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Kähler manifolds

Let (M2n,g) be a Riemannian manifold, ω a 2-form such that

ωn is a volume form, dω = 0.

Define J ∶ TM → TM by

ω(X ,Y ) = g(X ,JY ), for any X ,Y ∈ Γ(TM).

Now assume that
J2 = −Id

and the Nijenhuis torsion of J

NJ = 0.

Then, (M2n, ω,g) is called a Kähler manifold.
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Sasakian manifolds

Let (M2n+1,g) be a Riemannian manifold, η a 1-form, such that

η ∧ (dη)n is a volume form.

Define ϕ ∶ TM → TM by

dη(X ,Y ) = 2g(X , ϕY ), for any X ,Y ∈ Γ(TM).

Let ξ ∈ Γ(TM) be the metric dual of η and assume that η (ξ) = 1.
Moreover, suppose that

ϕ2 = −Id + η ⊗ ξ

and the Nijenhuis torsion of ϕ satisfies

Nϕ + 2dη ⊗ ξ = 0.

Then, (M2n+1, η,g) is called a Sasakian manifold.
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Comparison

Kähler manifolds Sasakian manifolds

dim M=2n dim M=2n+1

ω ∈ Ω2(M), dω = 0 η ∈ Ω1(M)

ωn ≠ 0 η ∧ (dη)n ≠ 0

ω(X ,Y ) = g(X ,JY ) dη(X ,Y ) = 2g(X , ϕY )

ξ ∈ Γ(TM) dual of η, η (ξ) = 1

J2 = −Id ϕ2 = −Id + η ⊗ ξ,

NJ = 0 Nϕ + 2dη ⊗ ξ = 0
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Example of Sasakian manifold: S2n+1
↪ Cn+1

Let J be the standard complex structure on C
n+1

J(z0, . . . , zn) = (iz0, . . . , izn)

and let N be the unit outward vector field normal to S2n+1. Then
put

ξ ∶= −JN,

and for any X ∈ Γ(TS2n+1), decompose JX in its tangent and
normal components

JX = ϕ(X ) + η(X )N.

Then (S2n+1, ϕ, ξ, η,g) is a compact Sasakian manifold.

The Sasakian structure of S2n+1 projects under the Hopf fibration
onto the Kähler structure of CPn.
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Notation for harmonic forms

Let (Mm,g) be a compact oriented Riemannian manifold.
Define δ ∶ Ωp(M) → Ωp−1(M) as

δ = (−1)m(p+1)+1 ∗ d ∗ .

The Laplacian △ ∶ Ωp(M)→ Ωp(M) is then defined as

△ = dδ + δd .

We define
Ωp
△(M) ∶= {α ∈ Ω

p (M) ∣ △ α = 0} .
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Hard Lefschetz Theorem for Kähler manifolds

Now, let (M2n, ω,g) be a compact Kähler manifold. Then, the
maps

ωp ∧ −∶Ωn−p
△ (M)→ Ωn+p

△ (M)

α ↦ ωp ∧ α

are isomorphisms.

RECALL: Each ω ∧ − sends harmonic forms to harmonic forms.
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Hard Lefschetz Theorem for Sasakian manifolds

In a compact Sasakian manifold (M2n+1, η,g) one would like to
define

η ∧ (dη)p ∧ −∶Ωn−p
△ (M)→ Ωn+p+1

△ (M)

α ↦ η ∧ (dη)p ∧α

and to get isomorphisms.

PROBLEM: Neither dη∧− nor η ∧dη∧− send harmonic forms into
harmonic forms! So, a priori the above maps are not well defined.

However, the claim turns out to be true. So, how to prove it?
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Important subspaces

ω ∈ Ωp,ν
◾ (M)

def
⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

△ω = νω

ω ∈ Ωp,ν
● (M)

def
⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

△ω = νω
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Harmonic p-forms

By definition,
Ωp,0
◾ (M) ⊂ Ω

p
△ (M)

On the other hand, for p ≤ n, every harmonic p-form belongs to
Ωp,0
◾ (M) since dω = 0, δω = 0, and [Tachibana]

iξω = 0.

Thus,

Property

Let M be a compact Sasakian manifold of dimension 2n + 1. For
p ≤ n,

Ωp,0
◾ (M) = Ω

p
△ (M) .

Moreover, Ωp,0
● (M) = 0.
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Some information on the spectrum of △

Proposition

Let M2n+1 be a compact Sasakian manifold.

(i) The only values of ν for which the space Ωp,4ν
◾ (M) is not

zero are of the form ν = k(n − p + k + 1) for some integer
k ≥ 0 such that (p − n)/2 ≤ k ≤ p/2

(ii) The only values of ν for which the space Ωp,4ν
● (M) is not

zero are of the form ν = k(n − p + k − 1) for some integer
k ≥ 0 such that (p + 1 − n)/2 ≤ k ≤ (p + 1)/2.
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Some information on the spectrum of △

Theorem

Let M be a compact Sasakian manifold.

(i) ω ∈ Ωp,4ν
◾ (M)Ô⇒ η ∧ ω ∈ Ωp+1,4(ν−p+n)

● (M).

(ii) ω ∈ Ωp,4ν
● (M)Ô⇒ iξω ∈ Ω

p−1,4(ν+p−n−1)
◾ (M).

We get the pair of inverse isomorphisms

Ωp,4ν
◾ (M)

η∧−
//
Ω
p+1,4(ν−p+n)
● (M)

iξ

oo . (1)



Preliminaries Hard Lefschetz Theorem Diagram HLT Hard Lefschetz Theorem in cohomology References

Some information on the spectrum of △

Proposition

Let M be a compact Sasakian manifold and ν /= 0.

(i) ω ∈ Ωp,4ν
● (M)Ô⇒ dω ∈ Ωp+1,4ν

◾ (M) and dω /= 0.

(ii) ω ∈ Ωp,4ν
◾ (M)Ô⇒ δω ∈ Ωp−1,4ν

● (M) and δω /= 0.

Thus for ν /= 0, we have the pair of isomorphisms

Ωp,4ν
● (M)

d //
Ωp+1,4ν
◾ (M)

δ
oo , (2)

for any 0 ≤ p ≤ 2n.
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Some information on the spectrum of △

Therefore, using the isomorphisms (1) and (2), we have

Ωp,4ν
◾ (M)

η∧−
//

L

''

Ω
p+1,4(ν−p−1+n)
● (M)

d //

iξ

oo Ω
p+2,4(ν−p−1+n)
◾ (M).

δ
oo

Λ

gg

This shows that L = (dη) ∧ − and its adjoint Λ induce inverse
isomorphisms between the spaces in the diagram.
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HLT for Sasakian manifolds (n=5)

ν
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HLT for Sasakian manifolds (n=5)

ν

η∧

d

L
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HLT for Sasakian manifolds (n=5)
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HLT for Sasakian manifolds (n=5)
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HLT for Sasakian manifolds (n=5)
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HLT for Sasakian manifolds (n=5)

ν

iξ
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Hard Lefschetz Theorem for Sasakian manifolds

Theorem

Let M a compact Sasakian manifold of dimension 2n + 1 and p ≤ n.
Then the map

Ωp
△ (M)Ð→ Ω2n+1−p

△ (M)

α z→ η ∧ (dη)n−p ∧α

is an isomorphism.
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Hard Lefschetz Theorem in cohomology

In a compact Kähler manifold (M2n, ω,g) the maps

Hp(M)→ H2n−p(M)

[α ]↦ [ωn−p ∧ α ] ,

are isomorphisms.
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Hard Lefschetz Theorem in cohomology

For a compact Sasakian manifold (M2n+1, η,g) a naive guess
would be to consider:

Hp(M)Ð→ H2n+1−p(M)
[α ]z→ [η ∧ (dη)n−p ∧ α ] ,
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Hard Lefschetz Theorem in cohomology

For a compact Sasakian manifold (M2n+1, η,g) a naive guess
would be to consider:

Hp(M)Ð→ H2n+1−p(M)
[α ]z→ [η ∧ (dη)n−p ∧ α ] ,

PROBLEM:
α closed does NOT imply that η ∧ (dη)n−p ∧ α is closed!
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Hard Lefschetz Theorem in cohomology

For a compact Sasakian manifold (M2n+1, η,g) a naive guess
would be to consider:

Hp(M)Ð→ H2n+1−p(M)
[α ]z→ [η ∧ (dη)n−p ∧ α ] ,

SOLUTION?
Take

Hp(M) Ð→ H2n+1−p(M)
[α ]z→ [η ∧ (dη)n−p ∧ Π△ α ]

NEW PROBLEM: Π△ α could in general depend on the metric!
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Hard Lefschetz Theorem for Sasakian manifolds

Theorem

Let (M2n+1, η,g) be a compact Sasakian manifold and p ≤ n. Let
Π△∶Ω

p (M)→ Ωp
△ (M) be the projection on the harmonic part.

Then the map

Lefp ∶H
p(M)Ð→ H2n+1−p(M)
[α ]z→ [ η ∧ (dη)n−p ∧ Π△ α ] ,

is an isomorphism. Furthermore, it does not depend on the choice
of the Sasakian metric g on (M2n+1, η).
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Independence of the metric

One has to show that η ∧ (dη)n−p ∧ (Π△ α −Π△′ α) is exact.
From Hodge theory one gets

∃γ ∈ Ωp−1 s.t. δγ = 0 and dγ = Π△ α −Π△′ α.

Then

η ∧ (dη)n−p ∧ dγ = d(η ∧ (dη)n−p ∧ γ) − (dη)n−p+1 ∧ dγ.

It remains to show that the last term is exact (difficult part).
We found an explicit expression:

(dη)n−p+1 ∧ dγ = −2(n − p + 1)d((dη)n−p ∧ iϕdGγ),

where G is the Green operator of △, i.e. Id −△G = Id −G△ = Π△.
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A topological obstruction

Let (M2n+1, η) be a compact contact manifold. We can define a
relation between Hp(M) and H2n+1−p(M):

RLefp = { ( [β] , [ǫηL
n−pβ] ) ∣β ∈ Ωp(M), dβ = 0, iξβ = 0, Ln−p+1β = 0} .

Now, if (M, η) admits a compatible Sasakian metric, then RLefp is
the graph of the isomorphism Lefp ∶ H

p(M) Ð→ H2n+1−p(M).

Definition

We say that (M, η) is a Lefschetz contact manifold if for every
p ≤ n the relation RLefp is the graph of an isomorphism between
Hp(M) and H2n+1−p(M).
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First applications

Let (M, η) be a Lefschetz contact manifold of dimension
2n + 1. Then the odd Betti numbers b2k+1 are even for
0 ≤ 2k + 1 ≤ n.

Recently, jointly with J.C. Marrero we found examples of non
Lefschetz K -contact manifolds in dim. 5 and 7.

In a recent preprint, Yi Lin found examples of Lefschetz
contact manifolds in dim ≥ 9 which do not admit any
Sasakian structure.
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