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Abstract

We propose an extension of logic programming paradigm based on
similarity. Starting from a new fuzzy unification algorithm based on
similarity developed in [2], here we introduce a fuzzy resolution rule
based on this extended unification. Essentially, our proposal of ex-
tended resolution is a replacement of the classical most general unifier
(mgu) in the unification step for its extended counterpart. In our ap-
proach, unification fades into a ”unification degree” on account of the
introduction of a similarity in a first-order language with no constants.
Intuitively, the unification degree of a set of first-order terms is the
"cost” one must pay to consider the terms as ”syntactically equal”.
For this reason, our extension of resolution yields a more structured
kind of computed answer substitution, i.e. when the empty clause is
reached a set of constants is also determined. The refutation degree
of a goal formula is the degree by which such a set sharpens into a set
of singletons.

1 Introduction

In the field of databases and information retrieval there is an ever increasing
demand for systems able to deal with flexible queries and answers. Deduc-



tive databases, in particular, must cope with approximate inference and more
flexible ways of information retrieval. In this work we extend classical reso-
lution, and consequently, classical refutation, into a more structured process
which is particularly significant when, in the classical counterpart, a finite
failure occurs. Such a technique could be usefully exploited for query eval-
uation in deductive databases. This is the main reason why we consider
languages where no function symbol occurs. Our extension of resolution is
basically a replacement of the classical unification step for an extended ver-
sion of unification, where the search for an unifier of a set of first-order terms
turns into the computation of a ”unification degree”. The unification degree
of a set of terms is the ”cost” one must pay to consider a set of constants,
that we call ”clouds”, as sharpened into a singleton; it is obtained introduc-
ing a similarity into a first-order language. The set of constants, called ”set
of constraints”, is a collection of constants that, in the process of classical
unification, cause the unification to fail. Our context is an extension of Horn
logic for definite logic programs. We formulate the extension of the classical
theory defined in [1] and we derive the extension of resolution accordingly,
collecting the set of conditions stemming from each step of unification and
eventually determining its ”co-diameter”, i.e. the degree to which this set
sharpens into a set of singletons. Such a number is the degree of derivation
of the goal formula.

The paper is organized through the following sections. In section 2 we
introduce similarity in a first-order language, we define the concept of cloud,
a particular operator on clouds and the principal features of an extended
similarity-based language. In section 3 we define an extended resolution rule
through a set of constraints. Finally in section 4 we give a simple example
of a fuzzy logic programming system based on the proposed extension of
resolution rule.

1.1 Related Works

Different fuzzy extensions of the resolution rule of [12] used in classical logic
programming have been proposed in the fuzzy context. The first work on
fuzzy resolution for a set of ground clauses has been given by Lee [9]; sev-
eral interesting properties of resolution in fuzzy logic can be found in subse-
quent works as for example in [4], resolution has been generalized to general
clauses involving universally quantified variables and the problem of search
the "more informative proof” has been pointed out. In [11] and [13] a fuzzy



resolution principle is defined at first for propositional logic and then for full
first-order logic, with the proof of its completeness and the description of a
fuzzy prolog system based on it. An extension of the resolution principle
to possibilistic logic, where clauses are weighted with a degree which rep-
resents a lower-bound of a necessity or possibility measure is described in
[7] and resolution in the context of possibilistic logic with fuzzy constants is
discussed in [8]. While in [6] and [5] fuzzy resolution has been defined in the
context of evidential logic. In [15] a A-resolution method is proposed and
its completeness proved in the context of operator fuzzy logic in which the
fuzzy degree of propositions is directly represented. Virtanen in [14] shows
how SLD-resolution used in logic programming can be modified and used for
Linguistic Logic Programming, where variables may take fuzzy terms. This
kind of resolution is based on the notion of fuzzy equality. In [16] a refutation
method based on tree resolution is proposed where truth value are assigned
to the program clauses based on adapted Lukasiewicz implication.

In most cases the fuzzy extension of the resolution rule, doesn’t imply to
use a fuzzy extension of the unification algorithm and classical unification
is used (based on truth functionality). In other cases it is necessary to use
fuzzy unification methods carried out in several ways.

2 Introducing Similarity in a First Order Lan-
guage

The theoretical foundations of the fuzzy resolution rule which we propose are
based on the notion of similarity. Similarity is a many-valued extension of
the classical notion of equality.

Definition 1 A similarity on a domain U is a fuzzy subset R : U X U —
[0,1] of U XU such that the following properties hold:

i) R(z,xz) =1 for any x € U
ii) R(x,y) > R(y,x) for any z,y € U
iii) R(z,z) > R(x,y) A R(y, z) for any z,y,z € U.

The operators Aand V correspond to the least upper bound (lub) and
the greatest lower bound (glb) operators respectively. Given a similarity R,
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we can associate to every set X of elements of U a number p(X) expressing
the extent to which all the elements contained in X are similar.

AN R(z,z)if X#0
M(X):{ (z,2') #

z,z'eX
1 otherwise.

The number p(X)is called co-diameter of X. We call ”clouds” the finite
subsets of U and therefore we say that (X)) is the co-diameter of the cloud

X. A system of clouds is a finite set of clouds. Given a system of clouds
Z ={Xy,...X,,} we call co-diameter of Z the number

We use the term ”co-diameter” since the function R'(x,y) = 1—-R(z,y) is

a distance whose related diameter is the function §(X) = 1-u(X) = V
x,yc

R'(x,y). The following properties of 1 are given.

Proposition 1 Let {X;}, , . be a finite sequence of clouds such that, for
anyi=1.n—1, X;N X1 # 0.

1% (Z.UI Xi) =\ n(X).
i=1
Moreover, assume that X # () and that ¢ € X. Then
w(X) = A\ R(z,c).

Proof. Clearly, A R(z,c) > u(X). Moreover, for any x,y € X
reX

R(z,y) > R(z,¢) AR(c,y) > )\ R(z,c).

zeX

Therefore
u(X) = A\ Riz,o).



2.1 An Operator Over Systems of Clouds

We say that a system of clouds Z is compact if its elements are pairwise
disjoint. The following operator will be used to obtain a compact system of
clouds.

Definition 2 Let Z = {M, ..., M, } be a system of clouds. The following is
an operator on the clouds of Z

T,(M) = U M.
M'NM#D,M'cZ

The extension of Tz to a system of clouds is as follows:
T7(2) ={Tz(M) | M € Z}

The operator T, does not change the co-diameter of a system of clouds.
The operator T can be iterated in the usual manner, by setting 79 (Z) = Z,
THZ) =Ty(Z) and Ty (Z) = T4(T3(Z)) for any integer n > 1.

Definition 3 Let Z be a system of clouds. We define degree of the system
Z the number ¢(Z) defined as follows:

p(Z) =min {T}(Z) = T;"(2)}.

Since Z is a system of finite clouds, the degree of Z is a finite non-negative
integer. Obviously, if Z is a compact system of clouds, ¢p(Z) = 0 and Z is
a fix point of T7,where for a compact system we mean a system where no
cloud overlaps.

Definition 4 Let Z be a system of clouds. The operator Compact is defined

as follows:
Compact(Z) = TSP ().

By definition of ¢(Z) the operator Compact transforms a system of clouds
into a compact system. We have the following properties which show that
the Compact operator keeps the co-diameter invariant.

Proposition 2 Let Z be a system of clouds. Then



i) £(Compact(Z)) = £(2)
ii) Compact(Compact(Z)) = Compact(Z).

Proof. 1) Immediate by definition of co-diameter and by Proposition ?7?.
i1) Immediate, since Compact(Z) is compact.

Q.E.D.

2.2 An Extended Similarity-Based Language

We use a fuzzy similarity relation to extend both first-order unification and
resolution. To do that, let £ be a classical first-order language and denote

-by V the set of variables

-by C the set of constants

-by P the set of predicate symbols

-by Ty ¢ the set of terms, i.e. the set YV UC.

We expand the language £ into the language £’ whose set of constants
is the set C' = P(C) — {0} which is called set of extended constants.

In the sequel, we use extended-type (denoted by e-type ), where type is
in turn a constant, a term and a formula of L'. Also, we denote with 7y ¢/
the set of e-terms, i.e. the set V UC'. An extended substitution (briefly, an
e-substitution ) is a map 6 : V — Ty . We denote with © the set of e-
substitutions. Finally, an atomic extended formula, or atomic e-formula, will
be an expression of the kind p(t4, ..., t,), where p € P and t; € Ty ¢ for any
1=1,...,n.

We identify any constant ¢ in C with the singleton {c} in C’. Given two
similarities over P and C’,denoted respectively as Rp and Re we define a
relation R on P UC' UV in the following way:

R=RpUR:URy

where Ry is a similarity on V defined as follows:

Ry(z,y) =0 if x #y and z,y € V

Ry(z,x) = 1.



We define eq™ on the set of atomic e-formulas by setting:

eq* (p(te, .. tn),q(ty, ..., 60 ) =0if n#m

eq* (p(ti, - tn),q(t], ..., 1)) =R(p,q) A ( R(t;,t;)) otherwise.

i=1l..n

This fuzzy relation is symmetric and transitive, as it is easy to prove, but
it is not a similarity since it is not reflexive, in general.

To any compact system of clouds Z in 7y ¢ we associate an e-substitution
0, defined as follows:

Oz(x) =z if x ¢ My U...U M,;

07(x) = M; N C provided that x € M; and M; NC #

0z(x) = x; provided that z € M; , M; NC = () and z; is a variable in M;.

As an example, we can assume that z; is the first variable in the sequence
x1, T2, ... belonging to M;. Given a system of cloud Z = {M,..., M,}, we
write a generic cloud M in Z in the form X U D ,where X = M NV and
D = M NC . Analogously, given an e-substitution 6, by (M) we denote

the cloud U 6(X) U D, identifying a variable y with its singleton {y}where

zeX
necessary.

Finally we define the operator Ground in the following way: given a
cloud X U D, we set Ground(X U D) = D; given a set of clouds Z, we set
Ground(Z) = {Ground(M) | M € Z}.

Finally tLI#' is a cloud defined as follows:

tut' iftand ¢ €
{thut iftev,t e
{rutiftecl,t €V

{t,t}ift,t' e V.

We consider two functions Trans_t and Trans_p transforming a system
of e-equations into systems of clouds in C UV and P, respectively. We give
the following functions:

tt =

Split_t(p(ts,...,
Split_p(p(ty. ...,

= {t;U0,, ...ty It
1 m

)) =1{p,q}

m) = q(t], ...t

t
tm) = q(t}, ...t

I~3°

n
Moreover, if S = {e; = €.} we set
i=1



Transt(S) = |J Splitt(e; =€)
i=l..n
Transp(S) = |J Split-p(e; = ¢€}).

i=1..n

3 Extended Resolution as a set of Constraints

We start from a definition of extended resolution which is a straightforward
extension of the classical resolution for definite programs given in [1]. A
definite (logic) e-program P is defined according to its classical counterpart,
i.e. it is a finite set of e-clauses, namely e-formulas of the kind A < By, ..., B,
where C and B; ;- , are atomic e-formulas. A negative e-clause is an e-
formula of the kind —~A; V ... V = A, where A; are atomic e-formulas.

We first introduce the concept of ”e-resolvent”. As usual, a variant of an
e-clause C' in a definite e-program P will be a renaming of the free variables
occurring in C.

Definition 5 Let P be a definite e-program, let N = =A; V ... V = A be a
negative e-clause and let C = A «— By, ..., B, be a variant of an e-clause in
P. The negative e-clause

N/ =< 0(A17 "'JAi—17B17 "'7Bn7Ai+17 JAm)

is called an e-resolvent of N and C' with e-mgu 0, and set of constraint
Cond provided that e-formula A; unifies with the atomic e-formula in the head
of C' according to the similarity based unification algorithm described in 77,
yielding an e-mgu 0 and a set of constraints, Cond = Ground(Compact(Trans_t(S))J
Compact(Trans_p(S)) where S = {A = Head(C)}.

We are now ready to give the following definition of extended SLD deriva-
tion.

Definition 6 Let P a definite e-program and let N be a negative e-clause.
An extended SLD-derivation of PU{N} , briefly e-SLD derivation is a maz-
imal sequence of negative e-clauses N;, a sequence of variants of an e-clause
C;, a sequence of e-substitutions 0;, a sequence of systems of e-equations S;
and a sequence of systems of clouds C; such that, for any i :
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-No=N

-N; i1 1s an e-resolvent of N; and C; with 6; as e-mgu and C; is a set of
constraints.

- S; = {A; = B;} where A; is an atomic e-formula in N; and B; is the
atomic e-formula in the head of the clause C;.

-C; = Ground(Compact(Trans-t(S;)) U Compact(Trans-p(S;))

-0; 1s an e-mgu of the system of e-equations S;; in particular, 0; = O,

-C; has no variable in common with Ny, Cy, ..., C;_1.

If, for some integer n, Nj is empty, then the e-SLD derivation halts and it
is called e-SLD refutation. In this case the set (JC; is called the constraint-

i=1,..,7

set of the e-SLD refutation. Still, the restriction of e-substitution 0r 00510
...01 to the variables in N will be called e-computed answer substitution for
{N}UP.

If an e-SLD derivation is finite and it is not an e-refutation, it is called a
failed derivation. The e-clauses C; are called input e-clauses.

Given an e-refutation rpy of P U {N} halting after n + 1 steps, we call
degree of the e-refutation of { N} U P, and we denote it h(rpy), the number
&(Compact( ‘U()Ci )) . In the following we give an example of e-SLD refutation.

Example 1 Let P be the following program:

Let No = p(x,y)
we have the following e-SLD derivation of PU{N}

No = p(z,y),

Co = plry,y1) < q(w1),7(y1)
to {z = 21,y =y}

So = {p(z,y) =plz1,9)}
Co = {{r}}



Ch
01
Si

Cs
S
02
Co

Cs

05

Cs

Ny
Cy

Cy
Ry

C](Il); T(:Ul)

q'(a).

{z1—a}

{a(z1) = d'(a)} (1)
0

r(y1)

r(z2) «— s(x2,y2), $(yz2, 22)
{r(y1) = r(z2)}

{y1 — 22}

0

(22, 42), s(y2, 22)
s'(a,c).

{22 — a,y2 — ¢}
{s(22,42) = 5'(a, )}
{{a},{c} {s.s'}}

s(ca, 22)

s"(e, f)0s = {2 — f}
{s(ca, 22) = s"(e, f)}
{{e;ch {s,5"}}

s(e, z2)
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Cy, = §'(e, f)

In this case the e-SLD resolution chain is an e-refutation and the e-
computed answer substitution of the e-refutation is 6 = {x — a,y — a}.
The degree of the e-refutation is

§(Compact({JC:)) = E({{e,c} {s,s", "} {a.q'}, {f}. {c}, {a}})

i=0,..,4

This is the cost turn to pay to flatten into a set of singletons the set of
constraints and make a classical refutation out of an e-refutation.

A negative e-clause N may have several e-refutations with respect to a
given definite e-program P.

Definition 7 Let R(P, N) be the set of e-refutations of {N} U {P}.We say
that a negative e-clause N is derivable from P with degree \ if

A=\ hr).

reR(P,N)

4 Introducing similarity in a deductive data
base

Deductive databases can be viewed as information retrieval systems where
knowledge is stored both explicitly, through a record-based data structure,
both implicitly, through a set of rules that specify data in an intensional
manner. Data are extracted through a "query evaluation” method. The
introduction of a similarity in a database gives a certain flexibility, both in
terms of data and query.

The extended resolution described in the previous section is a flexible
evaluation method for answering queries that cannot be satisfied in the clas-
sical case.

For example, consider the following classical database of books of different
kinds with some associated rules:

adventurous(isle_of_treasure).

adventurous (murder_on_orient_express) .

adventurous (james_bond) .
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horror (drakula) .

good(X) :- interesting(X),cheap(X).

cheap(X) :- cost(X,L), L =< 10.

The goal good (X)has no classical solution, since no fact in the database
unifies with the atom interesting(X). Nevertheless, it seems reasonable
to consider the constants interesting and adventurous as "similar” to a
certain degree.

More precisely, consider the following similarity relation R, evaluated
using any continuous t-norm for the following conjunctions:

-R(adventurous, interesting) = 0.9

-R(adventurous, horror) = 0.7

-R(horror, interesting) = 0.7

-R(a,b) = 0 for any a,b € {murder_on_orient_express,

isle_of_treasure, james_bond, drakula}

The query good(X) can be evaluated with an e-SLD derivation,

giving as a result the following pairs of computed e-substitution answers
and constraint sets: <{X— James_Bond}, {adventurous, interesting} >,

<{X—1isle_of_treasure},

{adventurous, interesting} >,

<{X— murder_on_orient_express},

{adventurous, interesting} >,

< {X— dracula}, {horror, interesting} > .

This means that the query good(X) yields , for example, the answer
isle_of_treasure under the condition that the genre horror is similar to
interesting; in other words, the co-diameter £({horror, interesting}) of
the cloud {horror,interesting} represents the cost one must pay to have
a classical refutation of good(X) with X->isle_of_treasure as computed
answer substitution.

5 Future Developments

In this work we have briefly described a new kind of fuzzy resolution based
on similarity. We introduced a similarity in a first-order language and then,
starting from the extension of unification theory, we proposed a mechanism
of extended resolution. The main purpose of this is building the kernel of
a fuzzy logic programming system under development. We are currently
going to study more informative forms of computed answer substitutions,
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according to the set of conditions yield in the extended refutation and to
study the operational and declarative semantics of such an extension of logic
programming. Moreover, we are also planning to use other t-norms for the
similarity, such as the natural product in [0, 1] and the Lukasiewitz sum.
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