MATEMATICA DISCRETA

Dott. C. Delizia Seconda Prova in Itinere 9 Febbraio 2006

$Cognome\ _$	 Nome	
Matricola		

Esercizio 1. Si determini il rango della matrice

$$A = \begin{pmatrix} 0 & 3 & 1 & 2 & 1 \\ 2 & 1 & 0 & 0 & 1 \\ 4 & 0 & 3 & 1 & 2 \\ 3 & 0 & 1 & 2 & 4 \end{pmatrix} \in M_{4,5}(\mathbb{Z}_5).$$

Esercizio 2. Si determinino tutti gli interia che siano soluzione del seguente sistema:

$$\begin{cases}
 a \equiv 4 \pmod{.7} \\
 2a \equiv 10 \pmod{.6} \\
 3a \equiv 9 \pmod{.12} \\
 |a| \le 100
\end{cases}$$

Esercizio 3. Utilizzando il metodo di Cramer, si risolva il seguente sistema di equazioni lineari a coefficienti in \mathbb{Z}_7 , esprimendo i risultati con numeri interi non negativi minori di 7:

$$\begin{cases} 2x + y + z = 3\\ x + 4y + 2z = 2\\ x + z = 0 \end{cases}$$

 $\underline{\textbf{Esercizio 4.}}$ Si determinino tutti gli autovalori (ed i corrispondenti autovettori) della matrice

$$A = \begin{pmatrix} \frac{3}{4} & -\frac{1}{6} \\ \frac{1}{8} & \frac{5}{12} \end{pmatrix} \in M_2(\mathbb{Q}).$$

Esercizio 5. Si consideri l'operazione \bot definita ponendo

$$a \perp b = a + b + 5,$$

per ogni $a, b \in \mathbb{Z}$.

• Si dimostri che la struttura algebrica (\mathbb{Z}, \perp) è un gruppo abeliano, **evidenziando** in particolare qual è l'elemento neutro e qual è il simmetrico di ciascun elemento $a \in \mathbb{Z}$.

 \bullet Si dimostri che i gruppi ($\mathbb{Z},+$) (dove + denota la usuale somma tra numeri interi) e (\mathbb{Z},\perp) sono isomorfi.

Esercizio 6. Si consideri il monoide $(M_2(\mathbb{Z}_2),\cdot)$ delle matrici quadrate di ordine 2 su \mathbb{Z}_2 con il prodotto righe per colonne.

- Quanti sono gli elementi di $M_2(\mathbb{Z}_2)$?
- \bullet Quanti e quali sono gli elementi simmetrizzabili del monoide $(M_2(\mathbb{Z}_2),\cdot)$?

 \bullet Si dimostri che la relazione ${\mathcal R}$ definita ponendo

$$A \mathcal{R} B \iff |A| = |B|,$$

dove |A| denota il determinante della matrice A, è una relazione di equivalenza in $M_2(\mathbb{Z}_2)$.

- \bullet Quante e quali sono gli elementi dell'insieme quoziente $M_2(\mathbb{Z}_2)/_{\mathcal{R}}$?
- \bullet Si dimostri che la relazione ${\mathcal R}$ è compatibile con il prodotto righe per colonne.

<u>Esercizio 7.</u> Nell'insieme \mathbb{N}^{\star} dei numeri naturali positivi si consideri la relazione \sqsubseteq definita ponendo

$$a \sqsubseteq b \iff a = b \text{ oppure } 4a < 3b,$$

dove < indica la relazione d'ordine usuale in \mathbb{N} .

 \bullet Si verifichi che \sqsubseteq è una relazione d'ordine in $\mathbb{N}^{\star}.$

- \bullet Si stabilisca se $(\mathbb{N}^\star,\sqsubseteq)$ è ben ordinato, motivando la risposta.
- Si determinino gli eventuali elementi minimali, elementi massimali, minimo e massimo di $(\mathbb{N}^*, \sqsubseteq)$.

- \bullet Si stabilisca se $(\mathbb{N}^\star,\sqsubseteq)$ è un reticolo, e perchè.
- \bullet Sia $S=\{a\in\mathbb{N}^{\star}\,:\,a\leq12\}.$ Si disegni il diagramma di Hasse di $(S,\sqsubseteq).$

