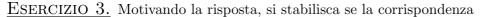
Matematica Discreta

Classe 1 Dott. C. Delizia 12 Settembre 2007

Cognome	Nome
Matricola	
ESERCIZIO 1. Si dica se ciascuna delle seguent risposta:	i affermazioni è vera oppure falsa, motivando la
• $2 \in 3\mathbb{Z}$	
$ullet$ $2\in 4\mathbb{Z}$	
$\bullet \ -4 \in 2\mathbb{Z}$	
\bullet $-2 \in 2\mathbb{Z}$	
• $2\mathbb{Z} \subseteq 4\mathbb{Z}$	
• $4\mathbb{Z} \subseteq 2\mathbb{Z}$	
$\bullet \ 3\mathbb{Z} \cap 4\mathbb{Z} = \emptyset$	

ESERCIZIO 2. Utilizzando il principio di induzione, si dimostri che per ogni $n \geq 2$ risulta $1 + 4n < 5^n.$



$$\mathcal{R} = \{(x, y) \in \mathbb{N} \times \mathbb{N} : x = y^2\}$$

è un'applicazione di $\mathbb N$ in $\mathbb N.$

ESERCIZIO 4. Si considerino gli insiemi

$$A = \{a, b, c, d\}, \qquad B = \{1, 2, 3, 4, 5\}.$$

- \bullet Esplicitando l'immagine di ogni elemento di A, si costruisca un'applicazione iniettiva f di A in B :
 - f(a) =
 - f(b) =
 - f(c) =
 - f(d) =
- \bullet Si stabilisca se f è suriettiva, e perchè.

• Si calcoli:

$$f(\{c,d\}) =$$

$$f^{-1}(\{4,5\}) =$$

- ullet Esplicitando l'immagine di ogni elemento di A, si costruisca un'applicazione $\underline{\text{non}}$ iniettiva g di A in B:
 - g(a) =
 - g(b) =
 - g(c) =
 - g(d) =
- ullet è possibile costruire un'applicazione suriettiva di A in B? Perché?

ESERCIZIO 5. Utilizzando l'algoritmo euclideo, si calcoli il massimo comun divisore positivo d tra i numeri interi a=788 e b=552, e si determinino due coefficienti interi α e β tali che $d=\alpha a+\beta b$.

ESERCIZIO 6. Si determinino tutte le soluzioni intere del seguente sistema di equazioni:

$$\begin{cases} 3x \equiv 15 \pmod{18} \\ 2x \equiv 4 \pmod{14} \\ x \equiv 3 \pmod{5} \\ |x| \le 300 \end{cases}$$

ESERCIZIO 7. Si determini il più grande intero positivo che si rappresenta in base 5 con quattro cifre tutte distinte, e se ne dia la rappresentazione binaria.
Esercizio 8.
• Quante parole, non necessariamente di senso compiuto, si possono scrivere utilizzando le lettere della parola SCRITTORE ?
• Quante parole, non necessariamente di senso compiuto, si possono scrivere utilizzando le lettere della parola SCRIVANO ?
Esercizio 9.
• Al gioco del Lotto, quanti sono tutti i possibili ambi con i numeri compresi tra 81 e 90 ?
• Al gioco del Totocalcio, quante sono tutte le possibili colonne che presentano sette segni 1, quattro
segni X e tre segni 2 ?

ESERCIZIO 10. Sia $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Nell'insieme $\mathbb{Z} \times \mathbb{Z}^*$ si consideri la relazione \sim definita ponendo $(a,b) \sim (c,d) \iff ad = bc$.

• Si verifichi che \sim è una relazione di equivalenza in $\mathbb{Z} \times \mathbb{Z}^{\star}$.

 \bullet Si calcoli:

$$[(0,1)]_{\sim} =$$

$$[(0,2)]_{\sim} =$$

$$[(1,1)]_{\sim} =$$

$$[(2,2)]_{\sim} =$$

$$[(1,2)]_{\sim} =$$

$$[(2,4)]_{\sim} =$$

• Quanti sono gli elementi dell'insieme quoziente $(\mathbb{Z} \times \mathbb{Z}^*)/_{\sim}$?

ESERCIZIO 11. Sia \sim una relazione di equivalenza in un insieme A. Si dimostri che, per ogni $a,b\in A$, si ha $[a]_{\sim}=[b]_{\sim}\Longleftrightarrow a\sim b$.

ESERCIZIO 12. Si indichi una partizione dell'insieme $\mathbb Z$ che sia costituita esattamente da 5 elementi.

ESERCIZIO 13. Sia A l'insieme dei divisori positivi di 88.

- \bullet Si descriva l'insieme A, elencandone gli elementi.
- ullet Si disegni il diagramma di Hasse di (A, |), dove | denota la relazione del divide.

 \bullet Si dimostri che (A,|) è un reticolo.

 \bullet Nel reticolo (A,|) si effettuino i seguenti calcoli:

$$(4 \land 22) \lor 11 =$$

$$(4 \lor 22) \land 11 =$$

 \bullet Si determinino gli eventuali elementi minimali e massimali, minimo e massimo di $A\setminus\{1,22,88\}.$

ESERCIZIO 14. Si considerino l'insieme \mathbb{Z}_5 e l'operazione \star definita ponendo $a\star b=a+b-ab$

per ogni $a, b \in \mathbb{Z}_5$.

 \bullet Si compili la tabella moltiplicativa di $(\mathbb{Z}_5,\star).$

 \bullet Si verifichi che (\mathbb{Z}_5,\star) è un monoide commutativo.

• Si determini un sottoinsieme avente ordine 4 che risulti una parte stabile di (\mathbb{Z}_5, \star) .

- Si determinino tutti gli elementi invertibili del monoide (\mathbb{Z}_5,\star) .
- Si stabilisca se l'applicazione $f: \mathbb{Z}_5 \to \mathbb{Z}_5$ definita ponendo f(a) = 2a per ogni $a \in \mathbb{Z}_5$ è un endomorfismo di monoidi di (\mathbb{Z}_5, \star) .

ESERCIZIO 15. Siano (M, \perp) un monoide commutativo, e \mathcal{R} una relazione di equivalenza in M compatibile con \perp . Si dimostri che la struttura quoziente $(M/_{\mathcal{R}}, \perp)$ è ancora un monoide commutativo.

 $\underline{\text{ESERCIZIO }16.}$ Si dia un esempio di monoide finito non commutativo.

ESERCIZIO 17. Si verifichi che la matrice

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 5 & 2 & 3 \\ 1 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{Z}_7)$$

è invertibile, se ne determini la matrice inversa A^{-1} , e si calcoli il determinante $|A^{-1}|$.

ESERCIZIO 18. Si determini il rango della matrice

$$A = \begin{pmatrix} 0 & 1 & 2 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 \end{pmatrix} \in M_{4,4}(\mathbb{Z}_3).$$

ESERCIZIO 19. Utilizzando il metodo di Cramer, si risolva il seguente sistema di equazioni lineari a coefficienti in \mathbb{Z}_7 , esprimendo i risultati con numeri interi non negativi minori di 7:

$$\begin{cases} 2x + y = 3\\ 5x + 2y + 3z = 0\\ x + z = 1 \end{cases}$$

ESERCIZIO 20. Si determinino tutti gli autovalori (ed i corrispondenti autovettori) della matrice

$$A = \begin{pmatrix} 2 & 4 \\ 0 & 3 \end{pmatrix} \in M_2(\mathbb{Q}).$$