Cognome	Nome	Matricola
- 10 1		

MATEMATICA DISCRETA E LOGICA MATEMATICA

DOCENTI: C. DELIZIA, M. TOTA

Terzo Appello — 23 febbraio 2011

IMPORTANTE: indicare l'esame che si intende sostenere e svolgere solo gli esercizi corrispondenti (eventuali altri esercizi non saranno considerati).

□ Matematica Discreta e Logica Matematica (12 cfu) — Esercizi: tutti
□ Matematica Discreta (6 cfu) — Esercizi: 1, 2, 3, 4, 5, 6, 7, 8
□ Logica Matematica (3 cfu) — Esercizi: solo il numero 12
□ Vecchio ordinamento o integrazione di esami già sostenuti — Chiedere al docente

Esercizio 1. Ragionando per induzione, si dimostri che per ogni intero n > 6 risulta

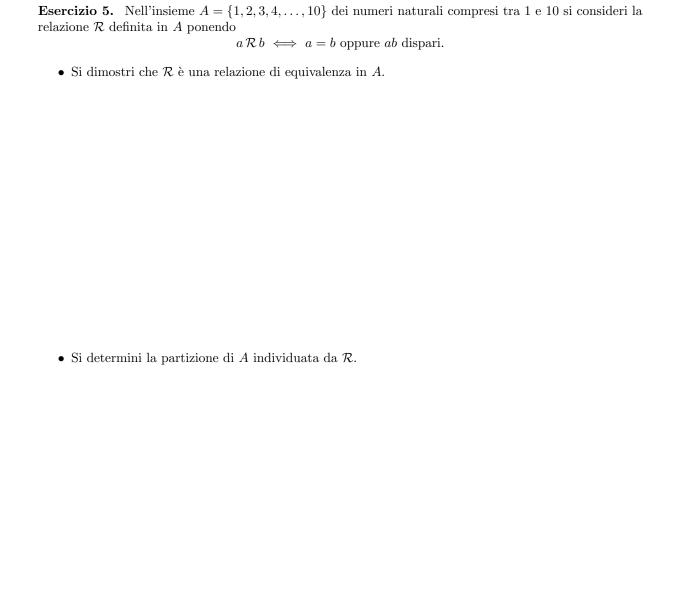
$$2^n > n^2 + 4n + 5.$$

Esercizio 2. Si consideri l'applicazione $f: x \in \mathbb{Q} \longrightarrow \frac{5x-7}{6} \in \mathbb{Q}$.

 \bullet Si dimostri che f è biettiva.

- Si determini l'inversa f^{-1} di f.
- Si calcoli:

$$f(\mathbb{N}_0) =$$


$$f^{-1}(\mathbb{N}_0) =$$

Esercizio 3. Si determini il rango della matrice

$$A = \begin{pmatrix} 1 & 3 & 3 & 1 \\ 0 & 4 & 1 & 3 \\ 1 & 2 & 4 & 4 \end{pmatrix} \in M_{3,4}(\mathbb{Z}_5).$$

Esercizio 4. Si determinino tutte le soluzioni intere dell'equazione congruenziale

$$135x \equiv 60 \pmod{620}.$$

Esercizio 6. Descrivendo il procedimento utilizzato, si stabilisca quanti sono i numeri interi positivi

minori di 500 e divisibili per 2 o per 3, ma non per 6.

Esercizio 7. Sia $A = \{a, b, c\}$ un insieme di ordine 3, e sia B l'insieme di tutte le applicazioni di A in A . Si consideri poi la struttura algebrica (B, \circ) , dove \circ denota la usuale composizione di applicazioni.
\bullet Si dimostri che (B,\circ) è un monoide.
\bullet Giustificando la risposta, si stabilisca se (B,\circ) è commutativo.
\bullet Si determini l'ordine del gruppo degli elementi simmetrizzabili del monoide $(B,\circ).$

Esercizio 8.	Sia $A = \{1, 2, 3, 4\}$, e sia B l'insieme di tutti i sottoinsiemi di A contenenti l'elemente
2 oppure l'elem	nento 3. Si consideri poi l'insieme ordinato (B,\subseteq) , dove \subseteq denota la usuale relazione d
inclusione tra i	insiemi.

 $\bullet\,$ Si disegni il diagramma di Hasse dell'insieme ordinato $(B,\subseteq).$

 $\bullet\,$ Si stabilisca se (B,\subseteq) è totalmente ordinato.

 $\bullet\,$ Si determinino gli eventuali elementi minimali, massimali, minimo e massimo di $(B,\subseteq).$

 $\bullet\,$ Si stabilisca se (B,\subseteq) è un reticolo, ed in caso affermativo si dica se è distributivo.

Esercizio 11. Nello spazio affine bidimensionale siano assegnati i punti

$$A = (0,1),$$
 $B = (2,4),$ $C = (-2,1),$ $D = (-1,2).$

 \bullet Si determinino le equazioni parametriche della retta r passante per i punti A e B e della retta s passante per i punti C e D.

ullet Si stabilisca se r e s sono parallele o incidenti e si determinino le coordinate dell'eventuale punto d'intersezione.

Esercizio 12.

- Si scriva la tavola di verità della formula ben formata $P = A \wedge B \rightarrow \neg A \vee \neg B$.
- Si scriva una formula equivalente a P usando solo i connettivi \neg e \land .

 \bullet Si determini una formula in forma normale congiuntiva equivalente a P.

• Indicando con una crocetta la risposta scelta, si determini il valore di verità di ciascuna delle seguenti proposizioni:

 P_1 : se 1 è primo allora Tenerife è un'isola;

 \square VERO ☐ FALSO

 P_2 : se in un campo ogni elemento non nullo è invertibile allora Londra si trova in Inghilterra;

 \square VERO ☐ FALSO

 P_3 : se la somma in $\mathbb Z$ non è commutativa allora 1234567890 è divisibile per 2346;

 \square VERO \square FALSO

 P_4 : se 5 e 7 sono coprimi allora è possibile calcolare il determinante di una matrice 3×2 .

 \square VERO \square FALSO