Matematica Discreta

Gruppo 1

DOTT. C. DELIZIA

19 Settembre 2006

Cognome	 Nome	
Matricola		

<u>ESERCIZIO 1.</u> Si determinino il più piccolo intero positivo e il più grande intero negativo che siano soluzioni del seguente sistema di equazioni congruenziali:

$$\begin{cases} 2x \equiv 10 \pmod{6} \\ x \equiv 4 \pmod{5} \\ x \equiv 3 \pmod{7} \end{cases}$$

ESERCIZIO 2. Si determini il più grande intero positivo che si rappresenta in base 9 con 3 cifre di cui almeno 2 distinte, e se ne dia la rappresentazione in base 8.

ESERCIZIO 3. Utilizzando il metodo di Cramer, si risolva il seguente sistema di equazioni lineari a coefficienti in \mathbb{Z}_{13} , esprimendo i risultati con numeri interi non negativi minori di 13:

$$\begin{cases} 5x + y + 2z = 1\\ 2x + 3y + z = 0\\ x + y + z = 2 \end{cases}$$

Esercizio 4.

- \bullet Quante sono le possibili applicazioni iniettive di \mathbb{Z}_6 in \mathbb{Z}_4 ?
- \bullet Quante sono le possibili applicazioni iniettive di \mathbb{Z}_4 in \mathbb{Z}_6 ?
- \bullet Quante sono le possibili applicazioni non iniettive di \mathbb{Z}_6 in \mathbb{Z}_4 ?
- \bullet Quante sono le possibili applicazioni non iniettive di \mathbb{Z}_4 in \mathbb{Z}_6 ?

ESERCIZIO 5. Si considerino le applicazioni

$$f: x \in \mathbb{Q} \mapsto \frac{2}{3}x - 1 \in \mathbb{Q}, \qquad g: y \in \mathbb{Q} \mapsto \frac{1}{4}(y + 1) \in \mathbb{Q}.$$

- \bullet Si provi che f è iniettiva.
- \bullet Si provi che g è suriettiva.
- Si calcoli:

$$f(3\mathbb{N}) =$$

 $f^{-1}(\{1, 2, 5\}) =$

 \bullet Si stabilisca se f è invertibile, ed in caso affermativo se ne determini l'inversa.

 \bullet Si determini l'applicazione composta $g\circ f.$

ESERCIZIO 6. Si consideri l'operazione \star definita ponendo $a\star b=a+b-3,$ per ogni $a,\,b\in\mathbb{Z}.$

• Si dimostri che la struttura algebrica (\mathbb{Z}, \star) è un gruppo abeliano, evidenziando in particolare qual è l'elemento neutro e qual è il simmetrico di ciascun elemento $a \in \mathbb{Z}$.

 \bullet Si dimostri per induzione su n che

$$\underbrace{a \star a \star \cdots \star a}_{n \text{ volte } \star} = n(a-3) + a,$$

per ogni $a\in\mathbb{Z}$ e per ogni $n\geq 1.$

• Si dimostri che l'applicazione

$$\sigma : a \in \mathbb{N} \mapsto a + 3 \in \mathbb{Z}$$

è un omomorfismo di monoidi tra $(\mathbb{N},+)$ e $(\mathbb{Z},\star).$

ESERCIZIO 7. Si consideri la relazione \sim in $\mathbb N$ definita ponendo

 $x \sim y \Longleftrightarrow \mbox{ la più grande delle cifre di } x$ è uguale alla più grande delle cifre di y .

 \bullet Si dimostri che \sim è una relazione di equivalenza.

• Si calcoli:

$$[0]_{\sim} =$$

$$[1]_{\sim} =$$

$$[2]_{\sim} =$$

$$[3]_{\sim} =$$

$$[4]_{\sim} =$$

 \bullet Quanti e quali sono gli elementi dell'insieme quoziente $\mathbb{N}/_{\sim}$?

• Si spieghi per quale motivo **non** si può definire un'applicazione mediante la posizione

$$\omega : [a]_{\sim} \in \mathbb{N}/_{\sim} \mapsto [a+1]_{\sim} \in \mathbb{N}/_{\sim}.$$

 $\underline{\text{ESERCIZIO }8.}$ Sia A l'insieme dei divisori positivi di 30.

- \bullet Si descriva l'insieme A, elencandone gli elementi.
- ullet Si disegni il diagramma di Hasse di (A, |), dove | denota la relazione del divide.

 \bullet Si dimostri che (A, |) è un reticolo.

• Nel reticolo (A, |) si effettuino i seguenti calcoli:

$$(2 \wedge 3) \vee 5 =$$

$$(2 \lor 3) \land 5 =$$

• Si determinino gli eventuali elementi minimali e massimali, minimo e massimo di $A \setminus \{1, 30\}$.