Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000		0000000	0000

Geometry and topology of 3-quasi-Sasakian manifolds

Antonio De Nicola

joint work with B. Cappelletti Montano (Univ. Cagliari) and I. Yudin (CMUC)

CMUC, Department of Mathematics, University of Coimbra

Lisboa, 30 October 2012

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
●○○○	000000000		0000000	0000
Almost co	ntact manifolds			

An almost contact manifold (M, φ, ξ, η) is an odd-dimensional manifold M which carries a (1, 1)-tensor field φ, a vector field ξ, a 1-form η, satisfying

$$\phi^2 = -I + \eta \otimes \xi$$
 and $\eta(\xi) = 1$.

It follows that

$$\phi \xi = 0$$
 and $\eta \circ \phi = 0$.

• An almost contact manifold manifold of dimension 2n + 1 is said to be a contact manifold if

$$\eta \wedge (d\eta)^n \neq 0.$$

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
●○○○	000000000		0000000	0000
Almost co	ntact manifolds			

An almost contact manifold (M, φ, ξ, η) is an odd-dimensional manifold M which carries a (1, 1)-tensor field φ, a vector field ξ, a 1-form η, satisfying

$$\phi^2 = -I + \eta \otimes \xi$$
 and $\eta(\xi) = 1$.

It follows that

$$\phi \xi = 0$$
 and $\eta \circ \phi = 0$.

• An almost contact manifold manifold of dimension 2n + 1 is said to be a contact manifold if

$$\eta \wedge (d\eta)^n \neq 0.$$

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
●○○○	00000000		0000000	0000
Almost co	ntact manifolds			

An almost contact manifold (M, φ, ξ, η) is an odd-dimensional manifold M which carries a (1, 1)-tensor field φ, a vector field ξ, a 1-form η, satisfying

$$\phi^2 = -I + \eta \otimes \xi$$
 and $\eta(\xi) = 1$.

It follows that

$$\phi \xi = 0$$
 and $\eta \circ \phi = 0$.

• An almost contact manifold manifold of dimension 2n + 1 is said to be a contact manifold if

$$\eta \wedge (d\eta)^n \neq 0.$$

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
○●○○	00000000		0000000	0000
Normality				

• An almost contact manifold (M, ϕ, ξ, η) is said to be normal if

 $[\phi,\phi]+2d\eta\otimes\xi=0.$

• *M* is normal iff the almost complex structure *J* on the product $M \times \mathbb{R}$ defined by setting, for any $X \in \Gamma(TM)$ and $f \in C^{\infty}(M \times \mathbb{R})$,

$$J\left(X,f\frac{d}{dt}\right) = \left(\phi X - f\xi, \eta\left(X\right)\frac{d}{dt}\right)$$

is integrable.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
○●○○	00000000		0000000	0000
Normality				

• An almost contact manifold (M, ϕ, ξ, η) is said to be normal if

$$[\phi,\phi]+2d\eta\otimes\xi=0.$$

• *M* is normal iff the almost complex structure *J* on the product $M \times \mathbb{R}$ defined by setting, for any $X \in \Gamma(TM)$ and $f \in C^{\infty}(M \times \mathbb{R})$,

$$J\left(X,f\frac{d}{dt}\right) = \left(\phi X - f\xi, \eta\left(X\right)\frac{d}{dt}\right)$$

is integrable.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References	
○○●○	00000000		0000000	0000	
Almost contact metric manifolds					

• Every almost contact manifold admits a compatible metric g, i.e. such that

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y),$$

for all $X, Y \in \Gamma(TM)$.

 By putting H = ker (η) one obtains a 2n-dim. distribution on M and TM splits as the orthogonal sum

 $TM = \mathcal{H} \oplus \langle \xi \rangle$.

0000	00000000	00000	0000000	0000		
Almost contact metric manifolds						

• Every almost contact manifold admits a compatible metric g, i.e. such that

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y),$$

for all $X, Y \in \Gamma(TM)$.

 By putting H = ker (η) one obtains a 2n-dim. distribution on M and TM splits as the orthogonal sum

$$TM = \mathcal{H} \oplus \langle \xi \rangle$$
.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
○○○●	00000000		0000000	0000
Quasi-Sasa	kian manifolds			

• A quasi-Sasakian structure on a (2n + 1)-dimensional manifold M is a normal almost contact metric structure (ϕ, ξ, η, g) such that $d\Phi = 0$, where Φ is defined by

$$\Phi(X,Y)=g(X,\phi Y).$$

- They were introduced by Blair in 1967 in the attempt to unify Sasakian geometry $(d\eta = \Phi)$ and cosymplectic geometry $(d\eta = 0, d\Phi = 0)$.
- A quasi-Sasakian manifold is said to be of rank 2p + 1 if

 $\eta \wedge (d\eta)^p \neq 0$ and $(d\eta)^{p+1} = 0$,

for some $p \leq n$.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
○○○●	00000000		0000000	0000
Quasi-Sasa	akian manifolds			

• A quasi-Sasakian structure on a (2n + 1)-dimensional manifold M is a normal almost contact metric structure (ϕ, ξ, η, g) such that $d\Phi = 0$, where Φ is defined by

$$\Phi(X,Y) = g(X,\phi Y).$$

- They were introduced by Blair in 1967 in the attempt to unify Sasakian geometry $(d\eta = \Phi)$ and cosymplectic geometry $(d\eta = 0, d\Phi = 0)$.
- A quasi-Sasakian manifold is said to be of rank 2p + 1 if

 $\eta \wedge (d\eta)^p \neq 0$ and $(d\eta)^{p+1} = 0$,

for some $p \leq n$.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
○○○●	00000000		0000000	0000
Quasi-Sasa	akian manifolds			

• A quasi-Sasakian structure on a (2n + 1)-dimensional manifold M is a normal almost contact metric structure (ϕ, ξ, η, g) such that $d\Phi = 0$, where Φ is defined by

$$\Phi(X,Y) = g(X,\phi Y).$$

- They were introduced by Blair in 1967 in the attempt to unify Sasakian geometry $(d\eta = \Phi)$ and cosymplectic geometry $(d\eta = 0, d\Phi = 0)$.
- A quasi-Sasakian manifold is said to be of rank 2p + 1 if

$$\eta \wedge (d\eta)^p
eq 0$$
 and $(d\eta)^{p+1} = 0,$

for some $p \leq n$.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	●○○○○○○○		0000000	0000
3-quasi-S	asakian manifolds			

Definition

A 3-quasi-Sasakian manifold is given by a (4n + 3)-dimensional manifold M endowed with three quasi-Sasakian structures $(\phi_1, \xi_1, \eta_1, g), (\phi_2, \xi_2, \eta_2, g), (\phi_3, \xi_3, \eta_3, g)$ satisfying the following relations, for any even permutation (α, β, γ) of $\{1, 2, 3\}$,

$$\begin{split} \phi_{\gamma} &= \phi_{\alpha} \phi_{\beta} - \eta_{\beta} \otimes \xi_{\alpha}, \\ \xi_{\gamma} &= \phi_{\alpha} \xi_{\beta}, \quad \eta_{\gamma} = \eta_{\alpha} \circ \phi_{\beta} \end{split}$$

(For odd permutations, there is a change of signs).

The class of 3-quasi-Sasakian manifolds $(d\Phi_{\alpha} = 0)$ includes as special cases the 3-cosymplectic manifolds $(d\eta_{\alpha} = 0, \ d\Phi_{\alpha} = 0)$, and the 3-Sasakian manifolds $(d\eta_{\alpha} = \Phi_{\alpha})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	●○○○○○○○		0000000	0000
3-quasi-S	asakian manifolds			

Definition

A 3-quasi-Sasakian manifold is given by a (4n + 3)-dimensional manifold M endowed with three quasi-Sasakian structures $(\phi_1, \xi_1, \eta_1, g), (\phi_2, \xi_2, \eta_2, g), (\phi_3, \xi_3, \eta_3, g)$ satisfying the following relations, for any even permutation (α, β, γ) of $\{1, 2, 3\}$,

$$\begin{split} \phi_{\gamma} &= \phi_{\alpha} \phi_{\beta} - \eta_{\beta} \otimes \xi_{\alpha}, \\ \xi_{\gamma} &= \phi_{\alpha} \xi_{\beta}, \quad \eta_{\gamma} = \eta_{\alpha} \circ \phi_{\beta} \end{split}$$

(For odd permutations, there is a change of signs).

The class of 3-quasi-Sasakian manifolds $(d\Phi_{\alpha} = 0)$ includes as special cases the 3-cosymplectic manifolds $(d\eta_{\alpha} = 0, \ d\Phi_{\alpha} = 0)$, and the 3-Sasakian manifolds $(d\eta_{\alpha} = \Phi_{\alpha})$.

・ロト・(四ト・(日下・(日下・))

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	○●○○○○○○		0000000	0000
The can	nical foliation of a	3-aussi-Sasa	kian manif	old

Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold. Then the 3-dimensional distribution $\mathcal{V} := \langle \xi_1, \xi_2, \xi_3 \rangle$ is integrable. Moreover, it defines a totally geodesic and Riemannian foliation.

• The distribution $\mathcal{H} := \bigcap_{\alpha=1}^{3} \ker(\eta_{\alpha})$ has dimension 4n, and TM splits as the orthogonal sum

$$TM = \mathcal{H} \oplus \mathcal{V}.$$

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	○●○○○○○○		0000000	0000
The can	nical foliation of a	3-aussi-Sasa	kian manif	old

Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold. Then the 3-dimensional distribution $\mathcal{V} := \langle \xi_1, \xi_2, \xi_3 \rangle$ is integrable. Moreover, it defines a totally geodesic and Riemannian foliation.

• The distribution $\mathcal{H} := \bigcap_{\alpha=1}^{3} \ker(\eta_{\alpha})$ has dimension 4n, and TM splits as the orthogonal sum

$$TM = \mathcal{H} \oplus \mathcal{V}.$$

Prel	nari	

3-quasi-Sasakian manifolds

Contact spheres

Topology 0000000 References 0000

Structure of the leaves of $\mathcal V$

Theorem

Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold. Then, for any even permutation (α, β, γ) of $\{1, 2, 3\}$ and for some $c \in \mathbb{R}$

 $[\xi_{\alpha},\xi_{\beta}]=c\xi_{\gamma}.$

So we can divide 3-quasi-Sasakian manifolds in two main classes according to the behaviour of the leaves of \mathcal{V} : those 3-quasi-Sasakian manifolds for which each leaf of \mathcal{V} is locally SO(3) (or SU(2)) (which corresponds to take in the above theorem the constant $c \neq 0$), and those for which each leaf of \mathcal{V} is locally an abelian group (the case c = 0). Preliminaries 0000 Contact spheres

Topology 0000000

References 0000

The rank of a 3-quasi-Sasakian manifold

In a 3-quasi-Sasakian manifold one has, in principle, the three odd ranks r_1, r_2, r_3 of the 1-forms η_1, η_2, η_3 , since we have three distinct, although related, quasi-Sasakian structures. We prove that these ranks coincide and their value has great influence on the geometry of the manifold.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
	00000000			
The rank	of a 3-quasi-Sasa	kian manifold		

Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold. Then the 1-forms η_1, η_2 and η_3 have all the same rank 4l + 3, for some $l \leq n$, or rank 1, according to $[\xi_{\alpha}, \xi_{\beta}] = c\xi_{\gamma}$ with $c \neq 0$, or $[\xi_{\alpha}, \xi_{\beta}] = 0$, respectively.

• The above theorem allows to define the rank of a 3-quasi-Sasakian manifold $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ as the rank shared by the 1-forms η_1, η_2 and η_3 .

Theorem

Every 3-quasi-Sasakian manifold of rank 1 is 3-cosymplectic.

Theorem

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
	00000000			
The rank	of a 3-quasi-Sasa	kian manifold		

Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold. Then the 1-forms η_1, η_2 and η_3 have all the same rank 4l + 3, for some $l \leq n$, or rank 1, according to $[\xi_{\alpha}, \xi_{\beta}] = c\xi_{\gamma}$ with $c \neq 0$, or $[\xi_{\alpha}, \xi_{\beta}] = 0$, respectively.

• The above theorem allows to define the rank of a 3-quasi-Sasakian manifold $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ as the rank shared by the 1-forms η_1, η_2 and η_3 .

Theorem

Every 3-quasi-Sasakian manifold of rank 1 is 3-cosymplectic.

Theorem

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
	00000000			
The rank	of a 3-quasi-Sasa	kian manifold		

Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold. Then the 1-forms η_1, η_2 and η_3 have all the same rank 4l + 3, for some $l \leq n$, or rank 1, according to $[\xi_{\alpha}, \xi_{\beta}] = c\xi_{\gamma}$ with $c \neq 0$, or $[\xi_{\alpha}, \xi_{\beta}] = 0$, respectively.

• The above theorem allows to define the rank of a 3-quasi-Sasakian manifold $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ as the rank shared by the 1-forms η_1, η_2 and η_3 .

Theorem

Every 3-quasi-Sasakian manifold of rank 1 is 3-cosymplectic.

Theorem

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
	00000000			
The rank	of a 3-quasi-Sasa	kian manifold		

Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold. Then the 1-forms η_1, η_2 and η_3 have all the same rank 4l + 3, for some $l \leq n$, or rank 1, according to $[\xi_{\alpha}, \xi_{\beta}] = c\xi_{\gamma}$ with $c \neq 0$, or $[\xi_{\alpha}, \xi_{\beta}] = 0$, respectively.

• The above theorem allows to define the rank of a 3-quasi-Sasakian manifold $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ as the rank shared by the 1-forms η_1 , η_2 and η_3 .

Theorem

Every 3-quasi-Sasakian manifold of rank 1 is 3-cosymplectic.

Theorem

Toward a	decomposition th	eorem		
Preliminaries 0000	3-quasi-Sasakian manifolds	Contact spheres	Topology 0000000	References 0000

Besides the vertical distribution \mathcal{V} we proved that the following two fundamental distributions are Riemannian and totally geodesic.

• $\mathcal{E}^{4m} := \{ X \in \mathcal{H} \mid i_X d\eta_\alpha = 0, \text{ for } \alpha = 1, 2, 3 \},$

•
$$\mathcal{E}^{4l+3}:=\mathcal{E}^{4l}\oplus\mathcal{V}$$
,

where \mathcal{E}^{4l} is the orthogonal complement of \mathcal{E}^{4m} in \mathcal{H} .

Toward a	decomposition th	eorem		
Preliminaries 0000	3-quasi-Sasakian manifolds	Contact spheres	Topology 0000000	References 0000

Besides the vertical distribution \mathcal{V} we proved that the following two fundamental distributions are Riemannian and totally geodesic.

• $\mathcal{E}^{4m} := \{ X \in \mathcal{H} \mid i_X d\eta_\alpha = 0, \text{ for } \alpha = 1, 2, 3 \},$

•
$$\mathcal{E}^{4l+3}:=\mathcal{E}^{4l}\oplus\mathcal{V}$$
,

where \mathcal{E}^{4l} is the orthogonal complement of \mathcal{E}^{4m} in \mathcal{H} .

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	○○○○○○●○○		0000000	0000
3-quasi-Sas	sakian manifolds of	rank $4/+3$		

The following decomposition theorem holds.

Theorem

Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold of rank 4l + 3 with $[\xi_{\alpha}, \xi_{\beta}] = 2\xi_{\gamma}$. Then M^{4n+3} is locally the Riemannian product of a 3-Sasakian manifold M^{4l+3} and a hyper-Kähler manifold M^{4m} , with m = n - l.

Nontrivial	examples of 3-qu	asi-Sasakian	manifolds	
Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	○○○○○○●○		0000000	0000

Example

• Let *M* be a compact Riemannian manifold and *G* a finite group freely acting on *M*. Then from the Hodge theory we can obtain

 $H^*(M/G)\cong H^*(M)^G$.

• Now, let M and N are two compact manifolds with G-action. Then G acts on the product $M \times N$ and we get

$$H^{k}\left(M \times N\right)^{G} = \bigoplus_{q+p=k} \left(H^{q}\left(M\right) \otimes H^{p}\left(N\right)\right)^{G},$$

since $H^{q}(M) \otimes H^{p}(N)$ are *G*-invariant subspaces.

Nontrivial	examples of 3-qu	lasi-Sasakian	manifolds	
Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	○○○○○○●○		0000000	0000

Example

• Let *M* be a compact Riemannian manifold and *G* a finite group freely acting on *M*. Then from the Hodge theory we can obtain

 $H^*(M/G)\cong H^*(M)^G$.

• Now, let M and N are two compact manifolds with G-action. Then G acts on the product $M \times N$ and we get

$$H^{k}(M \times N)^{G} = \bigoplus_{q+p=k} (H^{q}(M) \otimes H^{p}(N))^{G},$$

since $H^{q}(M) \otimes H^{p}(N)$ are *G*-invariant subspaces.

Nontrivial	examples of 3-qu	lasi-Sasakian	manifolds	
Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	○○○○○○●○		0000000	0000

Example

• Let *M* be a compact Riemannian manifold and *G* a finite group freely acting on *M*. Then from the Hodge theory we can obtain

 $H^*(M/G)\cong H^*(M)^G$.

• Now, let M and N are two compact manifolds with G-action. Then G acts on the product $M \times N$ and we get

$$H^{k}(M \times N)^{G} = \bigoplus_{q+p=k} (H^{q}(M) \otimes H^{p}(N))^{G},$$

since $H^{q}(M) \otimes H^{p}(N)$ are *G*-invariant subspaces.

Prelim 0000	naries 3-quasi-Sasakian manifolds ○○○○○○○●	Contact spheres	Topology 0000000	References 0000
No	ntrivial examples of 3-o	quasi-Sasakian	manifolds	
	Example (continued)			
	Now, take $M=S^{4n-1}\subset \mathbb{H}^n$ Let \mathbb{Z}_4 (the cyclic group of o			
	a = (a = a) - (ia)	in)		

•
$$\sigma \cdot (q_1, \ldots, q_n) = (iq_1, \ldots, iq_n)$$
,
and on \mathbb{T}^4 by

•
$$\sigma \cdot [q] = [iq].$$

We get

$$H^{k}\left(S^{4n-1}\otimes\mathbb{T}^{4}
ight)^{\mathbb{Z}_{4}}=H^{k}\left(\mathbb{T}^{4}
ight)^{\mathbb{Z}_{4}}\oplus H^{k-4n+1}\left(\mathbb{T}^{4}
ight)^{\mathbb{Z}_{4}}$$

It follows that the Poincaré polynomial of $\left(S^{4n-1} imes \mathbb{T}^4
ight)/\mathbb{Z}_4$ is

$$(1+t^{4n-1})(1+4t^2+t^4).$$

Thus, $\left(S^{4n-1} imes \mathbb{T}^4
ight)/\mathbb{Z}_4$ cannot be a product of 3-Sasakian and hyper-Kähler manifolds.

Prelin 0000		3-quasi-Sasakian manifolds ○○○○○○○●	Contact spheres	Topology 0000000	References 0000
No	ntrivial e	examples of 3–qu	asi-Sasakian	manifolds	
	Example	(continued)			
		e $M=S^{4n-1}\subset \mathbb{H}^n$ ar			

•
$$\sigma \cdot (q_1, \ldots, q_n) = (iq_1, \ldots, iq_n),$$

and on \mathbb{T}^4 by

•
$$\sigma \cdot [q] = [iq].$$

We get

$$H^{k}\left(S^{4n-1}\otimes\mathbb{T}^{4}
ight)^{\mathbb{Z}_{4}}=H^{k}\left(\mathbb{T}^{4}
ight)^{\mathbb{Z}_{4}}\oplus H^{k-4n+1}\left(\mathbb{T}^{4}
ight)^{\mathbb{Z}_{4}}$$

It follows that the Poincaré polynomial of $\left(S^{4n-1} imes \mathbb{T}^4
ight)/\mathbb{Z}_4$ is

$$\left(1+t^{4n-1}\right)\left(1+4t^2+t^4\right).$$

Thus, $(S^{4n-1} \times \mathbb{T}^4) / \mathbb{Z}_4$ cannot be a product of 3-Sasakian and hyper-Kähler manifolds.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000	●0000	0000000	0000
Contact of	circles and contact	spheres		

- A contact circle on M^3 is a pair of contact forms (η_1, η_2) such that for any $(\lambda_1, \lambda_2) \in S^1$ the 1-form $\lambda_1\eta_1 + \lambda_2\eta_2$ is also a contact form.
- A contact p-sphere on M^{2n+1} is given by $(\eta_1, \ldots, \eta_{p+1})$ such that for any $(\lambda_1, \ldots, \lambda_{p+1}) \in S^p$, the 1-form $\lambda_1\eta_1 + \ldots + \lambda_{p+1}\eta_{p+1}$ is also a contact form.

Theorem (Zessin, 2005)

Any 3-Sasakian manifold M⁴ⁿ⁺³ admits a 2-sphere of contact structures (which is both round and taut).

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000	●0000	0000000	0000
Contact of	circles and contact	spheres		

- A contact circle on M^3 is a pair of contact forms (η_1, η_2) such that for any $(\lambda_1, \lambda_2) \in S^1$ the 1-form $\lambda_1\eta_1 + \lambda_2\eta_2$ is also a contact form.
- A contact *p*-sphere on M^{2n+1} is given by $(\eta_1, \ldots, \eta_{p+1})$ such that for any $(\lambda_1, \ldots, \lambda_{p+1}) \in S^p$, the 1-form $\lambda_1\eta_1 + \ldots + \lambda_{p+1}\eta_{p+1}$ is also a contact form.

Theorem (Zessin, 2005)

Any 3-Sasakian manifold M⁴ⁿ⁺³ admits a 2-sphere of contact structures (which is both round and taut).

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000	●0000	0000000	0000
Contact of	circles and contact	spheres		

- A contact circle on M^3 is a pair of contact forms (η_1, η_2) such that for any $(\lambda_1, \lambda_2) \in S^1$ the 1-form $\lambda_1\eta_1 + \lambda_2\eta_2$ is also a contact form.
- A contact *p*-sphere on M^{2n+1} is given by $(\eta_1, \ldots, \eta_{p+1})$ such that for any $(\lambda_1, \ldots, \lambda_{p+1}) \in S^p$, the 1-form $\lambda_1\eta_1 + \ldots + \lambda_{p+1}\eta_{p+1}$ is also a contact form.

Theorem (Zessin, 2005)

Any 3-Sasakian manifold M⁴ⁿ⁺³ admits a 2-sphere of contact structures (which is both round and taut).

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
	00000000	•0000	0000000	0000
Contact	circles and contact	cohoroc		

- A contact circle on M^3 is a pair of contact forms (η_1, η_2) such that for any $(\lambda_1, \lambda_2) \in S^1$ the 1-form $\lambda_1\eta_1 + \lambda_2\eta_2$ is also a contact form.
- A contact *p*-sphere on M^{2n+1} is given by $(\eta_1, \ldots, \eta_{p+1})$ such that for any $(\lambda_1, \ldots, \lambda_{p+1}) \in S^p$, the 1-form $\lambda_1\eta_1 + \ldots + \lambda_{p+1}\eta_{p+1}$ is also a contact form.

Theorem (Zessin, 2005)

Any 3-Sasakian manifold M^{4n+3} admits a 2-sphere of contact structures (which is both round and taut).

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000	0●000	0000000	0000
Contact	circles and contact	snheres		

- A contact sphere is said to be *taut* if all contact forms belonging to the sphere define the same volume form.
- A contact sphere is said to be *round* if for any $(\lambda_1, \ldots, \lambda_{p+1}) \in S^p$, the Reeb vector field of

$$\eta = \sum_{h=1}^{p+1} \lambda_h \eta_h \quad \text{is} \quad \xi = \sum_{h=1}^{p+1} \lambda_h \xi_h.$$

• Zessin showed that: taut \iff round in dimension 3.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000	00●00	0000000	0000
Almost c	ontact spheres			

Definition

Let $(\phi_1, \xi_1, \eta_1), \ldots, (\phi_{p+1}, \xi_{p+1}, \eta_{p+1})$ be almost contact structures on M. We say that they define an *almost contact sphere* if for any $(\lambda_1, \ldots, \lambda_{p+1}) \in S^p$ the tensors

$$\phi := \sum_{h=1}^{p+1} \lambda_h \phi_h,$$

$$\xi := \sum_{h=1}^{p+1} \lambda_h \xi_h,$$

$$\eta := \sum_{h=1}^{p+1} \lambda_h \eta_h,$$

define an almost contact structure on M.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

0000	00000000	00000	0000000	0000
Almost c	ontact spheres			

Let $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha})$ be an almost contact metric 3-structure on M. Then M carries an almost contact 2-sphere (ϕ, ξ, η) given by

$$\begin{split} \phi &:= \lambda_1 \phi_1 + \lambda_2 \phi_2 + \lambda_3 \phi_3, \\ \xi &:= \lambda_1 \xi_1 + \lambda_2 \xi_2 + \lambda_3 \xi_3, \\ \eta &:= \lambda_1 \eta_1 + \lambda_2 \eta_2 + \lambda_3 \eta_3, \end{split}$$

where $(\lambda_1, \lambda_2, \lambda_3) \in S^2$. Furthermore, the Riemannian metric g is compatible with (ϕ, ξ, η) , and if $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha})$ is hyper-normal, then (ϕ, ξ, η, g) is a normal almost contact metric structure on M.

Sacaltian	coboroc	00000	0000000	0000
Sasakian	spheres			

Corollary

A 3-quasi-Sasakian manifold of rank 4l + 3 ($M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) defines a 2-sphere of quasi-Sasakian structures (ϕ, ξ, η, g) of the same rank (which is both round and taut).

In particular:

Corollary

Any 3-Sasakian manifold admits a contact 2-sphere of Sasakian structures (which is both round and taut).

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000	0000●	0000000	0000
Sasakian s	spheres			

Corollary

A 3-quasi-Sasakian manifold of rank 4I + 3 $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ defines a 2-sphere of quasi-Sasakian structures (ϕ, ξ, η, g) of the same rank (which is both round and taut).

In particular:

Corollary

Any 3-Sasakian manifold admits a contact 2-sphere of Sasakian structures (which is both round and taut).

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000		●○○○○○○	0000
Topology c	of 3-quasi-Sasakian	manifolds		

3-quasi-Sasakian manifolds

3-Sasakian manifolds: top rank 4n+33-quasi-Sasakian manifolds of intermediate ranks 4l+3, $1 \le l < n$ 3-cosymplectic manifolds: minimum rank 1

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000		○●00000	0000
I - Topolog	gy of 3-Sasakian r	manifolds		

Main Results on the Betti numbers:

Theorem (Fujitani,1966)

In any compact Sasakian manifold M^{2n+1} , the odd Betti numbers b_{2k+1} are even, for 2k + 1 < n.

Theorem (Galicki-Salamon, 1996)

In any compact 3-Sasakian manifold M^{4n+3} , the odd Betti numbers b_{2k+1} are zero, for each k < n.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000		○●○○○○○	0000
I - Topolog	y of 3-Sasakian m	anifolds		

Main Results on the Betti numbers:

Theorem (Fujitani,1966)

In any compact Sasakian manifold M^{2n+1} , the odd Betti numbers b_{2k+1} are even, for 2k + 1 < n.

Theorem (Galicki-Salamon, 1996)

In any compact 3-Sasakian manifold M^{4n+3} , the odd Betti numbers b_{2k+1} are zero, for each k < n.

	00000000 C I I'	00000 • C I	000000	0000
lopology	[,] of cosymplectic m	nanitolds		

Theorem (Chinea, de León, Marrero, 1993)

Let M^{2n+1} be a compact cosymplectic manifold. Then,

(i)
$$b_0 \le b_1 \le \ldots \le b_n$$
.

(ii) $b_{2p+1} - b_{2p}$ is even, for each $p \le n$. In particular b_1 is odd.

They also proved a version of the strong Lefschetz property.

II - Topol	ogy of 3-cosymple	ectic manifolds	5	
Preliminaries	3-quasi-Sasakian manitolds	Contact spheres	Topology	References
0000	00000000		○○○●○○○	0000

$$b_p^h := \dim \left\{ \omega \in \Omega^p(M) \mid \omega \text{ is harmonic}, i_{\xi_{\alpha}} \omega = 0, \alpha = 1, 2, 3
ight\}$$

Theorem

Let M^{4n+3} be a compact 3-cosymplectic manifold. Then, for each integer p such that $0 \le p \le 2n - 1$,

(i) b^h_{2p+1} is divisible by four.
 (ii) b_p = b^h_p + 3b^h_{p-1} + 3b^h_{p-2} + b^h_{p-3}

Corollary

For each integer p such that $0 \le p \le 2n - 1$,

 $b_{2p} + b_{2p+1} = 4k$, for some $k \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000		○○○●○○○	0000
II - Topo	logy of 3-cosymple	ectic manifolds	S	

$$b^h_p := \dim \left\{ \omega \in \Omega^p(M) \mid \omega \text{ is harmonic}, i_{\xi_{lpha}} \omega = 0, lpha = 1, 2, 3
ight\}$$

Theorem

Let M^{4n+3} be a compact 3-cosymplectic manifold. Then, for each integer p such that $0 \le p \le 2n - 1$,

(i) b_{2p+1}^h is divisible by four.

(ii) $b_p = b_p^h + 3b_{p-1}^h + 3b_{p-2}^h + b_{p-3}^h$

Corollary

For each integer p such that $0 \le p \le 2n - 1$,

 $b_{2p} + b_{2p+1} = 4k$, for some $k \in \mathbb{N}$.

II - Topo	ology of 3-cosymple	ctic manifolds	5	
Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000		○○○●○○○	0000

$$b^h_p := \dim \left\{ \omega \in \Omega^p(M) \mid \omega \text{ is harmonic}, i_{\xi_\alpha} \omega = 0, \alpha = 1, 2, 3
ight\}$$

Theorem

Let M^{4n+3} be a compact 3-cosymplectic manifold. Then, for each integer p such that $0 \le p \le 2n - 1$, (i) b_{2p+1}^h is divisible by four.

(ii)
$$b_p = b_p^h + 3b_{p-1}^h + 3b_{p-2}^h + b_{p-3}^h$$
.

Corollary

For each integer p such that $0 \le p \le 2n - 1$,

 $b_{2p} + b_{2p+1} = 4k$, for some $k \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

II - Topo	ology of 3-cosymple	ctic manifolds	5	
Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000		○○○●○○○	0000

$$b_{p}^{h} := \dim \left\{ \omega \in \Omega^{p}(M) \mid \omega \text{ is harmonic}, i_{\xi_{\alpha}} \omega = 0, \alpha = 1, 2, 3 \right\}$$

Theorem

Let M^{4n+3} be a compact 3-cosymplectic manifold. Then, for each integer p such that $0 \le p \le 2n - 1$,

Corollary

For each integer p such that $0 \le p \le 2n - 1$,

$$b_{2p} + b_{2p+1} = 4k$$
, for some $k \in \mathbb{N}$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣�?

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
0000	00000000		○○○○●○○	0000
III - Tope	plogy of 3-quasi-Sa	sakian manifo	olds	

We introduce the operators

$$heta_lpha X := \left\{ egin{array}{ll} 0, & ext{if } X \in \Gamma(\mathcal{E}^{4l+3}) \ \phi_lpha X, & ext{if } X \in \Gamma(\mathcal{E}^{4m}) \end{array}
ight.$$

and the associated 2-forms $\Theta_{\alpha} := g(\cdot, \theta_{\alpha} \cdot).$

In any 3-quasi-Sasakian manifold each Θ_{α} is closed. The fact that the 2-forms Θ_{α} are also coclosed follows from the following lemma.

Lemma

In any 3-quasi-Sasakian manifold M^{4n+3} of non-maximal rank 4l + 3 one has

$$\nabla \Theta_{\alpha} = 0.$$

III Topol	ogv of 3-quasi-Sas	akian manifo	lde	
Preliminaries 0000	3-quasi-Sasakian manifolds 00000000	Contact spheres	Topology ○○○○○●○	References

Then, the following lower bound on the Betti numbers follows.

Theorem

In any compact 3-quasi-Sasakian manifold M^{4n+3} of non-maximal rank 4l + 3, one has the inequality

$$b_{2k} \ge {\binom{k+2}{2}}$$
 for $0 \le k \le n-k$

Corollary

The sphere S⁴ⁿ⁺³ does not admit any 3-quasi-Sasakian structure of non-maximal rank.

III Topol	ogv of 3-quasi-Sas	akian manifo	lde	
Preliminaries 0000	3-quasi-Sasakian manifolds 00000000	Contact spheres	Topology ○○○○○●○	References

Then, the following lower bound on the Betti numbers follows.

Theorem

In any compact 3-quasi-Sasakian manifold M^{4n+3} of non-maximal rank 4l + 3, one has the inequality

$$b_{2k} \ge \binom{k+2}{2}$$
 for $0 \le k \le n-k$

Corollary

The sphere S^{4n+3} does not admit any 3-quasi-Sasakian structure of non-maximal rank.

Preliminaries 3-quasi-Sasakian manifolds Contact spheres 00000 Preliminaries 0000 Preliminaries 0000 Preliminaries 0000 Preliminaries 0000 Preliminaries 00000 Preliminaries 0000 Preliminaries 0000 Preliminaries 0000 Preliminaries 0000 Preliminaries 00000 Preliminaries 0000 Preliminaries 0000 Preliminaries

Stronger bounds on the Betti numbers of compact 3-quasi-Sasakian manifolds are obtained after recognising that there is a decomposition of the space of harmonic forms

$$\Omega^k_{\bigtriangleup}(M) = \bigoplus_{s+t=k} \Omega^{s,t}_{\bigtriangleup}(M),$$

where

$$\Omega^{s,t}_{\triangle}(M) := \{ \omega \in \Omega^{s+t}_{\triangle}(M) \, | \, i_P \omega = s \omega \},\$$

and *P* is the projection on the 3- α -Sasakian part. Then, an action of so(4, 1) on $\bigoplus_{t=0}^{4m} \Omega^{s,t}_{\triangle}(M)$ is found and one can prove the following result.

Theorem

In any compact 3-quasi-Sasakian manifold M^{4n+3} of rank 4l + 3, the odd Betti numbers b_{2k+1} are divisible by 4, for each k < l.

References [.]	Quasi-Sasakian r	nanifolds		
	3-quasi-Sasakian manifolds 00000000	Contact spheres	Topology 0000000	References ●○○○

📄 D. E. Blair,

The theory of quasi-Sasakian structures, J. Differential Geom. 1 (1967), 331–345.

S. Tanno,

Quasi-Sasakian structures of rank 2p + 1, J. Differential Geom. **5** (1971), 317–324.

D. Chinea, M. de León, J.C. Marrero,
 Topology of cosymplectic manifolds,
 J. Math. Pures Appl. 72 (1993), 567–591.

		00000 	000000	0000
References:	3-(quasi)-Sasakia	n manifolds		

K. Galicki, S. Salamon, Betti Numbers of 3-Sasakian Manifolds, Geometriae Dedicata 63 (1996), 45-.68.

- B. Cappelletti Montano, A.D.N., G. Dileo, The geometry of 3-quasi-Sasakian manifolds, Internat. J. Math. 20 (2009),1081–1105.
- B. Cappelletti Montano, A.D.N., I. Yudin, Topology of 3-cosymplectic manifolds, The Quarterly Journal of Mathematics, to appear, 24 pp.

References:	contact circles an	d snheres		
	3-quasi-Sasakian manifolds 00000000	Contact spheres	Topology 0000000	References ○○●○

H. Geiges, J. Gonzalo,

Contact geometry and complex surfaces, Invent. math. 121 (1995), 147-209.

M. Zessin,

On contact *p*-spheres,

Ann. Inst. Fourier 55 no. 4 (2005), 1167-1194.

Preliminaries	3-quasi-Sasakian manifolds	Contact spheres	Topology	References
				0000

Obrigado!