Preliminaries	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology	References

Hard Lefschetz Theorem for Sasakian manifolds

Antonio De Nicola

CMUC, University of Coimbra, Portugal

joint work with B. Cappelletti-Montano (Univ. Cagliari) and I. Yudin (CMUC)

La Laguna, 28 March 2014

Referenc				
Preliminaries 0000	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology 000000	References

B. Cappelletti-Montano, A.D.N., I. Yudin, Hard Lefschtez Theorem for Sasakian manifolds. arXiv:1306.2896

 ω^n is a volume form, $d\omega = 0$.

Define $J: TM \to TM$ by

 $\omega(X, Y) = g(X, JY),$ for any $X, Y \in \Gamma(TM).$

Now assume that

 $J^2 = -Id$

and the Nijenhuis torsion of J

 $N_{J} = 0.$

Then, (M^{2n}, ω, g) is called a Kähler manifold.

 ω^n is a volume form, $d\omega = 0$.

Define $J: TM \to TM$ by

 $\omega(X, Y) = g(X, JY),$ for any $X, Y \in \Gamma(TM)$.

Now assume that

 $J^2 = -Id$

and the Nijenhuis torsion of J

 $N_{J} = 0.$

Then, (M^{2n},ω,g) is called a Kähler manifold.

 ω^n is a volume form, $d\omega = 0$.

Define $J: TM \to TM$ by

 $\omega(X, Y) = g(X, JY),$ for any $X, Y \in \Gamma(TM)$.

Now assume that

 $J^2 = -Id$

and the Nijenhuis torsion of J

$$N_{J} = 0.$$

Then, (M^{2n},ω,g) is called a Kähler manifold.

 ω^n is a volume form, $d\omega = 0$.

Define $J: TM \to TM$ by

 $\omega(X, Y) = g(X, JY),$ for any $X, Y \in \Gamma(TM)$.

Now assume that

$$J^2 = -Id$$

and the Nijenhuis torsion of J

$$N_{J} = 0.$$

Then, (M^{2n}, ω, g) is called a Kähler manifold.



Define $\varphi : TM \to TM$ by $d\eta(X, Y) = 2g(X, \varphi Y),$ for any $X, Y \in \Gamma(TM).$

Let $\xi \in \Gamma(TM)$ be the metric dual of η and assume that $\eta(\xi) = 1$. Moreover, suppose that

$$\varphi^2 = -Id + \eta \otimes \xi$$

and the Nijenhuis torsion of arphi satisfies

$$N_{\varphi} + 2d\eta \otimes \xi = 0.$$

Then, (M^{2n+1},η,g) is called a Sasakian manifold.

Let (M^{2n+1},g) be a Riemannian manifold, η a 1-form, such that $\eta \wedge (\mathrm{d}\eta)^n$ is a volume form.

Define
$$\varphi : TM \to TM$$
 by
 $d\eta(X, Y) = 2g(X, \varphi Y),$ for any $X, Y \in \Gamma(TM).$

Let $\xi \in \Gamma(TM)$ be the metric dual of η and assume that $\eta(\xi) = 1$. Moreover, suppose that

$$\varphi^2 = -Id + \eta \otimes \xi$$

and the Nijenhuis torsion of arphi satisfies

$$N_{\varphi} + 2d\eta \otimes \xi = 0.$$

Then, (M^{2n+1},η,g) is called a Sasakian manifold.

Let (M^{2n+1},g) be a Riemannian manifold, η a 1-form, such that $\eta \wedge (\mathrm{d}\eta)^n$ is a volume form.

Define
$$\varphi : TM \to TM$$
 by
 $d\eta(X, Y) = 2g(X, \varphi Y),$ for any $X, Y \in \Gamma(TM).$

Let $\xi \in \Gamma(TM)$ be the metric dual of η and assume that $\eta(\xi) = 1$. Moreover, suppose that

$$\varphi^2 = -Id + \eta \otimes \xi$$

and the Nijenhuis torsion of φ satisfies

$$N_{\varphi}+2d\eta\otimes\xi=0.$$

Then, (M^{2n+1},η,g) is called a Sasakian manifold.

Let (M^{2n+1},g) be a Riemannian manifold, η a 1-form, such that $\eta \wedge (\mathrm{d}\eta)^n$ is a volume form.

Define
$$\varphi : TM \to TM$$
 by
 $d\eta(X, Y) = 2g(X, \varphi Y),$ for any $X, Y \in \Gamma(TM).$

Let $\xi \in \Gamma(TM)$ be the metric dual of η and assume that $\eta(\xi) = 1$. Moreover, suppose that

$$\varphi^2 = -Id + \eta \otimes \xi$$

and the Nijenhuis torsion of φ satisfies

$$N_{\varphi}+2d\eta\otimes\xi=0.$$

Then, (M^{2n+1}, η, g) is called a Sasakian manifold.

0000	000000000		000000	
Preliminaries	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology	References

Kähler manifolds	Sasakian manifolds
dim <i>M</i> =2n	dim $M=2n+1$
$\omega \in \Omega^2(M), d\omega = 0$	$\eta \in \Omega^1(M)$
$\omega(X,Y) = g(X,JY)$	$\mathrm{d}\eta(X,Y)=2g(X,\varphi Y)$
	$\xi \in \Gamma(TM)$ dual of η , $\eta(\xi) = 1$
$J^2 = -Id$	$\varphi^2 = -Id + \eta \otimes \xi,$
$N_J = 0$	$N_{\varphi}+2d\eta\otimes\xi=0$

~				
0000	000000000		000000	
Preliminaries	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology	References

Kähler manifolds	Sasakian manifolds
dim M=2n	dim $M=2n+1$
$\omega \in \Omega^2(M), d\omega = 0$	$\eta\in\Omega^1(M)$
$\omega^n \neq 0$	$\eta \wedge (\mathrm{d}\eta)^n \neq 0$
$\omega(X,Y) = g(X,JY)$	$\mathrm{d}\eta(X,Y)=2g(X,\varphi Y)$
	$\xi \in \Gamma(TM)$ dual of η , $\eta(\xi) = 1$
$J^2 = -Id$	$\varphi^2 = -Id + \eta \otimes \xi,$
$N_J = 0$	$N_{\varphi}+2d\eta\otimes\xi=0$

~				
0000	000000000			
Preliminaries	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology	References

Kähler manifolds	Sasakian manifolds
dim <i>M</i> =2n	dim $M=2n+1$
$\omega \in \Omega^2(M), d\omega = 0$	$\eta\in\Omega^1(M)$
$\omega^n \neq 0$	$\eta \wedge (\mathrm{d}\eta)^n \neq 0$
$\omega(X,Y) = g(X,JY)$	$\mathrm{d}\eta(X,Y) = 2g(X,\varphi Y)$
	$\xi \in \Gamma(TM)$ dual of η , $\eta(\xi) = 1$
$J^2 = -Id$	$\varphi^2 = -Id + \eta \otimes \xi,$
$N_J = 0$	$N_{\varphi} + 2d\eta \otimes \xi = 0$

-				
0000	000000000			
Preliminaries	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology	References

Kähler manifolds	Sasakian manifolds
dim <i>M</i> =2n	dim $M=2n+1$
$\omega \in \Omega^2(M), d\omega = 0$	$\eta \in \Omega^1(M)$
$\omega^n \neq 0$	$\eta \wedge (\mathrm{d}\eta)^n eq 0$
$\omega(X,Y) = g(X,JY)$	$\mathrm{d}\eta(X,Y) = 2g(X,\varphi Y)$
	$\xi \in \Gamma(TM)$ dual of η , $\eta(\xi) = 1$
$J^2 = -Id$	$\varphi^2 = -Id + \eta \otimes \xi,$
$N_J = 0$	$N_{\varphi} + 2d\eta \otimes \xi = 0$

-				
0000	000000000			
Preliminaries	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology	References

Kähler manifolds	Sasakian manifolds
dim <i>M</i> =2n	dim $M=2n+1$
$\omega \in \Omega^2(M), d\omega = 0$	$\eta\in\Omega^1(M)$
$\omega^n \neq 0$	$\eta \wedge (\mathrm{d}\eta)^n \neq 0$
$\omega(X,Y) = g(X,JY)$	$\mathrm{d}\eta(X,Y) = 2g(X,\varphi Y)$
	$\xi \in \Gamma(TM)$ dual of η , $\eta(\xi) = 1$
$J^2 = -Id$	$\varphi^2 = -Id + \eta \otimes \xi,$
$N_J = 0$	$N_{\varphi} + 2d\eta \otimes \xi = 0$

-				
0000	000000000			
Preliminaries	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology	References

Kähler manifolds	Sasakian manifolds
dim M=2n	dim $M=2n+1$
$\omega \in \Omega^2(M), d\omega = 0$	$\eta\in\Omega^1(M)$
$\omega^n \neq 0$	$\eta \wedge (\mathrm{d}\eta)^n \neq 0$
$\omega(X,Y) = g(X,JY)$	$\mathrm{d}\eta(X,Y) = 2g(X,\varphi Y)$
	$\xi \in \Gamma(TM)$ dual of η , $\eta(\xi) = 1$
$J^2 = -Id$	$\varphi^2 = -Id + \eta \otimes \xi,$
<i>N</i> _J = 0	$N_{\varphi} + 2d\eta \otimes \xi = 0$

Let J be the standard complex structure on \mathbb{C}^{n+1}

$$J(z_0,\ldots,z_n)=(iz_0,\ldots,iz_n)$$

and let N be the unit outward vector field normal to S^{2n+1} . Then put

$$\xi \coloneqq -JN,$$

and for any $X \in \Gamma(TS^{2n+1})$, decompose JX in its tangent and normal components

$$JX = \varphi(X) + \eta(X)N.$$

Then $(S^{2n+1}, \varphi, \xi, \eta, g)$ is a compact Sasakian manifold.

The Sasakian structure of S^{2n+1} projects under the Hopf fibration onto the Kähler structure of $\mathbb{C}P^n$.

Let J be the standard complex structure on \mathbb{C}^{n+1}

$$J(z_0,\ldots,z_n)=(iz_0,\ldots,iz_n)$$

and let N be the unit outward vector field normal to S^{2n+1} . Then put

$$\xi := -JN,$$

and for any $X \in \Gamma(TS^{2n+1})$, decompose JX in its tangent and normal components

$$JX = \varphi(X) + \eta(X)N.$$

Then $(S^{2n+1}, \varphi, \xi, \eta, g)$ is a compact Sasakian manifold.

The Sasakian structure of S^{2n+1} projects under the Hopf fibration onto the Kähler structure of $\mathbb{C}P^n$.

Let J be the standard complex structure on \mathbb{C}^{n+1}

$$J(z_0,\ldots,z_n)=(iz_0,\ldots,iz_n)$$

and let N be the unit outward vector field normal to S^{2n+1} . Then put

$$\xi := -JN,$$

and for any $X \in \Gamma(TS^{2n+1})$, decompose JX in its tangent and normal components

$$JX = \varphi(X) + \eta(X)N.$$

Then $(S^{2n+1}, \varphi, \xi, \eta, g)$ is a compact Sasakian manifold.

The Sasakian structure of S^{2n+1} projects under the Hopf fibration onto the Kähler structure of $\mathbb{C}P^n$.

Let (M^m, g) be a compact oriented Riemannian manifold. Define $\delta: \Omega^p(M) \to \Omega^{p-1}(M)$ as

$$\delta = (-1)^{m(p+1)+1} * d * .$$

The Laplacian $\triangle : \Omega^p(M) \to \Omega^p(M)$ is then defined as

 $\triangle = d\delta + \delta d.$

We define

 $\Omega^{p}_{\Delta}(M) \coloneqq \{ \alpha \in \Omega^{p}(M) \mid \Delta \alpha = 0 \}.$

Let (M^m, g) be a compact oriented Riemannian manifold. Define $\delta : \Omega^p(M) \to \Omega^{p-1}(M)$ as

$$\delta = (-1)^{m(p+1)+1} * d * .$$

The Laplacian $\triangle : \Omega^p(M) \to \Omega^p(M)$ is then defined as

 $\triangle = d\delta + \delta d.$

We define

$$\Omega^{p}_{\triangle}(M) \coloneqq \{ \alpha \in \Omega^{p}(M) \mid \triangle \alpha = 0 \}.$$

Now, let (M^{2n}, ω, g) be a compact Kähler manifold. Then, the maps

$$\omega^{p} \wedge -: \Omega_{\triangle}^{n-p} (M) \to \Omega_{\triangle}^{n+p} (M)$$
$$\alpha \mapsto \omega^{p} \wedge \alpha$$

are isomorphisms.

RECALL: Each $\omega \wedge -$ sends harmonic forms to harmonic forms.

Now, let (M^{2n}, ω, g) be a compact Kähler manifold. Then, the maps

$$\omega^{p} \wedge -: \Omega_{\triangle}^{n-p}(M) \to \Omega_{\triangle}^{n+p}(M)$$
$$\alpha \mapsto \omega^{p} \wedge \alpha$$

are isomorphisms.

RECALL: Each $\omega \wedge -$ sends harmonic forms to harmonic forms.

In a compact Sasakian manifold (M^{2n+1},η,g) one would like to define

$$\eta \wedge (d\eta)^{p} \wedge -: \Omega_{\Delta}^{n-p}(M) \to \Omega_{\Delta}^{n+p+1}(M)$$
$$\alpha \mapsto \eta \wedge (d\eta)^{p} \wedge \alpha$$

and to get isomorphisms.

PROBLEM: Neither $d\eta \wedge -$ nor $\eta \wedge d\eta \wedge -$ send harmonic forms into harmonic forms! So, a priori the above maps are not well defined.

However, the claim turns out to be true. So, how to prove it?

In a compact Sasakian manifold (M^{2n+1},η,g) one would like to define

$$\eta \wedge (d\eta)^{p} \wedge -: \Omega_{\Delta}^{n-p}(M) \to \Omega_{\Delta}^{n+p+1}(M)$$
$$\alpha \mapsto \eta \wedge (d\eta)^{p} \wedge \alpha$$

and to get isomorphisms.

PROBLEM: Neither $d\eta \wedge -$ nor $\eta \wedge d\eta \wedge -$ send harmonic forms into harmonic forms! So, a priori the above maps are not well defined.

However, the claim turns out to be true. So, how to prove it?

In a compact Sasakian manifold (M^{2n+1},η,g) one would like to define

$$\eta \wedge (d\eta)^{p} \wedge -: \Omega_{\Delta}^{n-p}(M) \to \Omega_{\Delta}^{n+p+1}(M)$$
$$\alpha \mapsto \eta \wedge (d\eta)^{p} \wedge \alpha$$

and to get isomorphisms.

PROBLEM: Neither $d\eta \wedge -$ nor $\eta \wedge d\eta \wedge -$ send harmonic forms into harmonic forms! So, a priori the above maps are not well defined.

However, the claim turns out to be true. So, how to prove it?

Preliminaries 0000	Hard Lefschetz Theorem ○○○●○○○○○	Diagram HLT	Hard Lefschetz Theorem in cohomology 000000	References
Importa	ant subspaces			

$$\omega \in \Omega^{p,\nu}_{\bullet}(M) \stackrel{def}{\longleftrightarrow} \begin{cases} \bigtriangleup \omega = \nu \omega \\ & & \\ & \\ & & \\$$

Preliminaries 0000	Hard Lefschetz Theorem ○○○●○○○○○○	Diagram HLT	Hard Lefschetz Theorem in cohomology 000000	References
Importa	nt subspaces			

$$\omega \in \Omega^{p,\nu}_{\bullet}(M) \stackrel{def}{\Longleftrightarrow} \begin{cases} \Delta \omega = \nu \omega \\ d\omega = 0 \end{cases}$$
$$\omega \in \Omega^{p,\nu}_{\bullet}(M) \stackrel{def}{\Longleftrightarrow} \begin{cases} \Delta \omega = \nu \omega \\ \delta \omega = 0 \end{cases}$$

Preliminaries 0000	Hard Lefschetz Theorem ○○○●○○○○○○	Diagram HLT	Hard Lefschetz Theorem in cohomology 000000	References
Importa	nt subspaces			

$$\omega \in \Omega^{p,\nu}_{\bullet}(M) \stackrel{def}{\Longleftrightarrow} \begin{cases} \Delta \omega = \nu \omega \\ d\omega = 0 \\ i_{\xi} \omega = 0 \end{cases}$$
$$\omega \in \Omega^{p,\nu}_{\bullet}(M) \stackrel{def}{\Longleftrightarrow} \begin{cases} \Delta \omega = \nu \omega \\ \delta \omega = 0 \\ \eta \wedge \omega = 0 \end{cases}$$

Preliminaries 0000	Hard Lefschetz Theorem ○○○●○○○○○○	Diagram HLT	Hard Lefschetz Theorem in cohomology 000000	References
Importa	nt subspaces			

$$\omega \in \Omega^{p,\nu}_{\bullet}(M) \stackrel{\text{def}}{\longleftrightarrow} \begin{cases} \Delta \omega = \nu \omega \\ d\omega = 0 \\ i_{\xi} \omega = 0 \\ \eta \wedge \delta \omega = 0 \end{cases}$$
$$\omega \in \Omega^{p,\nu}_{\bullet}(M) \stackrel{\text{def}}{\longleftrightarrow} \begin{cases} \Delta \omega = \nu \omega \\ \delta \omega = 0 \\ \eta \wedge \omega = 0 \\ i_{\xi} d\omega = 0 \end{cases}$$

Preliminaries 0000	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology 000000	References
Harmor	nic <i>p</i> -forms			

$$\Omega^{p,0}_{\bullet}(M) \subset \Omega^p_{\triangle}(M)$$

On the other hand, for $p \le n$, every harmonic *p*-form belongs to $\Omega^{p,0}_{\bullet}(M)$ since $d\omega = 0$, $\delta\omega = 0$, and [Tachibana]

S

 $i_{\xi}\omega = 0.$

Thus,

Property

Let M be a compact Sasakian manifold of dimension 2n + 1. For $p \le n$,

$$\Omega^{p,0}_{\bullet}(M) = \Omega^p_{\triangle}(M) \,.$$

Moreover, $\Omega^{p,0}_{\bullet}(M) = 0.$

Preliminaries 0000	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology 000000	References
Harmor	nic <i>p</i> -forms			

$$\Omega^{p,0}_{\bullet}(M) \subset \Omega^p_{\bigtriangleup}(M)$$

On the other hand, for $p \le n$, every harmonic *p*-form belongs to $\Omega^{p,0}_{\bullet}(M)$ since $d\omega = 0$, $\delta\omega = 0$, and [Tachibana]

S

 $i_{\xi}\omega = 0.$

Thus,

Property

Let M be a compact Sasakian manifold of dimension 2n + 1. For $p \le n$,

$$\Omega^{p,0}_{\bullet}(M) = \Omega^p_{\triangle}(M) \, .$$

Moreover, $\Omega^{p,0}(M) = 0$.

Preliminaries 0000	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology 000000	References
Harmor	nic <i>p</i> -forms			

$$\Omega^{p,0}_{\bullet}(M) \subset \Omega^p_{\bigtriangleup}(M)$$

On the other hand, for $p \le n$, every harmonic *p*-form belongs to $\Omega^{p,0}_{\bullet}(M)$ since $d\omega = 0$, $\delta\omega = 0$, and [Tachibana]

S

 $i_{\xi}\omega = 0.$

Thus,

Property

Let M be a compact Sasakian manifold of dimension 2n + 1. For $p \le n$,

$$\Omega^{p,0}_{\bullet}(M) = \Omega^p_{\triangle}(M).$$

Moreover, $\Omega^{p,0}_{\bullet}(M) = 0.$

Preliminaries 0000	Hard Lefschetz Theorem ○○○○○●○○○○	Diagram HLT	Hard Lefschetz Theorem in cohomology 000000	References
Harmor	nic <i>p</i> -forms			

$$\Omega^{p,0}_{\bullet}(M) \subset \Omega^p_{\triangle}(M)$$

On the other hand, for $p \ge n + 1$, every harmonic *p*-form belongs to $\Omega^{p,0}_{\bullet}(M)$ since $d\omega = 0$, $\delta\omega = 0$, and

 $\eta \wedge \omega = 0.$

Thus,

Property

Let M be a compact Sasakian manifold of dimension 2n + 1. For $p \ge n + 1$, $\Omega_{\bullet}^{p,0}(M) = \Omega_{\wedge}^{p}(M)$

Moreover, $\Omega^{p,0}(M) = 0$.

Preliminaries 0000	Hard Lefschetz Theorem ○○○○○●○○○○	Diagram HLT	Hard Lefschetz Theorem in cohomology	References
Harmor	nic <i>p</i> -forms			

$$\Omega^{p,0}_{ullet}(M) \subset \Omega^p_{\bigtriangleup}(M)$$

S

On the other hand, for $p \ge n+1$, every harmonic *p*-form belongs to $\Omega^{p,0}_{\bullet}(M)$ since $d\omega = 0$, $\delta\omega = 0$, and

 $\eta \wedge \omega = 0.$

Thus,

Property

Let *M* be a compact Sasakian manifold of dimension 2n + 1. For $p \ge n + 1$, $\Omega_{\bullet}^{p,0}(M) = \Omega_{\wedge}^{p}(M)$

Moreover, $\Omega^{p,0}_{\bullet}(M) = 0.$

Preliminaries 0000 Hard Lefschetz Theorem

Diagram HLT

Hard Lefschetz Theorem in cohomology 000000

References

Some information on the spectrum of \triangle

Proposition

Let M^{2n+1} be a compact Sasakian manifold.

(i) The only values of ν for which the space Ω_■^{p,4ν}(M) is not zero are of the form ν = k(n - p + k + 1) for some integer k ≥ 0 such that (p - n)/2 ≤ k ≤ p/2

(ii) The only values of ν for which the space Ω_●^{p,4ν}(M) is not zero are of the form ν = k(n - p + k - 1) for some integer k ≥ 0 such that (p + 1 - n)/2 ≤ k ≤ (p + 1)/2.

Preliminaries 0000 Hard Lefschetz Theorem

Diagram HLT

Hard Lefschetz Theorem in cohomology 000000

References

Some information on the spectrum of \triangle

Proposition

Let M^{2n+1} be a compact Sasakian manifold.

- (i) The only values of ν for which the space Ω_■^{p,4ν}(M) is not zero are of the form ν = k(n p + k + 1) for some integer k ≥ 0 such that (p n)/2 ≤ k ≤ p/2
- (ii) The only values of ν for which the space Ω_●^{p,4ν}(M) is not zero are of the form ν = k(n p + k 1) for some integer k ≥ 0 such that (p + 1 n)/2 ≤ k ≤ (p + 1)/2.

Some information on the spectrum of \wedge							
0000	0000000000	Bidgidin HET	000000	References			
Preliminaries	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology	References			

Theorem

Let M be a compact Sasakian manifold.

(i)
$$\omega \in \Omega^{p,4\nu}_{\bullet}(M) \Longrightarrow \eta \wedge \omega \in \Omega^{p+1,4(\nu-p+n)}_{\bullet}(M).$$

(ii)
$$\omega \in \Omega^{p,4\nu}_{\bullet}(M) \Longrightarrow i_{\xi}\omega \in \Omega^{p-1,4(\nu+p-n-1)}_{\bullet}(M).$$

We get the pair of inverse isomorphisms

$$\Omega^{p,4\nu}_{\bullet}(M) \xrightarrow[i_{\xi}]{\eta \wedge -} \Omega^{p+1,4(\nu-p+n)}_{\bullet}(M) . \tag{1}$$

Proposition

Let M be a compact Sasakian manifold and $\nu \neq 0$.

(i)
$$\omega \in \Omega^{p,4\nu}_{\bullet}(M) \Longrightarrow d\omega \in \Omega^{p+1,4\nu}_{\bullet}(M)$$
 and $d\omega \neq 0$.

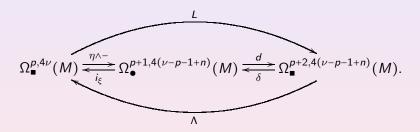
(ii)
$$\omega \in \Omega^{p,4\nu}_{\bullet}(M) \Longrightarrow \delta\omega \in \Omega^{p-1,4\nu}_{\bullet}(M)$$
 and $\delta\omega \neq 0$.

Thus for $\nu \neq 0$, we have the pair of isomorphisms

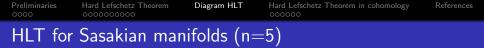
$$\Omega^{p,4\nu}_{\bullet}(M) \xrightarrow[\delta]{d} \Omega^{p+1,4\nu}_{\bullet}(M) , \qquad (2)$$

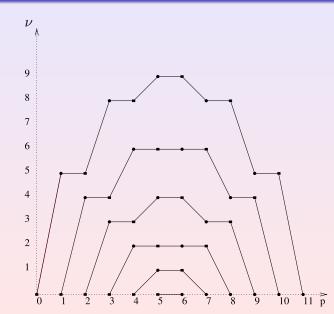
for any $0 \le p \le 2n$.

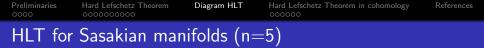
Therefore, using the isomorphisms (1) and (2), we have

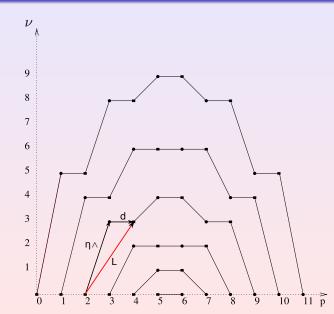


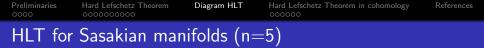
This shows that $L = (d\eta) \land -$ and its adjoint \land induce inverse isomorphisms between the spaces in the diagram.

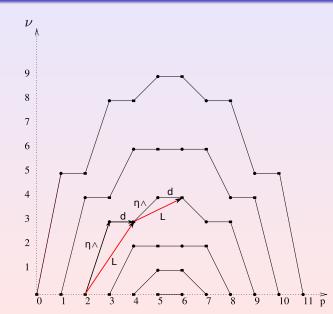


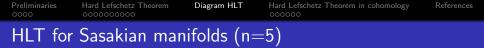


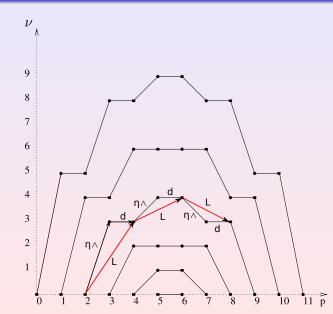


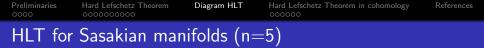


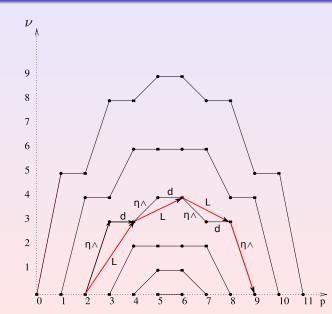


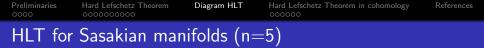


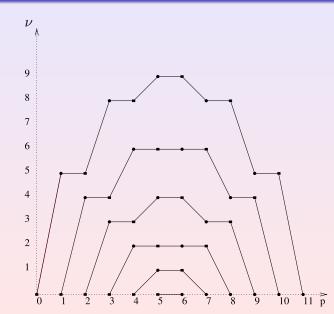


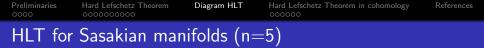


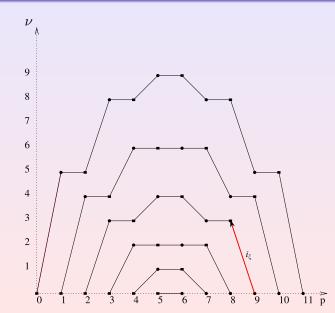


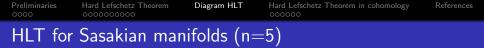


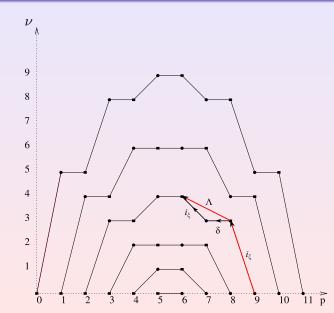


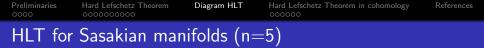


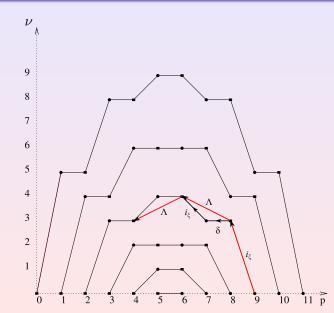


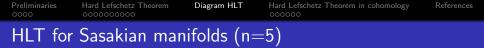


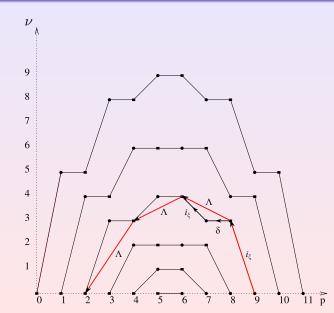












Preliminaries Hard Lefschetz Theorem Diagram HLT Hard Lefschetz Theorem in cohomology References

Theorem

Let M a compact Sasakian manifold of dimension 2n + 1 and $p \le n$. Then the map

$$\Omega^{p}_{\bigtriangleup}(M) \longrightarrow \Omega^{2n+1-p}_{\bigtriangleup}(M)$$
$$\alpha \longmapsto \eta \wedge (d\eta)^{n-p} \wedge \alpha$$

is an isomorphism.

Preliminaries 0000 Hard Lefschetz Theorem Diagram HLT Hard Lefschetz Theorem in cohomology Hard Lefschetz Theorem in cohomology Hard Lefschetz Theorem in cohomology

In a compact Kähler manifold (M^{2n}, ω, g) the maps

$$\begin{aligned} H^{p}(M) &\to H^{2n-p}(M) \\ \left[\alpha\right] &\mapsto \left[\omega^{n-p} \wedge \alpha\right], \end{aligned}$$

are isomorphisms.

$$H^{p}(M) \longrightarrow H^{2n+1-p}(M)$$
$$[\alpha] \longmapsto [\eta \wedge (d\eta)^{n-p} \wedge \alpha],$$

$$\begin{aligned} H^{p}(M) &\longrightarrow H^{2n+1-p}(M) \\ [\alpha] &\longmapsto [\eta \wedge (d\eta)^{n-p} \wedge \alpha], \end{aligned}$$

PROBLEM:

 α closed does NOT imply that $\eta \wedge (d\eta)^{n-p} \wedge \alpha$ is closed!

$$H^{p}(M) \longrightarrow H^{2n+1-p}(M)$$
$$[\alpha] \longmapsto [\eta \wedge (d\eta)^{n-p} \wedge \alpha]$$

SOLUTION? Take

$$H^{p}(M) \longrightarrow H^{2n+1-p}(M)$$
$$[\alpha] \longmapsto [\eta \wedge (d\eta)^{n-p} \wedge \Pi_{\triangle} \alpha]$$

$$\begin{aligned} H^{p}(M) &\longrightarrow H^{2n+1-p}(M) \\ [\alpha] &\longmapsto [\eta \wedge (d\eta)^{n-p} \wedge \alpha]. \end{aligned}$$

SOLUTION? Take

$$H^{p}(M) \longrightarrow H^{2n+1-p}(M)$$
$$[\alpha] \longmapsto [\eta \wedge (d\eta)^{n-p} \wedge \Pi_{\triangle} \alpha]$$

NEW PROBLEM: $\Pi_{\triangle} \alpha$ could in general depend on the metric!

Preliminaries Hard Lefschetz Theorem

Hard Lefschetz Theorem in cohomology

References

Hard Lefschetz Theorem for Sasakian manifolds

Theorem

Let (M^{2n+1}, η, g) be a compact Sasakian manifold and $p \le n$. Let $\Pi_{\Delta}: \Omega^{p}(M) \to \Omega^{p}_{\Delta}(M)$ be the projection on the harmonic part. Then the map

$$Lef_{p}: H^{p}(M) \longrightarrow H^{2n+1-p}(M)$$
$$[\alpha] \longmapsto [\eta \wedge (d\eta)^{n-p} \wedge \Pi_{\bigtriangleup} \alpha],$$

is an isomorphism. Furthermore, it does not depend on the choice of the Sasakian metric g on (M^{2n+1}, η) .

Preliminaries Hard Lefschetz Theorem D 0000 00000000 Hard Lefschetz Theorem in cohomology $\circ \circ \circ \circ \circ \circ \circ$

References

Hard Lefschetz Theorem for Sasakian manifolds

Theorem

Let (M^{2n+1}, η, g) be a compact Sasakian manifold and $p \le n$. Let $\Pi_{\Delta}: \Omega^{p}(M) \to \Omega^{p}_{\Delta}(M)$ be the projection on the harmonic part. Then the map

$$Lef_{p}: H^{p}(M) \longrightarrow H^{2n+1-p}(M)$$
$$[\alpha] \longmapsto [\eta \wedge (d\eta)^{n-p} \wedge \Pi_{\bigtriangleup} \alpha],$$

is an isomorphism. Furthermore, it does not depend on the choice of the Sasakian metric g on (M^{2n+1}, η) .

Preliminaries 0000	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology ○○○●○○	References
1 1				

Independence of the metric

One has to show that $\eta \wedge (d\eta)^{n-p} \wedge (\prod_{\Delta} \alpha - \prod_{\Delta'} \alpha)$ is exact. From Hodge theory one gets

 $\exists \gamma \in \Omega^{p-1}$ s.t. $\delta \gamma = 0$ and $d\gamma = \prod_{\Delta} \alpha - \prod_{\Delta'} \alpha$.

Then

$$\eta \wedge (d\eta)^{n-p} \wedge d\gamma = d(\eta \wedge (d\eta)^{n-p} \wedge \gamma) - (d\eta)^{n-p+1} \wedge d\gamma.$$

It remains to show that the last term is exact (difficult part). We found an explicit expression:

$$(d\eta)^{n-p+1} \wedge d\gamma = -2(n-p+1)d((d\eta)^{n-p} \wedge i_{\varphi}dG\gamma),$$

Independence of the metric

One has to show that $\eta \wedge (d\eta)^{n-p} \wedge (\prod_{\Delta} \alpha - \prod_{\Delta'} \alpha)$ is exact. From Hodge theory one gets

$$\exists \gamma \in \Omega^{p-1}$$
 s.t. $\delta \gamma = 0$ and $d\gamma = \prod_{\Delta} \alpha - \prod_{\Delta'} \alpha$.

Then

$$\eta \wedge (d\eta)^{n-p} \wedge d\gamma = d(\eta \wedge (d\eta)^{n-p} \wedge \gamma) - (d\eta)^{n-p+1} \wedge d\gamma.$$

It remains to show that the last term is exact (difficult part). We found an explicit expression:

$$(d\eta)^{n-p+1} \wedge d\gamma = -2(n-p+1)d((d\eta)^{n-p} \wedge i_{\varphi}dG\gamma),$$

Independence of the metric

One has to show that $\eta \wedge (d\eta)^{n-p} \wedge (\prod_{\Delta} \alpha - \prod_{\Delta'} \alpha)$ is exact. From Hodge theory one gets

$$\exists \gamma \in \Omega^{p-1}$$
 s.t. $\delta \gamma = 0$ and $d\gamma = \prod_{\Delta} \alpha - \prod_{\Delta'} \alpha$.

Then

$$\eta \wedge (d\eta)^{n-p} \wedge d\gamma = d(\eta \wedge (d\eta)^{n-p} \wedge \gamma) - (d\eta)^{n-p+1} \wedge d\gamma.$$

It remains to show that the last term is exact (difficult part). We found an explicit expression:

$$(d\eta)^{n-p+1} \wedge d\gamma = -2(n-p+1)d((d\eta)^{n-p} \wedge i_{\varphi}dG\gamma),$$

Independence of the metric

One has to show that $\eta \wedge (d\eta)^{n-p} \wedge (\prod_{\Delta} \alpha - \prod_{\Delta'} \alpha)$ is exact. From Hodge theory one gets

$$\exists \gamma \in \Omega^{p-1}$$
 s.t. $\delta \gamma = 0$ and $d\gamma = \prod_{\Delta} \alpha - \prod_{\Delta'} \alpha$.

Then

$$\eta \wedge (d\eta)^{n-p} \wedge d\gamma = d(\eta \wedge (d\eta)^{n-p} \wedge \gamma) - (d\eta)^{n-p+1} \wedge d\gamma.$$

It remains to show that the last term is exact (difficult part). We found an explicit expression:

$$(d\eta)^{n-p+1} \wedge d\gamma = -2(n-p+1)d((d\eta)^{n-p} \wedge i_{\varphi}dG\gamma),$$

A topological obstruction

Let (M^{2n+1}, η) be a compact contact manifold. We can define a relation between $H^{p}(M)$ and $H^{2n+1-p}(M)$:

 $\mathcal{R}_{Lef_p} = \left\{ \left(\left[\beta \right], \left[\epsilon_{\eta} L^{n-p} \beta \right] \right) \middle| \beta \in \Omega^{p}(M), \ d\beta = 0, \ i_{\xi}\beta = 0, \ L^{n-p+1}\beta = 0 \right\}.$

Now, if (M, η) admits a compatible Sasakian metric, then \mathcal{R}_{Lef_p} is the graph of the isomorphism $Lef_p: H^p(M) \longrightarrow H^{2n+1-p}(M)$.

Definition

We say that (M,η) is a *Lefschetz contact manifold* if for every $p \le n$ the relation \mathcal{R}_{Lef_p} is the graph of an isomorphism between $H^p(M)$ and $H^{2n+1-p}(M)$.

Let (M^{2n+1}, η) be a compact contact manifold. We can define a relation between $H^{p}(M)$ and $H^{2n+1-p}(M)$:

$$\mathcal{R}_{Lef_p} = \left\{ \left(\left[\beta \right], \left[\epsilon_{\eta} L^{n-p} \beta \right] \right) \middle| \beta \in \Omega^{p}(M), \ d\beta = 0, \ i_{\xi}\beta = 0, \ L^{n-p+1}\beta = 0 \right\}.$$

Now, if (M, η) admits a compatible Sasakian metric, then \mathcal{R}_{Lef_p} is the graph of the isomorphism $Lef_p : H^p(M) \longrightarrow H^{2n+1-p}(M)$.

Definition

We say that (M,η) is a *Lefschetz contact manifold* if for every $p \le n$ the relation \mathcal{R}_{Lef_p} is the graph of an isomorphism between $H^p(M)$ and $H^{2n+1-p}(M)$.

Let (M^{2n+1}, η) be a compact contact manifold. We can define a relation between $H^{p}(M)$ and $H^{2n+1-p}(M)$:

 $\mathcal{R}_{Lef_{p}} = \left\{ \left(\left[\beta \right], \left[\epsilon_{\eta} L^{n-p} \beta \right] \right) \middle| \beta \in \Omega^{p}(M), \ d\beta = 0, \ i_{\xi}\beta = 0, \ L^{n-p+1}\beta = 0 \right\}.$

Now, if (M, η) admits a compatible Sasakian metric, then \mathcal{R}_{Lef_p} is the graph of the isomorphism $Lef_p : H^p(M) \longrightarrow H^{2n+1-p}(M)$.

Definition

We say that (M,η) is a *Lefschetz contact manifold* if for every $p \le n$ the relation \mathcal{R}_{Lef_p} is the graph of an isomorphism between $H^p(M)$ and $H^{2n+1-p}(M)$.

Let (M^{2n+1}, η) be a compact contact manifold. We can define a relation between $H^{p}(M)$ and $H^{2n+1-p}(M)$:

 $\mathcal{R}_{Lef_{p}} = \left\{ \left(\left[\beta \right], \left[\epsilon_{\eta} L^{n-p} \beta \right] \right) \middle| \beta \in \Omega^{p}(M), \ d\beta = 0, \ i_{\xi}\beta = 0, \ L^{n-p+1}\beta = 0 \right\}.$

Now, if (M, η) admits a compatible Sasakian metric, then \mathcal{R}_{Lef_p} is the graph of the isomorphism $Lef_p : H^p(M) \longrightarrow H^{2n+1-p}(M)$.

Definition

We say that (M, η) is a *Lefschetz contact manifold* if for every $p \le n$ the relation \mathcal{R}_{Lef_p} is the graph of an isomorphism between $H^p(M)$ and $H^{2n+1-p}(M)$.

Preliminaries 0000	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology ○○○○○●	References
First ap	plications			

- Let (M, η) be a Lefschetz contact manifold of dimension 2n + 1. Then the odd Betti numbers b_{2k+1} are even for $0 \le 2k + 1 \le n$.
- Recently, jointly with J.C. Marrero we found examples of non Lefschetz *K*-contact manifolds in dim. 5 and 7.
- In a recent preprint, Yi Lin found examples of Lefschetz contact manifolds in dim ≥ 9 which do not admit any Sasakian structure.

Preliminaries 0000	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology ○○○○○●	References
First ap	plications			

- Let (M, η) be a Lefschetz contact manifold of dimension 2n + 1. Then the odd Betti numbers b_{2k+1} are even for $0 \le 2k + 1 \le n$.
- Recently, jointly with J.C. Marrero we found examples of non Lefschetz *K*-contact manifolds in dim. 5 and 7.
- In a recent preprint, Yi Lin found examples of Lefschetz contact manifolds in dim ≥ 9 which do not admit any Sasakian structure.

Preliminaries 0000	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology ○0000●	References		
First applications						

- Let (M, η) be a Lefschetz contact manifold of dimension 2n + 1. Then the odd Betti numbers b_{2k+1} are even for $0 \le 2k + 1 \le n$.
- Recently, jointly with J.C. Marrero we found examples of non Lefschetz *K*-contact manifolds in dim. 5 and 7.
- In a recent preprint, Yi Lin found examples of Lefschetz contact manifolds in dim ≥ 9 which do not admit any Sasakian structure.

Preliminaries 0000	Hard Lefschetz Theorem 0000000000	Diagram HLT	Hard Lefschetz Theorem in cohomology 000000	References
Referen	ces			

S. Tachibana,

On harmonic tensors in compact Sasakian spaces. *Tôhoku Math. J.* **17** (1965), 271-284.

- B. Cappelletti-Montano, A.D.N., I. Yudin, Hard Lefschtez Theorem for Sasakian manifolds. arXiv:1306.2896
- B. Cappelletti-Montano, A.D.N., J.C. Marrero, I. Yudin, Examples of compact *K*-contact manifolds with no Sasakian metric. *arXiv:1311.3270*.
- Y. Lin,

Lefschetz contact manifolds and odd dimensional symplectic geometry. *arXiv:1311.1431*.

Preliminaries	Hard Lefschetz Theorem	Diagram HLT	Hard Lefschetz Theorem in cohomology	References

Gracias!