Topology of 3-cosymplectic manifolds

Antonio De Nicola

joint work with B. Cappelletti Montano and I. Yudin

CMUC, Department of Mathematics, University of Coimbra

XX IFWGP, Madrid, 1 September 2011

Outline

(1) Preliminaries

- Almost contact metric manifolds
- Normality
- Cosymplectic manifolds
(2) 3-structures
- 3-cosymplectic manifolds
- Vertical foliation and transverse structure
- Horizontal foliation and local product structure
(3) Nontrivial examples
- Examples of 3-cosymplectic manifolds
- Nontrivial examples

4 Betti numbers

- Betti numbers of 3-cosymplectic manifolds

Almost contact manifolds

- An almost contact manifold (M, ϕ, ξ, η) is an odd-dimensional manifold M which carries a (1,1)-tensor field ϕ, a vector field ξ, a 1-form η, satisfying

$$
\phi^{2}=-I+\eta \otimes \xi \text { and } \eta(\xi)=1
$$

- It follows that

$$
\phi \xi=0 \text { and } \eta \circ \phi=0
$$

- An almost contact manifold manifold of dimension $2 n+1$ is said to be a contact manifold if

$$
\eta \wedge(d \eta)^{n} \neq 0
$$

Normality

- An almost contact manifold (M, ϕ, ξ, η) is said to be normal if

$$
[\phi, \phi]+2 d \eta \otimes \xi=0
$$

- M is normal iff the almost complex structure J on the product $M \times \mathbb{R}$ defined by setting

$$
J\left(X, f \frac{d}{d t}\right)=\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right)
$$

for any $X \in \Gamma(T M)$ and $f \in C^{\infty}(M \times \mathbb{R})$ is integrable.

Almost contact metric manifolds

- Every almost contact manifold admits a compatible metric g, i.e. such that

$$
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for all $X, Y \in \Gamma(T M)$. It follows that $\eta(X)=g(X, \xi)$.

- Also, $\Phi(X, Y):=g(X, \phi Y)$ defines a 2-form
- By putting $\mathcal{H}=\operatorname{ker}(\eta)$ one obtains a $2 n$-dim. distribution on M and TM splits as the orthogonal sum

$$
T M=\mathcal{H} \oplus\langle\xi\rangle
$$

Cosymplectic manifolds

Definition

A cosymplectic manifold is a normal almost contact metric manifold (M, ϕ, ξ, η, g) such that $d \eta=0$ and $d \Phi=0$.
(D. Chinea, M. de León, J.C. Marrero
Topology of cosymplectic manifolds, J. Math. Pures Appl. 72 (1993), 567-591.

Topology of cosymplectic manifolds

Among their results for a compact cosymplectic manifold (M, ϕ, ξ, η, g) of dimension $2 n+1$:

- $b_{0} \leq b_{1} \leq \ldots \leq b_{n}=b_{n+1} \geq b_{n+2} \geq \ldots \geq b_{2 n+1}$
- $b_{2 p+1}-b_{2 p}$ is even. In particular b_{1} is odd.
- The first nontrivial example
- A version of the strong Lefschetz theorem
- and many others.

3-structures

- An almost 3-contact metric manifold is a $(4 n+3)$-dim. smooth manifold M endowed with three almost contact structures $\left(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}\right)$ satisfying, for any even permutation (α, β, γ) of $(1,2,3)$, the relations

$$
\begin{array}{r}
\phi_{\gamma}=\phi_{\alpha} \phi_{\beta}-\eta_{\beta} \otimes \xi_{\alpha}, \\
\xi_{\gamma}=\phi_{\alpha} \xi_{\beta}, \quad \eta_{\gamma}=\eta_{\alpha} \circ \phi_{\beta},
\end{array}
$$

and a Riemannian metric g compatible with each of them. (For odd permutations, there is a change of signs).

- M is said to be normal (sometimes hyper-normal) if each almost contact structure is normal.
- The distribution $\mathcal{H}:=\bigcap_{\alpha=1}^{3}$ ker $\left(\eta_{\alpha}\right)$ has dimension $4 n$, and TM splits as the orthogonal sum

$$
T M=\mathcal{H} \oplus \mathcal{V}
$$

where $\mathcal{V}:=\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$.

3-cosymplectic manifolds

Definition

An almost 3-cosymplectic manifold is an almost 3-contact metric manifold ($M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) such that $d \eta_{\alpha}=0$ and $d \Phi_{\alpha}=0$, for each α. It is called 3-cosymplectic if it is normal.

Theorem (lanus et al.)

Any almost 3-cosymplectic manifold is 3-cosymplectic.
3-cosymplectic manifolds and 3-Sasakian manifolds ($d \eta_{\alpha}=\Phi_{\alpha}$) are special cases of 3-quasi-Sasakian manifolds $\left(d \Phi_{\alpha}=0\right)$, which we studied in recent years.

Vertical foliation and transverse structure

In any 3-cosymplectic manifold $\xi_{\alpha}, \eta_{\alpha}, \phi_{\alpha}$ and Φ_{α} are ∇-parallel. Thus,

$$
\left[\xi_{\alpha}, \xi_{\beta}\right]=\nabla_{\xi_{\alpha}} \xi_{\beta}-\nabla_{\xi_{\beta}} \xi_{\alpha}=0
$$

- Thus $\mathcal{V}=\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$ is involutive. It defines a Riemannian foliation with totally geodesic leaves.

Theorem (B. Cappelletti Montano and A.d.N., 2007)

Let $\left(M^{4 n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be a 3-cosymplectic manifold. If \mathcal{V} is regular, then $M^{4 n+3} / \mathcal{V}$ is a hyper-Kähler manifold of dimension 4n. Consequently, any 3-cosymplectic manifold is Ricci-flat.

Horizontal foliation and local product structure

Unlike the case of 3-Sasakian geometry, in any 3-cosymplectic manifold also \mathcal{H} is integrable. Indeed, for all $X, Y \in \Gamma(\mathcal{H})$,

$$
\eta_{\alpha}([X, Y])=-2 d \eta_{\alpha}(X, Y)=0
$$

since $d \eta_{\alpha}=0$. Thus,

- The tangent bundle splits as the orthogonal sum

$$
T M=\mathcal{H} \oplus \mathcal{V}
$$

of two Riemannian foliations with totally geodesic leaves.

Theorem

Any 3-cosymplectic manifold $M^{4 n+3}$ is locally the Riemannian product of a hyper-Kähler manifold $N^{4 n}$ and a 3-dimensional flat abelian Lie group G^{3}.

Examples of 3-cosymplectic manifold

Example

- The standard example of a compact 3-cosymplectic manifold is given by the torus $\mathbb{T}^{4 n+3}$ with the structure described in $[\mathrm{F}$. Martín Cabrera, Czechoslovak Math. J.,1998].
- On the other hand, the standard example of a noncompact 3-cosymplectic manifold is given by $\mathbb{R}^{4 n+3}$ with the structure described in [B.Cappelletti Montano-A.d.N., J. Geom. Phys., 2007].
- Both the above examples are the global product of a hyper-Kähler manifold with a 3-dimensional flat abelian Lie group. In fact, as we have seen, locally this is always true.

Nontrivial examples of 3-cosymplectic manifolds

Example

Let $\left(M^{4 n}, J_{\alpha}, G\right)$ be a compact hyper-Kähler manifold and $f: M^{4 n} \longrightarrow M^{4 n}$ be an hyper-Kählerian isometry, i.e., an isometry such that

$$
f_{*} \circ J_{\alpha}=J_{\alpha} \circ f_{*}, \quad \text { for each } \alpha \in\{1,2,3\} .
$$

Define the action φ of \mathbb{Z}^{3} on the product manifold $M^{4 n} \times \mathbb{R}^{3}$ by

$$
\varphi\left(\left(k_{1}, k_{2}, k_{3}\right),\left(x, t_{1}, t_{2}, t_{3}\right)\right)=\left(f^{k_{1}+k_{2}+k_{3}}(x), t_{1}+k_{1}, t_{2}+k_{2}, t_{3}+k_{3}\right) .
$$

Then, $M_{f}^{4 n+3}:=\left(M^{4 n} \times \mathbb{R}^{3}\right) / \mathbb{Z}^{3}$ is a smooth manifold.

Nontrivial examples of 3-cosymplectic manifolds

Example (continued)

We define a 3-cosymplectic structure on $M_{f}^{4 n+3}:=\left(M^{4 n} \times \mathbb{R}^{3}\right) / \mathbb{Z}^{3}$ as follows.
On $M^{4 n} \times \mathbb{R}^{3}$, we define $\hat{\xi}_{\alpha}:=\frac{\partial}{\partial t_{\alpha}}$,

$$
\hat{g}=G+d t_{1} \otimes d t_{1}+d t_{2} \otimes d t_{2}+d t_{3} \otimes d t_{3} .
$$

and $\hat{\eta}_{\alpha}:=\hat{g}\left(\cdot, \hat{\xi}_{\alpha}\right)$. Finally,

$$
\hat{\phi}_{\alpha} E:=J_{\alpha} E_{\mathcal{H}}+\sum_{\beta, \gamma=1}^{3} \epsilon_{\alpha \beta \gamma} \hat{\eta}_{\beta}(E) \hat{\xi}_{\gamma},
$$

where we have used the unique decomposition of the vector field $E=E_{\mathcal{H}}+\sum_{\beta=1}^{3} \hat{\eta}_{\beta}(E) \hat{\xi}_{\beta}, E_{\mathcal{H}}$ being the component tangent to $M^{4 n}$.

Nontrivial examples of 3-cosymplectic manifolds

Example (continued)

- We defined above $\left(\hat{\phi}_{\alpha}, \hat{\xi}_{\alpha}, \hat{\eta}_{\alpha}, \hat{g}\right)$ on $M^{4 n} \times \mathbb{R}^{3} \quad(\alpha=1,2,3)$.
- But all these structures descend to the quotient, so that

$$
M_{f}^{4 n+3}:=\left(M^{4 n} \times \mathbb{R}^{3}\right) / \mathbb{Z}^{3}
$$

with the induced structure $\left(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ is a 3-cosymplectic manifold.

- $M_{f}^{4 n+3}$ is not in general a global product of a hyper-Kähler manifold M^{4} by the torus \mathbb{T}^{3}.

Nontrivial examples of 3-cosymplectic manifolds

Example (continued)

Theorem

Let $M^{4}=\mathbb{T}^{4}=\mathbb{H} / \mathbb{Z}^{4}$ and $f: \mathbb{H} \rightarrow \mathbb{H}: \mathbf{q} \mapsto \mathbf{q} \cdot \mathbf{i}$. Then M_{f}^{7} is not a global product of a compact hyper-Kähler 4-manifold and the torus \mathbb{T}^{3}.

Idea of the proof.

- A compact hyper-Kähler 4-manifold is either the Torus \mathbb{T}^{4} or a complex $K 3$ surface.
- In the first case $b_{2}\left(M_{f}^{7}\right)$ would be 21 , in the second case $b_{2}\left(M_{f}^{7}\right)$ would be 25 . But it can be shown by cellular homology techniques that $b_{2}\left(M_{f}^{7}\right)<21$.

Basic cohomology with respect to the Reeb foliation

The spaces of basic forms with respect to $\mathcal{V}:=\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$ are

$$
\Omega_{B}^{k}(M):=\left\{\omega \in \Omega^{k}(M) \mid i_{\xi_{\alpha}} \omega=0, i_{\xi_{\alpha}} d \omega=0\right\} .
$$

The restriction d_{B} of the exterior derivative d to $\Omega_{B}^{k}(M)$ sends basic forms into basic forms, defining the basic cohomology $H_{B}(M)$ with respect to \mathcal{V} as the cohomology of the complex $\left(\Omega_{B}^{*}(M), d_{B}\right)$.

Betti numbers of 3-cosymplectic manifolds

Definition

$b_{p}^{h}:=\operatorname{dim}\left\{\omega \in \Omega^{p}(M) \mid \omega\right.$ is harmonic, $\left.i_{\xi_{\alpha}} \omega=0, \alpha=1,2,3\right\}$

Theorem

Let $M^{4 n+3}$ be a compact 3-cosymplectic manifold. Then, for each integer p such that $0 \leq p \leq 2 n-1$,
(i) $b_{2 p+1}^{h}$ is divisible by four.
(ii) $b_{p}=b_{p}^{h}+3 b_{p-1}^{h}+3 b_{p-2}^{h}+b_{p-3}^{h}$.

Corollary

For each integer p such that $0 \leq p \leq 2 n-1$,

$$
b_{2 p}+b_{2 p+1}=4 k, \quad \text { for some } k \in \mathbb{N}
$$

Betti numbers of 3-cosymplectic manifolds

Proposition

Let $M^{4 n+3}$ be a compact 3-cosymplectic manifold. Then,

$$
b_{2 p}^{h} \geq\binom{ p+2}{2} \quad \text { for } 0 \leq p \leq n
$$

From this proposition and the previous theorem we get easily

Corollary

Let $M^{4 n+3}$ be a compact 3-cosymplectic manifold. Then,

$$
b_{p} \geq\binom{ p+2}{2} \quad \text { for } 0 \leq p \leq 2 n+1
$$

Action of so $(4,1)$ on the basic cohomology

For (α, β, γ) cyclic permutation let

$$
\bar{\Xi}_{\alpha}:=\frac{1}{2}\left(\Phi_{\alpha}+2 \eta_{\beta} \wedge \eta_{\gamma}\right) .
$$

Define the operators

$$
L_{\alpha}: \Omega^{k}(M) \rightarrow \Omega^{k+2}(M): \omega \mapsto \bar{\Xi}_{\alpha} \wedge \omega
$$

and

$$
\Lambda_{\alpha}:=* L_{\alpha} *: \Omega^{k+2}(M) \rightarrow \Omega^{k}(M) .
$$

Theorem

The operators $L_{\alpha}, \Lambda_{\alpha}, \alpha \in\{1,2,3\}$, give a structure of so $(4,1)$-module on the basic cohomology $H_{B}^{*}(M)$.

This result is the odd-dimensional analogous of the one obtained by Verbitsky about hyper-Kähler manifolds.

References

(D. Chinea, M. de León, J.C. Marrero Topology of cosymplectic manifolds, J. Math. Pures Appl. 72 (1993), 567-591.
F. Martín Cabrera,

Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3-structure, Czechoslovak Math. J. 48(123) (1998), no. 3, 545-563.
B. Cappelletti Montano, A. De Nicola,

3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem,
J. Geom. Phys. 57 (2007), 2509-2520.

园
B. Cappelletti Montano, A. De Nicola, G. Dileo

The geometry of 3-quasi-Sasakian manifolds, Internat. J. Math. 20 (2009), no. 9, 1081-1105..

Thank you!

