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Introduction

In these notes we aim to present Kontsevich’s formality theorem, which implies both the existence and
the classification of star products on Poisson manifolds. This theorem represents a very important
breakthrough in the theory of deformation quantization and it has many ramifications.

The philosophy of deformation was proposed by M. Flato [18] in the seventies and since then,
many developments occurred. Deformation quantization is based on such a philosophy in order to
provide a mathematical procedure to pass from classical mechanics to quantum mechanics. Quan-
tum mechanics deals with phenomena at nanoscopic scales; these phenomena contradict the laws of
classical mechanics and a new fundamental constant enters in the formalism, the Planck constant ~.
The new structures deform, in some sense, the initial ones; in other words, when the new parameter
~ goes to zero, quantum mechanics coincides with classical mechanics.

The main problem in comparing the classical theory of mechanics and the theory of quantum
mechanics is the difference in their mathematical formulation. Indeed, in classical mechanics the
observables are functions over the phase space (the flat space R2n or, more generally, a symplectic
or Poisson manifold) while in quantum mechanics the observables are operators in Hilbert spaces
of wave functions. This difficulty has been overcome by looking for deformations of algebras of
functions over Poisson manifolds: quantum mechanics is then realized in the deformed algebra. The
existence of such deformations was proved by Vey [32] in 1975 and few years later the seminal papers
[7], [8], [19] in deformation quantization appeared, where the quantization was performed, using
the Gerstenhaber’s approach [20], by deforming the associative and commutative algebra of classical
observables. More precisely, let M be a smooth manifold endowed with a Poisson bracket {·, ·}. A
star product on M is a “deformation” of the associative algebra of functions A = C∞(M) of the
form ? =

∑∞
n=0 t

nPn, where the Pn’s are bi-differential operators (locally of finite order) such that
P0(f, g) = f · g, P1(f, g) − P1(g, f) = 2{f, g}, f, g ∈ A. The parameter t is taken to be t = i~

2 to
recover physical results. A star quantization is defined to be a star product on M invariant under
some Lie algebra g0 of “preferred observables”. The invariance property ensures that the classical and
quantum evolutions of observables under a Hamiltonian H ∈ g0 coincide [7].

It is worth mentioning that also a spectral theory can be done in this formalism and many results
of quantum mechanics can be formulated and solved in this context, for example the spectrum of
harmonic oscillators, the hydrogen atom and the angular momentum.

The star product is given by a formal power series and the convergence was studied only in specific
examples. There are many interesting mathematical developments, related to the star products. The
star representation theory is an important example; the most notable results can be found in [1], [2],
[3] (nilpotent and solvable Lie groups), [4], [5], [27] (semi-simple Lie groups). Another fundamental
application of the star products concerns the theory of quantum groups. This theory is essentially due
to Drinfel’d [14], who realized that Lie groups and Lie algebras can be deformed by considering their
correspondent Hopf algebras. Quantum groups have been largely studied and they have numerous
applications in physics (the reader is referred to [15], [25] and [29]). Finally, the index theorem [6]
has been generalized to deformation quantum algebras [17].

The existence and classification of star products on Poisson manifolds have been major open
problems for many years. The regular case was approached with the method of Fedosov [16] and

1



2 Introduction

the existence of tangential star-products was established by Masmoudi [26] in 1992. Some concrete
examples of star products on non-regular Poisson manifolds appeared already in [7]. The star product
on a Lie algebra can be defined starting from the star product on the cotangent bundle of a Lie group
(Gutt [21]) and the quantization for some quadratic Poisson structures has been constructed by Omori,
Maeda and Yoshika in [28]. Eventually, the existence of star products on any finite-dimensional
Poisson manifold was proved by M. Kontsevich as a consequence of his formality theorem [23].

Kontsevich constructed explicitly the map

? : C∞(R)d × C∞(Rd)→ C∞(Rd)JtK : (f, g) 7→ f ? g (0.0.1)

and proved that it defines a star product on the Poisson manifold (Rd, π). Furthermore, he proved
that there is a one-to-one correspondence between equivalence classes of star products and equivalence
classes of formal Poisson bracket πt :=

∑∞
n=0 t

nπn. This result is a particular consequence of the so-
called formality theorem. In order to roughly describe Kontsevich’s formality theorem, let M be a
smooth manifold and consider the Hochschild complex C•(A) on the associative algebra A = C∞(M)
(with pointwise product µ) and its cohomology HH•(A). They are both differential graded Lie
algebras and the formality theorem states that these differential graded Lie algebras are in some sense
equivalent. More in detail, denote by Dpoly(M) the graded vector space of multi-differential operators
Dpoly(M) =

⊕∞
n=1D

n
poly(M), where Dn

poly(M) = Ck+1(A). This graded space can be endowed with
a DGLA structure. Similarly, the graded space of multi-vector fields on M can be endowed with a
DGLA structure. Denote by Tpoly(M) =

⊕∞
n=1 T

n
poly(M), where Tnpoly(M) = Γ(∧k+1TM) i.e. the

space of k+1-multi-vector fields onM . The two DGLAs Tpoly(M) and Dpoly(M) are quasi-isomorphic
complexes [22], which means that the cohomology HH•(A) of the complex Dpoly(M) coincides with
the cohomology of Tpoly(M) on M . This quasi-isomorphism, unfortunately, does not preserve the Lie
bracket, thus it is not a DGLA homomorphism. Kontsevich interpreted the DGLAs Tpoly(M) and
Dpoly(M) in terms of a very general category of objects, called L∞-algebras. This allowed him to
prove, in the formality theorem, the correspondence of such DGLAs.

The main part of the proof provided by Kontsevich consists in the explicit construction of such
a correspondence for the local case M = Rd (the so-called Kontsevich’s formula). The physical
interpretation of this formula, already suggested by Kontsevich in [23], has been studied by Cattaneo
and Felder in [9]. They constructed a topological field theory on a disc and Kontsevich’s formula
appears as the perturbation series of such a theory, after a suitable renormalization. The method
used by Cattaneo and Felder also provides a very nice proof of the existence of Kontsevich’s star
product [10], which is similar, in the spirit, to Fedosov’s construction. More recently, another proof
of the global formality was provided by Dolgushev [11].

The formality theorem has ramifications and developments in many directions. First, it is impor-
tant to mention the operadic approach introduced by Tamarkin [30] in 1998. He observed that for any
algebra A its Hochschild complex C•(A) and its Hochschild cohomology HH•(A) are algebras over
the same operad. This approach will be not treated in these notes (a nice introduction on operads
and some important results related to the Tamarkin’s approach can be found in [12]) but we want to
remark that, using this approach, a new derivation of the formality theorem was found (see [31] for
further developments). Kontsevich studied and generalized the Tamarkin’s approach in [24], which
also contains a systematic study about the generalization of deformation quantization to the case of
algebraic varieties. Further developments in the algebro-geometric setting can be found, e.g., in [13].

This book is organized as follows:
Chapter 1 contains a short discussion on the Hamiltonian formulation of classical mechanics. We

introduce the description of a classical mechanical system in terms of Poisson manifolds and we define
the notion of formal Poisson structures.

Chapter 2 is devoted to the theory of (formal) deformation quantization. We discuss the notion
of star product, starting from physical motivations and heading towards its formulation in terms of
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DGLA. We give a basic introduction of the general theory of deformations via DGLA’s, focusing in
particular on the examples of multi-vector fields and multi-differential operators. We introduce Kont-
sevich’s formality theorem, presented as an extension of the Hochschild-Kostant-Rosenberg theorem,
and we present some basic tools (e.g. L∞-algebras, L∞-morphisms).

In Chapter 3 we aim to give a sketchy exposition of the Kontsevich’s formula on Rd. Here we only
discuss the globalization approaches of Cattaneo-Felder-Tomassini and Dolgushev, as the Kontsevich
proof is extremely technical. Finally we present some open problems related to formal deformation
quantization.

A short survey of the notions used throughout this book is given in Appendix A; in particular,
we recall the concepts of vector bundles, tensors and connections and we introduce the notions of
complexes and cohomologies.
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Chapter 1

Classical mechanics and Poisson
structures

In this Chapter, we will briefly recall the Hamiltonian formulation of classical mechanics, focusing
in particular on its algebraic aspects. In this framework, a classical system will be described by a
commutative algebra of functions (classical observables) with the Poisson bracket as a Lie bracket.

We will discuss in detail the properties of the Poisson bracket and introduce the tensor formula-
tion of Poisson structures on manifolds, as the Poisson bracket plays a fundamental role in classical
mechanics and in deformation quantization. We will mainly focus on the algebraic rather than geo-
metrical properties of Poisson manifolds, the latter being less important for the theory of deformation
quantization. Furthermore, we will introduce the reader to the basic notions needed for the formu-
lation of the formality theory, i.e. formal power series, formal Poisson structures and equivalence
classes of formal Poisson structures.

1.1 Hamiltonian Mechanics and Poisson brackets

This section aims to give a brief introduction to classical mechanics, starting with Newton’s laws and
heading towards the Hamiltonian approach, with a particular attention to the role of the Poisson
bracket. The interested reader is referred to the classical literature on the subject, as e.g. [2], [1] and
[8] for an exhaustive treatment.

We start by discussing the motion of a point particle of mass m in the Euclidean space Rn.
The position of the particle is described by the vector q := (q1, . . . , qn) ∈ Rn, which is generally
parametrized by the variable t ∈ R. We say that q(t) is the position of the particle at time t. The
velocity v(t) of the particle at time t is defined as

v(t) := q̇(t) =
d q

d t
(t), (1.1.1)

where we used Newton’s notation q̇(t) to denote the total derivative w.r.t. the time. Similarly, the
acceleration is defined as

a(t) := q̇(t) =
d2q

d t2
(t). (1.1.2)

The evolution in time of the particle position is described by the n functions qi(t), i = 1, . . . , n, which
are solutions of the set of Newton’s equations

m q̇(t) = F (q1, . . . qn), (1.1.3)

where F := (F1, . . . , Fn) denotes the force acting on the particle, together with the initial conditions

q(0) = q0, v(0) = v0. (1.1.4)

5



6 CHAPTER 1. CLASSICAL MECHANICS AND POISSON STRUCTURES

From here on, we assume that the force is conservative, i.e. it can be written in terms of the gradient
of a some function V : Rn → R

Fi = −∂V
∂qi

, i = 1, . . . , n. (1.1.5)

The function V is generally called potential.
As will be seen in the following, in the Hamiltonian formalism, the system of second order differen-

tial equations (1.1.3), in the n variables (q1, . . . , qn), becomes a first order system in the 2n variables
(q, p) := (q1, . . . , qn, p1, . . . , pn). The variables pi, are called conjugated momenta and they are defined
as

pi = m q̇i. (1.1.6)

Indeed, using this definition, Newton’s equations (1.1.3) can be rewritten as

q̇i(t) =
pi(t)

m
, ṗi(t) = −∂V

∂qi
(q(t)), (1.1.7)

and the initial conditions (1.1.4) read

q(0) = q0,

p(0) = p0. (1.1.8)

Introducing the Hamiltonian function H : Rn ×Rn → Rn

H(q, p) :=
n∑
i=1

p2
i

2m
+ V (q), (1.1.9)

which represents the energy of the system as a function of the position q and the momentum p, the
set of equations (1.1.7) can be rewritten as the well-known Hamilton’s equations:

q̇i(t) =
∂H

∂pi
(q, p), ṗi(t) = −∂H

∂qi
(q, p). (1.1.10)

The 2n-dimensional space of all the possible positions q and momentum p of a single particle is called
phase space and coincides with Rn×Rn ∼= R2n. A real-valued smooth function f on the phase space,
i.e. f : R2n → R, is called classical observable.

Given a generic observable f , it is natural to ask how it evolves in time. Denoting by

ft(q, p) = f(q(t), p(t)), (1.1.11)

the value of the observable at the generic time t, where q(t) and p(t) are solutions of Eqs. (1.1.10)
with initial values q(0) = q0, p(0) = p0, we have that

d

d t
f(q(t), p(t)) =

∂ft
∂qi

d qi

d t
+
∂ft
∂pi

d pi
d t

=
∂ft
∂qi

∂H

∂pi
− ∂ft
∂pi

∂H

∂qi
.

Thus,
d ft
d t

(q, p) =
∂ft
∂qi

∂H

∂pi
− ∂ft
∂pi

∂H

∂qi
. (1.1.12)

In the above expression, we used the Einstein notation on the sum over repeated indices. We will use
this convention throughout these notes. The expression obtained above in Eq. (1.1.12) can be written
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in a more convenient manner, by introducing the canonical Poisson bracket. This is defined, for two
arbitrary functions f and g on the phase space R2n, as

{f, g} :=
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (1.1.13)

In this notation, Hamilton’s equations read

dft
dt

= {H, ft}. (1.1.14)

A given observable f , constant along all solutions (q(t), p(t)) of Hamilton’s equations (1.1.10), i.e.
f(q(t), p(t)) = f(q0, p0) for any t ∈ R, where q0 = q(0) and p0 = p(0), is called (mostly in physics)
a constant of motion. It is clear from Eq (1.1.14) that the Hamiltonian H is always a constant of
motion (conservation of the energy of the system).

The above discussion can be generalized to the case in which the phase space is a generic smooth
manifold. As will be seen, a classical physical system can be described by the algebra of functions on
a given phase space endowed with a Poisson bracket. Because of their importance in the formulation
of both quantum and classical mechanics, the Poisson structures will be the main topic in the rest of
this chapter.

1.2 Poisson manifolds

Let M be a smooth manifold. The set C∞(M) of real-valued smooth functions on M describes the
set of observables. It is a commutative algebra with addition, scalar multiplication and pointwise
multiplication given by

(αf)(x) = αf(x),

(f + g)(x) = f(x) + g(x),

(f · g)(x) = f(x)g(x), (1.2.1)

for any f, g ∈ C∞(M), α ∈ R and x ∈M . A Poisson bracket can be defined on C∞(M) as follows

Definition 1.2.1 (Poisson bracket) The bracket operation denoted by

{·, ·} : C∞(M)× C∞(M)→ C∞(M) (1.2.2)

is called Poisson bracket if it satisfies the following properties
i.) {f, g} is bilinear with respect to f and g
ii.) {f, g} = −{g, f} skew-symmetry
iii.) {h, fg} = f{h, g}+ {h, f}g Leibniz rule
iv.) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 Jacobi identity
for any f, g, h ∈ C∞(M).

The Poisson bracket makes C∞(M) into a Lie algebra, as it satisfies bilinearity, skew-symmetry and
the Jacobi identity. It follows that the algebra of observables C∞(M) is a commutative algebra with
Poisson bracket as Lie bracket. In other words, it is a Poisson algebra, as defined below.

Definition 1.2.2 (Poisson algebra) A Poisson algebra is a commutative algebra with a bracket
{·, ·} making it into a Lie algebra such that it satisfies the Leibniz rule.

Starting from this definition we can introduce the concept of Poisson manifolds in a very natural way
as follows
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Definition 1.2.3 (Poisson manifold) A Poisson manifold is a smooth manifold M equipped with
a bracket {·, ·} on its function space C∞(M), such that the pair (C∞(M), {· , ·}) is a Poisson algebra.

The reader can find a more detailed discussion on Poisson manifolds and their geometrical properties
e.g. in [10], [3], [6], [7] and [11].

A Poisson manifold can be redefined, in a more modern way, in terms of bivector fields. This
formulation is necessary for the description of Kontsevich’s theory of deformation quantization of
Poisson manifolds. In order to rewrite the definition of Poisson manifolds we need to take a step
back. Let us consider a generic bracket {· , ·} on C∞(M) satisfying the conditions i.)-ii.)-iii.) of
Definition 1.2.1, i.e. bilinearity, skew-symmetry and Leibniz rule. The Leibniz rule implies that, for
a given function f on C∞(M), the map g 7→ {f, g} is a derivation. Thus, there is a unique vector
field Xf on M , called Hamiltonian vector field, such that for any g ∈ C∞(M) we have

Xf (g) = {f, g}. (1.2.3)

Here
Xf (g) = 〈dg,Xf 〉, (1.2.4)

where dg is the differential of the function g ∈ C∞(M) and 〈·, ·〉 is the pairing between one-forms
and vector fields.

In the following, we will express Poisson structures in terms of bivector fields satisfying certain
conditions. Recall that ∧2TM is the space of bivector ofM : it is a vector bundle overM . A (smooth)
bivector field π on M is, by definition, a smooth section of ∧2TM , i.e. a map π : M → ∧2TM , which
associates to each point m ∈ M a bivector π(m) ∈ ∧2TmM . We denote by Γ(∧2TM) the space of
sections on ∧2TM . Given a bivector field π, one can define a bracket {·, ·} on C∞(M) as

{f, g} := π(df, dg) = 〈df ⊗ dg, π〉, (1.2.5)

which satisfies the conditions (i)-(ii)-(iii) of Definition 1.2.1. It is important to remark that, at this
stage, this is not a Poisson bracket, because the Jacobi rule is not a priori satisfied. We sketch the
conditions which guarantee this bracket to be a Poisson bracket. A bivector field π such that the
bracket defined in Eq. (1.2.5) satisfies the Jacobi identity is called Poisson tensor or Poisson bivector
field.

In a local system of coordinates (x1, . . . , xn), Eq. (1.2.5) can be expressed as

{f, g} = πij
∂f

∂xi
∂g

∂xj
, (1.2.6)

where πij are smooth functions on the local chart and are defined by

πij = {xi, xj} = −πji. (1.2.7)

This implies that the bivector field π is locally given by

π =
1

2
πij

∂

∂xi
∧ ∂

∂xj
; (1.2.8)

using the local expression (1.2.6) for the Poisson bracket, we can easily compute the terms of the
Jacobi identity:

{{f, g}, h} = πij
∂

∂xi

(
πkl

∂f

∂xk
∂g

∂xl

)
∂h

∂xj

= πijπkl
(

∂f

∂xixk
∂g

∂xl
+

∂f

∂xk
∂g

∂xixl

)
∂h

∂xj
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+ πij
∂πkl

∂xi
∂f

∂xk
∂g

∂xl
∂h

∂xj
.

Similarly we get {{g, h}, f} and {{h, f}, g}. From the skew-symmetry, Eq. (1.2.7), follows that the
expressions without derivatives of πij are invariant under switching {ij} ↔ {kl}, thus the sum of
those three terms yields zero. For this reason, the Jacobi identity reads

πhi
∂

∂xh
πjk + πhj

∂

∂xh
πki + πhk

∂

∂xh
πij = 0. (1.2.9)

In other words,

Proposition 1.2.4 The bivector field π ∈ ∧2TM defines a Poisson bracket in the local coordinates
{xi}ni=1 if and only if it satisfies the condition (1.2.9).

This condition can be rephrased in an invariant formalism, by introducing the Schouten-Nijenhuis
bracket of π. We briefly recall the notion of Schouten-Nijenhuis bracket for a generic multivector
field and we prove that π is a Poisson tensor if and only if the Schouten-Nijenhuis bracket Jπ, πK is
vanishing.

The definition of bivector field can be immediately generalized as follows. A k-multivector field
X on a smooth manifold M is a section of the k-th exterior power ∧kTM of the tangent bundle TM .
In local coordinates {xi}ni=1, the multivector field X ∈ Γ(∧kTM) can be written as

X =

n∑
i1...ik=1

Xi1...ik(x)
∂

∂xi1
∧ · · · ∧ ∂

∂xik
. (1.2.10)

where the coefficients Xi1...ik(x) are smooth functions on M . We denote by Xk(M) the space of
sections Γ(∧kTM); notice that X0(M) = C∞(M). It is well-known that, for any vector field X ∈
X1(M), there is a well defined Lie bracket on vector fields given in terms of Lie derivative LX :

[X,Y ] := LX Y ∀Y ∈ X1(M). (1.2.11)

This definition can be also applied to the case in which the second argument is a function:

[X, f ] := LX f =

n∑
i=1

Xi ∂f

∂xi
. (1.2.12)

We can extend this bracket to an operation

J·, ·K : Xk(M)⊗ Xl(M)→ Xk+l−1(M) (1.2.13)

defined by

JX1 ∧ · · · ∧Xk, Y1 ∧ · · · ∧ YlK :=
k∑
i=1

l∑
j=1

(−1)i+j [Xi, Yj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xk ∧ Y1 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yl, (1.2.14)

where the hat denotes the absence of the corresponding term.

Proposition 1.2.5 The operation J·, ·K defined in Eq. (1.2.14) is the unique well-defined R-bilinear
local type extension of the Lie derivative LX and satisfies
i.) JX,Y K = (−1)klJY,XK
ii.) JX,Y ∧ ZK = JX,Y K ∧ Z + (−1)(k+1)lY ∧ JX,ZK
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iii.) (−1)k(m−1)JX, JY, ZKK+ (−1)l(k−1)JJY,ZK, XK+ (−1)m(l−1)JZ, JX,Y KK = 0

for three multivectors X,Y and Z of degree resp. k, l and m.

This operation is called Schouten-Nijenhuis bracket. Notice that, in particular, for any f ∈ C∞(M)
and X ∈ Xk(M),

JX, fK = −〈df,X〉 =

k∑
i=1

(−1)i LXi(f)X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xk. (1.2.15)

In local coordinates, if

X = Xi1,...,in ∂

∂xi1
∧ · · · ∧ ∂

∂xin

Y = Y j1,...,jm ∂

∂xj1
∧ · · · ∧ ∂

∂xjm
, (1.2.16)

the Schouten-Nijenhuis bracket is given by a n+m− 1 contravariant tensor field JX,Y K

JX,Y K = X li1,...,il−1il+1,...in
∂Y j1,...,jm

∂xl

∂

∂xi1
∧ · · · ∧ ∂

∂xil−1

∧ ∂

∂xil+1

∧

∧ ∂

∂xj1
∧ · · · ∧ ∂

∂xjm
(−)nY lj1,...,jl−1jl+1,...jm

∂Xi1,...,in

∂xl

∂

∂xi1
∧

∧ · · · ∧ ∂

∂xin
∧ ∂

∂xj1
· · · ∧ ∂

∂xjl−1

∧ ∂

∂xjl+1

∧ · · · ∧ ∂

∂xjm
,

or more succinctly

JX,Y Kk2...kn+m = ε
k2...kn+m

i2...inj1...jm
X l(i2...in) ∂

∂xl
Y j1...jm

+ (−1)nε
k2...kn+m

i1...inj2...jm
Y l(j2...jm) ∂

∂xl
Xi1...in . (1.2.17)

Here
ε
i1...in+m

j1...jn+m
(1.2.18)

is the Kronecker symbol: it is zero if (i1 . . . in+m) 6= (j1 . . . jn+m), and is 1 (resp., -1) if (j1 . . . jn+m)
is an even (resp., odd) permutation of (i1 . . . in+m).

Remark 1.2.6 The Schouten-Nijenhuis bracket is naturally preserved by any diffeomorphism φ :
M → N . Indeed, we recall that

φ∗[X,Y ] = [φ∗X,φ∗Y ] X,Y ∈ X1(N) (1.2.19)

where φ∗ is the pushforward of a diffeomorphism φ : M → N . It is easy to check, using the definition
of the Schouten-Nijenhuis bracket, that this can be extended to

φ∗JX,Y K = Jφ∗X,φ∗Y K, (1.2.20)

for any X, Y ∈ Xk(M) and any diffeomorphism φ.

The Schouten-Nijenhuis bracket allows us to characterize a Poisson manifold in a very convenient way.
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Theorem 1.2.7 A bivector field π is a Poisson tensor if and only if the Schouten-Nijenhuis bracket
of π with itself vanishes, i.e.

Jπ, πK = 0. (1.2.21)

It is easy to check, from Eq. (1.2.17), that in local coordinates we get

Jπ, πK =

(
πhi

∂

∂xh
πjk + πhj

∂

∂xh
πki + πhk

∂

∂xh
πij
)
∂

∂xi
∧ ∂

∂xj
∧ ∂

∂xk
. (1.2.22)

Then Eq. (1.2.21) is equivalent to the Jacobi rule (1.2.9).

Example 1.2.8 A canonical example is given by M = R2n, with coordinates (qi, pi), i = 1, · · · , n.
The canonical Poisson bracket of functions on the phase space is defined in Eq. (1.1.13) and the
corresponding Poisson bivector field is

π =
∂

∂pi
∧ ∂

∂qi
. (1.2.23)

It is easy to check that the bivector π defined above satisfies Eq. (1.2.21).

Using this characterization of Poisson manifolds and recalling Remark 1.2.6, we can say that the set
of Poisson structures is acted upon by the group of diffeomorphisms on M , that is

πφ := φ∗π, (1.2.24)

where φ∗ is the pushforward of φ : M →M . Indeed, by Eq. (1.2.20) we have

Jπφ, πφK = Jφ∗π, φ∗πK = φ∗Jπ, πK = 0. (1.2.25)

This implies that the set of diffeomorphisms φ : M →M defines a gauge group on the set of Poisson
structures.

1.3 Formal Poisson structures

We introduced the Poisson structure on a smooth manifold as a skew-symmetric contravariant bi-
tensor which satisfies the Jacobi identity. This structure and its gauge group can be easily extended
to formal power series. For this purpose, we briefly recall basic notions and properties of the theory
of formal power series.

1.3.1 Formal power series

Formal power series are a generalization of power series as formal objects, performed by substituting
variables with formal indeterminates. Formal essentially means that there is not necessarily a notion of
convergence; formal power series are purely algebraic objects and we essentially use them to represent
the whole collection of their coefficients. A detailed discussion on formal power series can be found
in [12], [9].

Given a sequence {an}n∈N0 of elements on a commutative ring k, a formal power series a is defined
by

a =
∞∑
n=0

tnan (1.3.1)

where t is a formal indeterminate. Two formal power series are equal if and only if their coefficients
sequences are the same.
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The set of formal power series in t with coefficient in a commutative ring k has also a structure of
ring, denoted by kJtK. Indeed, given two formal power series a, b ∈ kJtK, one defines addition of such
sequences by

a+ b =
∞∑
n=0

tn(an + bn), an ∈ k, (1.3.2)

and multiplication by

ab =
∞∑
n=0

tncn, cn =
n∑
k=0

akbn−k, an, bn ∈ k. (1.3.3)

With these two operations, the set kJtK becomes a commutative ring with 0 element (0, 0, . . . ), multi-
plicative identity (1, 0, 0, . . . ) and the invertible elements are the series with non-vanishing constant
term.

Given a vector space V over the ring k , we denote by V JtK the space of formal power series with
coefficients in V ,

v =

∞∑
n=0

tnvn, vn ∈ V. (1.3.4)

Elements in V JtK can also be summed term by term and

av =
∞∑
n=0

tncn, cn =
n∑
k=0

akvn−k, a ∈ kJtK, v ∈ V JtK. (1.3.5)

In other words, V JtK becomes a kJtK-module. The order of a formal power series is defined by the
minimum of the set of all non-negative integers n such that an 6= 0 and is denoted by o(v). If v = 0
the order is defined to be +∞. Furthermore, V JtK can be endowed with a metric defined by

d : V JtK× V JtK→ R : (v, w) 7→ d(v, w) :=

{
2−o(v−w), if v 6= w

0, if v = w.
(1.3.6)

It induces a Hausdorff topology, called the t-adic topology on V JtK.

Lemma 1.3.1 Let V1 and V2 be two k-modules and Φ : V1JtK → V2JtK be a kJtK-linear map. Then,
for any non-negative integer r there is a unique linear map Φr : V1 → V2 such that

Φ(v) =
∞∑
r=0

tr
r∑
s=0

Φs(vr−s) (1.3.7)

for all v =
∑∞

r=0 t
rvr ∈ V1JtK.

If k is a commutative ring, this Lemma can be generalized to the case of k-multilinear maps. It is
important to remark that if A is an algebra over the commutative ring k, the set of formal power
series AJtK with coefficients in A

a =
∞∑
n=0

tnan, an ∈ A (1.3.8)

forms an algebra over the ring kJtK. In fact, elements in AJtK can be composed by

ab =
∞∑
n=0

tncn cn =
n∑
k=0

akbn−k, an, bn ∈ A, (1.3.9)
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as AJtK is a kJtK-module. Notice that AJtK is an algebra of the same type of A; in particular if A is
unital associative, AJtK will be also unital and associative.

Let U be an open set in Rn such that 0 ∈ U and let f ∈ C∞(U). We denote by f̂ the formal
power series

f̂ =

∞∑
n=0

tn

n!
f (n)(0) (1.3.10)

where f (n) is the n-th derivative of the function f . A fundamental property of formal power series is
given by the following

Theorem 1.3.2 (Borel Lemma, first version) Given a sequence of real numbers {an} of non-
negative integers, there exists a smooth function f ∈ C∞(U) such that

1

n!
f (n)(0) = an ∈ CJtK. (1.3.11)

In other words, the mapping from C∞(U) to the ring of formal power series C∞(R)JtK given by f 7→ f̂
is a R-linear surjective algebra homomorphism.

The surjectivity of the map defined by Borel’s lemma is quite hard to prove; on the other hand, the
linearity is evident and we have

(fg)(n)(0) =
r∑
s=0

(
r

s

)
f (s)(0)g(r−s)(0), (1.3.12)

which implies f̂g = f̂ ĝ. An elementary proof of Borel’s lemma can be found in [4] and in [5]. This
lemma implies that we can view the formal power series as the (formal) Taylor expansion of a smooth
function at zero.

1.3.2 Formal Poisson structures

In order to extend Poisson structures to formal power series, we need to figure out what a formal
multivector field is. Using the notion of formal power series with coefficients on a vector space
discussed above, we can introduce the concept of formal vector field as follows.

Definition 1.3.3 (Formal vector field) A formal vector field is a formal power series

X =
∞∑
n=0

Xnt
n Xn ∈ X1(M). (1.3.13)

The set of formal vector fields is denoted by X1(M)JtK. This definition can be immediately extended
to multivector fields, thus a formal multivector field is an element in Xk(M)JtK, i.e. a formal power
series with coefficients in Xk(M). Finally, we can define the extension of Poisson structures to formal
power series as follows:

Definition 1.3.4 (Formal Poisson structure) A formal Poisson structure is a formal power se-
ries

πt = π0 + tπ1 + t2π2 + · · · =
∞∑
n=0

tnπn ∈ X2(M)JtK, (1.3.14)

where the πn’s are skew-symmetric vector fields on M , such that the Schouten-Nijenhuis bracket of πt
with itself vanishes order by order,

Jπt, πtK = 0. (1.3.15)
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Given a Poisson manifold (M,π), the formal Poisson structure can be interpreted as a formal defor-
mation of the structure π by setting π0 = π; the requirement (1.3.15) gives k equations, i.e.

Jπ, πK = 0, order 0
Jπ, π1K+ Jπ1, πK = 0, order 1

and generally, at order k ≥ 2

Jπ, πkK = −1

2

k−1∑
l=1

Jπl, πk−lK. (1.3.16)

A formal Poisson structure on M induces a Lie bracket on C∞(M)JtK by

{f, g}t :=
∞∑
n=0

tn
n∑

i,j,k=0
i+j+k=n

πi(dfj ,dgk), (1.3.17)

where

f =

∞∑
j=0

tjfj and g =

∞∑
k=0

tkgk. (1.3.18)

We recall that the gauge group on the set of Poisson structures is given by the diffeomorphisms on
M and the action is given by

πφ = φ∗π. (1.3.19)

To extend this action to the set of formal Poisson structures we consider paths of formal diffeomor-
phisms of M which start at the identity idM diffeomorphism. More explicitly, consider the one-
parameter group of diffeomorphisms φt on M with φ0 = idM . Given a Poisson structure π on M , φt
defines a deformed Poisson structure by

πt = (φt)∗π (1.3.20)

Using Eq. (1.3.10) we can find the formal version of πt. Since φt is the flow of a vector field X on M ,
we have

d(φt)∗
dt

= LX(φt)∗ = (φt)∗LX , (1.3.21)

for any t. It follows that
dn

dtn

∣∣∣∣
t=0

πt =
dn

dtn

∣∣∣∣
t=0

(φt)∗π = (LX)nπ. (1.3.22)

Thus, using Eq. (1.3.10), the formal power series of πt is given by

π̂t =

∞∑
n=0

dn

dtn

∣∣∣∣
t=0

πt = π + tLX π +
t2

2
(LX)2π + · · · =: exp(tLX)π. (1.3.23)

In other words, the gauge group is given by the formal diffeomorphism φt = exp(tLX). Notice that
the structure of a group is given by the Baker-Campbell-Hausdorff formula (BCH):

exp(tX) · exp(tY ) := exp

(
tX + tY +

1

2
t[X,Y ] + . . .

)
. (1.3.24)

We can generalize the above discussion to the case in which X is a formal vector field and we can
define the formal diffeomorphism on M as a RJtK-linear map φt : Xk(M)JtK→ Xk(M)JtK of the form
φt = exp(LX) with X ∈ tX1(M)JtK. Finally we can define the equivalence class of formal Poisson
structures as follows

Definition 1.3.5 (Equivalent formal Poisson structures) Two formal Poisson structures πt and
π̃t are said to be equivalent if there exists a formal diffeomorphism such that

πt = exp(tLX)π̃t. (1.3.25)
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Chapter 2

Deformation quantization and formality
theory

This chapter will be devoted to the theory of formal deformation quantization. We will recall the de-
scription of a quantum physical system in terms of a non-commutative algebra of operators (quantum
observables) on a Hilbert space.

The theory of deformation quantization aims to formalize the passage from classical physics to
quantum physics using the Dirac quantization rules as guideline. The first requirement for such a
theory to be consistent is the existence of a classical limit: a quantum system has to reduce to the
corresponding classical system when the limit of ~, the Planck constant, approaches zero. Therefore,
the quantization of a classical system should consist of a deformation of the same system in the pa-
rameter ~. Moreover, the quantization rules state that to any classical observable there corresponds a
quantum observable and that the Poisson bracket corresponds to the quantum commutator of corre-
sponding observables. These requirements can be implemented by demanding that the quantization
of a classical system shall be given by a star product, an associative non-commutative deformation of
the usual product on the algebra of classical phase space functions, that depends on ~ and such that
the associated commutator is a deformation of the Poisson bracket.

We will give a historical overview of the results by Groenewold [28] on the construction of maps
between classical and quantum observables, and of the notion of star product on symplectic manifolds,
the conditions for its existence [3] and the generalizations provided by De Wilde, Lecomte [16] and
Fedosov [20].

We will then define the star product as a formal deformation of an algebra, show its relation with
the Poisson structure and, after defining the concept of equivalent star products, we will discuss the
problem of classification. The above discussion will make clear that the main mathematical problem
of deformation quantization is the construction of a star product. In his well-known paper [38],
Kontsevich proved that, as a consequence of the formality theorem, this construction is possible for
any Poisson manifold and he solved the classification problem. This result will need the introduction
of the theory of deformations of associative algebras by Gerstenhaber and the Hochschild-Kostant-
Rosenberg theorem. Eventually, we will state Kontsevich’s formality theorem and we will show that
it implies that every Poisson manifold admits a formal quantization.

2.1 Quantum mechanics: standard picture

In the previous chapter we gave a brief introduction of classical mechanics, focusing in particular
on the Hamiltonian formulation. This picture can not be applied to the description of physical
phenomena at microscopic scales, where the action is of the order of the Planck constant ~. Quantum
mechanics was born at the beginning of the 20th century to describe these phenomena. In this section

17
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we aim to give a brief introduction of the standard formulation of quantum mechanics; we recall the
concepts of states and observables, emphasizing the differences with the classical ones, and we discuss
the time evolution of a quantum observable in the Heisenberg formulation. The reader is referred
to the classical literature on the subject, as e.g. [18], [42]. A nice presentation of the mathematical
foundations of quantum mechanics is given in [8].

In Section 1.1 we showed that, in classical mechanics, we can make simultaneous predictions
of conjugate variables, by solving Newton’s equations (1.1.7). In quantum mechanics this is not
possible and we can only predict the probability of outcomes of concrete experiments; the uncertainty
that we have in these predictions is quantified by the Heisenberg principle. For this reason we say
that quantum mechanics is a probabilistic theory and it deeply changed the philosophical concept
of our knowledge of reality. This forces us to use, in quantum mechanics, a different mathematical
formulation from the classical one discussed in Section 1.1.

First, we recall that in classical mechanics, the state of a physical system is described by a point
in the phase space. In quantum mechanics states are represented by unit vectors in a given (complex
separable) Hilbert space H. The physical system determines the nature of such a Hilbert space; for
instance, as we will see in the following, the Hilbert space for positions and momentum states is the
space of square-integrable functions. An observable, described in classical mechanics by a function
on the phase space, is represented by a linear self-adjoint operator f̂ on the Hilbert space H.

The canonical quantization of a classical system on the phase space R2n can be performed by
means of the correspondence principle; as already stated, the Hilbert space associated to such a
physical system is given by the square-integrable functions L2(Rn) on Rn and we can associate to
the classical observables qi and pj the quantum operators q̂i and p̂j as follows

qi → q̂i = qi

pj → p̂j = −i~
∂

∂qi
.

These operators satisfy the canonical commutation relations

[q̂i, p̂j ] = i~δij , (2.1.1)

and it is well known that these relations immediately led to the Heisenberg principle. Finally, the
Poisson bracket is mapped into the commutator of operators:

{f , g} → − i

~
[f̂ , ĝ ]. (2.1.2)

This rule is not well-defined, as it shows an ambiguity when products of classical observables are
involved; for instance,

{q3, p3}+
1

12
{{p2, q3}, {x2, p3}} = 0

1

i~
[
q̂3, p̂3

]
+

1

12i~

[
1

i~
[
p̂2, q̂3

]
,

1

i~
[
q̂2, p̂3

]]
= −3~2. (2.1.3)

The extra term −3~2 is not predicted by application of the canonical quantization rule.
In classical mechanics, given a physical observable f , its time evolution is governed by the equation

df

dt
= {H, f}, (2.1.4)
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where H is the Hamiltonian function associated to the physical system. Applying the correspondence
principle to this equation, i.e. substituting the operator f̂ to the function f and the commutator of
operators to the Poisson bracket we get

df̂

dt
=

i

~
[Ĥ, f̂ ], (2.1.5)

where Ĥ is the Hamiltonian operator, the observable associated to the energy of the physical sys-
tem. The Hamiltonian operator is, as in classical mechanics, a constant of motion. Equation (2.1.5)
coincides with the Heisenberg formulation for the time evolution of a quantum observable.

This short presentation of the quantum framework allows us to focus on an important difference
between classical and quantum physical systems. Indeed, on the one hand a classical system is
described by the commutative algebra of smooth functions on a manifold; on the other hand a
quantum system is described by a non-commutative algebra of operators. This observation led to
the idea that quantum mechanics can be regarded as a deformation of classical mechanics. In the
following section we discuss the general problem of the quantization and, in particular, the problems
related to a precise mathematical formulation of the correspondence between classical and quantum
systems.

2.2 Quantization: ideas and history

The main goal of this section is to introduce the reader the basic ideas of deformation quantization.
First, we introduce the fundamental problem of quantization and we briefly review the different
approaches that have been developed. Then we describe more carefully the deformation quantization
approach and we present the historical developments. Interesting reviews on the subject can be
found, for instance, in [10], [14], [36] and [29]. Furthermore, Sternheimer [53] describes the birth of
deformation quantization and its historical evolution.

In the previous section, we discussed what a physical system is in quantum mechanics and we
underlined the differences between the classical and the quantum framework. Quantization is a
procedure to pass from classical to quantum mechanics and it is natural to ask whether there is a
precise mathematical formulation for such a procedure, which solves the ambiguity of the canonical
quantization discussed above. As already pointed out, from Equation (2.1.1) we can observe that
the observables in quantum mechanics, unlike those in classical mechanics, do not commute with one
another. For this reason, the first attempt to quantize a classical system could consist in looking
for a correspondence Q : f 7→ Q(f), mapping a function f to a self-adjoint operator Q(f) on a
Hilbert space H, which gives us the non-commutative structure of the algebra of operators from the
commutative one C∞(M). The correspondence Q should satisfy the following properties

i.) Q(1) = I, Q(q) = q̂ and Q(p) = −i~ ∂
∂q ,

ii.) f 7→ Q(f) linear,

iii.) [Q(f), Q(g)] = i~Q({f, g}),

iv.) for any φ : R→ R, Q(φ ◦ f) = φ(Q(f)).

The condition (iv) is usually known as the von Neumann rule and it essentially ensures that a poly-
nomial of function gets mapped into a polynomial of operators. Unfortunately, there is no such
correspondence, as these properties are mutually inconsistent (the inconsistency appears even if we
require only the conditions (i), (ii) and (iv)), see e.g [1]. Indeed Groenewold proved in [28] that the
Poisson algebra C∞(M) can not be quantized in such a way that the Poisson bracket of two classical
observables is mapped into the Lie bracket of the correspondent operators.
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There are different mathematical approaches to this quantization problem. A first approach
was given by geometric quantization, which aims to find a relation between the phase space and the
corresponding Hilbert space. It accepts the conditions (i)-(ii)-(iii) but restricts the space of quantizable
observables to exclude problematic terms (as the ones showed in Equation 2.1.3). This approach is
due to Souriau [52], Konstant [39] and Segal [51]. The quantization of a particular class of Kähler
manifolds was studied in Berezin’s quantization [4], [5]. Finally, the approach we are most interested
in, the so-called deformation quantization, is a quantization procedure which satisfies properties i-ii
and the condition iii only asymptotically in the limit ~ → 0. This theory was introduced in [23],
[22] and developed in [3], where the authors suggest to deform the pointwise product of functions to
get a non-commutative one. This implies that quantization is “a deformation of the structure of the
algebra of classical observables rather than a radical change in the nature of the observables”. In the
following, the non-commutative product (called star product) is given by a formal deformation of the
algebraic structure of C∞(M). The concept of formal deformation will be clarified in next sections,
but here we want to remark that it refers to the fact that the star product is given as a formal power
series (defined in Section 1.3.1). A non-formal approach to the problem of quantization, called strict
deformation quantization, produces quantum algebras of observables not just in the space of formal
power series but in terms of C?-algebras, as suggested by Rieffel in [50]. The relation between formal
deformation quantization and strict deformation quantization has been subject of several studies. The
basic idea is that, given a formal deformation quantization, the subalgebra of converging power series
should give somehow a strict deformation quantization, but the only example where this relation is
clear is given by the standard Poisson structure on R2n. Convergence of formal power series in formal
deformation quantization has been studied by several authors, e.g. [11], [46]. In the present notes
we focus our attention on the formal deformation quantization, referring the reader to [48], [49] for a
precise presentation of strict deformation quantization.

The origins of the (formal) deformation quantization can be found in Weyl’s quantization proce-
dure [57]; given a classical observable u(p, q) on the phase space Rn, Weyl found an explicit formula
to associate to u an operator (the quantum observable) Ω(u) in the Hilbert space L2(R2n):

u 7→ Ω(u) :=

∫
R2n

ũ(ξ, η)e
i
~ (p̂·ξ+q̂·η) dnξ dnη (2.2.1)

where ũ is the inverse Fourier transform of u and p̂i and q̂j are operators satisfying the canonical
commutation relation (2.1.1); here the integral is taken in the weak operator topology. Subsequently,
Wigner [58] found an inverse formula, which maps an operator into its symbol and Moyal [43] found
an explicit formula for the symbol of a quantum commutator (which is now called Moyal bracket):

M(u, v) =
sinh(tP )

t
= P (u, v) +

∞∑
k=1

t2k

(2k + 1)!
P 2k+1(u, v) (2.2.2)

where t = i~
2 and P k is the k-th power of the Poisson bracket (??) on R2n. The classical symbol of

a product Ω(u)Ω(v) had already been found by Groenewold [28] and can be interpreted as the first
appearance of the Moyal product (denoted by ?M ); indeed we can rewrite the above bracket as

M(u, v) =
1

2t
(u ?M v − v ?M u). (2.2.3)

The interpretation of this product as a non-commutative deformation of the pointwise product on
the algebra of classical observables is due to Flato et al. and can be found in their seminal paper
[3]. They used Gerstenhaber’s deformation theory to describe quantum mechanics as a deformation
of classical mechanics and found several applications. In particular, they proved the existence of a
star product on a generic symplectic manifold (a symplectic manifold is a pair (M,ω), where M is a
smooth manifold and ω is a closed, non-degenerate 2-form on M) admitting a flat connection.
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The problem of existence of deformation quantization on a generic symplectic manifold had been
further developed (some interesting discussions on the topic can be found already in [54] and in [44])
and was solved by de Wilde and Lecomte in [16], using cohomological arguments. Independently, the
existence of star products was proved by Omori, Maeda and Yoshika [47] and a few years earlier by
Fedosov [20] (we invite the reader to refer to Fedosov’s book [21]).

In subsequent works, the problem of the classification of equivalent star products was also settled
by several authors. The equivalence of deformations had already been studied by Gerstenhaber [25]
and Flato et al. claimed in [2] that the equivalence is linked with the second de Rham cohomology
of any symplectic manifold. This result has been proved with different approaches, first by Nest and
Tsygan [45], then Deligne [17] and Bertelson-Cahen-Gutt [7].

The existence and classification of star products for any finite dimensional Poisson manifold has
been first conjectured [37] and then proved [38] by M. Kontsevich. Afterwards, parametrizations
of equivalence classes of special star products have been obtained, e.g. star products with separa-
tion of variables [35], invariant star products on a symplectic manifold with an invariant symplectic
connection [6] and algebraic star products [15].

In the following sections we introduce Kontsevich’s theory and in the next chapter we briefly
discuss Kontsevich’s formula of a star product on Rn and further developments of this theory.

2.3 Star products and classification

We introduced the main idea of deformation quantization, the deformation of the classical algebra of
functions to get a non-commutative one (the so-called star product), which would give a description of
the quantum algebra of observables. In this section we start discussing some more technical aspects;
in particular, we define a formal deformation of a generic algebra and we discuss the star product as
a particular case of formal deformation. These definitions allow us to understand how crucial the role
of the Poisson bracket is in deformation quantization; we introduce the notion of equivalence of star
products and formulate the problem of their classification. Furthermore, we state the main result
obtained by M. Kontsevich [38], which solves the classification problem of star products.

Let k be a commutative ring and A an algebra over k. Let us consider the ring kJtK of formal
power series in t and the algebra AJtK of formal power series over kJtK with coefficients in A.

Definition 2.3.1 A formal deformation of the multiplication of A is a kJtK-bilinear map

? : AJtK×AJtK→ AJtK (2.3.1)

such that, for any u, v ∈ AJtK

u ? v = uv mod t (2.3.2)

where uv is the multiplication of formal power series defined in Eq. (1.3.9).

The star product is first defined on A: the product of two elements a, b ∈ A is given by

a ? b = a · b+ P1(a, b)t+ P2(a, b)t2 + · · ·+ Pn(a, b)tn + . . . (2.3.3)

where Pi’s are k-bilinear maps on A and we denote by · the multiplication of A. Putting P0(a, b) = a·b
we can write

a ? b =
∞∑
n=0

Pn(a, b)tn. (2.3.4)

The extension to formal power series by kJtK-bilinearity is given by( ∞∑
k=0

fkt
k

)
?

( ∞∑
l=0

glt
l

)
=
∑
n=0

( ∑
k+l+m=n

Pm(fk, gl)

)
tn (2.3.5)
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for fk, gl ∈ A. The ?-product is associative if, for any n ≥ 0∑
i+j=n

Pi(Pj(a, b), c) =
∑
i+j=n

Pi(a, Pj(b, c)) a, b, c ∈ A (2.3.6)

Again, the associativity can be extended to AJtK by kJtK-bilinearity. It is evident that a necessary
condition for the associativity of ? is that the multiplication a · b is associative. We also remark that
the star product is a continuous operation with respect to the t-adic topology introduced in Section
1.3.1. Assume that A is associative and commutative, with a unit element 1. An associative formal
deformation of A is given by a formal power series (2.3.4), where {Pn}n∈N0 is a sequence of k-bilinear
maps such that the product ? is associative. It can be proved that an associative formal deformation
of A admits a unit element.

Furthermore, defining

{a, b} := P1(a, b)− P1(b, a) a, b ∈ A, (2.3.7)

we can easily prove that the operation {·, ·} is a Poisson bracket on A, as it satisfies the requirements
of Def. ??. First, we observe that the bracket

[a, b]? :=
1

t
(a ? b− b ? a) (2.3.8)

is a Lie bracket. Indeed, it is skew-symmetric and bilinear by definition and the Jacobi identity follows
from the associativity of the ? product. The bracket {·, ·} equals the reduction modulo t of [·, ·]?; thus
it is still a Lie bracket. Finally, the Leibniz identity of [·, ·]? is also a consequence of the associativity
of ?, thus we can conclude that the operation {·, ·} is a Poisson bracket on A.

An example of particular interest is given by the algebra C∞(M) of real-valued smooth functions
on a smooth manifold M introduced in Section 1.2, where the product is given by

f · g(x) := f(x)g(x) ∀x ∈M (pointwise product) (2.3.9)

and is clearly associative and commutative. Recall that an application P : C∞(M)×· · ·×C∞(M)→
C∞(M) is a multidifferential operator if in each local coordinates (x1, . . . , xn) on M we have

P (f1, . . . , fm) = αk1...kn

∂f1

∂xk1
. . .

∂fn
∂xkm

, (2.3.10)

where ki are multi-indices and αk1...kn are smooth functions locally defined.

Definition 2.3.2 A star product on M is an associative formal deformation of C∞(M)

? : C∞(M)JtK× C∞(M)JtK→ C∞(M)JtK (2.3.11)

given by

f ? g = f · g +

∞∑
n=1

Pn(f, g)tn (2.3.12)

where the R-bilinear maps Pn : C∞(M)× C∞(M)→ C∞(M) are bi-differential operators.

As pointed out in [14], the Pi’s could in principle be just bilinear maps; bidifferential operators are
defined only locally, so this requirement encodes the locality of quantum physics. More precisely, one
requires that, in local coordinates,

Pi(f, g) =
∑
K,L

αKLi
∂f

∂xK
∂g

∂xL
(2.3.13)
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where K = (k1, . . . , km) and L = (l1, . . . , ln). The αKLi ’s are smooth functions, which are non-zero
only for finitely many choices of K and L. Furthermore, we require that the unit element of C∞(M)
is preserved by the star product, i.e.

f ? 1 = 1 ? f = f ; (2.3.14)

using the expression (2.3.12) we have

Pn(f, 1) = Pn(1, f) = 0 ∀n ≥ 1. (2.3.15)

This means that the Pn’s are bi-differential operators with no term of order 0.
As discussed above, the operation {f, g} := P1(f, g)−P1(g, f) is a Poisson bracket for any elements

f, g ∈ C∞(M). This implies that M is a Poisson manifold with Poisson structure given by

{f, g} = π(df,dg), π ∈ X2(M). (2.3.16)

Example 2.3.3 (Moyal Product) The simplest example of a deformed product on C∞(R2n) is
the Moyal product. Let us consider the manifold M = R2n with the 2n-variables

(q, p) = (q1, . . . , qn, p1, . . . , pn)

We can give an explicit formula for the product of two elements f, g ∈ C∞(R2n)

f ? g(q, p) = f(q, p) exp

(
i~
2

(←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q

))
g(q, p), (2.3.17)

where the
←−
∂ ’s operate on f and the

−→
∂ ’s on g and the parameter t has been replaced by i~

2 , in
accordance with the physical literature. More generally, we can define a star product on Rn by

f ? g = fg +
i~
2
πij

∂f

∂xi
∂g

∂xj
+

(
i~
2

)2

πijπkl
∂

∂xi

∂f

∂xk

∂

∂xj

∂g

∂xl
+ . . . (2.3.18)

where {πij} is a constant skew-symmetric tensor on Rn with i, j = 1, . . . , n. This expression gives us
the sequence of RJtK-bilinear bi-differential operators Pn as follows:

Pn(f, g) =
n∏
k=1

πikjk

(
n∏
k=1

∂

∂xik

)
f

(
n∏
k=1

∂

∂xjk

)
g (2.3.19)

A more elegant expression than (2.3.18) is given by:

f ? g = 〈df ⊗ dg, e
i~
2
π〉 (2.3.20)

or, equivalently

f ? g(x) = exp

(
i~
2
πij

∂

∂xi
∂

∂yj

)
f(x) g(y)

∣∣∣
y=x

(2.3.21)

This operation defines an associative formal deformation of Rn. Indeed we have:

((f ? g) ? h)(x) = exp

(
i~
2
πij

∂

∂xi
∂

∂zj

)
(f ? g)(x)h(z)

∣∣∣
z=x

= exp

(
i~
2
πij(

∂

∂xi
+

∂

∂yi
)
∂

∂zj

)
exp

(
i~
2
πkl

∂

∂xk
∂

∂yl

)
f(x)g(y)h(z)

∣∣∣
x=y=z
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= exp

(
i~
2
πij

∂

∂xi
∂

∂zj
+ πkl

∂

∂yk
∂

∂zl
+ πmn

∂

∂xm
∂

∂yn

)
f(x)g(y)h(z)

∣∣∣
x=y=z

= exp

(
i~
2
πij

∂

∂xi
(
∂

∂yj
+

∂

∂zj
)

)
exp

(
i~
2
πkl

∂

∂yk
∂

∂zl

)
f(x)g(y)h(z)

∣∣∣
x=y=z

= (f ? (g ? h))(x). (2.3.22)

It is evident that Pi(f, 1) = Pi(1, f) = 0 for any i ≥ 1, thus the condition f ? 1 = 1? f = f is satisfied.
Putting {f, g} = P1(f, g)− P1(g, f) we get the local expression of the Poisson bracket (see Eq. (??))

{f, g} = πij
∂f

∂xi

∂g

∂xj
. (2.3.23)

In particular, forM = R2n, using the Moyal product (2.3.17) we get the canonical Poisson bracket

{f, g} =
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, (2.3.24)

introduced in Section 1.1.

From the above discussion turns out that an associative (non commutative) formal deformation
? of an associative commutative algebra A defines a Poisson bracket on A. We can prove that this
Poisson bracket only depends on the equivalence class of ?, where the concept of equivalence is
introduced in terms of automorphisms of AJtK as follows. Consider a generic algebra AJtK of formal
power series over kJtK and two formal deformations ? and ?′. Let J be the group of automorphisms
T of AJtK such that

T (u) = u mod tAJtK. (2.3.25)

for any u ∈ AJtK.

Definition 2.3.4 Given two star products ? and ?′, they are considered equivalent if there exists an
element T ∈ J such that for any u, v ∈ AJtK

T (u ? v) = T (u) ?′ T (v). (2.3.26)

The automorphism T is determined by its restriction to A

T (a) =
∞∑
n=0

Tn(a)tn a ∈ A, (2.3.27)

where Ti : A → A are k-linear maps with T0(a) = a. Thus, the relation (2.3.26) is equivalent to the
set of relations ∑

i+j=n

Ti(Pj(a, b)) =
∑

i+j+l=n

P ′l (Ti(a), Tj(b)) a, b ∈ A. (2.3.28)

In the particular case in which the algebra A is the algebra of smooth functions on M , the Ti’s have
to be differential operators which vanish on constants, as was proved in [30]. We denote by [ ? ] the
equivalence class of star products relative to the previous definition of equivalence. We can prove
that different star products belonging to the same equivalence class induce the same Poisson bracket,
simply by setting (2.3.7). More precisely,

Lemma 2.3.5 Let ? be a star product on C∞(M). The Poisson bracket

{f, g} = P1(f, g)− P1(g, f) f, g ∈ C∞(M) (2.3.29)

depends only on the equivalence class [ ? ].
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Proof: Consider two equivalent star products ? and ?′, i.e.

T (a ? b) = T (a) ?′ T (b) (2.3.30)

Expanding the formal power series of T , ? and ?′, the term in t of this equation reads

P1(f, g) + T1(fg) = P ′1(f, g) + T1(f)g + fT1(g). (2.3.31)

This implies that P1(f, g)− P ′1(f, g) is symmetric in f, g, hence it does not contribute to {f, g}. �

This means that given an equivalence class of star products on C∞(M), it induces a Poisson
structure π on the manifold M . At this stage it is not clear whether, given a Poisson manifold,
there exists a star product with the first term equal to the given Poisson structure and whether there
exists a preferred choice of an equivalence class of star products. This problem has been solved by
Kontsevich in [38], where he proved that there is a canonical construction of an equivalence class of
star products for any Poisson manifold. More precisely, recalling the notion of equivalence classes of
formal Poisson structures discussed in Sect. 1.3, we have the following

Theorem 2.3.6 (Kontsevich, [38]) The set of equivalence classes of star products on a smooth
manifold M can be naturally identified with the set of equivalence classes of formal Poisson structures

π = πt = tπ1 + t2π2 + · · · ∈ X2(M)JtK [π, π]S = 0 (2.3.32)

modulo the action of the group of formal paths in the diffeomorphisms group of M , starting at the
identity diffeomorphism.

Any given Poisson structure π gives a path πt := πt and, by the above theorem, a canonical
equivalence class of star products. This implies that any Poisson manifold admits a canonical formal
deformation (also said canonical deformation quantization). This implication will be discussed in
detail in Section 2.7.2.

The simplest example of a star product is the Moyal product for the Poisson structure on Rn with
constant coefficients

π = πij
∂

∂xi
∧ ∂

∂xj
πij = −πji (2.3.33)

for i = 1, . . . , n, as discussed in Example 2.3.3.

2.4 Deformations and Differential graded Lie Algebras

As mentioned above, the classification problem was solved by proving the existence of a bijection
between the equivalence class of star products and the equivalence class of Poisson structures. Kontse-
vich proved the existence of such a bijection using the ideas of deformation theory, where deformation
problems are governed by differential graded Lie algebras (DGLA). In this section we introduce the
basic notion of DGLA and we discuss, roughly, how a deformation problem is attached to a DGLA.
Given a DGLA L, we can define the deformations of L as the set of solutions of the Maurer-Cartan
equation modulo gauge action (as it will be defined in Section 2.4.3).

An exhaustive review of deformation theory can be found in [40], where the deformation problem
is treated by using category language. In these notes we aim to discuss the specific examples of
deformation problems which are useful to prove Theorem 2.3.6. In particular, considering the DGLA
of multivector fields, we can rephrase the equivalence class of Poisson structures in terms of Maurer-
Cartan elements of this DGLA modulo gauge action (see Sect. 2.4.4). On the other hand, the
equivalence class of star products can be rewritten in deformation theory by means of the DGLA of
multidifferential operators.
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2.4.1 Lie algebras

The notion of Lie algebra has been already used in the previous chapter; nevertheless, as it is crucial
in this section, we recall it briefly and we discuss some properties which will be useful in the discussion
of differential graded Lie algebras and in particular in the definition of a gauge group. An exhaustive
treatment of this subject can be found in the literature, as e.g. [12], [31].

Definition 2.4.1 A Lie algebra is a vector space L over a field k together with an operation [·, ·] :
L× L→ L which satisfies the following properties:

i.) The bracket operation is bilinear

ii.) [x, y] = −[y, x] (skew-symmetry)

iii.) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity)

If L1, L2 are Lie algebras, then a linear map φ : L1 → L2 is a Lie algebra homomorphism if
φ([x, y]) = [φ(x), φ(y)] for any x, y ∈ L. If φ is one-to-one and onto we say that φ is an isomorphism
of Lie algebras. A Lie algebra isomorphism of L onto itself is called Lie algebra automorphism.

A linear subspace K ⊂ L is called a Lie subalgebra if [x, y] ∈ K for any x, y ∈ K.

Example 2.4.2 The space End(V ) of all linear endomorphisms of a vector space V is a Lie algebra
with bracket [f, g] = fg − gf . If V is finite dimensional then the subspace sl(V ) ⊂ End(V ) of
endomorphisms with trace equal to zero is a Lie subalgebra.

For any associative algebra A we can associate a Lie algebra AL with bracket equal to the commu-
tator [a, b] = ab−ba. It is important to remark that not every Lie algebra operation is the commutator
of an associative product.

Example 2.4.3 Let A be an associative algebra over k. The vector space of derivations of A

Der(A,A) := {d ∈ End(A) : d(ab) = (da)b+ a db} (2.4.1)

is a Lie subalgebra of End(A).

Example 2.4.4 Let L be a Lie algebra over k and A a commutative and k-associative algebra. Then
the tensor product L⊗kA can be made into a Lie algebra with bracket given by the bilinear extension:

[u⊗ a, v ⊗ b] = [u, v]⊗ ab. (2.4.2)

A representation of a Lie algebra L on a vector space V is a Lie algebra homomorphism φ : L →
End(V ). One of the most important examples of Lie algebra representations is given by the adjoint
action of a Lie algebra L, defined by the homomorphism

ad(a) = [a, · ] : L→ End(L) : ad(x)(y) := [x, y]. (2.4.3)

A crucial notion in this context, needed to define the equivalence classes of deformations, is the
exponential map. In order to introduce it and discuss its properties, we need the notion of nilpotency
(the interested reader can find a more detailed discussion, with proofs and examples in [41]). First,
we need the following

Definition 2.4.5 Let L be a Lie algebra. Using the notation

[U, V ] = span{[u, v] : u ∈ U, v ∈ V }

the descending central series L(n) of L is defined as

L(1) = L, L(2) = [L,L], L(n) = [L,L(n−1)]
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Lemma 2.4.6 In the above notation we have:

i.) L(n+1) ⊆ L(n) for any n ≥ 0

ii.) [L(i), L(j)] ⊂ L(i+j) for any i, j.

Definition 2.4.7 A Lie algebra L is called nilpotent if L(n) = 0 for some n� 0.

If L is nilpotent, then ad(x) ∈ End(L) is nilpotent for any x ∈ L. The converse is true when L is
finite dimensional.

We remark that in general a Lie algebra is not associated to an associative product. For any
nilpotent Lie algebra there exists an associative product, called Baker-Campbell-Hausdorff product,
which allows us to define the group

expL = {ea : a ∈ L} (2.4.4)

of formal exponentials of elements of L. More precisely,

Theorem 2.4.8 For every nilpotent Lie algebra L there is an associative product • : L×L→ L such
that

i.) If f : L→ L′ is a morphism of nilpotent Lie algebras then

f(a • b) = f(a) • f(b) (2.4.5)

ii.) If I ∈ A is a nilpotent ideal of the associative algebra A and for a ∈ I we define

ea =
∞∑
n=0

an

n!
∈ A (2.4.6)

then
ea•b = ea · eb, (2.4.7)

where · denotes the usual product in A.

The associative product • is defined by the Baker-Campbell-Hausdorff formula:

a • b = a+ b+
1

2
[a, b] +

1

12
[a, [a, b]] +

1

12
[b, [a, b]] + . . . (2.4.8)

Notice that, if L is a Lie subalgebra of a nilpotent ideal of a unitary associative algebra A then (2.4.8)
holds and the BCH product on L is also associative.

Proposition 2.4.9 In the above notation

i.) for every a, b ∈ A and n ≥ 0

[a, · ]nb =
n∑
i=0

(−1)i
(
n

i

)
an−ibai =

n∑
i=0

(
n

i

)
an−ib(−a)i. (2.4.9)

ii.) If a is nilpotent in A then also ad(a) is nilpotent in End(A) and therefore it yields a well-defined
invertible operator

e[a,· ] =
∑
n≥0

[a, · ]n

n!
∈ End(A). (2.4.10)
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For every nilpotent Lie algebra L there exists a natural bijection e : L → expL satisfying the
following properties:

i.) Let V be a vector space and f : L → End(V ) a Lie algebra homomorphism. If the image of L
is contained in a nilpotent ideal, then the map

exp(f) : exp(L)→ Aut(V ), exp(f)(ea) = ef(a), (2.4.11)

is a homomorphism of groups (here ef(a) denotes the usual exponential of endomorphisms).

ii.) If f : L→ End(V ) = P is a representation of L as above and [f, ·] : L→ End(P ) is the adjoint
representation, then for every a ∈ L, g ∈ End(V )

e[f , · ](ea)g = ef(a) g e−f(a). (2.4.12)

2.4.2 Differential Graded Lie Algebras

In this section we aim to introduce the basic tools of differential graded Lie algebras and to give
some basic examples, which are useful for the goals of this chapter. A more extensive introduction of
differential graded algebras in the context of deformation theory can be found in the lecture notes by
M. Manetti, [40] and [41].

Let Z be the set of integers. A Z-graded vector space, often called simply a graded vector space,
is a vector space V which decomposes into a direct sum of the form V =

⊕
n∈Z Vn, where each Vn is

a vector space. Elements of any factor Vn of the decomposition are called homogeneous elements of
degree n; if v ∈ Vn, we denote v̄ = deg(v).

Definition 2.4.10 A differential graded vector space is a graded vector space V =
⊕

n∈Z Vn together
with a linear map d : V → V , called differential, such that d(V n) ⊂ V n+1 for any n and d2 = d◦d = 0.

Every complex of vector spaces (V n, d)

· · · −→ V n d−→ V n+1 d−→ V n+2 −→ · · · (2.4.13)

can be considered as a DG vector space.

Definition 2.4.11 A DG (commutative) algebra is a differential graded vector space A together with
a product

A⊗A→ A : a⊗ b 7→ ab, (2.4.14)

which satisfies, for any a ∈ An, b ∈ Am,

i.) associativity, (ab)c = a(bc)

ii.) graded commutativity, ab = (−1)āb̄ba

iii.) graded Leibniz rule, d(ab) = d(a)b+ (−1)āad(b)

Definition 2.4.12 A differential graded Lie algebra (DGLA) is a DG vector space (L, d) endowed
with a bilinear operation

[·, ·] : L⊗ L→ L, (2.4.15)

homogeneous of degree 0, i.e. [Li, Lj ] ⊂ Li+j, satisfying the following conditions, for any a ∈ An,
b ∈ Am:

i.) graded skew-symmetry, [a, b] = −(−1)āb̄[b, a]
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ii.) graded Jacobi identity, [a, [b, c]] = [[a, b], c] + (−1)āb̄[b, [a, c]]

iii.) graded Leibniz rule, d([a, b]) = [d(a), b] + (−1)ā[a,d(b)].

Given a DGLA L, we define
Zi(L) := ker(d : Li → Li+1)

and
Bi(L) := Im(d : Li−1 → Li).

The cohomology group associated to a DGLA L is given by

H i(L) :=
Zi(L)

Bi(L)
. (2.4.16)

The set H :=
⊕

iH
i(L) has a natural structure of graded Lie algebra. Indeed, it inherits the GLA

structure defined on equivalence classes |a|, |b| ∈ H by

[|a|, |b|]H := |[a, b]|. (2.4.17)

Finally, H is a DGLA by setting d = 0.

Example 2.4.13 Every Lie algebra is a DGLA concentrated in degree 0.

Example 2.4.14 Consider a DG vector space (V,d) and denote

Hom•(V, V ) =
⊕
i∈Z

Homi(V, V )

where Homi(V, V ) = {f : V → V linear |f(V n) ⊂ f(V n+i), ∀n}. The bracket [f, g] = fg − (−1)f̄ ḡgf
and the differential δf = [d, f ] = df − (−1)f̄f d makes Hom•(V, V ) a DGLA.

Example 2.4.15 Given a DGLA L and a graded commutative k-associative algebra m, then L⊗m
has a natural structure of DGLA by setting

(L⊗m)n = ⊕i(Li ⊗mn−i),

d(x⊗ a) = dx⊗ a,
[x⊗ a, y ⊗ b] = (−1)pr[x, y]⊗ ab (2.4.18)

for any a ∈ mp, b ∈ m, x ∈ L and y ∈ Lr. Notice that, if m is nilpotent, the DGLA L ⊗ m is also
nilpotent.

Example 2.4.16 Let M be a differentiable manifold and Lk := Xk+1(M). It is easy to check that
the space L :=

⊕
k∈Z L

k has a DGLA structure given by the Schouten-Nijenhuis bracket (??) and
d = 0.

Example 2.4.17 Let A be an associative algebra overK with multiplicationm : A⊗A→ A. Denote
by Li = Hom(A⊗

i+1
, A) for any i ≥ −1. Define

◦ : Li × Lj → Li+j (2.4.19)

by
φ ◦ ψ(a0, . . . , ai+j) =

∑
s

(−1)sjφ(a0, . . . , as−1, ψ(as, . . . , as+j), . . . ai+j). (2.4.20)

It is a DGLA, called Hochschild DGLA, by setting

[φ, ψ]G = φ ◦ ψ − (−1)φ̄ψ̄ψ ◦ φ (2.4.21)

and
dφ = [m,φ]G. (2.4.22)
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The last two examples are crucial in the discussion of Kontsevich’s result and will be treated more
extensively in the following sections.

Definition 2.4.18 A morphism of DGLA is a linear homogeneous map f : L1 → L2 of degree zero,
such that

f ◦ d = d ◦ f (2.4.23)

and
f([x, y]) = [f(x), f(y)]. (2.4.24)

It is important to remark that a morphism f : L1 → L2 of DGLA’s induces a morphism H(f) :
H1 → H2 in cohomology; more precisely, it induces a sequence of homomorphisms Hn(f) : Hn(L1)→
Hn(L2).

Definition 2.4.19 A quasi-isomorphism is a morphism of DGLA’s inducing isomorphisms in coho-
mology.

We observed that the cohomology (2.4.16) of a DGLA L is itself a differential graded Lie algebra with
the induced bracket (2.4.17) and zero differential. Furthermore, we have

Definition 2.4.20 A differential graded Lie algebra L is formal if it is quasi-isomorphic to its coho-
mology, regarded as a DGLA with zero differential and the induced bracket.

This definition is crucial for stating the formality theorem; it means that the DGLA structure of a
complex and a cohomology complex are preserved and the induced cohomology groups are isomorphic.

2.4.3 Maurer-Cartan equation and gauge action

Eventually, we can discuss how the concept of deformation is attached to a differential graded Lie
algebra via the solutions to the Maurer Cartan equation modulo the action of a gauge group. First,
we introduce the Maurer-Cartan equation of a DGLA and the gauge group and we extend them to
the formal counterpart of a DGLA. As already announced, here we do not discuss the deformation
theory in detail but we simply give the necessary notions to discuss concrete examples of deformation.

Definition 2.4.21 Given a DGLA L, the Maurer-Cartan equation of L is

da+
1

2
[a, a] = 0 a ∈ L1, (2.4.25)

We denote by MC(L) ⊂ L1 the set of solutions of the Maurer-Cartan equation. It is evident that the
Maurer Cartan equation is preserved under morphisms of differential graded Lie algebras.

One of the main goals of this section is the construction of a group which preserves the set
of solutions of the Maurer-Cartan equation. This allows us to discuss the idea of how to attach
deformations to DGLAs. As discussed in Section 2.4.1, for every Lie algebra L the set defined as
exp L := {ea, a ∈ L} can be endowed with the structure of a group via the BCH formula (2.4.8); it
is well-defined in the case in which L is nilpotent as the infinite sum reduces to a finite one. Let us
consider, in particular, the DGLA L ⊗ m discussed in Example 2.4.15 with m nilpotent and under
the assumption that L0 ⊗ m is nilpotent (in the conventional approach m is a maximal ideal in a
finite-dimensional Artin ring: we do not discuss it here, but a review of functors of Artin rings can
be found in [40]). Under these assumptions we can define a group G0 simply by exponentiating the
nilpotent algebra L0 ⊗m. Indeed, for every a ∈ L0 ⊗m, the corresponding adjoint operator

ad(a) = [a, · ] : L→ L, [a, · ](b) = [a, b] (2.4.26)
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is a nilpotent derivation of degree 0 and then its exponential

e[a,·] : L→ L e[a,· ]b =
∞∑
n=0

[a, ·]n

n!
b (2.4.27)

is an automorphism of the DGLA L⊗m. In other words,

G0(L) := exp (L0 ⊗m) = {Φ : L⊗m→ L⊗m|Φ = e[a,· ], a ∈ L0 ⊗m} (2.4.28)

is a subgroup of the automorphisms of L of degree 0. As discussed above, the group structure is given
by the BCH formula (2.4.8). In order to define the gauge action of G0 on L1 ⊗ m, or more precisely
on MC(L⊗m) ⊂ L1 ×m, we need some more properties of DGLAs.

Lemma 2.4.22 If W is a linear subspace of Li and [L0, Li] ⊂W , then

e[a,·](v + w) = v +

∞∑
n=1

1

n!
[a, ·]n−1([a, v]) +

∞∑
n=0

[a, ·]n

n!
w︸ ︷︷ ︸

∈W

(2.4.29)

for any a ∈ L0, v ∈ Li and w ∈W .

Notice also that, given a DGLA L ⊗ m, the set Z = {x ∈ L1 ⊗ m|[x, x] = 0} is stable under the
adjoint action of G0,

e[a,·](Z) ⊂ Z. (2.4.30)

The set Z can be related to the set of solutions of the Maurer-Cartan equation as follows. Given a
DGLA (L, [·, ·],d) we can construct another DGLA L′ by setting

(L′)i = Li ∀i 6= 1 and (L′)1 = L1 ⊕ k d (2.4.31)

with bracket [·, ·]′ defined by

[a+ v d, b+ w d]′ = [a, b] + v db+ (−1)āw da (2.4.32)

and differential d′

d′(a+ v d) = [d, a+ v d]′ = da. (2.4.33)

The natural inclusion L ⊂ L′ is a morphism of DGLA. Consider the affine embedding φ : L1 → (L′)1 :
φ(a) = a+ d; it allows us to characterize the Maurer-Cartan equation as follows

da+
1

2
[a, a] = 0⇔ [φ(a), φ(a)]′ = 0. (2.4.34)

In other words, given a DGLA L, the set of solutions of the Maurer-Cartan equations of L coincides
with the set Z of L′. Furthermore, [L0, (L′)1] ⊂ L1 and, in particular, if L is nilpotent then also L′

is nilpotent. This implies that we can apply Lemma 2.4.22 to L′ and we can define the gauge action
of G0(L) on L′1. More precisely, in the case of L⊗m with m nilpotent, we have

Definition 2.4.23 The gauge action of G0 on L1 ⊗m is defined by

e[a,· ] · b := φ−1(e[a,· ]φ(b)) = e[a,· ](b+ d)− db (2.4.35)

for any a ∈ L0 ⊗m. Explicitly we have

e[a,· ] · b =

∞∑
n=0

[a, · ]n

n!
(b) +

∞∑
n=1

[a, · ]n

n!
(d)
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=
∞∑
n=0

[a, · ]n

n!
(b) +

∞∑
n=1

[a, · ]n−1

n!
(da)

= b+

∞∑
n=0

[a, · ]n

(n+ 1)!
([a, b]− da). (2.4.36)

We can finally say that two elements x, y ∈ L ⊗ m are gauge equivalent if there exists a ∈ L0 ⊗ m
such that

y = e[a,· ] · x = x+

∞∑
n=0

[a, · ]n

(n+ 1)!
([a, x]− da). (2.4.37)

Since Z = {x ∈ (L′)1 ⊗ m|[x, x] = 0} is stable under the adjoint action of G0 and using the charac-
terization (2.4.34) of the Maurer-Cartan equation in terms of φ, it follows that the set of solutions of
the Maurer-Cartan equation is stable under the gauge action. Now we can introduce the concept of
deformation via DGLA. Usually the deformation is defined by using the notion of functor; here we
try to reduce the involved notions at minimum and we say that, the deformation associated to the
DGLA L⊗m is defined by

Defm(L) :=
MC(L⊗m)

G0(L)
. (2.4.38)

The meaning of this definition will become clear when we discuss two concrete examples of deformation,
which will be given in the next sections. Now it is important to stress that the above discussion can
be immediately extended to the formal counterpart of a DGLA, generalizing in some sense what we
discussed in Section (1.3). Given a DGLA L over k we can define a formal counterpart LJtK over the
ring kJtK of formal power series in t by

LJtK := L⊗ kJtK. (2.4.39)

It has a natural structure of DGLA and the degree zero part L0JtK is a Lie algebra. Even though it
is not nilpotent we can define the gauge group formally as the set G0 := exp(tL0JtK), as discussed in
Section 1.3. The action of G0 = exp(tL0JtK) can be defined by generalizing (2.4.35). More precisely,

Proposition 2.4.24 Let L be a DGLA over k and let LJtK be the corresponding DGLA over kJtK.
Then

G0(LJtK) = {Φ : LJtK→ LJtK |Φ = et[a,·], a ∈ L0JtK} (2.4.40)

is the subgroup of all kJtK-linear automorphisms on LJtK of degree 0 which in the zero-th order of t
start with id.

Also in this case, the group structure is given by the BCH formula. In this setting we define the
formal Maurer-Cartan elements as follows

Definition 2.4.25 Let L be a DGLA over k. An element a ∈ tL1JtK is said to be a formal Maurer-
Cartan element if it satisfies the Maurer-Cartan equation

da+
1

2
[a, a] = 0. (2.4.41)

The set of formal Maurer-Cartan elements is denoted by:

MC(LJtK) = {a ∈ tL1JtK| da+
1

2
[a, a] = 0}. (2.4.42)
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As already stated, the action of G0 defined in (2.4.40) on the set of formal Maurer-Cartan elements
MC(LJtK) is a direct generalization of the above discussion. Given a ∈ tLJtK and g ∈ L0JtK the gauge
action is given by

exp(t [g, · ]) · a :=
∞∑
n=0

(t[g, · ])n

n!
(a)−

∞∑
n=0

(t[g, · ])n

(n+ 1)!
(dg)

= a+ t[g, a]− tdg + o(t2) (2.4.43)

for any g ∈ L0JtK and a ∈ L1JtK. Also in this case, the gauge action preserves the subset MC(LJtK) ⊂
tL1JtK of solutions of Maurer-Cartan equations.

This allows us to define the equivalence class in the formal Maurer-Cartan set as in (2.4.38). One
can extend the deformations to algebras with linear topology which are projective limits of nilpotent
algebras. Here we only remark that in the following we use m = tRJtK.

In the next sections we discuss two concrete examples of DGLAs and their attached deformation
problems.

2.4.4 Formal Poisson structures

The first example we aim to discuss is the DGLA of multivector fields on a smooth manifold M ,
already introduced in Example 2.4.16. We recall that, in Section 1.3, we introduced the concept of
deformed Poisson structures and of equivalence classes of such deformations. Here we rewrite these
notions by using the DGLA’s approach discussed above.

Let Xk(M)JtK be the set of formal k-multivector fields on M . A formal Poisson structure πt is a
deformation of a given Poisson structure π on M which satisfies the condition

[πt, πt]S = 0, (2.4.44)

where [·, ·]S is the Schouten-Nijenhuis bracket defined in Eq. (??). The equivalence class of formal
Poisson structures has been introduced in Definition 1.3.5 by saying that two formal Poisson structures
πt and π̃t are equivalent if there exists a formal diffeomorphism φt = exp LX with X ∈ tX1(M)JtK
such that

πt = φtπ̃t. (2.4.45)

Let us consider the graded vector space (we use the notation introduced by Kontsevich)

Tpoly(M) =
∞⊕

n=−1

Xn+1(M)JtK, (2.4.46)

where X0(M)JtK = C∞(M)JtK (we shift the degree by 1 in order to recover the sign used in Definition
2.4.12). The space Tpoly(M) can be endowed with a structure of DGLA, just considering the trivial
differential d = 0 and the Schouten-Nijenhuis bracket [·, ·]S .

Now we are ready to discuss how to interpret the quotient Defm(L) defined in (2.4.38) for this
specific DGLA. First, we observe that the set MC(Tpoly(M)) of solutions of formal Maurer-Cartan
equation coincides with the set of formal Poisson tensors on M . Indeed, a solution of the formal
Maurer-Cartan equation is an element X of tT 1

poly(M), a formal bi-vector field, which satisfies the
following equation

dX +
1

2
[X,X]S = 0. (2.4.47)

Since d is identically zero, the Equation (2.4.47) is equivalent to

[X,X]S = 0 (2.4.48)
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which, by Definition (1.3.4), is equivalent to say that X is a formal Poisson structure. Furthermore,
we observe that the gauge group G0(Tpoly(M)) coincides with the group of formal diffeomorphism
φt = exp(tLX) = exp(t[X, · ]) introduced in Section 1.3.2. These observations allow us to claim that
the quotient

Def(Tpoly(M)) =
MC(Tpoly(M))

G0(Tpoly(M))
(2.4.49)

coincides with the equivalence class of deformations of a given Poisson structure π on M .

2.5 Deformation of associative algebras

In this section we aim to discuss the deformation of associative algebras via DGLA, using the notions
introduced in Sections 2.4.2 and 2.4.3. The theory of deformation of associative algebras is due to
Gerstenhaber [24], [25] (see also [26] and [9]). In order to give a short review of this theory we first
need to introduce the DGLA structure associated to an associative algebra, the so-called Hochschild
DGLA; we give an interpretation of the associated set of solutions of the Maurer-Cartan equation and
its gauge equivalence and we show how the quotient (2.4.38) is related to the equivalence classes of
formal deformations of the associative algebra that we considered. Finally, we apply this discussion
to the specific case of the associative algebra of smooth functions on a manifold; in this case the
equivalence class of formal deformations coincides with the equivalence class of star products defined
in Section (2.3).

Let A be an associative algebra over a commutative ring k, with multiplication

µ0 : A×A→ A : a⊗ b 7→ µ0(a, b) = a · b. (2.5.1)

We recall that the algebra A is associative when the product µ0 satisfies

µ0(µ0(a, b), c) = µ0(a, µ0(b, c)). (2.5.2)

As discussed in Section 2.3, deforming an associative algebra essentially means constructing a new
associative product µ which depends on a parameter t such that, in the limit t→ 0, µ reduces to the
original product µ0. In other words, we require that µ has the following form

µ = µ0 + tµ1 + t2µ2 . . . (2.5.3)

where µr are homomorphisms from A⊗A to A and the associativity condition (2.5.2) is satisfied term
by term. This has been introduced in Definitions (2.3.1)-(2.3.2), where we defined a new product,
called star product, by setting

a ? b = µ(a, b) (2.5.4)

on the algebra of formal power series AJtK over A. In order to discuss the theory of deformations
of associative algebras in terms of DGLA it is useful to rewrite, using Gerstenhaber’s notation, the
definitions of deformation and equivalence of deformations for a generic associative algebra. This
definition will generalize the notion of star product given in (2.3.2) and the associated concept of
equivalence.

Definition 2.5.1 Let A be an associative algebra over k with multiplication µ0 : A⊗A→ A.

i.) A formal associative deformation of the multiplication µ0 of A is a kJtK-bilinear associative
multiplication

µ : AJtK×AJtK→ AJtK (2.5.5)

such that
µ(a, b) = µ0(a, b) ∀a, b ∈ AJtK (2.5.6)

at order zero in t.
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ii.) Two formal deformations µ and µ′ of µ0 are said to be equivalent if there exists a kJtK-linear
isomorphism

T : (AJtK, µ)→ (AJtK, µ′) : T (µ(a, b)) = µ′(T (a), T (b)) (2.5.7)

of the form

T = id+

∞∑
n=1

tnTn. (2.5.8)

The equivalence relation (2.5.7) is given order by order, explicitly by the set of relations

∞∑
i+j=n

Ti(µj(a, b)) =
∞∑

i+j+l

µ′l(Ti(a), Tj(b)). (2.5.9)

It is important to remark that a deformation of an associative algebra with unit (often said unital)
is again unital, and equivalent to a deformation with the same unit (a proof can be found in [26]).
Using the tools introduced in Section 2.4, the notions defined above can be associated to a DGLA,
as the associativity can be rewritten in terms of a Maurer-Cartan equation and the equivalence in
terms of a gauge group. In the following we discuss the DGLA structure that we can associate to an
associative algebra and some of its basic properties, necessary for the objectives of this Chapter.

2.5.1 Hochschild complex

Let A be an associative and unital algebra. Define

C•(A) =
∞⊕

n=−1

Cn(A) Cn(A) := Hom(A⊗n+1, A) (2.5.10)

where Hom(A⊗n, A) denotes the space of homomorphisms from A⊗ · · · ⊗ A (n-times) to A over the
ring k and we have C−1(A) = A (to be precise we should have used the notation C•(A)[1], as in the
standard definition Cn(A) = Hom(A⊗n, A) and here we shifted each component by 1; nevertheless, in
the following we do not mention the shift in order to simplify the notation). In other words, we have

φ ∈ Cn(A), deg φ = n⇐⇒ dimφ = n+ 1. (2.5.11)

The differential d : Cn(A)→ Cn+1(A) is defined by

(−1)n(df)(a0, . . . , an) = a0f(a1, . . . , an)−
n−1∑
i=0

(−1)if(a0, . . . , aiai+1, . . . , an) + (−1)n−1f(a0, . . . , an−1)an (2.5.12)

Definition 2.5.2 The Hochschild complex is the positive cochain complex (C(A),d)

The graded vector space C•(A) can be endowed with a DGLA structure. First, we introduce a product
operation on this complex. Consider φ ∈ Cn−1(A) and ψ ∈ Cm−1(A). The Gerstenhaber product is
defined by

φ ◦i ψ(a0, . . . , an+m) := φ(a0, . . . , ai−1, ψ(ai, . . . , ai+m), ai+m+1, . . . , an+m) (2.5.13)

with i = 0, . . . , deg φ and a0 . . . an+m ∈ A. Thus, we get an element φ ◦i ψ ∈ Cn+m(A). Notice that
we have

deg (φ ◦i ψ) = deg φ+ deg ψ (2.5.14)
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for any i = 0, . . . , deg φ. The (vector) space C(A) can be endowed with the product

φ ◦ ψ :=

deg φ∑
i=0

(−1)i degψφ ◦i ψ. (2.5.15)

In general this product is not associative but it allows us to introduce a Lie bracket, called Gersten-
haber bracket, defined by

[φ, ψ]G := φ ◦ ψ − (−1)deg φ degψψ ◦ φ. (2.5.16)

Proposition 2.5.3 The graded vector space C•(A) with differential (2.5.12) and with the Gersten-
haber bracket (2.5.16) is a DGLA, called Hochschild DGLA.

The proof of this Proposition can be found in [14].

Remark 2.5.4 It is important to remark that the Hochschild complex (C(A)•, d) endowed with the
Gerstenhaber bracket is not an associative algebra. For this reason, it is necessary to introduce the
notion of the cup product:

Definition 2.5.5 Let (A,µ) an associative algebra and φ ∈ Cn(A), ψ ∈ Cm(A). Then the cup
product φ ^ ψ ∈ Cn+m(A) of φ and φ is defined by

φ ^ ψ(a1, . . . , an+m) = φ(a1, . . . , an)ψ(an+1, . . . , an+m) (2.5.17)

where a1, . . . , an+m ∈ A.

The cup product makes C•(A) into a graded associative algebra. Notice that the Hochschild differ-
ential d is a (graded) derivation of degree +1, i.e.

d(φ ^ ψ) = dφ ^ φ+ (−1)nφ ^ dψ. (2.5.18)

Finally, for φ ∈ Cn(A) and ψ ∈ Cm(A) we have

φ ◦ dψ − d(φ ◦ ψ) + (−1)m−1 dφ ◦ ψ = (−1)m−1(ψ ^ φ− (−1)nmφ ^ ψ) (2.5.19)

It is important to observe that the associativity of the multiplication can be rewritten by using the
Gerstenhaber bracket. More precisely, given an algebra A over k and µ ∈ C1(A) a bilinear map
µ : A⊗A→ A, it is an associative multiplication if and only if

[µ, µ]G = 0. (2.5.20)

Indeed, using the definition of Gerstenhaber bracket (2.5.16) we have

[µ, µ]G(f, g, h) =
1∑
i=0

(−1)i(µ ◦i µ)(f, g, h)−

− (−1)1
1∑
i=0

(−1)i(µ ◦i µ)(f, g, h) =

= 2(µ(µ(f, g), h)− µ(f, µ(g, h))) = 0. (2.5.21)

It is evident that condition (2.5.20) is equivalent to the associativity condition (2.5.2). Finally, we
notice that the Hochschild differential can also be expressed in terms of the Gerstenhaber bracket
and the multiplication µ : A⊗A→ A of A as

d = [µ, · ]G : Cn(A)→ Cn+1(A). (2.5.22)

Definition 2.5.6 Let (A,µ) be an associative algebra over k and (C•(A), d, [·, ·]G) the associated
Hochschild complex. The cohomology HH•(A) = ker d

Im d is called Hochschild cohomology of (A,µ).

The interested reader is referred to [56], [33] and [27].
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2.5.2 Maurer-Cartan equation and gauge action

In this section we discuss the deformation of an associative algebra A in terms of the associated
Hochschild DGLA (C•(A), d, [·, ·]G); we show that, also in this case, the formal deformations can be
described by the set of Maurer-Cartan elements of a DGLA modulo a gauge equivalence. For this
reason, we first need to reinterpret a formal deformation in terms of a Maurer-Cartan equation. More
precisely, from Definition (2.5.1) we know that a formal deformation µ is an element of C1(AJtK) =
Hom(AJtK ⊗ AJtK, AJtK), which coincides with C1(A)JtK, that it is kJtK-bilinear, associative and that
can be written in terms of formal power series as:

µ = µ0 +
∞∑
n=1

tnµn = µ0 +M (2.5.23)

where M is an element of tC1(A)JtK. As discussed above, the associativity condition, in the context
of the Hochschild DGLA, is equivalent to the condition (2.5.20), i.e. to the set of conditions

[µ0, µ0]G = 0, (2.5.24)

which is automatically true as A is associative,

[µ0, µ1]G + [µ1, µ0]G = 0 (2.5.25)

and
k∑
l=0

[µl, µk−l]G = 0 ∀k. (2.5.26)

In other terms, we have

[µ, µ]G = [µ0 +M,µ0 +M ]G

= [µ0, µ0]G + [µ0,M ]G + [M,µ0]G + [M,M ]G = 0. (2.5.27)

Using the expression (2.5.22) for the Hochschild differential, we have dM = [µ0,M ]; moreover, from
the graded skew-symmetry of the Gerstenhaber bracket we have [µ0,M ]G = [M,µ0]G, thus

[µ, µ]G = 2 dM + [M,M ]G. (2.5.28)

We can conclude that a deformed multiplication µ is associative if and only ifM ∈ tC1(A)JtK satisfies
the (formal) Maurer-Cartan equation:

dM +
1

2
[M,M ]G = 0. (2.5.29)

Finally, we show that the equivalence classes of formal deformations can be described in terms of the
gauge equivalence introduced in Prop. 2.4.24. More precisely, recall that two formal deformations µ
and µ′ are equivalent if there exists an isomorphism T ∈ C1(A)JtK such that

T (µ(a, b)) = µ′(T (a), T (b)). (2.5.30)

The isomorphism is determined by

T = id+

∞∑
n=0

tnTn. (2.5.31)

Let T = id+
∑∞

n=1 t
nSn =: etS ∈ C1(A)JtK be the exponential function defined with respect to the

Gerstenhaber product ◦. Then, it can be proved that, for µ and µ′ in C1(A)JtK, the condition (2.5.30)
is equivalent to

et[S,· ](µ) = µ′. (2.5.32)

The details of this proof can be found in [55]. Thus, we can state the following
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Proposition 2.5.7 The equivalence class of formal deformations of an associative algebra A can be
rewritten as the quotient Defm(A) of the set of solutions of the Maurer-Cartan equation

MC(A) := {M ∈ tC1(A)JtK : dM +
1

2
[M,M ]G = 0} (2.5.33)

modulo the gauge group

G0(A) := {φ : C(A)JtK→ C(A)JtK : φ = et[S,· ], S ∈ C0(A)JtK}. (2.5.34)

2.5.3 Star product

In particular, we are interested to deform the algebra C∞(M) of smooth functions on a manifold M .
The formal deformations of the algebra C∞(M) have been introduced in Section 2.3 by setting

f ? g = f · g +

∞∑
n=1

tnPn (2.5.35)

where f · g is the ordinary pointwise product of functions and the Pn’s are bi-differential operators.
The star product can be extended to elements of C∞(M)JtK by using the linearity over kJtK and
the t-adic continuity, thus Pn’s become bi-differential operators over C∞(M)JtK. In other words,
the Pn’s are elements of Hom(C∞(M)JtK ⊗ C∞(M)JtK,C∞(M)JtK) = C1(C∞(M))JtK which are bi-
differential. Moreover, since we required Pn(f, 1) = Pn(1, f) = 0, we need to further restrict our
choice by considering only differential operators which vanish on constant functions. For this reason
we consider a DGL subalgebra of the Hochschild DGLA associated to C∞(M), which we denote by
Dpoly(M) defined by

Dpoly(M) =
∞⊕
n=1

D
(n)
poly(M) (2.5.36)

where D(n)
poly(M) = Hom(C∞(M)JtK⊗n+1

,C∞(M)JtK) are multidifferential operators over C∞(M)JtK.
It can be proven that Dpoly(M) is a DGL subalgebra of the Hochschild DGLA as it is closed under
[·, ·]G and under the action of d. The general discussion of the previous section, which explained
how we can describe formal deformations in terms of Hochschild DGLA, can be immediately applied
to the subalgebra Dpoly(M). Thus, we can conclude that the equivalence class of star products
defined in Section 2.3 can be described by the set of solutions of the formal Maurer-Cartan equation
MC(Dpoly(M)) modulo the gauge equivalence.

In the next section we establish a correspondence between these DGLA’s which describe the equiv-
alence classes of formal Poisson structures and star products and we introduce the Hochschild-Kostant-
Rosenberg theorem, which specifies the nature of such a correspondence. This is a fundamental step
to prove Theorem (2.3.6), as we discuss in the last section of this chapter.

2.6 Hochschild-Kostant-Rosenberg Theorem

In the previous sections we introduced two specific DGLA’s and we discussed their role in the study
of deformations. The DGLA Tpoly(M) of multivector fields has been associated to the deformations
of a given Poisson structure π on M and, with similar argumentation, the DGLA Dpoly(M) of
multidifferential operators on M has been associated to the deformations of the associative algebra
structure of smooth functions on M . In this section we introduce a result by Hochschild, Kostant
and Rosenberg which proves the existence of an isomorphism between the Hochschild cohomology
group of Dpoly(M) and the space of multivector fields Tpoly(M). This is crucial in the classification
of quantization because it essentially means that the Poisson structure π on M is contained in a
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cohomology group HH•(C∞(M)) (to be precise, the cohomology group is HH•diff.v.c.(C
∞(M)), as we

consider the sub algebra of differential operators which vanish on constant functions).
First, we observe that we can define a map

U1 : Tpoly(M)→ Dpoly(M) (2.6.1)

by setting

(U1(X0 ∧ · · · ∧Xn))(f0, . . . , fn) =
1

(n+ 1)!

∑
σ∈Sn+1

ε(σ)Xσ(0)(f0) . . . Xσ(n)(fn) (2.6.2)

for any homogeneous element X0 ∧ · · · ∧ Xn of Tpoly(M) (for any Xi we use the identification with
differential operators) and any functions f0, . . . , fn on M . Here σ denotes a permutation in Sn+1, the
set of all permutations on n elements and ε(σ) denotes the sign of this permutation. The map U1

extends the usual identification between vector fields and differential operators and we can observe
that it reduces to the identity map when applied to zero-th order vector fields.

Theorem 2.6.1 (Hochschild-Kostant-Rosenberg) The map

U1 : Tpoly(M)→ Dpoly(M) (2.6.3)

defined in (2.6.2) is a quasi-isomorphism of complexes.

Remark 2.6.2 The original result due by Hochschild, Kostant and Rosenberg has been proved in
the case of smooth algebraic varieties; here we introduced the version which has been extended to the
case of smooth manifolds. The reader interested in the proof of the Hochschild-Kostant-Rosenberg
theorem for smooth manifolds can refer to [13]; the original proof can be found in [34].

Recalling Definition (2.4.19), we can claim that U1 induces an isomorphism of the associated
cohomologies HH•(C∞(M)) and H(Tpoly(M)) which, in turn, coincides with Tpoly(M) itself. The
Hochschild cohomology HH•(C∞(M)) carries a structure of DGLA, as remarked in Section 2.5.1,
where the differential is identically zero and the bracket [·, ·]H is the Gerstenhaber bracket (2.5.16)
up to cohomology. It is important to notice that the Schouten-Nijenhuis bracket [·, ·]S on Tpoly(M) is
mapped into the bracket [·, ·]H on the Hochschild cohomology and not into the Gerstenhaber bracket.
In other words, the map U1 is a chain map, i.e. it preserves the complex structures, but it fails to be
a Lie algebra homomorphism. Indeed, we can easily check that already at order 2 we have

U1([X1 ∧X2, Y1 ∧ Y2]S) 6= [U1(X1 ∧X2), U1(Y1 ∧ Y2)]G (2.6.4)

Using the definition of Schouten-Nijenhuis bracket (??) we have

[X1 ∧X2, Y1 ∧ Y2]S = [X1, Y1] ∧X2 ∧ Y2 − [X1, Y2] ∧X2 ∧ Y1

− [X2, Y1] ∧X1 ∧ Y2 + [X2, Y2] ∧X1 ∧ Y1 (2.6.5)

Applying this three-vector field to a triple of functions and using the map U1 as defined in (2.6.2) we
get

U1([X1 ∧X2, Y1 ∧ Y2]S) =
1

6
(X1Y1(f)X2(g)Y2(h)− Y1X1(f)X2(g)Y2(h)

− X1Y2(f)X2(g)Y1(h) + Y2X1(f)X2(g)Y1(h)

− X2Y1(f)X1(g)Y2(h) + Y1X2(f)X1(g)Y2(h)

+ X2Y2(f)X1(g)Y1(h)− Y2X2(f)X1(g)Y1(h))
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+ perm. (2.6.6)

On the other hand, using the definition of Gerstenhaber bracket we have

[U1(X1 ∧X2), U2(Y1 ∧ Y2)]G = [
1

2
(X1X2 −X2X1),

1

2
(Y1Y2 − Y2Y1)]G(f ⊗ g ⊗ h)

=
1

4
X1(Y1(f)Y2(g))X2(h) + . . . (2.6.7)

For this reason the map U1 is not sufficient to build up a bijection between the equivalence classes
of Poisson structures and of star products and we need to introduce a new type of morphism, whose
first order approximation is the Hochschild-Kostant-Rosenberg isomorphism of complexes.

2.7 Formality Theory

Finally, we state Kontsevich’s formality theorem and we discuss how this theorem is related to the
quantization problem. Kontsevich’s theorem extends the Hochschild-Kostant-Rosenberg map U1 to a
new kind of morphism, called L∞-morphism, that we introduce in the following section.

2.7.1 L∞-morphisms of DGLA

Here we give a short review of L∞-algebras, starting with very basic definitions, L∞-morphisms and
L∞-quasi-isomorphisms; we introduce the L∞-quasi-isomorphism theorem, which will be crucial for
the interpretation of the formality theorem. Useful reviews on L∞-algebras can be found in [19] and
in [32], where they are called strong homotopy Lie algebras.

Definition 2.7.1 A graded coalgebra over k is a graded vector space L =
⊕

i∈Z Li endowed with a
coproduct, i.e. a graded linear map

∆ : L→ L⊗ L (2.7.1)

such that
∆(Li) ⊂

⊕
j+k=i

Lj ⊗ Lk (2.7.2)

and
(∆⊗ id)∆(x) = (id⊗∆)∆(x) coassociativity (2.7.3)

for every x ∈ L. A counit (if it exists) is a morphism

ε : L→ k, (2.7.4)

such that ε(Li = 0) for any i 6= 0 and

(ε⊗ id)∆ = (id⊗ε)∆ = id . (2.7.5)

The coalgebra is cocommutative if
T ◦∆ = ∆, (2.7.6)

where T : L⊗ L→ L⊗ L is the twisting map

T (x⊗ y) := (−1)x̄ȳy ⊗ x (2.7.7)

for x, y homogeneous elements of degree respectively x̄ and ȳ.
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Given a graded vector space L =
⊕

i∈Z Li over k, we can define the tensor algebra

T (L) =
∞⊕
n=0

L⊗n (2.7.8)

with L⊗0 = k, and two quotients: the symmetric algebra

S(L) = T (L)/〈x⊗ y − (−1)x̄ȳy ⊗ x〉 (2.7.9)

and the exterior algebra
Λ(L) = T (L)/〈x⊗ y + (−1)x̄ȳy ⊗ x〉; (2.7.10)

these spaces are naturally graded (associative) algebras. They can be endowed with a coproduct which
gives them the structure of coalgebras. In particular on T (L) the coproduct is given on homogeneous
elements v ∈ L by

∆v := v ⊗ 1 + 1⊗ v, (2.7.11)

and extended as an algebra homomorphism w.r.t. the tensor product. Similarly, we can define the
reduced tensor algebra

T (L) =

∞⊕
n=1

L⊗n. (2.7.12)

The projection p : T (L) → T (L) and the inclusion i : T (L) ↪→ T (L) induce a coproduct also on
the reduced algebra, thus T (L) has a coalgebra structure. The reduced versions S(L) and Λ(L) are
defined by replacing T (L) by the reduced algebra T (L). Notice that also the reduced version S(L)
can be endowed with the comultiplication defined above.

A differential graded coalgebra is given by a graded coalgebra endowed with the analog of a
differential, called coderivation, defined in the following

Definition 2.7.2 A coderivation of degree n on a graded coalgebra V is a graded linear map δ : Vi →
Vi+k which satisfies the (co)-Leibniz identity

∆δ(v) = (δ ⊗ id)∆(v) + ((−1)kv̄ id⊗δ)∆(v) ∀v ∈ Vv̄. (2.7.13)

A differential Q on a coalgebra is a coderivation of degree one that squares to zero.

Now we can define the L∞ structures as follows.

Definition 2.7.3 An L∞-algebra is a graded vector space L over k endowed with a degree 1 coalgebra
differential Q on the reduced symmetric space S(L[1]).

Here we use the notation L[1] =
⊕

i∈Z L
n[1] with Ln[1] := Ln+1, as already mentioned in Section

2.5.1.

Definition 2.7.4 A L∞-morphism between two L∞-algebras, F : (V,Q) → (V ′, Q′), is a morphism
of graded coalgebras

F : C(V [1])→ C(V ′[1]) (2.7.14)

such that F ◦Q = Q′ ◦ F .

It is important to remark that L∞-algebras are in some sense a generalization of DGLA’s. Indeed,
we have the following
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Proposition 2.7.5 A L∞-algebra is a graded vector space L endowed with a sequence of maps

ln : ∧nL→ L (2.7.15)

of degree 2− n, n > 0, such that for every sequence of homogeneous vectors x1, . . . , xn ∈ L we have

n∑
k=1

(−1)n−k
∑

σ∈S(k,n−k)

(−1)ε(σ)ln−k+1(lk(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n)) = 0. (2.7.16)

Here S(k, n − k) is the set of unshuffles, i.e. a permutation σ such that σ(i) < σ(i + 1) for every
i 6= k.

It can be checked that the sequence of maps (2.7.15) satisfying condition (2.7.16) uniquely determines a
coderivation Q of degree 1. As already announced, this definition shows us that any DGLA (L, d, [·, ·])
is a L∞-algebra, by setting l1 = d, l2 = [·, ·] and ln = 0 for n > 2.

The notion of a L∞-morphism can also be rewritten in terms of DGLA as follows. Roughly, given
two DGLA’s (L1, d1, [·, ·]1) and (L2, d2, [·, ·]2), a L∞-morphism f : L1 → L2 is given by a sequence of
linear maps

fn : ∧nL⊗n1 → L2, n ≥ 1, (2.7.17)

homogeneous of degree 1− n, which is compatible with the L∞-algebra structure given by the maps
(2.7.15). In particular, f1 is a morphism of complexes, i.e. f1 ◦ d1 = d2 ◦ f1.

Definition 2.7.6 An L∞-quasi isomorphism is an L∞-morphism whose first component is a quasi-
isomorphism.

Given a L∞-algebra we can define a generalized Maurer-Cartan equation as∑
n≥1

1

n!
ln(x, . . . , x) = 0 (2.7.18)

for x ∈ L1. It is evident that, when L is a DGLA, this equation reduces to the standard Maurer-
Cartan equation. The importance of this notion and of the notion of L∞-quasi-isomorphism becomes
evident from the following

Theorem 2.7.7 Let f : L1 → L2 be a L∞-quasi isomorphism of DGLA’s. Then the map

x 7→
∑
n≥1

1

n!
ln(x, . . . , x) (2.7.19)

induces the following bijection
Def(L1) ' Def(L2) (2.7.20)

2.7.2 Formality Theorem

In this section we state the main result by Kontsevich, the so-called formality theorem, and we explain
how this general result solves the classification problem introduced in Section 2.3.

Let us recall, briefly, the objects that are involved in this discussion. On one hand, classical
mechanics is described by a Poisson structure π on a smooth manifold M , as discussed in Chapter
1. It can be always associated to a formal deformation and equivalence classes [π] of its formal
deformations coincide with the deformation Def(Tpoly(M)) associated to the DGLA Tpoly. On the
other hand, we introduced the concept of star product in order to quantize classical systems and
we could describe the equivalence class [?] of star products on C∞(M) also in terms of the quotient
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Def(Dpoly(M)). Kontsevich’s formality theorem relates the complexes Dpoly(M) and Tpoly(M); these
DGLA’s are related by the map U1 (2.6.2) defined in the Hochschild-Kostant-Rosenberg theorem
(2.6.1) but, as already pointed out, this map does not commute with the Lie bracket and for this
reason it is not enough to prove the correspondence between Poisson structures and deformation
quantization stated in Theorem (2.3.6). Kontsevich, in his famous paper [38], claimed that this defect
of the U1 map can be cured and proved that there exists a morphism between such DGLA’s which
preserves the Lie structure. This result is stated in the so-called formality theorem:

Theorem 2.7.8 (Kontsevich [38]) There exists natural L∞-quasi isomorphism

U : Tpoly(M)→ Dpoly(M) (2.7.21)

such that the component U1 of U coincides with the quasi-isomorphism defined in the Hochschild-
Kostant-Rosenberg Theorem (2.6.1).

This theorem is called formality theorem, since it proves that the Hochschild DGLA Dpoly(M) and
its cohomology (regarded as a DGLA) are quasi-isomorphic. In other words, it proves that the DGLA
Dpoly(M) is formal (see Definition 2.4.20).

Kontsevich proved this theorem in [38] first considering a local version (more precisely, he studied
the case for M = Rd and he constructed explicitly the map U) and then extending it to generic
Poisson manifolds. He showed also that the L∞-quasi isomorphism U is not unique. Notice that,
unlike the map U1, the L∞-quasi isomorphism U preserves the DGLA structures, by definition of a
L∞-quasi isomorphism.

Finally, Kontsevich could solve the existence and classification of quantization as a corollary of
his formality theorem. More precisely, he proved Theorem 2.3.6 that we restate here as follows,

Theorem 2.7.9 Let M be a smooth manifold and C∞(M) its algebra of smooth functions. There
is a natural one-to-one correspondence between star products on M modulo gauge equivalence [?] and
equivalence classes of deformations [π] of the Poisson structure on M .

This theorem is an immediate corollary of the formality theorem; indeed, we recall from Theorem
2.7.7 that a L∞-quasi isomorphism of DGLA’s induces a bijection of the associated equivalence classes
of deformations. Thus, the L∞-quasi isomorphism

U : Tpoly(M)→ Dpoly(M) (2.7.22)

induces a bijection
Def(Tpoly(M)) ' Def(Dpoly(M)). (2.7.23)

As recalled at the beginning of this section, the sets Def(Tpoly(M)) and Def(Dpoly(M) coincide with
the equivalence classes [π] of Poisson structures and [?] of star products, respectively. This proves
the one-to-one correspondence between equivalence classes of star products and equivalence classes
of deformations of Poisson structures.

As discussed in Section 1.3.2, any Poisson structure π can be associated to a formal deformation
just choosing the path πt = tπ. By Theorem 2.3.6, its equivalence class [π] is in one-to-one correspon-
dence with the equivalence class [?]. Let us consider an element ? of such an equivalence class, we
have

lim
t→0

[f, g]?
it

= lim
t→0

f ? g − g ? f
it

= π(df,dg) (2.7.24)

Thus, the correspondence between a Poisson bracket and a commutator (with respect to the star
product) is satisfied in the classical limit t → 0, as announced in Section 2.2. Conversely, a class of
star products corresponds to a class of deformations of the Poisson structure. The term in t of the
star product ? in such a class coincides with the term π1 of πt = tπ1 + t2π2 + . . . . We can conclude
that every classical Poisson manifold and, as a consequence every classical system, admits a canonical
quantization, which is unique up to formal equivalence.
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Chapter 3

Kontsevich’s Formula and Globalization

In this chapter, we give a sketchy exposition of the Kontsevich formula, which allows us to define locally
a star product for any Poisson manifold and we introduce some further developments of the Kontsevich
theory; in particular, we introduce briefly the globalization of star products by Cattaneo-Felder-
Tomassini and Dolgushev. There are many interesting problems that come up after Kontsevich’s
theory: in the last section of this chapter we aim to introduce some of these questions.

3.1 Kontsevich’s formula

The formality theorem was proved by Kontsevich by generalizing the explicit construction of a star
product on Rd to any (finite-dimensional) Poisson manifold. In the following we discuss the construc-
tion of such a deformed product, the so-called Kontsevich formula, and a physical interpretation of
this formula in terms of quantum field theory.

3.1.1 Kontsevich formula on Rd

Let M be an open domain of Rd, with d ≥ 1 and let π = πij ∂
∂xi
∧ ∂

∂xj
be a Poisson structure in a

local system of coordinates (x1, . . . , xd), where πij are local functions on C∞(M). In this situation,
we can write an explicit formula for the star product (modulo O(t3)), which reads,

f ? g = fg + tπij
∂f

∂xi

∂g

∂xj
+
t2

2
πijπkl

∂

∂xi

∂f

∂xk

∂

∂xj

∂g

∂xl
+

+
t2

3

(
πij

∂πkl

∂xj

(
∂

∂xi

∂f

∂xk

∂g

∂xl
− ∂f

∂xk

∂

∂xi

∂g

∂xl

))
+O(t3). (3.1.1)

This formula reduces to the Moyal product (2.3.18) when the Poisson structure has constant coeffi-
cients. Here we aim to give an explicit formula for the star product for an arbitrary Poisson structure
π in an open domain of Rd. In other words, we give an explicit formula for the L∞-quasi-isomorphism
U introduced in the formality theorem (2.7.8), which induces the bijection between Poisson structures
and star products on Rd. In order to write such an expression we need to find an algorithm which
allows us to interpret a multi-vector field as a multi-differential operator. More precisely, Kontsevich
formula relies on the idea of introducing a set of graphs and associating a multi-differential operator
PΓ and a weight wΓ to each graph. The class of graphs introduced by Kontsevich is the class of
oriented labeled graphs Gn, defined as follows.

Definition 3.1.1 An oriented graph Γ is a pair (VΓ, EΓ) of two finite sets such that EΓ is a subset
of VΓ × VΓ. Elements of VΓ are vertices of Γ and elements of EΓ are edges of Γ. We denote by
e = (v1, v2) the edge that starts at v1 and ends at v2. A labeled graph Γ (sometimes called admissible
graph) belongs to Gn if it satisfies the following properties:

47
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i.) Γ has n+ 2 vertices and 2n edges

ii.) the set of vertices is decomposed in two ordered subsets, {1, . . . , n} and {L,R} (where L and R
are just symbols denoting left and right)

iii.) edges of Γ are labeled by symbols e1
1, e

2
1, e

1
2, e

2
2, . . . , e

1
n, e

2
n

iv.) for any k ∈ {1, . . . , n} edges labeled by e1
k and e2

k start at the vertex k

v.) for any v ∈ VΓ the ordered pair (v, v) is not an edge of Γ.

For example, the following graphs are labeled oriented graphs:

1
2

3

L R

i1

i2
i3

i4

i5

i6

(a)

1

2

L R
(b)

L R

1 2

(c)

while

L R

1 2

(a)
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is not, because it does not satisfy condition iv. To each admissible graph Γ ∈ Gn we associate a
bi-differential operator

PΓ,π : A×A→ A, A = C∞(M) (3.1.2)

which depends on a generic bivector field π ∈ Γ(∧2TM). The procedure to write an explicit formula
for PΓ,π is the following:

i.) we place a function f at the vertex L and a function g at R

ii.) we define a map I : EΓ → {1, . . . , d} : (e1
1, e

2
1, e

1
2, e

2
2, . . . , e

1
n, e

2
n) 7→ (i1, . . . id) so that the edges

are labeled by independent indices il

iii.) for any vertex k ∈ {1, . . . , n} with 2 outgoing arrows we associate the tensor πI(e1k)I(e2k)

iv.) for any l-th arrow il in the set of edges ending at the vertex k we associate a partial derivative
with respect to il acting on the function or the tensor appearing at its endpoint

v.) we multiply such elements in the order prescribed by the labeling of the graph.

Following this prescription, the general formula for the operator PΓ,π reads,

PΓ,π :=
∑

I:EΓ→{1,...,d}

 n∏
k=1

 ∏
e∈EΓ,e=(·,k)

∂I(e)

πI(e1k)I(e2k)

×
 ∏
e∈EΓ,e=(·,L)

∂I(e)

f
 ∏
e∈EΓ,e=(·,R)

∂I(e)

g (3.1.3)

Notice that permuting the order in which we consider the edges, we get the same bidifferential operator.
As an example, we compute the bi-differential operator PΓ,π associated to the first graph of Figure
(3.1a) and we have

(f, g) 7→
∑
i1,...,i6

πi1i2πi3i4∂i4(πi5i6)∂i1∂i5(f)∂i2∂i3∂i6(g). (3.1.4)

Let us define
U :=

∑
Γ∈Gn

wΓPΓ,π =
∑

Γ∈Gn

wΓUΓ(π), (3.1.5)

where wΓ are certain constants in R, called weights, that we are going to define. Kontsevich
proved that there exists a choice of weights wΓ such that U : Tpoly(Rd) → Dpoly(Rd) : π 7→ U =∑

Γ∈Gn wΓUΓ(π) is a L∞-quasi-isomorphism. The construction of the weights is quite hard, here we
only aim to give a sketchy exposition but the interested reader can refer to [13] for a more detailed
one, or [9] where the Kontsevich formula has been derived from a path integral approach.

Let H be the upper half complex plane (Im(z) > 0) and we endow it with the hyperbolic metric

d s2 =
dx2 + d y2

y2
, (3.1.6)

whose geodesics are the vertical halflines and the half circles with center on R. Let p, q ∈ H, with
p 6= q and we consider the two lines l(q, p) and l(p,∞), where l(q, p) is the geodesic passing from p
and q and l(p,∞) is the vertical line from p to infinity. The angle from l(p,∞) and l(q, p) is denoted
by φh(p, q) (h is for harmonic).

As we can see from the figure below, we have

φh(p, q) = arg

(
q − p
q − p

)
=

1

2i
log

(
(q − p)(q − p)
(q − p)(q − p)

)
. (3.1.7)
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R

q
p

φh

(a)

Thus, the map (q, p) 7→ φh(p, q) is analytic and it admits a continuous extension to the set of pairs
(q, p) such that Im(q) ≥ 0 and p 6= q. Denote by Hn the set of n-tuples (p1, . . . , pn) of distinct points
of Hn, also called space of configurations1. Given a graph Γ ∈ Gn and (p1, . . . , pn) ∈ Hn we can
represent Γ on R2 ∼= C by associating pi to the vertices {1, . . . , n} of Γ and 0 and 1 to L and R. Each
arrow is represented by a geodesic segment, from its starting to its ending point, as we can see for
the graph (3.1c) in the following figure:

L R

a

b1 2

0 1

p1 p2
φa

φb

(a)

Each edge e of Γ defines an ordered pair (q, p), thus an angle φhe := φh(q, p). We define the weight
of Γ by

wΓ :=
1

n!(2π)2n

∫
Hn

n∧
k=1

(dφhe1k
∧ dφhe2k). (3.1.8)

Lemma 3.1.2 [28] The integral in the definition of wΓ converges absolutely.

Theorem 3.1.3 [28] Let π be a Poisson bivector field in an open domain of Rd. The formula

f ? g =

∞∑
n=0

tnUn(π)(f, g) =

∞∑
n=0

tn
∑

Γ∈Gn

wΓPΓ,π(f, g) (3.1.9)

defines an associative formal deformation (star product) of the given Poisson structure. Its equivalence
class is independent of the choice of coordinates in M .

Proving that U defines an L∞-quasi-isomorphism is far beyond this introduction; the original proof
can be found in [28] and for a nice review we refer the reader to [13]. In [47], [46] Tamarkin gave a
different proof of Kontsevich theorem for the case M = Rd. Given a field k and a finite-dimensional

1Hn is a non-compact smooth 2n-dimensional manifold and we introduce an orientation on Hn using its complex
structure



3.1. KONTSEVICH’S FORMULA 51

vector field, Tamarkin proved that the shifted Hochshild complex C(SV )[1] of the symmetric algebra
SV , endowed with the Gerstenhaber bracket, is formal. Furthermore, it can be seen that C(SV )[1]
is related to Dpoly(M) by a chain of quasi-isomorphisms. Thus, Tamarkin theorem is equivalent to
the formality theorem. A review of the Tamarkin approach can also be found in [25], [24]. It is also
worth to mention that Polyak [39] computed a large class of graphs, by using an interpretation of
weights in terms of degree of maps; Kontsevich’s star product has been studied also on the dual of a
Lie algebra [45].

3.1.2 Moyal product

In this section we aim to show that, applying formula (3.1.9) to the case of constant functions πij ,
we recover the Moyal product (2.3.18).

First, we can explicitly see that if n = 1 we have only two possible graphs Γ1 and Γ′1, which differ
in switching the two edges. The weight of Γ1 is simply

wΓ1 =
1

(2π)2

∫
Hn

dφ(u, 0) ∧ dφ(u, 1). (3.1.10)

Using φ0 = φ(u, 0) and φ1 = φ(u, 1) and integrating over R = {0 ≤ φ(u, 0) ≤ φ(u, 1) ≤ 1}, we get

wΓ1 =
1

(2π)2

∫
R
dφ0dφ1 =

1

(2π)2

(2π)2

2
=

1

2
. (3.1.11)

Since Γ1 and Γ′1 differ in switching the two edges, this only implies a change of the orientation of the
forms in Eq. (3.1.8), thus wΓ1 = −wΓ′1

. The contribution to the star product at order t is

t

2
πij
(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
= tπij

∂f

∂xi

∂g

∂xj
, (3.1.12)

as expected.
Furthermore, we observe that a graph with an edge ending in a vertex other than L or R gives

zero contribution, as it includes a term of the form ∂πjk

∂xi
that vanishes. At order n, we only need

to consider graphs where every vertex has two edges ending in L and R. There are 2n such graphs,
differing in the order of the pair of edges starting at each vertex. As we discussed at order 1, they all
have the same contribution since πij are skew-symmetric. We have a graph of order n where every
vertex has the first edge to L and the second to R. Thus,

Pn(f, g) = 2nwΓPΓ,π(f, g) = 2nwΓ(πi1j1 . . . πinjn)(∂i1 . . . ∂inf)(∂j1 . . . ∂jng). (3.1.13)

In this particular case, we have wΓ = 1
n!(wΓ1)n, i.e.

Pn(f, g) = 2n
1

n!2n
(πi1j1 . . . πinjn)(∂i1 . . . ∂inf)(∂j1 . . . ∂jng). (3.1.14)

We can conclude that

f ? g =

∞∑
n=0

tn

n!
(πi1j1 . . . πinjn)(∂i1 . . . ∂inf)(∂j1 . . . ∂jng), (3.1.15)

which coincides with Moyal product (2.3.18) for t = i~
2 .
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3.1.3 Physical Interpretation: path integral

The Kontsevich formula of a star product on Rd introduced above has been interpreted in terms of
path integrals by Cattaneo and Felder in [9]. This approach involves advanced techniques of quantum
field theory that we are not going to discuss here. We simply aim to explain the idea of such approach,
in order to show another relation between Kontsevich’s theory, purely mathematical, and physics. A
complete introduction to quantum field theory can be found in classical books as [38] and [43] (the
reader can also refer to the online notes by P. Etingof [18]). Let us recall that a field theory is a
physical theory that describes the interaction of physical fields with matter. A field is a physical
quantity defined at every point of the space-time; the velocity of a fluid and the electromagnetism
are famous examples of classical fields. From the mathematical point of view, classical fields are
described by sections of a bundle E over D, where D is a manifold representing the space-time. An
observable, in this setting, can be described by a formal polynomial in the fields and their derivatives.
The dynamics of the physical system is essentially encoded by the Lagrangian or, more precisely, by
the integral of the Lagrangian over D; this quantity, S, is defined to be the action of the system. The
principle of least action states that when a system evolves from one configuration to another, it does
so along the path for which S is minimum. From this condition we get the Euler-Lagrange equations
of motion for a field. The value of an observable in the system is given by its value in the solutions
of Euler-Lagrange equations (also called classical solutions). It is important to remark that classical
fields can not describe quantum mechanical aspects of physical phenomena: for instance, it is known
that electromagnetism has also a quantum nature, since certain aspects of the behavior of the light
involve discrete particles rather than fields. This clarifies the necessity of a quantum field theory;
the quantization of a field theory can be performed by two different approaches, called canonical
quantization and path integral formulation. The path integral has been introduced in the study of a
quantum particle motion to evaluate the correlation functions, which are given by integrals that can
not be handled rigorously. For this reason, they have been defined in perturbation theory, as formal
series in ~. In other words, the path integral formulation replace the notion of a single trajectory
with an integral over an infinite number of possible trajectories. This formulation is very useful for
the development of quantum field theory; the expected value of an observable is given, in this setting,
by the integral over all possible classical field configurations with a phase given by the classical action
evaluated in that field configuration.

The Kontsevich formula has been interpreted in terms of a particular field theory: the authors in
[9] describe the quantization of such a field theory explicitly and they show that Kontsevich’s formula
is given by the perturbative expansion of the path integral. Roughly, they consider two bosonic fields
on a dics D, X and η. X is a map from D to a Poisson manifold M and η is a differential one-form
on D. The star product of two functions f and g on M , at x ∈ M , is given by the semiclassical
expansion of the path integral:

f ? g(x) =

∫
X(∞)=x

f(X(1))g(X(0))e
i
~S[X,η]dXdη (3.1.16)

where 0,1, ∞ are three points on the unit circle and S[X, η] is the action. The path integral is over
all X and η and its semiclassical expansion is an expansion around the classical solution X(u) = x,
η(u) = 0 for u ∈ D. The evaluation of such path integral is quite complicated, due to the presence of
a particular gauge symmetry. The gauge transformation, in this case, forms a Lie algebra only when
acting on classical solutions and this makes the evaluation of the path integral much harder, since the
usual method (the so-called BRST method) does not work. The generalization that works in this case
is the Batalin-Vilkovisky method (see [1], [2] for details on the theory), which yields to a gauge fixed
action. Using such an action, Cattaneo and Felder computed the Feynman perturbation expansion in
power of ~ around the classical solutions and they could show that it reproduces Kontsevich’s formula.
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3.2 Globalization

The formality theorem, discussed in the previous chapter, has been proved first by Kontsevich in [28] by
extending the quantization obtained in the case M = Rd to a general Poisson manifold. Kontsevich’s
proof is very complicated and we do not discuss it here. The globalization of the quantization has
been proved with different approaches by Cattaneo, Felder, Tomassini in [10], [12] and, more recently,
by Dolgushev [17], [16]. In the following we briefly introduce both theories, minimizing the technical
aspects.

3.2.1 The approach of Cattaneo-Felder-Tomassini

In this section we give a short review of the works of Cattaneo, Felder and Tomassini [10] (see also [13],
[12], [11]), where the authors give an explicit construction of a star product on any Poisson manifold.
This construction is similar, in the spirit, to Fedosov deformation quantization of symplectic manifolds
[19]. For this reason, it is useful to recall the guidelines of Fedosov construction; the main idea of
Fedosov was to construct a star product on a symplectic manifold by identifying the space C∞(M)JtK
with the algebra of flat sections of the so-called Weyl bundle endowed with a flat connection. The
first step consists in the construction of a vector bundle W associated to a symplectic manifold.
More precisely, given a symplectic manifold (M,ω), ω defines a symplectic structure on each tangent
space TxM and this allows us to construct a corresponding associative algebra Wx (called formal
Weyl algebra), where the elements are formal power series and the product is given by the Weyl
rule (2.3.21). Taking the union of such algebras Wx, x ∈ M we obtain a bundle W of formal Weyl
algebras. As a second step, Fedosov defined a general connection D on W and its curvature Ω and
he proved some important properties for D and Ω (they are generally called Fedosov connection and
Weyl curvature, resp.). Finally, Fedosov defined a new connection D obtained by deforming D and he
proved that D satisfies the same properties of D and it is flat. This implies that there is a bijection
between C∞(M)JtK and the space WD of flat sections on W w.r.t. D and the Weyl product on WD

can be transported to C∞(M)JtK yielding a star product.
The globalization introduced by Cattaneo, Felder and Tomassini in the Poisson case is quite

similar but the techniques involved to construct a vector bundle associated to a Poisson manifold are
quite hard; here we only aim to give an outline, addressing the reader to the original paper [10] for
a complete exposition. The main idea in this paper is to realize the deformed algebra C∞(M)JtK as
the algebra of horizontal sections of a bundle of algebras. Thus, the first step is the construction
of such a bundle on the Poisson manifold (M,π). First, we define the classical bundle E0 → M
which is a Poisson algebra bundle, i.e. a vector bundle whose fibers are Poisson algebras. The vector
bundle E0 can be endowed with a canonical flat connection D0 and we denote by H0(E0, D0) the
space of D0-horizontal sections of E0 (sections which are constant along smooth paths in M). Notice
that the canonical map C∞(M) → E0 is a Poisson algebra isomorphism onto H0(E0, D0), thus
C∞(M) ∼= H0(E0, D0). The second bundle is somehow the quantum version of E0. Its construction
is very technical and it needs some basis of formal geometry, that we are not going to discuss here.
We just remark that formal geometry studies infinite-dimensional manifolds of jet spaces and it is
useful for the globalization of the Kontsevich formula as it allows us to describe the global behavior
of objects defined locally in terms of coordinates. We introduce the second bundle E roughly, as a
bundle of associative algebras over RJtK, which can be obtained by quantizing the fibers of E0. Its
construction depends on the choice of the coordinate system φx, x ∈M . The fibers of E are endowed
with an associative product, defined by applying Kontsevich’s formula for Rd w.r.t. the coordinate
system φx. The details of this construction are discussed in [10], where the authors also give a short
review of formal geometry as it was introduced by Gelfand and Kazhdan in [20]. A nice introduction
to the language of jets can be found in [27] (also useful to study basic differential geometry) and
a review of bundles of infinite jets can be found in [44]. Furthermore, formal geometry has been
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exhaustively treated in [8].
As in the Fedosov construction, now we need to define a connection on E and we can see that

the Kontsevich’s formula for Rd provides the ingredients to construct such a connection. Recall that,
given a Poisson structure π, the Kontsevich star product is given by

f ? g = fg +
∑
k=1

tkUk(π)(f, g) (3.2.1)

More generally, considering Un(π1, . . . , πj) defined as a multi-linear graded symmetric function of j
multi-vector fields with values in multi-differential operators on C∞(Rd), the formality theorem can
be rewritten as follows:

Theorem 3.2.1 Let πj ∈ Γ(∧mjTRd), j = 1, . . . , n be multi-vector fields. Let εij = (−1)(m1+...mi−1)mi+(m1+...mi−1+mi+1+···+mj−1)mj .
Then, for any functions f0, . . . , fm,

n∑
l=0

m∑
k=−1

m−k∑
i=0

(−1)k(i+1)+m
∑

σ∈Sl,n−l

ε(σ)Ul(πσ(1),...,πσ(l)
)(f0 ⊗ · · · ⊗ fi−1

⊗Un−l(πσ(l+1),...,πσ(n)
)(fi ⊗ · · · ⊗ fi+k)⊗ fi+k+1 ⊗ · · · ⊗ fm)

=
∑
i<j

εijUn−1([πi, πj ]S , π1, . . . , π̂i, . . . , π̂j , . . . , πn)(f0 ⊗ fm) (3.2.2)

Here we denoted by Sl,n−l the subset of the group Sn of permutations of n letters consisting of
permutations such that σ(1) < · · · < σ(l) and σ(l + 1) < · · · < σ(n). For σ ∈ Sl,n−l let

ε(σ) = (−1)
∑l
r=1 mσ(r)(

∑σ(r)−1
s=1 ms−

∑r−1
s=1 mσ(s)). (3.2.3)

Consider some special case of this theorem, namely the cases involving a Poisson bi-vector field π
and two vector fields X and Y . Let us introduce:

P (π) =
∞∑
k=0

tk

k!
Uk(π)

A(X,π) =
∞∑
k=0

tk

k!
Uk+1(X,π)

F (X,Y, π) =
∞∑
k=0

tk

k!
Uk+2(X,Y, π) (3.2.4)

It is evident that, the coefficients of P are bi-differential operators (as in the usual formulation of for-
mality for Rd), while the coefficients of A and F are differential operators and functions, respectively.
They satisfy the relations of Theorem (3.2.1). In other words, P , A, and F are elements of degree 0, 1
and 2 resp., of the Lie algebra cohomology complex2 of (formal) vector fields with values in the space
of multi-differential operators depending polynomially on π (the so-called local polynomial maps). We
denote by U the space of these local polynomial maps and since the Lie algebra W of vector fields on
Rd acts on U we can form a Lie algebra cohomology complex C•(W,U) = HomR(∧•W,U). An element
S of Ck(W,U) is a map which sends X1 ∧ · · · ∧Xk to a multi-differential operator S(X1, . . . , Xk, π).
The differential on this complex is defined by

δS(X1, . . . , Xk + 1, π) :=

k+1∑
i=1

(−1)i
d

d t

∣∣∣∣
t=0

S(X1, . . . , X̂i, . . . , Xk+1, (Φ
t
X)∗π) +

2the definition of Lie algebra cohomology is recalled in Appendix A
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+
∑
i<j

S([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , x, . . . , Xk+1, π), (3.2.5)

where Φt
X denotes the flow of the vector field X. From the formality theorem, using the definitions

(3.2.4), we get relations for P , A and F ; in particular, the relations obtained for P are the defining
conditions of a star product and the ones involving A are used to construct a connection D on E. It
can be seen that the space Γ(E) of sections of E can be endowed with a deformed product on ? which,
as the Weyl product in the Fedosov construction, will give us the deformed product on C∞(M). More
precisely, we identify E with the trivial bundle with fiber RJy1, . . . , yd, tK (this is crucial; in this way
E realizes the desired quantization since we can assume it is isomorphic to the bundle E0JtK, whose
elements are formal power series with infinite jets as coefficients). A section f ∈ Γ(E) is given by a
local map x 7→ fx where for any y, fx(y) is a formal power series in RJy1, . . . , yd, tK and the product
of two sections f and g is given by (f ? g)x = P (πx)(fx, gx); here πx is the pushforward by φ−1

x of the
Poisson structure π on Rd and we get

(f ? g)x(y) = fx(y)gx(y) + t
d∑

i,j=1

πijx (y)
∂fx
∂yi

(y)
∂gx
∂yj

(y) + . . . (3.2.6)

Now we can define the connection D on Γ(E) by setting

(Df)x = dxf +AMx f (3.2.7)

where dxf is the de Rham differential of f , viewed as a function of x ∈M with values inRJy1, . . . , yd, tK
and for X ∈ TxM

AMx (X) = A(X̂x, πx) (3.2.8)

where A is the operator defined in Eq. (3.2.4) evaluated on the multi-vector fields X and π expressed
in the local coordinate system φx.

It has been proven in [10] that D induces a global connection on E because, from the properties
of A, we can see that D is independent of the choice of the local coordinates. The connection D
is defined on the space of formal one differential forms Ω1(E) = Ω1(M) ⊗C∞(M) Γ(E) and can be
extended to the whole complex Ω•; using the properties of A and F we have the following

Lemma 3.2.2 [10] Let FM ∈ Ω2(E) be the E-valued two form x 7→ FMx , with FMx (X,Y ) =
F (X̂x, Ŷx, πx), with X,Y ∈ TxM . Then for any f and g in Γ(E)

i.) D(f ? g) = Df ? g + f ? Dg

ii.) D2f = FM ? f − f ? FM = [FM , f ]?

iii.) DFM = 0

A connection D satisfying these identities on a bundle E of associative algebras is called Fedosov
connection and its curvature F is called Weyl curvature. Notice that, from identity (i), the space of
horizontal sections kerD forms an algebra but D is not flat. Thus, also in this setting, we need to
deform D in such a way we get a flat connection still preserving (i). This allows us to deform the
algebra of horizontal sections of E with respect to the deformed connection.

First, we can see that given a Fedosov connection D we can deform it and get another Fedosov
connection D; more precisely,

Proposition 3.2.3 [10] If D is a Fedosov connection and γ ∈ Ω1(E), then D = D + [γ, ·]? is a
Fedosov connection with curvature F = F +Dγ + γ ? γ.
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Recall that a Fedosov connection is flat if D2 = 0; in this case, we can define the cohomology groups

H i(E,D) =
ker(D : Ωi(E)→ Ωi+1(E))

Im(D : Ωi−1(E)→ Ωi(E))
. (3.2.9)

Given the vector bundle E0, let E0JtK be the formal counterpart. Sections of E0JtK are formal power
series in t with coefficients in Γ(E0). Assume that E = E0JtK and that D is a Fedosov connection on
E with Weyl curvature F . They can be expanded as formal power series

D = D0 + tD1 + . . . (3.2.10)

and
F = F0 + tF1 + . . . (3.2.11)

where D0 is a Fedosov connection on the bundle of algebras E0 with Weyl curvature F0.

Lemma 3.2.4 If F0 = 0 and H2(E0, D0) = 0 there exists a γ ∈ tΩ1(E) such that D = D + [γ, ·]? is
flat. As we consider the classical bundle E0 with canonical flat connection D0, this implies that the
deformed connection D (which is Fedosov by Prop. (3.2.3)) is flat.

Thus, H0(E,D) = kerD is an algebra over RJtK and there is an isomorphism ρ : H0(E,D) →
H0(E0, D0). Since H0(E0, D0) ∼= C∞(M) we can map the star product (3.2.6) on C∞(M) by means
of the isomorphism ρ; the authors in [10] proved that the product obtained is a well defined star
product which deforms the Poisson structure π on M .

3.2.2 Dolgushev’s construction

Another interesting, and more general, approach to prove the formality theorem in its global version
is due to Dolgushev [17], [16]; his approach is more general as he proved the formality theorem
for a generic manifold (Kontsevich in [28] already gave a sketchy proof of formality for arbitrary
manifolds). The basic idea is to construct Fedosov resolutions of the algebras of multi-vector fields
and multi-differential operators which allow us to extend formality theorem for Rd fiberwise.

The first step of this construction consists in defining a new bundle SM which is a natural analogue
of the Weyl algebra bundle used by Fedosov. The bundle SM is defined as the (formally completed)
symmetric algebra of the cotangent bundle T ∗M ; more precisely,

Definition 3.2.5 The bundle SM is a bundle over the manifold M whose sections are in the form

a = a(x, y) =

∞∑
p=0

ai1...ip(x)yi1 . . . yip (3.2.12)

where ai1...ip(x) are symmetric covariant tensors in the local coordinates xi and yi are variables which
transform as contravariant vectors (for this reason they can be interpreted as formal coordinates on
the fibers of TM). The indices i1, . . . , ip run from 1 to d.

The space Γ(SM) of sections on SM is a commutative algebra with a unit, as we can endow it with
the product induced by a fiberwise multiplication of formal power series in yi. Now we can introduce
(formal fiberwise) multi-vector fields and multi-differential operators on SM .

Definition 3.2.6 A bundle Tkpoly of formal fiberwise multi-vector fields of degree k is a bundle over
M whose sections v : ∧k+1Γ(SM)→ Γ(SM) are linear operators on C∞(M) of the form

v =
∞∑
p=0

vj0...jki1...ip
(x)yi1 . . . yip

∂

∂yj0
∧ · · · ∧ ∂

∂yjk
, (3.2.13)

where the infinite sum in y’s is formal and vj0...jki1...ip
(x) are tensors symmetric in i1, . . . , ip and antisym-

metric in j0, . . . , jk.
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Then, the total bundle Tpoly is given by

Tpoly =
∞⊕

k=−1

Tkpoly, T−1
poly = SM (3.2.14)

Similarly, we define the bundle of multi-differential operators

Definition 3.2.7 A bundle Dk
poly of formal fiberwise multi-differential operators of degree k is a

bundle over M whose sections are C∞(M)-multilinear maps B : ⊗k+1Γ(SM)→ Γ(SM) of the form

B =
∑
α0...αk

∞∑
p=0

Bα0...αk
i1...ip

(x)yi1 . . . yip
∂

∂yα0
⊗ · · · ⊗ ∂

∂yαk
, (3.2.15)

where α’s are multi-indices α = j1 . . . jl and

∂

∂yα
=

∂

∂yj1
. . .

∂

∂yjl
; (3.2.16)

the infinite sum in y’s is formal, and the sum in the orders of derivatives ∂
∂y is finite.

The total bundle Dpoly is given by

Dpoly =
∞⊕

k=−1

Dk
poly, D−1

poly = SM (3.2.17)

Finally, we need to consider the graded-commutative algebra Ω(M, SM) of exterior forms on M with
values in SM ,

Ω(M, SM) = {a(x, y, dx) =
∑
p,q≥0

ai1...ipj1...jq(x)yi1 . . . yipdxj1 . . . dxjq}, (3.2.18)

where ai1...ipj1...jq(x) are contravariant tensors symmetric in the indices i1, . . . , ip and anti-symmetric
in j1, . . . , jq. Similarly, we can define the vector spaces Ω(M,Tpoly) and Ω(M,Dpoly) of smooth exterior
forms on M with values in Tpoly and Dpoly respectively. They are DGLA’s and we denote by d and
[·, ·]G the differential and the Lie bracket in Ω(M,Dpoly) and by [·, ·]S the Lie bracket on Ω(M,Tpoly)
(recall that the differential on Tpoly is identically zero). Notice that the fibers of Tpoly and Dpoly form
a DGLA, Tpoly(Rd) and Dpoly(Rd) respectively (more precisely, on the formal completion of Rd), so
the formality for Rd implies that we have a fiberwise L∞ quasi-isomorphism

Uf : (Ω(M,Tpoly), 0, [·, ·]S)→ (Ω(M,Dpoly), d, [·, ·]G). (3.2.19)

Using the same technique as Fedosov, Dolgushev deformed the above DGLA’s and proved that
there exists L∞-quasi-isomorphism from Tpoly and the deformed complex associated to Ω(M,Tpoly)
(similarly, from Dpoly to the deformed complex associated to Ω(M,Dpoly)). This allows us to prove
that there exists a L∞-quasi-isomorphism from Tpoly to Dpoly for any smooth manifold M . Let us
define a differential operator on the algebra Ω(M, SM) by

δ = dxi
∂

∂yi
: Ωq(M, SM)→ Ωq+1(M, SM), δ2 = 0. (3.2.20)

This differential extends to differentials on Ω(M,Tpoly) and Ω(M,Dpoly) as follows

δ =

[
dxi

∂

∂yi
, ·
]
S

: Ωq(M,Tpoly)→ Ωq+1(M,Tpoly), δ2 = 0 (3.2.21)
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and
δ =

[
dxi

∂

∂yi
, ·
]
G

: Ωq(M,Dpoly)→ Ωq+1(M,Dpoly), δ2 = 0. (3.2.22)

It is easy to check that δ is compatible with the DGLA structures on Ω(M,Tpoly) and Ω(M,Dpoly).
The zero cohomologies of the complexes (Ω(M, SM), δ), (Ω(M,Tpoly), δ) and (Ω(M,Dpoly), δ) can

be computed easily and it turns out that

H0(Ω(M, SM), δ) = C∞(M) (3.2.23)

and
H0(Ω(M,Tpoly), δ) = F0Tpoly H0(Ω(M,Dpoly), δ) = F0Dpoly (3.2.24)

where F0Tpoly is just the vector space of all fiberwise multi-vector fields (3.2.13) and F0Dpoly is the
vector space of all fiberwise multi-differential operators (3.2.15). Now we need to deform the above
complexes in such a way we can identify F0Tpoly with Tpoly and F0Dpoly with Dpoly. Let us introduce
an affine torsion free connection ∇i on M and associate to it the following derivation of Ω(M, SM)

∇ = dxi
∂

∂xi
+ Γ : Ωq(M, SM)→ Ωq+1(M, SM), (3.2.25)

where
Γ = −dxiΓkij(x)yj

∂

∂yk
, (3.2.26)

with Γkij(x) being the Christoffel symbols of ∇i. The derivation ∇ extends to derivations of the
DGLA’s Ω(M,Tpoly) and Ω(M,Dpoly) as follows

∇ = dxi
∂

∂xi
+ [Γ, ·]S : Ωq(M,Tpoly)→ Ωq+1(M,Tpoly) (3.2.27)

and
∇ = dxi

∂

∂xi
+ [Γ, ·]G : Ωq(M,Dpoly)→ Ωq+1(M,Dpoly). (3.2.28)

In general ∇ is not flat but Dolgushev proved that it can be used to deform the differential δ in
such a way we get a flat derivation D. In particular,

D = ∇− δ +A : Ωq(M, SM)→ Ωq+1(M, SM)

D = ∇− δ + [A, ·]S : Ωq(M,Tpoly)→ Ωq+1(M,Tpoly)

D = ∇− δ + [A, ·]G : Ωq(M,Dpoly)→ Ωq+1(M,Dpoly). (3.2.29)

It has been proven that there exists a suitable A, which makes the derivation D flat; for this
reason D is called Fedosov differential. The new complexes (Ω(M, SM), D), (Ω(M,Tpoly), D) and
(Ω(M,Dpoly), D) have cohomologies concentrated in zero and

H0(Ω(M, SM), D) ∼= C∞(M) (3.2.30)
H0(Ω(M,Tpoly), D) ∼= F0Tpoly (3.2.31)
H0(Ω(M,Dpoly), D) ∼= F0Dpoly. (3.2.32)

Dolgushev constructed an isomorphism µ between F0Tpoly and Tpoly (F0Dpoly and Dpoly) and used
such a isomorphism to prove that Ω(M,Tpoly) is a resolution of Tpoly (and similarly, Ω(M,Dpoly)
is a resolution of Dpoly), i.e. the DGLA structure induced on the cohomologies of the complexes
(Ω(M,Tpoly), D) ((Ω(M,Dpoly), D)) coincides with the DGLA structure induced from Tpoly via µ−1.
For this reason we refer to (Ω(M,Tpoly), D) and (Ω(M,Dpoly), D) as the Fedosov resolutions of Tpoly
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and Dpoly. These resolutions allow to prove the formality theorem for any smooth manifold. Morally,
deforming the quasi-isomorphism (3.2.19) we get the quasi-isomorphism

U : (Ω(M,Tpoly), D, [·, ·]S)→ (Ω(M,Dpoly), d+D, [·, ·]G). (3.2.33)

This, since (Ω(M,Tpoly), D) and (Ω(M,Dpoly), D) are the Fedosov resolutions of Tpoly and Dpoly, gives
us the desired quasi-isomorphism

U : Tpoly(M)→ Dpoly(M) (3.2.34)

3.3 Open problems

The existence of a star product has been proven by Kontsevich in the case of finite-dimensional
manifolds. A natural (but very hard) question involves the case of infinite dimension. This problem
has a strong physical motivation, since there are many physical situations where we deal with infinite-
dimensional Poisson manifolds. Recently, a discussion on the obstructions for a formality theory in
infinite dimension appears in [15] and [53].

Another interesting question concerns the quantization of Poisson morphisms; let (M1, π1) and
(M2, π2) be two Poisson manifolds and φ : M1 → M2 a Poisson morphism. The quantization of φ
should provide a morphism of the associated deformed algebras which gives φ in the classical limit.
This problem has been approached by M. Bordemann [6], who related it to symplectic restrictions
of star products. However, there is no general solution to this problem yet; the obstructions to the
quantization of Poisson morphisms have been showed by T. Willwacher in [52], where the author gives
an explicit counterexample of non quantizable Poisson morphism.

Many questions are related to the different approaches to quantization. Geometric quantization,
for instance, is a quantization procedure which focuses on the space of states rather than observables
and tries to associate a Hilbert space to a symplectic or Poisson manifold via a complex line bundle.
Basically, given a classical phase space M we can define a line bundle L on M . The Hilbert space
of square-integrable sections of L is called prequantum Hilbert space H0. The quantum phase space
is a subspace of H0 and is constructed using global sections of the line bundle which are flat along a
polarisation. The reader can find many interesting references in geometric quantization; in particular,
besides the historical papers [29], [30] and [26], a comprehensive textbook is the one by Woodhouse
[54]. Some introductory treatment can also be found in [42], [32], [3] and [36]. The relation between
geometric and deformation quantization has been investigated in some specific cases (see for example
[21], [22]) but there are still many open questions. So far, the comparison in the case of real polar-
ization, i.e. when there are no global sections which are flat along the polarization, has never been
approached.

As already pointed out in Section 2.2, a non-formal approach to quantization is given by strict
deformation quantization, where the quantum algebra of observables is a C∗-algebra (see [40] and
[41]). Under some conditions, one can reproduce formal deformation quantization from a C∗-algebraic
deformation quantization (an interesting example can be found in [4]). Convergence of formal power
series in formal deformation quantization is discussed for instance in [7] and [37]. The inverse problem
is still open: given a formal deformation quantization we could expect that the subalgebra of the
converging power series leads to a strict deformation quantization. However, the only case where this
relation is understood is the case of R2n, with the star product introduced in Example 2.3.3.

A possible future direction of research is the deformation quantization of symplectic groupoids.
Symplectic groupoids have been defined to study the quantization of Poisson manifolds (in [48],
[49], [50] and [51]). A symplectic groupoid is a manifold Γ with a multiplication which is only
partially defined and compatible with the symplectic structure. The identity elements in Γ form a
Poisson manifold M : this correspondence generalizes the one between Lie groups and Lie algebras
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(this formalism has been largely developed in the last few years; basic introductions can be find in
[35], [34] and [33]). Furthermore, symplectic groupoids could be useful in the study of non-linear
commutation relations. The quantization of symplectic groupoids has been studied in the setting
of geometric quantization. In particular, the prequantization is discussed in [14], [31] and [5]; a
notion of polarization of symplectic groupoids, which yields to a strict deformation quantization
of the underlying Poisson manifold, has been introduced in [23]. The deformation quantization of
symplectic groupoids is an open problem, which could be approached with different techniques, from
Fedosov’s construction to formality theorem. In this approach, the structures on the symplectic
groupoids, a Fedosov connection or a deformed product respectively, can be related with the relative
structures on the associated Poisson manifolds.
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Appendix A

Appendix

This Appendix aims to be a short survey of some basic notions used in this book; in particular, com-
plexes and cohomologies, vector bundles and connections on vector bundles. The reader is assumed
to be familiar with basic notions of differential geometry such as smooth manifolds, vector fields and
differential forms (see e.g., [1], [4], [3]).

A.1 Vector bundles

Definition A.1.1 A vector bundle of rank m consists of a pair of manifolds E and M , with a
(smooth) surjective map π : E → M such that, for any x ∈ M , the subset Ex = π−1(x) ⊂ E is a
vector space isomorphic to km1, and there exists an open neighborhood U of x in M and a so-called
local trivialization

Φ : π−1(U)→ U × km. (A.1.1)

Φ is a diffeomorphism which restricts to a linear isomorphism Ey → {y}×km for any y ∈ U . We call
E the total space of the bundle π : E →M and M the base. For any x ∈M , the set Ex = π−1(x) ⊂ E
is called the fiber over x.

Given a vector bundle π : E →M , we denote E|U = π−1(U) for any subset U ⊂M . We say that the
bundle is trivializable over the subset U if there exists a trivialization Φ : E|U → U ×km. The bundle
is said to be globally trivializable (or trivial) if there exists a trivialization over the entire manifold
M . Every vector bundle admits a system of local trivializations, i.e. a covering of M by open sets Ui
and diffeomorphisms Φi : E|Ui → Ui× km. Such a system defines a set of continuous transition maps

fij : Ui ∩ Uj → GL(m, k) (A.1.2)

so that the diffeomorphism Φi ◦Φ−1
j : (Ui ∩Uj)× km → (Ui ∩Uj)× km has a form Φi ◦Φ−1

j : (x, u) 7→
(x, fij(x)u).

Definition A.1.2 A section of the bundle π : E →M is a map u : M → E such that (π ◦ u)(x) = x
for every x ∈M .

The space of (smooth) sections on a vector bundle π : E →M is denoted by

Γ(E) = {u : M → E|π ◦ u = IdM} (A.1.3)

1here k can be either R or C

65
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Example A.1.3 Given a n-dimensional smooth manifold M , its tangent bundle TM =
⋃
x∈M TxM

associates to each x ∈ M the n-dimensional vector space TxM . In this case, M is the base of
the bundle, the 2n-dimensional manifold TM is the total space. There a natural projection map
π : TM → M which, for any x ∈ M , maps every vector X ∈ TxM to x. The fibers are given by the
preimages π−1(x) = TxM .

Example A.1.4 The dual version of the tangent bundle is called cotangent bundle and is denoted
by T ∗M → M . Its fibers are the vector spaces T ∗xM of linear maps TxM → R, called dual vectors.
The sections of T ∗M are the differential 1-forms on M .

A.1.1 Tensors

Consider the set Lk(V1, . . . , Vk;W ) of k-multilinear maps of V1×. . . Vk toW . The special case L(V,R)
is denoted V ∗, the dual space of V . If V is finite dimensional and {e1, . . . en} is a basis of V , there
is a unique basis of V ∗, the dual basis {f1, . . . fn}, such that 〈f i, ej〉 = δij . Here 〈·, ·〉 denotes the
pairing between V and V ∗.

For a vector space V we put

T rs (V ) = Ls+r(V ∗, . . . , V ∗, V, . . . , V ;R) (A.1.4)

(r copies of V ∗ and s copies of V ). Elements of T rs (V ) are called tensors on V , contravariant of order
r and covariant of order s.

Given t ∈ T rs (V ) and s ∈ T qp (V ), the tensor product of t and s is the tensor t ⊗ s ∈ T r+qs+p (V )
defined by

(t⊗ s) (β1, . . . βr, γ1, . . . , γq, f1, . . . fs, g1, . . . , gp)

= t(β1, . . . βr, f1, . . . fs)s(γ
1, . . . , γq, g1, . . . , gp) (A.1.5)

where βj , γj ∈ V ∗ and fj , gj ∈ V .
The tensor product is associative, bilinear and continuous; it is not commutative. Notice that

T 1
0 (V ) = V, T 0

1 (V ) = V ∗. (A.1.6)

Let M be a manifold and π : TM → M its tangent bundle. We call T rs (M) = T rs (TM) the vector
bundle of tensors contravariant of order r and covariant of order s. We identify T 1

0 (M) with TM and
call T 0

1 (M) the cotangent bundle of M also denoted by τ∗M : T ∗M →M . The zero section of T rs (M)
is identified with M .

A section of T rs (M) takes an element m ∈M and associates a vector in the fiber, called tensor.
A tensor field of type (r, s) on a manifold M is a smooth section of T rs (M). We denote by Trs(M)

the set Γ(T rs (M)) together with its infinite dimensional real vector space structure. A covector field
or differential one-form is an element of T0

1(M).

A.1.2 Connections

Let us consider an rank n vector bundle E over am-dimensional manifoldM and the cotangent bundle
T ∗M . The tensor product E ⊗ T ∗M is obviously a vector bundle over M , with fibers (E ⊗ T ∗M)x =
Ex ⊗ T ∗xM .

Definition A.1.5 A connection D in a vector bundle E is a first-order differential operator D :
Γ(E)→ Γ(E ⊗ T ∗M) satisfying the Leibniz rule

D(fu) = (d f)u+ fDu (A.1.7)

for any section u ∈ Γ(E) and any function f ∈ C∞(M); here d f is the differential of f .
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The section Du ∈ Γ(E ⊗ T ∗M) is called covariant differential of u. Let eU = (e1, . . . , en)U be local
coordinates of E, where U is an open set U ⊂ M ; the definition of connection is local, thus we only
need to define the operator D using the local frame eU . In particular, we can write Dej = Γkj ek, with
some one-forms Γkj defined on U . The matrix ΓU = (Γkj )U is called local connection one-form.

Proposition A.1.6 There exists a connection for any vector bundle.

In the following, we denote by Ωp the p-th exterior power of T ∗M and Ω =
⊕m

p=0 Ωp; consider the
square of the operator D

D2 = D ◦D : Γ(E)→ Γ(E ⊗ Ω2). (A.1.8)

Then D2 is a tensor and we set, for any section u ∈ Γ(E),

D2u = Fu; (A.1.9)

F is called curvature of the connection D.

Definition A.1.7 A connection D is said to be flat if F = 0.

Consider a smooth manifold M with local coordinates (x1, . . . , xn) and its tangent bundle TM .
The vector fields ∂

∂x1 , . . . ,
∂
∂xn and the differentials dx1, . . . ,dxn form a local system of coordinates of

TM and T ∗M respectively, called natural. Like any other bundle, the tangent bundle can be endowed
by a connection, called affine connection.

Definition A.1.8 A fundamental one-form θ on M is a section of Ω⊗TM such that the i(X)θ = X
for any X, where i(X) is the contraction of the vector field X with differential forms. If D is an
affine connection, the torsion of D is the differential form S = Dθ ∈ Γ(Ω2 ⊗ TM).

If S = 0, the connection D is said to be torsion free.
In local coordinates, we have θ = eiθ

i or θ = dxi ∂
∂xi

(natural coordinates) and

S = D(eiθ
i) = Dei ∧ θi + ei d θi = ei(Γ

i
j ∧ θj + d θi) = Γji ∧ dxi

∂

∂xj
(A.1.10)

Since Γji = Γjik dxk, we have

S = Γjik dxk ∧ dxi
∂

∂xj
, (A.1.11)

thus the torsion tensor in natural coordinates is given by

Sjik =
1

2
(Γjki − Γjik). (A.1.12)

The coefficients Γijk of the affine connection in natural coordinates are called Christoffel symbols.

A.2 Cohomology

We recall here some basic definitions and results on complexes and cohomologies; the interested reader
is referred to the classical literature, e.g. [2].

Definition A.2.1 A cochain complex C• is a sequence of vector spaces (more generally, abelian
groups) {Cn}n∈Z and homomorphisms dn : Cn → Cn+1 such that for all n, dn+1 ◦ dn = 0. The maps
di are called coboundary operators and the elements in Cn are called n-cochains.
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Such complexes are generally represented as a sequence of linear maps

. . . −→ Cn−1 dn−1−→ Cn
dn−→ Cn+1 −→ . . . (A.2.1)

the composition of any two being zero. The elements in Zn(C) := Ker(dn), i.e. such that dn c
n = 0

are called n-cocycles and elements in Bn(C) := Im(dn−1) are called n-coboundaries. The condition
dn+1 ◦dn = 0 implies that Bn(C) ⊂ Zn+1(C) for any n ∈ Z. Thus the quotient group Zn+1

Bn is defined
for all n.

Definition A.2.2 Let C• =
⊕

n∈ZC
n be a cochain complex of groups. The n-th cohomology group

of C•, Hn(C), is defined by

Hn(C) =
Zn(C)

Bn−1(C)
. (A.2.2)

Elements of Hn(C) are equivalent classes of cocycles: two cocycles are equivalent or cohomologous
if their difference is a coboundary. The cohomology of C is the direct sum of vector spaces H(C) =⊕

n∈ZH
n(C).

Definition A.2.3 A map f : A→ B between two complexes is a chain map if it commutes with the
differential operators of A and B

f dA = dB f. (A.2.3)

A sequence of vector spaces

. . . −→ V n−1 fn−1−→ V n fn−→ V n+1 −→ . . . (A.2.4)

is said to be exact if for all n the kernel of fn is equal to the image of its predecessor fn−1. An exact
sequence of the form

0→ A→ B → C → 0 (A.2.5)

is called a short exact sequence.

Example A.2.4 (de Rham cohomology) The best known example is the so-called de Rham com-
plex, which is the cochain complex of exterior differential forms on a smooth manifold M , endowed
with the exterior derivative. A nice introduction of the de Rham cohomology can be found in [5]. Let
M an open set in Rn and x1, . . . , xn be linear coordinates on Rn. We define Ω• to be the algebra
over R generated by dx1, . . . ,dxn with{

(dxi)
2 = 0,

dxi dxj = −dxj dxi,
(A.2.6)

The differential forms on Rn are elements of Ω•(Rn) = C∞(Rn)⊗Ω•. Thus, a form α can be uniquely
written as

∑
fi1...iq dxi1 . . . dxiq =

∑
fI dxI , where the coefficients fi1...iq are smooth functions on

Rn. The algebra Ω•(Rn) =
⊕n

q=0 Ωq(Rn) is graded and Ωq(Rn) consists of the smooth q-forms on
Rn.

We can define a differential operator

d : Ωq(Rn)→ Ωq+1(Rn), (A.2.7)

by

i.) if f ∈ Ω0(Rn), then d f =
∑ ∂f

∂xi
dxi,

ii.) if α =
∑
fI dxI , then dα =

∑
d fI dxI .
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This d is called exterior differentiation.
The wedge product of two differential forms α =

∑
fI dxI and β =

∑
gJ dxJ is given by

α ∧ β =
∑

fIgJ dxI dxJ . (A.2.8)

It can be proven (see [2]) that d is an anti-derivation, i.e.

d(α ∧ β) = (dα) ∧ β + (−1)deg αα ∧ dβ. (A.2.9)

Finally, it is easy to check that d2 = 0. The complex Ω•(Rn) with the differential d is called de Rham
complex on Rn. The kernel of d are the closed forms and the image of d the exact forms. The q-th
de Rham cohomology of Rn is the vector space

Hq
dR(Rn) = {closed q-forms}/{exact q-forms}. (A.2.10)

Example A.2.5 Consider the groups

C0 = {f ∈ C∞(R2)}, C1 = {fdx+ gdy : f, g ∈ C0}, C2 = {f dx d y : f ∈ C0}, (A.2.11)

with
d0 : f 7→ fx dx+ fy d y, d1 : f dx+ g d y 7→ (gx − fy) dx d y. (A.2.12)

We observe that
d1 ◦d0 : f 7→ fx dx+ fy d y 7→ (fyx − fxy) dx d y = 0; (A.2.13)

thus, defining Ci = 0 and di = 0 for all i < 0 and i > 2, we have the cochain complex C•:

. . . 0→ 0
ι→ C0 d0

→ C1 d1

→ C2 0→ 0→ 0→ . . . (A.2.14)

Example A.2.6 (Chevalley-Eilenberg cohomology) Let g be a finite-dimensional Lie algebra
and ρ be a representation ρ : g→ End(V ):

ρ(X)ρ(Y )− ρ(Y )ρ(X) = ρ([X,Y ]) (A.2.15)

for all X,Y ∈ g. Define the space of linear maps

Cn(g, V ) := Hom(∧ng, V ) ∼= ∧ng∗ ⊗ V (A.2.16)

called the space of n-forms on g with values in V . This space can be endowed with a differential
d : Cn(g, V )→ Cn+1(g, V ) as follows:

i.) for v ∈ V , dv(X) = ρ(X)v for all X ∈ g;

ii.) for α ∈ g∗, let dα(X,Y ) = −α([X,Y ]) for all X,Y ∈ g;

iii.) for ω ⊗ v ∈ ∧•g∗ ⊗ V , d(ω ⊗ v) = dω ⊗ v + (−1)|ω|ω ∧ dv.

It can be checked that d2 = 0 everywhere. Thus, we have a complex

. . . −→ Cn−1(g, V )
d−→ Cn(g, V )

d−→ Cn+1(g, V ) −→ . . . (A.2.17)

called Chevalley-Eilenberg complex of g with values in V . Its cohomology is called Lie algebra
cohomology of g with values in V .
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