	3.7	3.5 1
Cognome	Nome	Vlatricola
	10110	Wati Cola

MATEMATICA DISCRETA E LOGICA MATEMATICA

DOCENTI: C. DELIZIA, M. TOTA

Primo Appello — 20 gennaio 2014

IMPORTANTE: indicare l'esame che si intende sostenere e svolgere solo gli esercizi corrispondenti (eventuali altri esercizi non saranno considerati).
□ Matematica Discreta e Logica Matematica (12 cfu) — Esercizi: tutti
\Box Matematica Discreta (6 cfu) — Esercizi: 1, 2, 3, 4, 5, 6, 7, 8
□ Logica Matematica (3 cfu) — Esercizi: solo il numero 12
\square Vecchio ordinamento o integrazione di esami già sostenuti — Chiedere al docente

Esercizio 1. Utilizzando il principio di induzione si stabilisca per quali valori naturali di n risulta

$$n^2 > 2n + 1.$$

Esercizio 2. Si considerino le applicazioni

$$f: x \in \mathbb{N}_0 \longmapsto x - x^2 \in \mathbb{Z}$$

$$f: x \in \mathbb{N}_0 \longmapsto x - x^2 \in \mathbb{Z}$$
 $g: y \in \mathbb{Z} \longmapsto y + y^2 \in \mathbb{N}_0.$

 \bullet Motivando la risposta, si stabilisca se f è iniettiva.

 $\bullet\,$ Motivando la risposta, si stabilisca se g è suriettiva.

 $\bullet\,$ Si determini l'applicazione composta $g\circ f.$

 \bullet Motivando la risposta, si stabilisca se $g\circ f$ è iniettiva.

• Si determini la contro immagine $(g\circ f)^{-1}(\{0\}).$

Esercizio 3. Si verifichi se la matrice

$$A = \left(\begin{array}{ccc} 1 & 2 & 1\\ 0 & 1 & 2\\ 3 & 0 & 0 \end{array}\right) \in M_3(\mathbb{Z}_4)$$

è invertibile e, in caso affermativo, se ne determini l'inversa.

 $\textbf{Esercizio 4.} \hspace{0.1in} \textbf{Si determini la minima soluzione positiva dell'equazione congruenziale}$

 $648 x \equiv 34 \pmod{850}$.

Esercizio	5.	Si definisca	una	relazione	di	equivalenza	\mathcal{R}	nell'insieme	\mathbb{N}	dei	${\rm numeri}$	interi	positivi	$ch\epsilon$
verifichi le	segu	enti condizio	ni:											

 $|\mathbb{N}/_{\mathcal{R}}| = 5,$ $1\mathcal{R}2,$ $[3]_{\mathcal{R}} \neq [2]_{\mathcal{R}}.$

Esercizio 6. Quanti sono i numeri naturali che hanno una rappresentazione binaria di undici cifre di cui esattamente sei sono 0?

Esercizio 7.	Motivando tutte le risposte, si stabilisca se la relazione \sqsubseteq definita nell'insieme $\mathbb N$ dei numeri
naturali poner	ndo

$$a\sqsubseteq b\iff a\le b+1$$

(qui \leq denota l'ordine "usuale" in \mathbb{N}) risulta

 \bullet riflessiva

• asimmetrica

• transitiva

Esercizio 8. Si consideri il gruppo $(U(\mathbb{Z}_{10}),\cdot)$ degli elementi invertibili del monoide (\mathbb{Z}_{10},\cdot)

• Si compili la tavola di moltiplicazione del gruppo $(U(\mathbb{Z}_{10}),\cdot)$.

• Si dimostri che l'insieme $\{1,3\}$ non è un sottogruppo di $(U(\mathbb{Z}_{10}),\cdot)$.

• Si determini un sottogruppo di ordine 2 di $(U(\mathbb{Z}_{10}), \cdot)$.

Esercizio 9. Si consideri la matrice

$$A = \begin{pmatrix} 4 & 0 & 1 & 0 \\ 0 & 3 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \in M_4(\mathbb{R})$$

 $\bullet\,$ Si determinino tutti gli autovalori della matrice A.

• Per ciascun autovalore, si determini il relativo autospazio, la sua dimensione e una sua base.

 $\bullet\,$ Motivando la risposta, si stabilisca se la matrice A è diagonalizzabile.

Esercizio 10. Riducendo a scala la matrice completa e applicando il metodo di Gauss-Jordan, si risolva il seguente sistema lineare su \mathbb{Q} :

$$\begin{cases} 2y+z=1\\ 3x+y+2z=-1\\ -x+2z=1\\ x+y+z=1 \end{cases}$$

Esercizio 11. Nello spazio affine tridimensionale siano dati i punti

$$A = (2, 1, 1),$$
 $B = (1, -2, 0),$ $C = (-1, 0, 1).$

• Si verifichi che i punti $A, B \in C$ non sono allineati e si scrivano le equazioni parametriche del piano π per i punti $A, B \in C$.

 $\bullet\,$ Si consideri la retta r di equazioni parametriche

$$\begin{cases} x = 1 + 2t \\ y = -2 + t \\ z = 3 - t \end{cases}$$

con $t \in \mathbb{R}$ e si verifichi se la retta r e il piano π sono paralleli.

Esercizio 12.

• Si consideri la formula ben formata

$$P = B \rightarrow (A \lor B) \lor (\neg A \land \neg B).$$

Si scriva la tavola di verità di P.

Si scriva una formula equivalente a Pusando solo i connettivi \neg e $\lor.$

 $\bullet\,$ Si scriva una formula in forma normale congiuntiva equivalente a P.