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l.c.s. manifolds

An l.c.s. structure of the first kind on a manifold M2n+2 is a couple
(ω, η) of 1-forms such that:

(i) ω is closed;

(ii) the rank of dη is 2n and ω ∧ η ∧ (dη)n is a volume form.

The form ω is called the Lee 1-form while η is said to be the
anti-Lee 1-form.
If (ω, η) is an l.c.s. structure of the first kind on M then there
exists a unique pair of vector fields (U,V ), characterized by

ω(U) = 1, η(U) = 0, iUdη = 0,

ω(V ) = 0, η(V ) = 1, iV dη = 0.
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l.c.s. manifolds

Let (ω, η) be an l.c.s. structure of the first kind and consider the
2-form

Ω ∶= dη + η ∧ ω.

Then Ω is non-degenerate and

dΩ = d(dη + η ∧ ω)
= dη ∧ ω − 0 since ω is closed

= ω ∧Ω.

Moreover, one has
LUΩ = 0.

In other words, Ω is an l.c.s. structure of the first kind in the sense
of Vaisman. The converse is also true.
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Vaisman manifolds

A Vaisman manifold is an l.c.s. manifold of the first kind (M, ω, η)
which carries a Riemannian metric g such that:

1 The tensor field J of type (1,1) given by

g(X , JY ) = Ω(X ,Y ), for X ,Y ∈ X(M),

is a complex structure compatible with g , that is,

g(JX , JY ) = g(X ,Y ).

Then, one also says that (M, J,g) is locally conformal Kähler.

2 The Lee 1-form ω is parallel, that is

∇ω = 0.
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A simple example of Vaisman manifold: SU(2) × S1

Let X1,X2,X3 be a basis of left invariant vector fields on SU(2), so
that

[X1,X2] = 2X3, [X2,X3] = 2X1, [X3,X1] = 2X2.

Given c ∈ R ∖ {0} one defines a Riemannian metric on SU(2) by

g(X1,X1) = 1, g(X2,X2) = g(X3,X3) = c2.

With this structure SU(2) ≅ S3 is called a Berger sphere.
Now consider a non zero vector field B tangent to S1 and define
an almost complex structure on SU(2) × S1 by

JB = X1, JX1 = −B, JX2 = X3, JX3 = −X2.

Then, one can check that J is integrable and the Lee vector field is

U = − 2

c2
B

and it is parallel, that is ∇U = 0.
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Properties of Vaisman manifolds

In a Vaisman manifold M,

the couple (U,V ) defines a flat foliation of rank 2 which is
transversely Kähler;

the foliation generated by V is transversely co-Kähler;

the orthogonal bundle to the foliation generated by U is
integrable and the leaves are c-Sasakian manifolds.
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c-Sasakian manifolds

Let (N2n+1,g) be a Riemannian manifold, η a 1-form, such that

η ∧ (dη)n is a volume form.

Fix c > 0, define ϕ ∶ TN → TN by

dη(X ,Y ) = 2cg(X , ϕY ), for any X ,Y ∈ Γ(TN).

Let ξ ∈ Γ(TN) be the metric dual of η and assume that η (ξ) = 1.
Moreover, suppose that

ϕ2 = −Id + η ⊗ ξ
and the Nijenhuis torsion of ϕ satisfies

Nϕ + 2dη ⊗ ξ = 0.

Then, (N2n+1, η,g) is called a c-Sasakian manifold.
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Mapping torus

Consider a compact manifold N, a diffeomorphism f ∶ N Ð→ N and
α > 0. Define a transformation of N ×R by

(f ,Tα)(x , t) = (f (x), t + α).

The map (f ,Tα) induces an action of Z on N ×R defined by

(f ,Tα)k(x , t) = (f k(x), t + kα), for k ∈ Z.

The mapping torus of N by (f , α) is the space of orbits

Nf ,α =
N ×R
Z

and we have a canonical projection

π ∶ Nf ,α Ð→ S1 = R
αZ

.
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Mapping torus by an isometry

We will denote by θ the closed 1-form on Nf ,α given by

θ = π∗(θS1),

where θS1 is the length element of the circle S1.

Then, the vector field U on Nf ,α induced by
∂

∂t
on N ×R satisfies

θ(U) = 1.

Now, suppose that h is a Riemannian metric on N and that f is an
isometry. Then, the metric h + dt2 on N ×R is Z-invariant and
hence induces a metric g on Nf ,α.

Proposition

The 1-form θ on Nf ,α is unitary and parallel with respect to g and

θ(X ) = g(X ,U), for X ∈ X(Nf ,α).
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Properties of Vaisman manifolds

Before we have seen that there is a the close relation between
Vaisman manifolds and Sasakian manifolds. In fact,

Theorem (Ornea-Verbitsky, 2003)

Let M be a compact Vaisman manifold of dimension 2n + 2. Then,
there exists a compact Sasakian manifold N of dimension 2n + 1, a
contact isometry f ∶ N Ð→ N and a positive real number α such

that M is holomorphically isometric to Nf ,α =
N ×R
Z

.
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Kähler manifolds

Let (M2n,g) be a Riemannian manifold, Ω a 2-form such that

Ωn is a volume form, dΩ = 0.

Define J ∶ TM → TM by

Ω(X ,Y ) = g(X , JY ), for any X ,Y ∈ Γ(TM).

Now assume that J is a complex structure on M.
Then, (M2n,Ω,g) is called a Kähler manifold.
In other words a Kähler manifold is a Vaisman manifold with ω = 0.
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Hard Lefschetz Theorem for Kähler manifolds

Theorem

Let (M2n,Ω,g) be a compact Kähler manifold and p ≤ n. Then,
the maps

Hp(M) → H2n−p(M)
[α ] ↦ [Ωn−p ∧ α ] ,

are isomorphisms.
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Hard Lefschetz Theorem for Sasakian manifolds

Theorem (B. Cappelletti-Montano, A.D.N., I. Yudin, 2015)

Let (M2n+1, η,g) be a compact Sasakian manifold and p ≤ n. Let
H∶Ωp (M) → Ωp

∆ (M) be the projection on the harmonic part.
Then the map

Lefp ∶Hp(M) Ð→ H2n+1−p(M)
[α ] z→ [η ∧ (dη)n−p ∧ Hα ] ,

is an isomorphism. Furthermore, it does not depend on the choice
of the Sasakian metric g on (M2n+1, η).
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So, a natural question arise: is there a Hard Lefschetz theorem for
a compact Vaisman manifold?
We give a positive answer to this question.
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Hard Lefschetz Theorem for Vaisman manifolds

Theorem

Let M2n+2 be a compact Vaisman manifold. Then for each k,
0 ≤ k ≤ n, there exists an isomorphism

Lefk ∶ Hk(M) Ð→ H2n+2−k(M)

which may be computed by using the following properties:

(1) For every [γ] ∈ Hk(M), there is γ̄ ∈ [γ] such that

LU γ̄ = 0, iV γ̄ = 0, Ln−k+2γ̄ = 0, Ln−k+1εωγ̄ = 0.

(2) If γ̄ ∈ [γ] satisfies the conditions in (1) then

Lefk[γ] = [εηLn−k(LiU γ̄ − εωγ̄)].

In this theorem, we use the notation εβ = β ∧ − and L = 1
2dη ∧ −.
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Auxiliary Theorem

In order to prove the theorem, we used as a first step a result
which relates the de Rham cohomology with the basic cohomology.

Theorem

Let W be a unitary and parallel vector field on an oriented
compact Riemannian manifold (P,g) and let the 1-form w be the
metric dual of W . Denote by H∗

B(P) the basic cohomology of P
with respect to W . Then for 0 ≤ k ≤ dimP, the map

Hk
B(P) ⊕Hk−1

B (P) Ð→ Hk(P)

defined by
([β]B , [β′]B) ↦ [β +w ∧ β′]

is an isomorphism.
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Basic Hard Lefschetz Theorem

Theorem

Let M be a compact Vaisman manifold of dimension 2n + 2.
Denote by H∗

B(M) the basic cohomology of M with respect to U.
Then for each k, 0 ≤ k ≤ n, there exists an isomorphism

Lef Bk ∶ Hk
B(M) Ð→ H2n+1−k

B (M)

which may be computed by using the following properties:

(1) For every [β]B ∈ Hk
B(M), there is β′ ∈ [β]B such that

iVβ
′ = 0, Ln−k+1β′ = 0. (1)

(2) If β′ ∈ [β]B satisfies the conditions in (1) then

Lef Bk [β]B = [εηLn−kβ]B .
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A topological obstruction

For a Vaisman manifold M2n+2 the couple (ω, η) of the Lee and
anti-Lee 1-forms defines a locally conformal symplectic (l.c.s.)
structure of the first kind.
Now, assume that we have a compact manifold M2n+2 with an
l.c.s. structure of the first kind (ω, η).
Then, we introduce the following Lefschetz relation between the
cohomology groups Hk(M) and H2n+2−k(M) , for 0 ≤ k ≤ n,

RLefk = {([γ], [εηLn−k(LiUγ − εωγ)])∣γ ∈ Ωk(M), dγ = 0,

LUγ = 0, iV γ = 0, Ln−k+2γ = 0, Ln−k+1εωγ = 0} .
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A topological obstruction

Similarly, we can define the basic Lefschetz relation between the
basic cohomology groups Hk

B(M) and H2n+1−k
B (M), for 0 ≤ k ≤ n,

by

RB
Lefk

= {([β]B , [εηLn−kβ]B) ∣ β ∈ Ωk
B(M), dβ = 0,

iVβ = 0, Ln−k+1β = 0} .
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A topological obstruction

Definition

An l.c.s. structure of the first kind on a manifold M2n+1−k is said
to be:

- Lefschetz if, for every 0 ≤ k ≤ n, the relation RLefk is the graph
of an isomorphism Lefk ∶ Hk(M) Ð→ H2n+2−k(M);

- Basic Lefschetz if, for every 0 ≤ k ≤ n, the relation RB
Lefk

is the

graph of an isomorphism Lef Bk ∶ Hk
B(M) Ð→ H2n+1−k

B (M).
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Hard Lefschetz vs basic Hard Lefschetz

Theorem

Let (M2n+2, ω, η) be a compact l.c.s. manifold of the first kind
such that the Lee vector field U is parallel with respect to a
Riemannian metric g on M and ω is the metric dual of U. Then:

(1) The structure (ω, η) is Lefschetz if and only if it is basic
Lefschetz.

(2) If the structure (ω, η) is Lefschetz (or, equivalently, basic
Lefschetz), then for each 1 ≤ k ≤ n there exists a
non-degenerate bilinear form

ψ ∶ Hk
B(M) ×Hk

B(M) Ð→ R

ψ([β]B , [β′]B) = ∫
M
Lefk[β] ∪ [β′]

which is skew-symmetric for odd k and symmetric for even k.
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Betti numbers of Lefschetz l.c.s. manifolds

From the above theorem we get that when k is odd, Hk
B(M) must

be of even dimension, that is

bBk (M) is even, if k is odd and 1 ≤ k ≤ n,

where bBk (M) is the kth basic Betti number of M.
But from our auxiliary theorem we also have that

Hk(M) ≅ Hk
B(M) ⊕Hk−1

B (M).

Hence

bk − bk−1 = bBk + bBk−1 − (bBk−1 + bBk−2)
= bBk − bBk−2.

Thus
bk(M) − bk−1(M) is even.
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Betti numbers of Lefschetz l.c.s. manifolds

In conclusion we get

Corollary

A compact Lefschetz l.c.s. manifold of the first kind M2n+2 with
parallel Lee vector field with respect to some metric g has

bk(M) − bk−1(M) even, if k is odd and 1 ≤ k ≤ n,

where bk(M) is the kth Betti number of M.

In particular
b1(M) is odd.

We remark that the above properties of the Betti numbers are
well-known when the manifold is Vaisman.
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Hard Lefschetz vs basic Hard Lefschetz

Corollary

Let M2n+2 be a compact l.c.s. manifold of the first kind such that
the space of orbits of the Lee vector field is a contact manifold
N2n+1. Then, the following conditions are equivalent:

1 The l.c.s. structure on M satisfies the Lefschetz property.

2 The l.c.s. structure on M satisfies the basic Lefschetz
property.

3 The contact structure on N satisfies the Lefschetz property.

Now, let N be a compact contact manifold and consider in the
product manifold M = N × S1 the standard l.c.s. structure of the
first kind. Conversely, one has that the space of orbits of the Lee
vector field of M is N.
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Application: a non-Lefschetz l.c.s. manifold

In 2014, we found examples of non-Lefschetz compact contact
manifolds with even Betti numbers b2k+1, for 1 ≤ 2k + 1 ≤ n.
Using the above Corollary and taking as N one of these examples,
we obtain examples of compact l.c.s. manifolds of the first kind
such that

1 Their Betti numbers satisfy the relations

bk(M) − bk−1(M) is even, if k is odd and 1 ≤ k ≤ n,

just as in Vaisman manifolds.

2 They do not satisfy Lefschetz property neither basic Lefschetz
property (and, therefore, they do not admit compatible
Vaisman metrics).
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A non-Vaisman Lefschetz l.c.s. manifold

On the other hand, in a recent preprint (arXiv:1507.04661), we
presented an example of a compact Lefschetz contact manifold N
which does not admit any Sasakian structure.

Now, consider M = N × S1 with the standard l.c.s. structure of the
first kind. We get that M is Lefschetz and basic Lefschetz.
However, it does not admit any compatible Vaisman metric.

Indeed, recall that for a Vaisman manifold M, the distribution
orthogonal to the Lee vector field U is integrable and the leaves
admit a Sasakian metric, as we recalled at the beginning.
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A Lefschetz non-Sasakian contact manifold

For each p ≠ 0, a Lefschetz non-Sasakian contact manifold Np is
obtained as follows: consider the Lie group of dimension 5 given as
the semi-direct product

G(p) = (H(1,1) ⋊ψ R) ⋊φ R,

where ψ ∶ R→ Aut(H(1,1)) and φ ∶ R→ Aut(H(1,1) ⋊ψ Ru) are
the representations defined by

ψu(x , y , z) = (epux , e−puy , z), φt(x , y , z ,u) = (x , y , z + tu,u).

Then, one proves that there is a discrete subgroup Γ(p) such that
Np ∶= G(p)/Γ(p) is a compact K -contact solvmanifold with no
Sasakian structure. Moreover, Np is formal and of Tievsky type.
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Thank you!
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