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Example of Sasakian manifold: S27+1 — Cn+1

Let J be the standard complex structure on C"*1

J(z0,...,2zn) = (izo,...,izn)

and let N be the unit outward vector field normal to S2"*!. Then
put
€ = _JN7

and for any X e I'(TS?™*1), decompose JX in its tangent and
normal components

IX = o(X) + 5(X)N.
Then (521 . &,m,g) is a compact Sasakian manifold.

The Sasakian structure of $2"*! projects under the Hopf fibration

onto the Kahler structure of CP".



Hard Lefschetz Theorem
[ o]

Notation for harmonic forms

Let (M™, g) be a compact oriented Riemannian manifold.
Define 6 : QP(M) — QPL(M) as

5= (_1)m(p+1)+1 e
The Laplacian A : QP(M) — QP(M) is then defined as

A =db+dd.



Hard Lefschetz Theorem
[ o]

Notation for harmonic forms

Let (M™, g) be a compact oriented Riemannian manifold.
Define 6 : QP(M) — QPL(M) as

5= (_1)m(p+1)+1 e
The Laplacian A : QP(M) — QP(M) is then defined as
A =dd+4dd.

We define
QAM) ={aeQP (M) ]| 2ra=0}.
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Hard Lefschetz Theorem for Sasakian manifolds

In a compact Sasakian manifold (M2™*1 1, g) one would like to
define

0 A (dn)? A= QP (M) > Q3P (M)
a~nA(dn)P Aa
and to get isomorphisms.

PROBLEM: Neither dnA — nor n A dn A — send harmonic forms into
harmonic forms! So, a priori the above maps are not well defined.

However, the claim turns out to be true. So, how to prove it?
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Aw = VW
dw=0
lew =0
nAdw=0

Aw = Vw
ow=0

nAw=0
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Some information on the spectrum of A

Let M be a compact Sasakian manifold.

(i) we QB (M) = n Awe QAP (pyy,

(il) we Q8% (M) = icw e Q4P D (py),

We get the pair of inverse isomorphisms

nA-—
Q[:,4V(M) T> Q[.J+1,4(I/—p+n) (M) . (1)
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Some information on the spectrum of A

Proposition

Let M be a compact Sasakian manifold and v # 0.
() weQB* (M) = dw e QE** (M) and dw #0.
(i) we QB (M) = éw e Q5* (M) and 6w # 0.

Thus for v # 0, we have the pair of isomorphisms
d
QI.374I/ (M) %—6> Q[.J+1,4I/ (M) , (2)

for any 0 < p < 2n.
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Some information on the spectrum of A

Therefore, using the isomorphisms (1) and (2), we have

L
Qp,41/ M £> p+1,4(v—p-1+n) _d> p+2,4(v—p—1+n)
- ( )TQ. (I\/I)<5—Q. (M).

A

This shows that L = (dn) A — and its adjoint A induce inverse
isomorphisms between the spaces in the diagram.
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Hard Lefschetz Theorem for Sasakian manifolds

Theorem

Let M a compact Sasakian manifold of dimension 2n+1 and p < n.
Then the map

Qf (M) — Q7177 (M)

ar—na(dn)"Pra

is an isomorphism.
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Hard Lefschetz Theorem in cohomology

In a compact Kihler manifold (M?",w, g) the maps

HP (M) — H?>""P(M)

[a]=[w"PAra],

are isomorphisms.



Hard Lefschetz Theorem in cohomology
[ Jelelele)

Hard Lefschetz Theorem in cohomology

For a compact Sasakian manifold (M?"*1 1, g) a naive guess
would be to consider:

HP (M) — H>™17P (M)
[a]—[nA(dn)™" A al,



Hard Lefschetz Theorem in cohomology
[ Jelelele)

Hard Lefschetz Theorem in cohomology

For a compact Sasakian manifold (M?"*1 1, g) a naive guess
would be to consider:

HP(M) — H>™1=P(M)
[a]—[nA(dn)"? A al,

PROBLEM:
« closed does NOT imply that n A (dn)™ P A « is closed!



Hard Lefschetz Theorem in cohomology
[ Jelelele)

Hard Lefschetz Theorem in cohomology

For a compact Sasakian manifold (M2™ 1, g) a naive guess
would be to consider:

HP(M) N H2n+1—p(M)
[a]—[nA(dn)"PAa],

SOLUTION?
Take

HP(M) N H2n+1—p(M)
[a]—[nA ()" ANaa]



Hard Lefschetz Theorem in cohomology
[ Jelelele)

Hard Lefschetz Theorem in cohomology

For a compact Sasakian manifold (M?"*1 1, g) a naive guess
would be to consider:

Hp(M) N H2n+1—p(M)
[a]—[nA(dn)"™P A al,

SOLUTION?
Take

HP(M) SR H2n+1—p(M)
[a]—[nA(dn)" A Naal

NEW PROBLEM: MM « could in general depend on the metric!



Hard Lefschetz Theorem in cohomology
[o] le]ele)

Hard Lefschetz Theorem for Sasakian manifolds

Theorem

Let (M?"*1 1. g) be a compact Sasakian manifold and p < n. Let
Ma:QP (M) - QP (M) be the projection on the harmonic part.
Then the map

Lefy: HP (M) — H?™ 1P (M)
[a]—[nA(dn)™ANsal,

is an isomorphism. Furthermore, it does not depend on the choice
of the Sasakian metric g on (M?"*1 n).
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Let (M?"*1 1. g) be a compact Sasakian manifold and p < n. Let
Ma:QP (M) - QP (M) be the projection on the harmonic part.
Then the map

Lefy: HP (M) — H?™ 1P (M)
[a]—[nA(dn)™ANsal,

is an isomorphism. Furthermore, it does not depend on the choice
of the Sasakian metric g on (M?™1 n).
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Independence of the metric

One has to show that n A (dn)" P A (Ma a—MNara) is exact.
From Hodge theory one gets

FyeQP st 6y=0and dy=MNaa-Nara.

Then
nA(dn)"P Ady=d(na(dn)"P Ay) = (dn)" P Ady.

It remains to show that the last term is exact (difficult part).
We found an explicit expression:

(dn)n_p+1 A d')/ = —2([1 -p+ l)d((dn)n_p A ILpdG’Y)7

where G is the Green operator of A, ie. Id-AG=1d-GA =T,.
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A topological obstruction

Let (M2 1) be a compact contact manifold. We can define a
relation between HP(M) and H?"*1=P(M):

Rier, = { (18], [enL"PB] )| B QP(M), dB =0, igf=0, L" P15 =0}.

Now, if (M,n) admits a compatible Sasakian metric, then R, is
the graph of the isomorphism Lef, : HP(M) — H?"1=P(M).

Definition

We say that (M, n) is a Lefschetz contact manifold if for every
p < n the relation R e, is the graph of an isomorphism between
HP(M) and H?""1=P(M).
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First applications

o Let (M,n) be a Lefschetz contact manifold of dimension
2n+ 1. Then the odd Betti numbers by, are even for
0<2k+1<n.

@ Recently, jointly with J.C. Marrero we found examples of non
Lefschetz K-contact manifolds in dim. 5 and 7.

@ In a recent preprint, Yi Lin found examples of Lefschetz
contact manifolds in dim > 9 which do not admit any
Sasakian structure.
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