) is not tabu do

I∗C ← IC, O∗C ← OC;

end for
return I∗C ∪{F \O∗C};

Fig. 4: Pseudo-code of operator Double− Insert.
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The Single−Insert operator and the Double−Insert operator will be used during
the intensification phase of Iterative Tabu Search metaheuristic.

4.3 The Tabu list

At iteration t, after a relocation of vertices is carried out according to a resulting
exchange set (Iz,Oz), the inverse move (Oz, Iz) cannot be carried out for the next ∆
iterations, where ∆ is the tabu list size. To implement a fast way for storing each
move (Oz, Iz) we use a bit mask and an hash-table. Since both Iz and Oz are vertex
sets and each vertex has a distinct ID, we allocate two bit-mask bl and br whose
size is |V |. We set the bits in bl and br corresponding to the vertices in Oz and Iz,
respectively, equal to 1. The two strings are then concatenated to generate the string
of bits bl-br, that is the key associated with the move. This key, that is unique for
each move, is given to the hash function to save the move. To verify if a move is
tabu it is sufficient to generate its key and check whether it is inside the hash table.
The key generation, the insertion into the hash table and the checking operations
require O(|Iz|+ |Oz|) time. The keys are saved inside a FIFO queue whose size is
∆ , hence when the queue is full and a new key has to be inserted, the key on the
head is removed from the queue and from the hash table. This operation requires
constant time. We used a reactive tabu list, that uses a list whose size is dynamically
updated during the computation according to the evolution of the search. The value
of ∆ ranges between a lower bound β− and an upper bound β+ that are fixed at
the beginning of the computation and never change. Given an initial fvs F , we set
β− = 5, β+ = max

{
3β−, |F |3 , |F̄ |3

}
and ∆ = β−+ (β+−β−)

2 . After each iteration t,
if the new solution F ′ found during the intensification phase (steps 4-17 in Fig. 5)
is better than F∗, then ∆ is increased by one. Otherwise, if F ′ is worse than F∗

but better than the solution found at the previous iteration then ∆ is not changed.
Finally, if F ′ is worse than the previous one then ∆ is decreased by one.

4.4 The Diversification Phase

The diversification phase is implemented using a modified version of the Double−
Insert operator (namely the Multi− Insert operator). Given a solution F , Multi−
Insert differs from Double− Insert since a subset of vertices P⊂ F with |P|> 2 is
inserted into the forest F = G[F̄ ] to obtain a new graph G′. There are three main
aspects to take into account in the diversification phase: (i) when to apply the di-
versification and on which solution, (ii) the cardinality of the set P, and, (iii) which
vertices to introduce in P. We apply the diversification either to the best solution F∗

found so far (step 23 in Fig. 5) or to the solution F ′ (step 25 in Fig. 5) computed
during the intensification phase. We keep a counter q that ranges from 1 to θ (that
is the maximum number of diversification operations performed by the algorithm)
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Procedure: IT S(G,θ ,σ)

1: F ← F∗←MGA(G);
2: for q = 1 to θ do
3: // Intensification Phase
4: F ′←V ;
5: for h = 1 to σ do
6: F1←Single-Insert(G,F,F∗);
7: F2←Double-Insert(G,F,F∗);
8: if W (F1)<W (F2) then
9: F ← F1;

10: else
11: F ← F2;
12: end if
13: Save the inverse move into the tabu list.
14: if W (F)<W (F ′) then
15: F ′← F ; h← 1;
16: end if
17: end for
18: if W (F ′)<W (F∗) then
19: F∗← F ′;
20: end if
21: // Diversification Phase
22: if q is even then
23: F ← Diversi f ication(F∗);
24: else
25: F ← Diversi f ication(F ′);
26: end if
27: end for
28: return F∗;

Fig. 5: Pseudo-code of Iterated Tabu Search

and, as soon as this bound is reached, the ITS stops. The cardinality of P is com-
puted according to the following formula: max

{
5, |F |×(20+5q)

100

}
. Finally, to remove

vertices from F we consider the last iteration it+(v) when v has been inserted in F :
the vertices of F are sorted in increasing order according to it+(v) and the first |P|
vertices of F are selected.

5. Computational Results

The ITS algorithm was coded in C and run on a 2.33 GHz Intel Core2 Q8200 pro-
cessor. Since there are no available benchmark instances for the WFVP, we gener-
ated instances for the following class of graphs: random graphs, squared and not
squared grids, taurus and hypercube. Each instance is characterized by the number
of vertices, the number of edges, a seed and a range of values for the weight of the
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RANDOM GRAPHS: Small Instances
ID Instance MGA ITS GAP

n m low up Value Value Time
1 25 33 10 25 70.8 63.8 0.00 -9.89%
2 25 33 10 50 105.4 99.8 0.00 -5.31%
3 25 33 10 75 133.6 125.2 0.00 -6.29%
4 25 69 10 25 166.8 157.6 0.00 -5.52%
5 25 69 10 50 294.8 272.2 0.00 -7.67%
6 25 69 10 75 455 409.4 0.00 -10.02%
7 25 204 10 25 286.4 273.4 0.02 -4.54%
8 25 204 10 50 527 507 0.01 -3.80%
9 25 204 10 75 829.8 785.8 0.01 -5.30%
10 50 85 10 25 191.4 175.4 0.03 -8.36%
11 50 85 10 50 298.2 280.8 0.03 -5.84%
12 50 85 10 75 377.2 348 0.02 -7.74%
13 50 232 10 25 409 389.4 0.07 -4.79%
14 50 232 10 50 746.8 708.6 0.06 -5.12%
15 50 232 10 75 1018.4 951.6 0.04 -6.56%
16 50 784 10 25 612.6 602.2 0.11 -1.70%
17 50 784 10 50 1204.2 1172.2 0.15 -2.66%
18 50 784 10 75 1685.2 1649.4 0.14 -2.12%
19 75 157 10 25 347.2 321 0.13 -7.55%
20 75 157 10 50 571.2 526.2 0.14 -7.88%
21 75 157 10 75 815 757.2 0.11 -7.09%
22 75 490 10 25 654.2 638.6 0.16 -2.38%
23 75 490 10 50 1286.6 1230.6 0.27 -4.35%
24 75 490 10 75 1870.8 1793.6 0.13 -4.13%
25 75 1739 10 25 903.2 891 0.40 -1.35%
26 75 1739 10 50 1681 1664.8 0.35 -0.96%
27 75 1739 10 75 2479.8 2452.8 0.33 -1.09%

AVG -5.18%

(a)

RANDOM GRAPHS: Large Instances
ID Instance MGA ITS GAP

n m low up Value Value Time
1 100 247 10 25 536.4 501.4 0.33 -6.52%
2 100 247 10 50 910.4 845.8 0.37 -7.10%
3 100 247 10 75 1279.2 1223.8 0.28 -4.33%
4 100 841 10 25 846 828.2 0.27 -2.10%
5 100 841 10 50 1793.2 1729.6 0.60 -3.55%
6 100 841 10 75 2512.2 2425.6 0.35 -3.45%
7 100 3069 10 25 1151.2 1134 0.59 -1.49%
8 100 3069 10 50 2218 2179 0.69 -1.76%
9 100 3069 10 75 3284 3228.8 0.77 -1.68%

10 200 796 10 25 1547.8 1488.4 3.48 -3.84%
11 200 796 10 50 2544.2 2442.6 2.50 -3.99%
12 200 796 10 75 3277.4 3157 2.78 -3.67%
13 200 3184 10 25 2035.6 2003.6 2.78 -1.57%
14 200 3184 10 50 3775.2 3683.6 2.67 -2.43%
15 200 3184 10 75 5259 5158.6 2.76 -1.91%
16 200 12139 10 25 2467.4 2450 11.31 -0.71%
17 200 12139 10 50 4182.2 4149.4 8.91 -0.78%
18 200 12139 10 75 5568.8 5531.4 6.98 -0.67%
19 300 1644 10 25 2136.6 2072.6 10.19 -3.00%
20 300 1644 10 50 4384.6 4239.4 9.12 -3.31%
21 300 1644 10 75 6411.2 6154.4 11.09 -4.01%
22 300 7026 10 25 3267.6 3231 19.59 -1.12%
23 300 7026 10 50 6368.4 6261.4 21.12 -1.68%
24 300 7026 10 75 8825.2 8660.6 17.21 -1.87%
25 300 27209 10 25 3749.2 3729.2 44.74 -0.53%
26 300 27209 10 50 5774.2 5738 29.26 -0.63%
27 300 27209 10 75 10514 10469.6 50.88 -0.42%
28 400 2793 10 25 3097 3015.2 29.99 -2.64%
29 400 2793 10 50 6726.8 6528 35.82 -2.96%
30 400 2793 10 75 9006.8 8730 35.36 -3.07%
31 400 12369 10 25 4514.4 4451.8 55.14 -1.39%
32 400 12369 10 50 6896 6837.4 35.88 -0.85%
33 400 12369 10 75 10788.8 10661.8 48.12 -1.18%
34 400 48279 10 25 5090 5060.8 123.27 -0.57%
35 400 48279 10 50 7142.6 7109.2 85.15 -0.47%
36 400 48279 10 75 15202.4 15114.6 127.31 -0.58%
37 500 4241 10 25 4197.4 4102.8 68.35 -2.25%
38 500 4241 10 50 7447.6 7285 70.14 -2.18%
39 500 4241 10 75 11619.6 11285.6 63.93 -2.87%
40 500 19211 10 25 5817.2 5745.8 99.12 -1.23%
41 500 19211 10 50 7819.2 7725 89.63 -1.20%
42 500 19211 10 75 14335.4 14167.8 80.09 -1.17%
43 500 75349 10 25 6388.6 6366.4 181.71 -0.35%
44 500 75349 10 50 8709 8671.2 155.18 -0.43%
45 500 75349 10 75 16994.6 16939.2 201.96 -0.33%

AVG -2.09%

(b)

Table 1: (a) Test results on random graphs: (a) small instances and (b) large instances.

vertices. The weight ranges are: 10-25, 10-50 and 10-75. For each combination of
parameters we generated five instances with the same characteristics except for the
seed. The results reported in the tables are average values over these five instances.
Small instances have 25, 50 and 75 vertices. Large instances have 100, 200, 300,
400 and 500 vertices.
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Tables 1-2-3 report the results of the MGA algorithm and of our ITS algorithm.
The first and second columns in each table report the id and characteristics of each
instance, respectively. For random graphs (Table 1): number of vertices (n), number
of edges (m), the lower (low) and upper (up) bounds for the weight of each vertex.
For the hypercube graphs (Table 2a and 3a) the number of edges is omitted because
it depends on the number of vertices. For the remaining graph classes: x is the num-
ber of rows and y is the number of columns. The third column in each table reports
the solution value returned by MGA. We do not report the computational time of
MGA since it is always negligible. Fourth and fifth columns in the tables report the
solution value and the computational time (in seconds) of our ITS algorithm. Fi-
nally, last column reports the percentage gap between the solution values returned
by the two algorithms. This gap is positive if MGA finds a better solution than ITS
and negative otherwise. The last line of the tables reports the average value of this
gap computed on all the instances of the table. On small instances of random graphs
(Table 1) we can see from the gap column that ITS always finds a better solution
than MGA and the CPU time is less than half of a second. On the 27 instances of
Table 1a, this gap is greater than 5% for 15 instances and in one case (instance 6)
it is greater than 10%. On average, the improvement obtained by ITS is around 5%.

HYPERCUBE GRAPHS: Small Instances
ID Instance MGA ITS GAP

n low up Value Value Time
1 16 10 25 77.4 72.2 0.00 -6.72%
2 16 10 50 99.8 93.8 0.00 -6.01%
3 16 10 75 99.8 97.4 0.00 -2.40%
4 32 10 25 177.2 170 0.01 -4.06%
5 32 10 50 249.4 241 0.00 -3.37%
6 32 10 75 286.2 277.6 0.00 -3.00%
7 64 10 25 377.6 354.6 0.13 -6.09%
8 64 10 50 486.2 476 0.05 -2.10%
9 64 10 75 514 503.8 0.05 -1.98%

AVG -3.97%

(a)

TAURUS GRAPHS: Small Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 5 5 10 25 113.2 101.4 0.00 -10.42%
2 5 5 10 50 135.2 124.4 0.00 -7.99%
3 5 5 10 75 167.4 157.8 0.00 -5.73%
4 7 7 10 25 206 197.4 0.03 -4.17%
5 7 7 10 50 243.4 234.2 0.02 -3.78%
6 7 7 10 75 282.6 269.6 0.02 -4.60%
7 9 9 10 25 324.8 310.4 0.20 -4.43%
8 9 9 10 50 388.4 370 0.17 -4.74%
9 9 9 10 75 448.4 432.2 0.16 -3.61%

AVG -5.50%

(b)

SQUARED GRID GRAPHS: Small Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 5 5 10 25 122.4 114 0.00 -6.86%
2 5 5 10 50 208.4 199.8 0.00 -4.13%
3 5 5 10 75 335.2 312.6 0.00 -6.74%
4 7 7 10 25 270.8 252.4 0.03 -6.79%
5 7 7 10 50 464.6 439.8 0.03 -5.34%
6 7 7 10 75 749.4 718.4 0.03 -4.14%
7 9 9 10 25 466 444.2 0.22 -4.68%
8 9 9 10 50 805.8 754.6 0.29 -6.35%
9 9 9 10 75 1209.6 1138 0.13 -5.92%

AVG -5.66%

(c)

NOT SQUARED GRID GRAPHS: Small Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 8 3 10 25 104.8 96.8 0.00 -7.63%
2 8 3 10 50 174.8 157.4 0.00 -9.95%
3 8 3 10 75 246.6 220 0.00 -10.79%
4 9 6 10 25 326.4 295.8 0.07 -9.37%
5 9 6 10 50 512 489.4 0.04 -4.41%
6 9 6 10 75 801 755 0.04 -5.74%
7 12 6 10 25 431.6 399.8 0.15 -7.37%
8 12 6 10 50 717.2 673.4 0.12 -6.11%
9 12 6 10 75 1092.8 1017.4 0.10 -6.90%

AVG -7.59%

(d)

Table 2: (a) Test results on small instances:(a) hypercube graphs, (b) taurus graphs, (c) squared
grid graphs and (d) not squared grid graphs .
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It is interesting to observe that as the density of graph increases the gap decreases.
This reveals that the selection criterion applied by MGA (the ratio between weight
and degree of node) is less effective on sparse graphs. This trend is evident on large
instances (Table 1b) where (see for example instances with 500 vertices) the gap for
sparse instances is more that 2% and it is less that 0.4% on more dense instances.
The computational time of ITS is less than 1 minute for the first 33 instances and is
less that 4 minutes for the remaining large instances.

Consider Table 2 (for small instances) and Table 3 (for large instances) to com-
pare the algorithms on the other types of graph. Let us analyze the small instances
for the hypercube graphs. From the gap column, we can see that in three cases (in-
stances 1, 2 and 7) the gap is greater than 5% while on average it is around 4%.
This difference becomes more significant on the other three classes of graphs: for
taurus graph the average gap is around 5.5%, for the squared grid graphs the aver-
age gap is 5.66% and on the not squared grid graphs it is 7.59% (and, except for
instance 5, it is always greater than 5%). The CPU time of ITS on these four classes
of graphs is negligible being always less than half of a second. Note that, since in
these graphs several vertices have the same degree, the selection criterion applied
by MGA is essentially led by the weight of the vertices and this probably causes its
poor results.

On large instances, there is a sensible reduction of the gap between ITS and
MGA for taurus, squared grid and not squared grid graphs, while this gap increases
on hypercube graphs. In detail, on the hypercube, the gap is greater than 3% for three
instances (instances 1, 4 and 7) with an average value of 4.47%. The computational
time of ITS on this class of graphs is, in the worst case, slightly more that 1 minute.
On taurus graphs the average gap is equal to 4.15% and on two instances (1 and 4)
it is greater than 5%. ITS computational time increases to 5 minutes in the worst
case. For half of the squared grid instances, the gap is greater than 5% while the
average gap is equal to 5.14%. These graphs ended to be more expensive for ITS
in terms of computational time. Finally, as already observed for small instances, the
not squared grid graphs are the hardest instances for MGA. Indeed, only in 3 cases
(instances 5, 12 and 15) the gap is less than 5% while the average gap is equal to
5.65%.

6. Conclusions

We addressed a well known NP-complete problem in the literature (the Weighted
Feedback Vertex Set Problem) with application in several areas of computer science
such as circuit testing, deadlock resolution, placement of converters in optical net-
works, combinatorial cut design. In this paper we presented a polynomial time exact
algorithm (the DPmulti algorithm) to solve the problem on a special class of graphs,
namely the k-diamond graphs. In addition, we proposed an Iterative Tabu Search
algorithm considering two different neighborhood structures one of which is based
on the k-diamond graphs where the DPmulti algorithm was hugely used for a better
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HYPERCUBE GRAPHS: Large Instances
ID Instance MGA ITS GAP

n low up Value Value Time
1 128 10 25 784.8 740 1.09 -5.71%
2 128 10 50 1125.4 1071 0.40 -4.83%
3 128 10 75 1196.4 1163.6 0.34 -2.74%
4 256 10 25 1641.2 1542.6 9.41 -6.01%
5 256 10 50 2429.4 2311.4 6.45 -4.86%
6 256 10 75 2673.4 2590.8 3.94 -3.09%
7 512 10 25 3416.4 3240.8 73.51 -5.14%
8 512 10 50 5147.4 4921.8 67.58 -4.38%
9 512 10 75 5789.2 5588.6 51.74 -3.47%

AVG -4.47%

(a)

TAURUS GRAPHS: Large Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 10 10 10 25 413 388.8 0.38 -5.86%
2 10 10 10 50 476.4 458.6 0.37 -3.74%
3 10 10 10 75 523 504.8 0.25 -3.48%
4 14 14 10 25 793.8 750.8 5.96 -5.42%
5 14 14 10 50 908.2 875.6 3.68 -3.59%
6 14 14 10 75 1062.4 1017.2 3.59 -4.25%
7 17 17 10 25 1167.4 1110.2 21.98 -4.90%
8 17 17 10 50 1364.8 1307.6 20.93 -4.19%
9 17 17 10 75 1551.4 1502.4 23.18 -3.16%

10 20 20 10 25 1621.2 1548.6 88.75 -4.48%
11 20 20 10 50 1867.2 1803.4 81.03 -3.42%
12 20 20 10 75 2109.6 2042.6 55.19 -3.18%
13 23 23 10 25 2136.4 2043.4 278.08 -4.35%
14 23 23 10 50 2520 2412.2 177.53 -4.28%
15 23 23 10 75 2818.8 2705.4 184.99 -4.02%

AVG -4.15%

(b)

SQUARED GRID GRAPHS: Large Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 10 10 10 25 613 570.6 0.54 -6.92%
2 10 10 10 50 1002 948.8 0.41 -5.31%
3 10 10 10 75 1657.4 1566 0.51 -5.51%
4 14 14 10 25 1273.6 1209.4 8.07 -5.04%
5 14 14 10 50 2103 2008.6 8.06 -4.49%
6 14 14 10 75 3618.6 3401.2 7.23 -6.01%
7 17 17 10 25 1917 1834.2 42.63 -4.32%
8 17 17 10 50 3231 3070.6 29.71 -4.96%
9 17 17 10 75 5380.8 5089.8 29.68 -5.41%

10 20 20 10 25 2781 2619.8 85.42 -5.80%
11 20 20 10 50 4516.8 4321.2 103.84 -4.33%
12 20 20 10 75 7650.4 7272.6 127.81 -4.94%
13 23 23 10 25 3626.8 3462.8 371.23 -4.52%
14 23 23 10 50 6171.4 5865.4 291.52 -4.96%
15 23 23 10 75 10195.6 9723.4 240.50 -4.63%

AVG -5.14%

(c)

NOT SQUARED GRID GRAPHS: Large Instances
ID Instance MGA ITS GAP

x y low up Value Value Time
1 13 7 10 25 552 513 0.36 -7.07%
2 13 7 10 50 870 803.4 0.31 -7.66%
3 13 7 10 75 1471 1390.8 0.34 -5.45%
4 18 11 10 25 1284.6 1208 6.78 -5.96%
5 18 11 10 50 2149.2 2049.8 8.77 -4.62%
6 18 11 10 75 3643.6 3431 5.79 -5.83%
7 23 13 10 25 2049.4 1930.6 42.54 -5.80%
8 23 13 10 50 3366.2 3194.8 43.01 -5.09%
9 23 13 10 75 5653 5286.6 34.27 -6.48%
10 26 15 10 25 2690.6 2532.8 104.81 -5.86%
11 26 15 10 50 4387.4 4164.8 82.30 -5.07%
12 26 15 10 75 7427.6 7063.4 85.79 -4.90%
13 29 17 10 25 3443.2 3270 236.94 -5.03%
14 29 17 10 50 5716.6 5430.4 251.17 -5.01%
15 29 17 10 75 9451.8 8993.2 196.66 -4.85%

AVG -5.65%

(d)

Table 3: (a) Test results on large instances: (a) hypercube, (b) taurus, (c) squared grid and (d)
not squared grid graphs.

exploration. We carried out an extensive experimentation to show the effectiveness
of our approach when compared with the well known 2-approximation algorithm
MGA. Our approach shows a very good trade-off between solution quality and com-
putational time: our ITS solves the problem in less than 1 second for instances up
to 100 vertices with an improvement of the quality of the solution when compared
to those returned by MGA. This makes ITS suitable to be embedded on an exact
approach, that is object of our future research.
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