Hard Lefschetz Theorem for Vaisman manifolds

Antonio De Nicola

CMUC, University of Coimbra, Portugal

joint work with B. Cappelletti-Montano (Univ. Cagliari), J.C. Marrero (Univ. La Laguna) and I. Yudin (CMUC)

Bedlewo, 19 October 2015

I.c.s. manifolds

An l.c.s. structure of the first kind on a manifold M^{2n+2} is a couple (ω, η) of 1-forms such that:

(*i*) ω is closed;

(*ii*) the rank of $d\eta$ is 2n and $\omega \wedge \eta \wedge (d\eta)^n$ is a volume form.

The form ω is called the Lee 1-form while η is said to be the anti-Lee 1-form.

If (ω, η) is an l.c.s. structure of the first kind on M then there exists a unique pair of vector fields (U, V), characterized by

$$\omega(U) = 1, \ \eta(U) = 0, \ i_U d\eta = 0,$$

$$\omega(V) = 0, \ \eta(V) = 1, \ i_V d\eta = 0.$$

I.c.s. manifolds

Let (ω,η) be an l.c.s. structure of the first kind and consider the 2-form

$$\Omega \coloneqq d\eta + \eta \wedge \omega.$$

Then Ω is non-degenerate and

$$d\Omega = d(d\eta + \eta \wedge \omega)$$

= $d\eta \wedge \omega - 0$ since ω is closed
= $\omega \wedge \Omega$.

Moreover, one has

$$\mathcal{L}_U \Omega = 0.$$

In other words, Ω is an l.c.s. structure of the first kind in the sense of Vaisman. The converse is also true.

Vaisman manifolds

A Vaisman manifold is an l.c.s. manifold of the first kind (M, ω, η) which carries a Riemannian metric g such that:

• The tensor field J of type (1,1) given by

 $g(X, JY) = \Omega(X, Y), \text{ for } X, Y \in \mathfrak{X}(M),$

is a complex structure compatible with g, that is,

$$g(JX,JY) = g(X,Y).$$

Then, one also says that (M, J, g) is locally conformal Kähler. 2 The Lee 1-form ω is parallel, that is

$$\nabla \omega = 0.$$

A simple example of Vaisman manifold: $SU(2) \times S^1$

Let X_1, X_2, X_3 be a basis of left invariant vector fields on SU(2), so that

$$[X_1, X_2] = 2X_3, \quad [X_2, X_3] = 2X_1, \quad [X_3, X_1] = 2X_2.$$

Given $c \in \mathbb{R} \setminus \{0\}$ one defines a Riemannian metric on SU(2) by

$$g(X_1, X_1) = 1$$
, $g(X_2, X_2) = g(X_3, X_3) = c^2$.

With this structure $SU(2) \cong S^3$ is called a Berger sphere. Now consider a non zero vector field *B* tangent to S^1 and define an almost complex structure on $SU(2) \times S^1$ by

$$JB = X_1$$
, $JX_1 = -B$, $JX_2 = X_3$, $JX_3 = -X_2$.

Then, one can check that J is integrable and the Lee vector field is

$$U = -\frac{2}{c^2}B$$

and it is parallel, that is $\nabla U = 0$.

Properties of Vaisman manifolds

In a Vaisman manifold M,

- the couple (U, V) defines a flat foliation of rank 2 which is transversely Kähler;
- the foliation generated by V is transversely co-Kähler;
- the orthogonal bundle to the foliation generated by *U* is integrable and the leaves are *c*-Sasakian manifolds.

c-Sasakian manifolds

Let (N^{2n+1},g) be a Riemannian manifold, η a 1-form, such that $\eta \wedge (\mathrm{d}\eta)^n$ is a volume form.

Fix
$$c > 0$$
, define $\varphi : TN \to TN$ by
 $d\eta(X, Y) = 2cg(X, \varphi Y)$, for any $X, Y \in \Gamma(TN)$.

Let $\xi \in \Gamma(TN)$ be the metric dual of η and assume that $\eta(\xi) = 1$. Moreover, suppose that

$$\varphi^2 = -Id + \eta \otimes \xi$$

and the Nijenhuis torsion of φ satisfies

$$N_{\varphi}+2d\eta\otimes\xi=0.$$

Then, (N^{2n+1}, η, g) is called a *c*-Sasakian manifold.

Mapping torus

Consider a compact manifold N, a diffeomorphism $f : N \longrightarrow N$ and $\alpha > 0$. Define a transformation of $N \times \mathbb{R}$ by

$$(f, T_\alpha)(x, t) = (f(x), t + \alpha).$$

The map (f, T_{α}) induces an action of \mathbb{Z} on $N \times \mathbb{R}$ defined by

$$(f, T_{\alpha})^{k}(x, t) = (f^{k}(x), t + k\alpha), \quad \text{for } k \in \mathbb{Z}.$$

The mapping torus of N by (f, α) is the space of orbits

$$N_{f,\alpha} = \frac{N \times \mathbb{R}}{\mathbb{Z}}$$

and we have a canonical projection

$$\pi: N_{f,\alpha} \longrightarrow S^1 = \frac{\mathbb{R}}{\alpha \mathbb{Z}}$$

Mapping torus by an isometry

We will denote by θ the closed 1-form on $N_{f,\alpha}$ given by

$$\theta = \pi^*(\theta_{S^1}),$$

where θ_{S^1} is the length element of the circle S^1 . Then, the vector field U on $N_{f,\alpha}$ induced by $\frac{\partial}{\partial t}$ on $N \times \mathbb{R}$ satisfies

$$\theta(U)=1.$$

Now, suppose that h is a Riemannian metric on N and that f is an isometry. Then, the metric $h + dt^2$ on $N \times \mathbb{R}$ is \mathbb{Z} -invariant and hence induces a metric g on $N_{f,\alpha}$.

Proposition

The 1-form θ on $N_{f,\alpha}$ is unitary and parallel with respect to g and

 $\theta(X) = g(X, U), \text{ for } X \in \mathfrak{X}(N_{f,\alpha}).$

Properties of Vaisman manifolds

Before we have seen that there is a the close relation between Vaisman manifolds and Sasakian manifolds. In fact,

Theorem (Ornea-Verbitsky, 2003)

Let M be a compact Vaisman manifold of dimension 2n + 2. Then, there exists a compact Sasakian manifold N of dimension 2n + 1, a contact isometry $f : N \longrightarrow N$ and a positive real number α such that M is holomorphically isometric to $N_{f,\alpha} = \frac{N \times \mathbb{R}}{\mathbb{Z}}$.

Kähler manifolds

Let (M^{2n},g) be a Riemannian manifold, Ω a 2-form such that

$$\Omega^n$$
 is a volume form, $d\Omega = 0$.

Define $J: TM \rightarrow TM$ by

 $\Omega(X, Y) = g(X, JY),$ for any $X, Y \in \Gamma(TM)$.

Now assume that J is a complex structure on M. Then, (M^{2n}, Ω, g) is called a Kähler manifold. In other words a Kähler manifold is a Vaisman manifold with $\omega = 0$.

Hard Lefschetz Theorem for Kähler manifolds

Theorem

Let (M^{2n}, Ω, g) be a compact Kähler manifold and $p \le n$. Then, the maps

$$H^{p}(M) \to H^{2n-p}(M)$$
$$[\alpha] \mapsto [\Omega^{n-p} \land \alpha].$$

are isomorphisms.

Hard Lefschetz Theorem for Sasakian manifolds

Theorem (B. Cappelletti-Montano, A.D.N., I. Yudin, 2015)

Let (M^{2n+1}, η, g) be a compact Sasakian manifold and $p \leq n$. Let $\mathcal{H}: \Omega^p(M) \to \Omega^p_{\Delta}(M)$ be the projection on the harmonic part. Then the map

Lef_p:
$$H^p(M) \longrightarrow H^{2n+1-p}(M)$$

[α] \longmapsto [$\eta \land (d\eta)^{n-p} \land \mathcal{H}\alpha$],

is an isomorphism. Furthermore, it does not depend on the choice of the Sasakian metric g on (M^{2n+1}, η) .

So, a natural question arise: is there a Hard Lefschetz theorem for a compact Vaisman manifold? We give a positive answer to this question.

Hard Lefschetz Theorem for Vaisman manifolds

Theorem

Let M^{2n+2} be a compact Vaisman manifold. Then for each k, $0 \le k \le n$, there exists an isomorphism

$$Lef_k: H^k(M) \longrightarrow H^{2n+2-k}(M)$$

which may be computed by using the following properties: (1) For every $[\gamma] \in H^k(M)$, there is $\bar{\gamma} \in [\gamma]$ such that

$$\mathcal{L}_U \bar{\gamma} = 0, \ i_V \bar{\gamma} = 0, \ L^{n-k+2} \bar{\gamma} = 0, \ L^{n-k+1} \epsilon_\omega \bar{\gamma} = 0.$$

(2) If $\bar{\gamma} \in [\gamma]$ satisfies the conditions in (1) then

$$Lef_k[\gamma] = [\epsilon_{\eta} L^{n-k} (Li_U \bar{\gamma} - \epsilon_{\omega} \bar{\gamma})].$$

In this theorem, we use the notation $\epsilon_{\beta} = \beta \wedge -$ and $L = \frac{1}{2}d\eta \wedge -$.

Auxiliary Theorem

In order to prove the theorem, we used as a first step a result which relates the de Rham cohomology with the basic cohomology.

Theorem

Let W be a unitary and parallel vector field on an oriented compact Riemannian manifold (P,g) and let the 1-form w be the metric dual of W. Denote by $H_B^*(P)$ the basic cohomology of P with respect to W. Then for $0 \le k \le \dim P$, the map

$$H^k_B(P)\oplus H^{k-1}_B(P)\longrightarrow H^k(P)$$

defined by

$$([\beta]_B, [\beta']_B) \mapsto [\beta + w \land \beta']$$

is an isomorphism.

Basic Hard Lefschetz Theorem

Theorem

Let M be a compact Vaisman manifold of dimension 2n + 2. Denote by $H^*_B(M)$ the basic cohomology of M with respect to U. Then for each k, $0 \le k \le n$, there exists an isomorphism

$${\it Lef}^B_k: {\it H}^k_B(M) \longrightarrow {\it H}^{2n+1-k}_B(M)$$

which may be computed by using the following properties: (1) For every $[\beta]_B \in H^k_B(M)$, there is $\beta' \in [\beta]_B$ such that

$$i_V \beta' = 0, \ L^{n-k+1} \beta' = 0.$$
 (1)

(2) If $\beta' \in [\beta]_B$ satisfies the conditions in (1) then

 $Lef_k^B[\beta]_B = [\epsilon_\eta L^{n-k}\beta]_B.$

A topological obstruction

For a Vaisman manifold M^{2n+2} the couple (ω, η) of the Lee and anti-Lee 1-forms defines a locally conformal symplectic (l.c.s.) structure of the first kind.

Now, assume that we have a compact manifold M^{2n+2} with an l.c.s. structure of the first kind (ω, η) .

Then, we introduce the following *Lefschetz relation* between the cohomology groups $H^k(M)$ and $H^{2n+2-k}(M)$, for $0 \le k \le n$,

$$\begin{aligned} R_{Lef_k} &= \left\{ \left(\left[\gamma \right], \left[\epsilon_{\eta} L^{n-k} (Li_U \gamma - \epsilon_{\omega} \gamma) \right] \right) \middle| \gamma \in \Omega^k(M), \ d\gamma = 0, \\ \mathcal{L}_U \gamma &= 0, \ i_V \gamma = 0, \ L^{n-k+2} \gamma = 0, \ L^{n-k+1} \epsilon_{\omega} \gamma = 0 \right\}. \end{aligned}$$

A topological obstruction

Similarly, we can define the *basic Lefschetz relation* between the basic cohomology groups $H^k_B(M)$ and $H^{2n+1-k}_B(M)$, for $0 \le k \le n$, by

$$\begin{split} R^B_{L\!e\!f_k} &= \left\{ \left([\beta]_B, [\epsilon_\eta L^{n-k}\beta]_B \right) \ \Big| \ \beta \in \Omega^k_B(M), \ d\beta = 0, \\ &i_V\beta = 0, \ L^{n-k+1}\beta = 0 \right\}. \end{split}$$

A topological obstruction

Definition

An l.c.s. structure of the first kind on a manifold M^{2n+1-k} is said to be:

- Lefschetz if, for every $0 \le k \le n$, the relation R_{Lef_k} is the graph of an isomorphism $Lef_k : H^k(M) \longrightarrow H^{2n+2-k}(M)$;
- Basic Lefschetz if, for every $0 \le k \le n$, the relation $R_{Lef_k}^B$ is the graph of an isomorphism $Lef_k^B : H_B^k(M) \longrightarrow H_B^{2n+1-k}(M)$.

Hard Lefschetz vs basic Hard Lefschetz

Theorem

Let (M^{2n+2}, ω, η) be a compact l.c.s. manifold of the first kind such that the Lee vector field U is parallel with respect to a Riemannian metric g on M and ω is the metric dual of U. Then:

- (1) The structure (ω, η) is Lefschetz if and only if it is basic Lefschetz.
- (2) If the structure (ω, η) is Lefschetz (or, equivalently, basic Lefschetz), then for each 1 ≤ k ≤ n there exists a non-degenerate bilinear form

$$\psi : H_B^k(M) \times H_B^k(M) \longrightarrow \mathbb{R}$$
$$\psi([\beta]_B, [\beta']_B) = \int_M Lef_k[\beta] \cup [\beta']$$

which is skew-symmetric for odd k and symmetric for even k.

Betti numbers of Lefschetz I.c.s. manifolds

From the above theorem we get that when k is odd, $H^k_{\cal B}(M)$ must be of even dimension, that is

$$b_k^B(M)$$
 is even, if k is odd and $1 \le k \le n$,

where $b_k^B(M)$ is the *k*th basic Betti number of *M*. But from our auxiliary theorem we also have that

$$H^k(M)\cong H^k_B(M)\oplus H^{k-1}_B(M).$$

Hence

$$b_k - b_{k-1} = b_k^B + b_{k-1}^B - (b_{k-1}^B + b_{k-2}^B)$$
$$= b_k^B - b_{k-2}^B.$$

Thus

$$b_k(M) - b_{k-1}(M)$$
 is even.

Betti numbers of Lefschetz I.c.s. manifolds

In conclusion we get

Corollary

A compact Lefschetz l.c.s. manifold of the first kind M^{2n+2} with parallel Lee vector field with respect to some metric g has

 $b_k(M) - b_{k-1}(M)$ even, if k is odd and $1 \le k \le n$,

where $b_k(M)$ is the kth Betti number of M.

In particular

$$b_1(M)$$
 is odd.

We remark that the above properties of the Betti numbers are well-known when the manifold is Vaisman.

Hard Lefschetz vs basic Hard Lefschetz

Corollary

Let M^{2n+2} be a compact l.c.s. manifold of the first kind such that the space of orbits of the Lee vector field is a contact manifold N^{2n+1} . Then, the following conditions are equivalent:

- **1** The l.c.s. structure on M satisfies the Lefschetz property.
- The l.c.s. structure on M satisfies the basic Lefschetz property.
- **③** The contact structure on N satisfies the Lefschetz property.

Now, let *N* be a compact contact manifold and consider in the product manifold $M = N \times S^1$ the standard l.c.s. structure of the first kind. Conversely, one has that the space of orbits of the Lee vector field of *M* is *N*.

Application: a non-Lefschetz l.c.s. manifold

In 2014, we found examples of non-Lefschetz compact contact manifolds with even Betti numbers b_{2k+1} , for $1 \le 2k + 1 \le n$. Using the above Corollary and taking as N one of these examples, we obtain examples of compact l.c.s. manifolds of the first kind such that

Their Betti numbers satisfy the relations

 $b_k(M) - b_{k-1}(M)$ is even, if k is odd and $1 \le k \le n$,

just as in Vaisman manifolds.

They do not satisfy Lefschetz property neither basic Lefschetz property (and, therefore, they do not admit compatible Vaisman metrics).

A non-Vaisman Lefschetz I.c.s. manifold

On the other hand, in a recent preprint (arXiv:1507.04661), we presented an example of a compact Lefschetz contact manifold N which does not admit any Sasakian structure.

Now, consider $M = N \times S^1$ with the standard l.c.s. structure of the first kind. We get that M is Lefschetz and basic Lefschetz. However, it does not admit any compatible Vaisman metric.

Indeed, recall that for a Vaisman manifold M, the distribution orthogonal to the Lee vector field U is integrable and the leaves admit a Sasakian metric, as we recalled at the beginning.

A Lefschetz non-Sasakian contact manifold

For each $p \neq 0$, a Lefschetz non-Sasakian contact manifold N_p is obtained as follows: consider the Lie group of dimension 5 given as the semi-direct product

$$G(p) = (H(1,1) \rtimes_{\psi} \mathbb{R}) \rtimes_{\phi} \mathbb{R},$$

where $\psi : \mathbb{R} \to Aut(H(1,1))$ and $\phi : \mathbb{R} \to Aut(H(1,1) \rtimes_{\psi} \mathbb{R}u)$ are the representations defined by

$$\psi_u(x, y, z) = (e^{pu}x, e^{-pu}y, z), \quad \phi_t(x, y, z, u) = (x, y, z + tu, u).$$

Then, one proves that there is a discrete subgroup $\Gamma(p)$ such that $N_p := G(p)/\Gamma(p)$ is a compact *K*-contact solvmanifold with no Sasakian structure. Moreover, N_p is formal and of Tievsky type.

S. Dragomir, L. Ornea,

Locally conformal Kähler manifolds, Progr. Math. **155**, Birkhäuser, Boston, 1998.

L. Ornea, M. Verbitsky,

Structure theorem for compact Vaisman manifolds. *Math. Res. Lett.* **10** (2003), 799–805.

- B. Cappelletti-Montano, A.D.N., I. Yudin, Hard Lefschetz Theorem for Sasakian manifolds. Journal of Differential Geometry 101 (2015), 47–66.
- B. Cappelletti-Montano, A.D.N., J.C. Marrero, I. Yudin, Hard Lefschetz Theorem for Vaisman manifolds. *Preprint, arXiv:1510.04946*.

- B. Cappelletti-Montano, A.D.N., J.C. Marrero, I. Yudin, Examples of compact *K*-contact manifolds with no Sasakian metric. *Int. J. Geom. Methods Mod. Phys.* **11** (2014), 1460028 (10 pages).
- B. Cappelletti-Montano, A.D.N., J.C. Marrero, I. Yudin, A non-Sasakian Lefschetz *K*-contact manifold of Tievsky type. *Preprint, arXiv:1507.04661*.

Thank you!