Preliminaries	3-structures	Nontrivial examples	Betti numbers	References

Topology of 3-cosymplectic manifolds

Antonio De Nicola

joint work with B. Cappelletti Montano and I. Yudin

CMUC, Department of Mathematics, University of Coimbra

XX IFWGP, Madrid, 1 September 2011

Preliminaries	3-structures	Nontrivial examples	Betti numbers	References
00000	000	000000	000	
Outline				

- Almost contact metric manifolds
- Normality
- Cosymplectic manifolds

2 3-structures

- 3-cosymplectic manifolds
- Vertical foliation and transverse structure
- Horizontal foliation and local product structure

3 Nontrivial examples

- Examples of 3-cosymplectic manifolds
- Nontrivial examples

Betti numbers

• Betti numbers of 3-cosymplectic manifolds

An almost contact manifold (M, φ, ξ, η) is an odd-dimensional manifold M which carries a (1, 1)-tensor field φ, a vector field ξ, a 1-form η, satisfying

$$\phi^2 = -I + \eta \otimes \xi$$
 and $\eta(\xi) = 1$.

It follows that

$$\phi \xi = 0$$
 and $\eta \circ \phi = 0$.

• An almost contact manifold manifold of dimension 2n + 1 is said to be a contact manifold if

$$\eta \wedge (d\eta)^n \neq 0.$$

Preliminaries	3-structures	Nontrivial examples	Betti numbers	References
○●000	000	000000	000	
Normality				

• An almost contact manifold (M, ϕ, ξ, η) is said to be normal if

$$[\phi,\phi]+2d\eta\otimes\xi=0.$$

• *M* is normal iff the almost complex structure *J* on the product $M \times \mathbb{R}$ defined by setting

$$J\left(X,f\frac{d}{dt}\right) = \left(\phi X - f\xi, \eta\left(X\right)\frac{d}{dt}\right),$$

for any $X \in \Gamma(TM)$ and $f \in C^{\infty}(M \times \mathbb{R})$ is integrable.

Almost contact metric manifolds

• Every almost contact manifold admits a compatible metric g, i.e. such that

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y),$$

for all $X, Y \in \Gamma(TM)$. It follows that $\eta(X) = g(X, \xi)$.

- Also, $\Phi(X, Y) := g(X, \phi Y)$ defines a 2-form
- By putting $\mathcal{H} = \ker(\eta)$ one obtains a 2*n*-dim. distribution on M and TM splits as the orthogonal sum

$$TM = \mathcal{H} \oplus \langle \xi \rangle$$
.

Preliminaries ○○○●○	3-structures 000	Nontrivial examples 000000	Betti numbers 000	References
Cosymplect	ic manifolds			

Definition

A cosymplectic manifold is a normal almost contact metric manifold (M, ϕ, ξ, η, g) such that $d\eta = 0$ and $d\Phi = 0$.

D. Chinea, M. de León, J.C. Marrero
 Topology of cosymplectic manifolds,
 J. Math. Pures Appl. 72 (1993), 567–591.

Topology of cosymplectic manifolds

Among their results for a compact cosymplectic manifold (M, ϕ, ξ, η, g) of dimension 2n + 1:

- $b_0 \le b_1 \le \ldots \le b_n = b_{n+1} \ge b_{n+2} \ge \ldots \ge b_{2n+1}$
- $b_{2p+1} b_{2p}$ is even. In particular b_1 is odd.
- The first nontrivial example
- A version of the strong Lefschetz theorem
- . . .
- and many others.

Preliminaries 00000	3-structures	Nontrivial examples 000000	Betti numbers 000	References
2 ctructures				

 An almost 3-contact metric manifold is a (4n + 3)-dim. smooth manifold M endowed with three almost contact structures (φ_α, ξ_α, η_α) satisfying, for any even permutation (α, β, γ) of (1, 2, 3), the relations

$$\phi_{\gamma} = \phi_{\alpha}\phi_{\beta} - \eta_{\beta} \otimes \xi_{\alpha},$$

$$\xi_{\gamma} = \phi_{\alpha}\xi_{\beta}, \quad \eta_{\gamma} = \eta_{\alpha} \circ \phi_{\beta},$$

and a Riemannian metric g compatible with each of them. (For odd permutations, there is a change of signs).

- *M* is said to be normal (sometimes hyper-normal) if each almost contact structure is normal.
- The distribution $\mathcal{H} := \bigcap_{\alpha=1}^{3} \ker(\eta_{\alpha})$ has dimension 4n, and TM splits as the orthogonal sum

$$TM = \mathcal{H} \oplus \mathcal{V},$$

where $\mathcal{V} := \langle \xi_1, \xi_2, \xi_3 \rangle$.

Preliminaries	3-structures	Nontrivial examples	Betti numbers	References	
00000	●○○	000000	000		
3-cosymplectic manifolds					

Definition

An almost 3-cosymplectic manifold is an almost 3-contact metric manifold $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ such that $d\eta_{\alpha} = 0$ and $d\Phi_{\alpha} = 0$, for each α . It is called 3-cosymplectic if it is normal.

Theorem (lanus et al.)

Any almost 3-cosymplectic manifold is 3-cosymplectic.

3-cosymplectic manifolds and 3-Sasakian manifolds $(d\eta_{\alpha} = \Phi_{\alpha})$ are special cases of 3-quasi-Sasakian manifolds $(d\Phi_{\alpha} = 0)$, which we studied in recent years.

In any 3-cosymplectic manifold ξ_{α} , η_{α} , ϕ_{α} and Φ_{α} are ∇ -parallel. Thus,

$$[\xi_{\alpha},\xi_{\beta}] = \nabla_{\xi_{\alpha}}\xi_{\beta} - \nabla_{\xi_{\beta}}\xi_{\alpha} = 0$$

Thus V = (ξ₁, ξ₂, ξ₃) is involutive. It defines a Riemannian foliation with totally geodesic leaves.

Theorem (B. Cappelletti Montano and A.d.N., 2007)

Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-cosymplectic manifold. If \mathcal{V} is regular, then M^{4n+3}/\mathcal{V} is a hyper-Kähler manifold of dimension 4n. Consequently, any 3-cosymplectic manifold is Ricci-flat.

Unlike the case of 3-Sasakian geometry, in any 3-cosymplectic manifold also \mathcal{H} is integrable. Indeed, for all $X, Y \in \Gamma(\mathcal{H})$,

$$\eta_{\alpha}\left([X,Y]\right) = -2d\eta_{\alpha}\left(X,Y\right) = 0$$

since $d\eta_{\alpha} = 0$. Thus,

• The tangent bundle splits as the orthogonal sum

 $TM = \mathcal{H} \oplus \mathcal{V}$

of two Riemannian foliations with totally geodesic leaves.

Theorem

Any 3-cosymplectic manifold M^{4n+3} is locally the Riemannian product of a hyper-Kähler manifold N^{4n} and a 3-dimensional flat abelian Lie group G^3 .

Preliminaries	3-structures	Nontrivial examples	Betti numbers	References
00000	000	●○○○○○	000	
Examples of	³ -cosymple	ctic manifold		

Example

- The standard example of a compact 3-cosymplectic manifold is given by the torus T⁴ⁿ⁺³ with the structure described in [F. Martín Cabrera, *Czechoslovak Math. J.*,1998].
- On the other hand, the standard example of a noncompact 3-cosymplectic manifold is given by ℝ⁴ⁿ⁺³ with the structure described in [B.Cappelletti Montano-A.d.N., *J. Geom. Phys.*, 2007].
- Both the above examples are the global product of a hyper-Kähler manifold with a 3-dimensional flat abelian Lie group. In fact, as we have seen, locally this is always true.

Nontrivial	examples o	f 3-cosymplectic	manifolds	
Preliminaries 00000	3-structures	Nontrivial examples ○●0000	Betti numbers 000	References

Example

Let (M^{4n}, J_{α}, G) be a compact hyper-Kähler manifold and $f: M^{4n} \longrightarrow M^{4n}$ be an hyper-Kählerian isometry, i.e., an isometry such that

$$f_* \circ J_{\alpha} = J_{\alpha} \circ f_*, \quad \text{for each } \alpha \in \{1, 2, 3\}.$$

Define the action φ of \mathbb{Z}^3 on the product manifold $M^{4n} imes \mathbb{R}^3$ by

$$\varphi\left((k_1,k_2,k_3),(x,t_1,t_2,t_3)\right) = \left(f^{k_1+k_2+k_3}(x),t_1+k_1,t_2+k_2,t_3+k_3\right).$$

Then, $M_f^{4n+3} := (M^{4n} \times \mathbb{R}^3)/\mathbb{Z}^3$ is a smooth manifold.

Example (continued)

We define a 3-cosymplectic structure on $M_f^{4n+3} := (M^{4n} \times \mathbb{R}^3)/\mathbb{Z}^3$ as follows.

On $M^{4n} \times \mathbb{R}^3$, we define $\hat{\xi}_{\alpha} := \frac{\partial}{\partial t_{\alpha}}$,

$$\hat{g} = G + dt_1 \otimes dt_1 + dt_2 \otimes dt_2 + dt_3 \otimes dt_3.$$

and $\hat{\eta}_{lpha} := \hat{g}(\cdot, \hat{\xi}_{lpha})$. Finally,

$$\hat{\phi}_{lpha} \mathsf{E} := J_{lpha} \mathsf{E}_{\mathcal{H}} + \sum_{eta, \gamma=1}^{3} \epsilon_{lphaeta\gamma} \hat{\eta}_{eta}(\mathsf{E}) \hat{\xi}_{\gamma},$$

where we have used the unique decomposition of the vector field $E = E_{\mathcal{H}} + \sum_{\beta=1}^{3} \hat{\eta}_{\beta}(E) \hat{\xi}_{\beta}$, $E_{\mathcal{H}}$ being the component tangent to M^{4n} .

Preliminaries 00000	3-structures 000	Nontrivial examples	Betti numbers 000	References
Nontrivial e	xamples of 3	-cosymplectic m	nanifolds	

Example (continued)

- We defined above $(\hat{\phi}_{\alpha}, \hat{\xi}_{\alpha}, \hat{\eta}_{\alpha}, \hat{g})$ on $M^{4n} \times \mathbb{R}^3$ $(\alpha = 1, 2, 3)$.
- But all these structures descend to the quotient, so that

$$M_f^{4n+3} := (M^{4n} imes \mathbb{R}^3)/\mathbb{Z}^3$$

with the induced structure $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ is a 3-cosymplectic manifold.

*M*⁴ⁿ⁺³_f is not in general a global product of a hyper-Kähler manifold *M*⁴ by the torus T³.

Nontrivial e	vamples of 3	-cosymplectic m	anifolds	
Preliminaries 00000	3-structures 000	Nontrivial examples	Betti numbers 000	References

Example (continued)

Theorem

Let $M^4 = \mathbb{T}^4 = \mathbb{H}/\mathbb{Z}^4$ and $f : \mathbb{H} \to \mathbb{H} : \mathbf{q} \mapsto \mathbf{q} \cdot \mathbf{i}$. Then M_f^7 is not a global product of a compact hyper-Kähler 4-manifold and the torus \mathbb{T}^3 .

Idea of the proof.

- A compact hyper-Kähler 4-manifold is either the Torus \mathbb{T}^4 or a complex K3 surface.
- In the first case $b_2(M_f^7)$ would be 21, in the second case $b_2(M_f^7)$ would be 25. But it can be shown by cellular homology techniques that $b_2(M_f^7) < 21$.

The spaces of basic forms with respect to $\mathcal{V} := \langle \xi_1, \xi_2, \xi_3 \rangle$ are

$$\Omega_{B}^{k}\left(M
ight):=\left\{\left.\omega\in\Omega^{k}\left(M
ight)
ight|i_{\xi_{lpha}}\omega=0,\;i_{\xi_{lpha}}d\omega=0
ight\}.$$

The restriction d_B of the exterior derivative d to $\Omega_B^k(M)$ sends basic forms into basic forms, defining the basic cohomology $H_B(M)$ with respect to \mathcal{V} as the cohomology of the complex $(\Omega_B^*(M), d_B)$.

Preliminaries	3-structures	Nontrivial examples	Betti numbers	References
00000	000	000000	●00	
Betti numbe	ers of 3-cosy	mplectic manifo	lds	

Definition

$$b_{p}^{h} := \dim \{ \omega \in \Omega^{p}(M) \mid \omega \text{ is harmonic}, i_{\xi_{\alpha}} \omega = 0, \alpha = 1, 2, 3 \}$$

Theorem

Let M^{4n+3} be a compact 3-cosymplectic manifold. Then, for each integer p such that $0 \le p \le 2n - 1$,

Corollary

For each integer p such that $0 \le p \le 2n - 1$,

$$b_{2p} + b_{2p+1} = 4k$$
, for some $k \in \mathbb{N}$.

Preliminaries	3-structures	Nontrivial examples	Betti numbers	References
00000	000	000000	0●0	
Betti numb	ers of 3-cosy	mplectic manifo	olds	

Proposition

Let M^{4n+3} be a compact 3-cosymplectic manifold. Then,

$$b^h_{2p} \ge {p+2 \choose 2}$$
 for $0 \le p \le n$

From this proposition and the previous theorem we get easily

Corollary

Let M^{4n+3} be a compact 3-cosymplectic manifold. Then,

$$b_p \ge \binom{p+2}{2}$$
 for $0 \le p \le 2n+1$

 $\begin{array}{ccc} \begin{array}{c} \label{eq:preliminaries} & 3-structures & Nontrivial examples & Betti numbers & References \\ \hline ooo & ooo & oo \end{array} \end{array}$

For (α, β, γ) cyclic permutation let

$$\Xi_lpha := rac{1}{2} \left(\Phi_lpha + 2\eta_eta \wedge \eta_\gamma
ight).$$

Define the operators

$$L_{lpha} \colon \Omega^{k}\left(\mathcal{M}
ight)
ightarrow \Omega^{k+2}\left(\mathcal{M}
ight) \colon \omega \mapsto \Xi_{lpha} \wedge \omega$$

and

$$\Lambda_{\alpha} := *L_{\alpha}*: \Omega^{k+2}(M) \to \Omega^{k}(M).$$

Theorem

The operators L_{α} , Λ_{α} , $\alpha \in \{1, 2, 3\}$, give a structure of so (4, 1)-module on the basic cohomology $H_B^*(M)$.

This result is the odd-dimensional analogous of the one obtained by Verbitsky about hyper-Kähler manifolds.

Preliminaries	3-structures	Nontrivial examples	Betti numbers	References
00000	000	000000	000	
References				

- D. Chinea, M. de León, J.C. Marrero
 Topology of cosymplectic manifolds,
 J. Math. Pures Appl. 72 (1993), 567–591.
- F. Martín Cabrera,

Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3-structure, Czechoslovak Math. J. **48(123) (1998), no. 3, 545–563**.

- B. Cappelletti Montano, A. De Nicola,
 3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem,
 - J. Geom. Phys. 57 (2007), 2509–2520.
- B. Cappelletti Montano, A. De Nicola, G. Dileo The geometry of 3-quasi-Sasakian manifolds, Internat. J. Math. 20 (2009), no. 9, 1081–1105.

Preliminaries	3-structures	Nontrivial examples	Betti numbers	References

Thank you!