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Abstract. The paper concerns fuzzy logic programming. As an example, we show that is not 
restrictive to confine ourselves to fuzzy Herbrand interpretations in giving a semantics for fuzzy 
programs. Also, we show that the resulting apparatus gives a unifying theoretical framework for 
fuzzy control. 

 
Keywords: Fuzzy logic programming, Herbrand interpretation, fuzzy control. 

 
1. Introduction and preliminaries 
The basic ideas of fuzzy logic (in narrow sense) where formulated by L. Zadeh (see [19], [20]), J. A. 
Goguen (see [9]) and J. Pavelka (see [14], [15], and [16]). The aim of such a logic is to formalize the 
"approximate reasoning" we use in everyday life and this by admitting predicates as "big", "near", 
"slow" which are vague in nature. These predicates are interpreted by the notion of "fuzzy subset", i.e. 
generalized characteristic functions with values in a complete lattice. Fuzzy logic programming is a 
very promising chapter of fuzzy logic whose purpose is to build up intelligent data-base systems with 
"flexible" answers, expert systems able to consider vague predicates and so on (see, for example [5]).  
 In this paper at first we recall some basic notions in fuzzy logic programming, which are well 
known in literature (see, for example, [2], [13], [17] and [18]). Also, we show that is not restrictive to 
confine ourselves to fuzzy Herbrand interpretations in giving a semantics for fuzzy programs. This is 
done by showing that any homomorphism preserves the universal formulas. Moreover, by developing 
some ideas sketched in [8], we relate fuzzy logic programming with fuzzy control (see also P. Hájek in 
[10]). This gives a unifying and rigorous framework for both conjunction-based and implication-based 
fuzzy control. 
 Let L be a complete, completely distributive, lattice whose elements we call truth values and let S 
be a nonempty set. Then, an L-subset or fuzzy subset of S is any map s : S → L from S to L. Given x ∈ 
S, we say that the value s(x) is the membership degree of x to s. For any λ ∈ L, the set {x∈S : s(x)≥λ} 
is called the λ-cut of s. The subset Supp(s) = {x ∈ S : s(x) ≠ 0} is called the support of s. If 0 denotes 
the minimum and 1 the maximum of L, then we call crisp any L-subset whose values are in {0,1}. We 
can identify any subset X of S with the crisp subset cX : S → {0,1} such that cX(x) = 1 if x ∈ X and 
cX(x) = 0 in the case that x∉X. In particular, we identify ∅ with the map constantly equal to 0 and S 
with the map constantly equal to 1. We say that a fuzzy subset s is contained in a fuzzy subset s' 
provided that s(x) ≤ s'(x) for any x ∈ S. In such a case, we write s ⊆ s'. Given a family (si)i∈I of fuzzy 
subsets, the union U i∈Isi is the fuzzy subset defined by setting U i∈Isi(x) = Sup{si(x) : i∈I} for any x ∈ 
S. The intersection I i∈Isi is defined by setting I i∈Isi(x) = Inf{si(x) : i∈I}. With respect to these 
operations, the class F(S) of all the L-subsets of S is a complete lattice, i.e. the direct power of L with 
set index S. Let S1,...,Sn be sets, then an n-ary L-relation on S1,...,Sn is any L-subset of the Cartesian 
product S1×...×Sn. A binary L-relation f : S1×S2 →L is also called (non-deterministic) L-function from 
S1 to S2. The idea is that, given the input x ∈ S1, the output is not an element in S2 but the fuzzy subset 
s : S2 → L of elements of S2 defined by setting s(y) = f(x,y) for any y∈S2. Let ≈ be a binary operation 
in L and a : S1→ L and b : S2 → L two fuzzy subsets of S1 and S2, respectively. Then the ≈-Cartesian 
product a×b : S1×S2 → L is defined by setting, for any (x,y) ∈ S1×S2, 

(a×b)(x,y) = a(x)≈b(y). 
 
2. Fuzzy interpretations of a first order language 
Let L be a first order language defined, as usual, by: 
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 - a set LC of logical connectives, 
   - the universal quantifier ∀, 
   - a nonempty set C of constants,  
 - a set OS of operation symbols, 
   - a set RS of relation symbols,  
   - an arity map ar : (RS∪OS∪LC) →N.  
As usual, we consider also a sequence x1, x2, … of symbols that we call variables and the brakets ( , ). 
If s is a symbol such that ar(s) = n, then we say that s is n-ary. Terms and formulas are defined as in 
classic first order logic. Namely, we assume that: 
- the constants and the variables are terms, 
- if h is an k-ary operation symbol and t1,...,tk are terms, then h(t1,...,tk) is a term.  
A term is ground if no variable occurs in it. Also, an atomic formula is an expression like r(t1,...,tn), 
where r is an n-ary relation symbol and t1,...,tn are terms. The whole set F of formulas is defined by 
assuming that: 
 - each atomic formula is a formula,  
 - if l is an k-ary logical connective and α1,...,αk are formulas, then l(α1,...,αk) is a formula, 
 - if α is a formula and xi a variable, then ∀xi(α) is a formula.  
 A formula is ground if no variable or quantifier occur in it, a ground atom is called a fact. Then a 
ground formula is obtained from facts by the logical connectives. The notions of free occurrence of a 
variable in a formula, of quantifier-free formula, of universal formula and so on, are defined as usual. 
We write t(x1,...,xn) to emphasize that the variables occurring in the term t are among x1,...,xn and, 
similarly, α(x1,...,xn) to emphasize that the variables in the formula α are among x1,...,xn.  
 We will define the semantics by taking in account the possibility that some relation symbols 
represent vague predicates that we model by the notion of L-subset.  
 
Definition 2.1. An L-interpretation or fuzzy interpretation of L is a pair (D,I), where D is a nonempty 
set we call domain and I is a map associating any n-ary function symbol h with a function I(h) : 
Dn→D, any constant c with an element I(c) ∈ D and any n-ary relation symbol r with an L-relation 
I(r): Dn→L.  
 
Sometimes we write I to denote the fuzzy interpretation (D,I). We interpret the terms as in the classical 
case. 
  
Definition 2.2. Given a fuzzy interpretation (D,I) of L and a term t(x1,...,xn), the interpretation of t  is 
the map I(t) : Dn→D defined by setting: 
  - I(xi)(d1,...,dn) = di,  
  - I(c)(d1,...,dn) = I(c), 
  - I(h(t1,...,tk))(d1,...,dn) = I(h)(I(t1)(d1,...,dn),...,I(tk)(d1,...,dn)). 
 
To interpret the formulas, we assume that any n-ary logical connective l∈LC is associated with an n-
ary operation l : Ln→ L. The following definition enables us to associate any formula with the related 
extension. 
 
Definition 2.3. Given a formula α(x1,...,xn), the extension I(α): Dn→L of α is the n-ary fuzzy relation 
defined by setting: 
  - I(r(t1,...,tp))(d1,...,dn) = I(r)(I(t1)(d1,...,dn),..., I(tp)(d1,...,dn)), 
  - I(l(α1,...,αk))(d1,...,dn) = l(I(α1)(d1,...,dn),...,I(αk)(d1,...,dn)), 
  - I(∀xi(α))(d1,...,dn) = Infd∈D I(α)(d1,…,di-1, d,di+1,…,dp). 
 
Trivially, if α is a closed formula, then I(α) is a constant map, i.e. the quantity I(α)(d1,...,dn) does not 
depend on the elements d1,...,dn. In such a case we denote again by I(α) such a constant. 
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Definition 2.4. Let α be any formula and ∀x1...,∀xn(α) be its universal closure. Then we set 

||α||I = I(α)(∀x1,...,∀xn(α)). 
 
As an obvious extension of the notion of set of axioms in classical logic, we call fuzzy set of 
hypotheses or fuzzy theory any fuzzy set τ : F → L of formulas.  
 
Definition 2.5. Let τ : F → L be a fuzzy set of hypotheses. An L-interpretation (D, I) is called a model 
of τ (for short, I £ τ), if ||ϕ||I ≥ τ(ϕ) for any ϕ ∈ F.  
 
Observe that, in accordance with such a definition of model, the value τ(ϕ) is not intended as the truth 
value of ϕ but as a lower-bound constraint on the possible truth value of ϕ. In other words, the 
information carried on by a fuzzy set of hypothesis τ is that, for any formula ϕ  "the truth value of ϕ is 
greater than or equal to τ(ϕ)". 
 
Definition 2.6. Let τ : F → L be a fuzzy set of hypotheses. Then the fuzzy set Lc(τ) of logical 
consequences of τ is defined by setting: 
  Lc(τ)(ϕ) = Inf{||ϕ||I : I £ α}. (2.1) 
The operator Lc : F(F)→ F(F) defined by (2.1) is called the logical consequence operator. 
 
In a sense, Lc(τ)(ϕ) is the best lower-bound constraint on the truth value of ϕ that we can find given 
the available information τ. It is easy to prove that Lc is a closure operator in the lattice F(F). 
 
3. Homomorphisms and preserving theorems 
Given two L-interpretations (D,I) and (D',I'), we call homomorphism from (D,I) into (D',I') any map f : 
D → D' such that: 
 - f is a homomorphism of the algebraic structures defined by I and I', i.e.,  

f(I(c)) = I'(c)   ;    f(I(h)(d1,...,dn)) = I'(h)(f(d1),...,f(dn)), 
for any c ∈ C and any n-ary operation symbol h and d1,...,dn ∈ D, 
 - for every n-ary relation r, 
  I(r)(d1,...,dn) ≤ I'(r)(f(d1),...,f(dn)). (3.1) 
We say that f is full if 
  I(r)(d1,...,dn) = I'(r)(f(d1),...,f(dn)). (3.2) 
An isomorphism is a homomorphism which is one-to-one and full. Equivalently, an isomorphism is an 
one-to-one homomorphism whose inverse is again a homomorphism. Observe that the notion of 
homomorphism does not depend on the interpretation of the logical connectives. Given an 
interpretation (D,I) and λ∈L, we call λ-cut of I the classical interpretation (D,Iλ) defined by setting 
Iλ(r) = C(I(r),λ) for any relation symbol r, Iλ(c) = I(c) for any c∈C and Iλ(h) = I(h) for any operation 
symbol h. 
 
Proposition 3.1. Let (D,I) and (D',I') be two L-interpretations and f : D→D'  be a map. Then f is a 
(full) homomorphism from (D,I) into (D',I') if and only if, for any λ∈L, f is a (full) homomorphism 
from the cut (D,Iλ) into the cut (D',I'λ). Consequently, f is an isomorphism between (D,I) and (D',I') if 
and only if f is an isomorphism between the cuts (D,Iλ) and (D',I'λ) for any λ∈L. 
 
 Proof. Assume that f  is a homomorphism from (D,I) to (D',I'). Then, for any λ∈L and for any n-
ary relation symbol r, 
   (d1,...,dn) ∈ C(I(r),λ)  ⇔  I(r)(d1,...,dn) ≥ λ 
                                     ⇒  I'(r)(f(d1),...,f(dn)) ≥ I(r)(d1,...,dn) ≥ λ  ⇔  (f(d1),...,f(dn))∈C(I'(r),λ). 
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This proves that f is a homomorphism from (D,Iλ) into (D',I'λ). Conversely, assume that, for any λ ∈ L, 
f is a homomorphism from (D,Iλ) into (D',I'λ) and therefore that  

I(r)(d1,...,dn) ≥ λ  ⇒  I'(r)(f(d1),...,f(dn)) ≥ λ. 
Then, by setting λ = I(r)(d1,...,dn), we obtain that I'(r)(f(d1),...,f(dn)) ≥ I(r)(d1,...,dn). This proves that f is 
a homomorphism from (D,I) into (D',I'). The remaining part of the proof is trivial. �  
 
As in classical logic, given a homomorphism f and a term t(x1,...,xn), for every d1,...,dn ∈ D, 
  f(I(t)(d1,...,dn)) = I'(t)(f(d1),...,f(dn)). (3.3) 
 
Theorem 3.2. Let (D,I) and (D',I') be two fuzzy interpretations, ϕ(x1,...,xn) a quantifier-free formula 
and f : D→D' be a full homomorphism. Then, for any  d1,...,dn ∈D, 
  I(ϕ)(d1,...,dn) = I'(ϕ)(f(d1),...,f(dn)). (3.4) 
If ψ ∈ F is universal,  
  I(ψ)(d1,...,dn) ≥ I'(ψ)(f(d1),...,f(dn)). (3.5) 
and therefore 
  ||ψ||I ≥ ||ψ||I'. (3.6) 
 
 Proof. We will prove (3.4) by induction on the complexity of ϕ. Indeed, assume ϕ is the atomic 
formula r(t1,...,tp), where r is an n-ary relation symbol and t1,...,tp are terms. Then, by (3.2) and (3.3), 
 I(ϕ)(d1,...,dn) = I(r)(I(t1)(d1,...,dn),...,I(tp)(d1,...,dn))  
                           = I'(r)(f(I(t1)(d1,...,dn)),...,f(I(tp)(d1,...,dn))) 
                           = I'(r)(I'(t1)(f(d1),...,f(dn)),...,I'(tp)(f(d1),...,f(dn))) 
                           = I'(ϕ)(f(d1),...,f(dn)). 
Assume that ϕ = l(α1,...,αk) and that (3.4) is satisfied by α1,...,αk. Then, 
 I(l(α1,...,αk))(d1,...,dn) = l(I(α1)(d1,...,dn),..., I(αk)(d1,...,dn)) 
                                          = l(I'(α1)(f(d1),...,f(dn)),..., I'(αk)(f(d1),...,f(dn)) 
                                          = I'(l(α1,...,αk))(f(d1),...,f(dn)). 
This proves the first part of the theorem. Let ψ be an universal formula. We will prove (3.5) by 
induction on the number m of quantifiers in ψ. If m = 0, (3.5) follows from (3.4). Assume that m≠0 
and that ψ is equal to a formula like ∀xi(α), where α contains m-1 universal quantifiers. Then, in 
accordance with the induction hypothesis and the inclusion {f(d) : d ∈ D} ⊆ D', 
 I(∀xi(α))(d1,...,dn) = Infd∈D I(α)(d1,...,d,...,dn)  
                                   ≥ Infd∈D I'(α)(f(d1),...,f(d),...,f(dn)) ≥ Infd'∈D' I'(α)(f(d1),...,d',...,f(dn)) 
                                   = I'(∀xi(α))(f(d1),...,f(dn)).  � 
 
Not surprisingly, the following theorem proves that two isomorphic fuzzy interpretations are logically 
equivalent, i.e. they satisfy each formula at the same degree. 
 
Theorem 3.3. Let f be an isomorphism between (D,I) and (D', I'). Then for any formula α, we have 
that 
  I(α)(d1,...,dn) = I'(α)(f(d1),...,f(dn)). (3.7) 
In particular, if (D,I) and (D', I') are isomorphic, then, for any formula α,  
   ||α||I = ||α||I' .  
 
 Proof. We prove (3.7) by induction on the complexity of α. If α is atomic, (3.7) was just proved in 
Theorem 3.2. Again, in proving Theorem 3.2 we showed that if l is a logical k-ary connective and 
α1,...,αk are formulas satisfying (3.7), then l(α1,...,αk) satisfies (3.7). Assume that α satisfies (3.7). 
Then, since {f(d) : d∈D} = D', 
 I(∀xiα)(d1,...,dn) = Infd∈D I(α)(d1,…,d,…,dp)  
                                = Infd∈D I'(α)(f(d1),…,f(d),…,f(dp)) = Infd'∈D' I'(α)(f(d1),…,d',…,f(dp)) 
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                                = I'(∀xi(α)(f(d1),...,f(dn)). 
Thus, (3.7) is satisfied by any formula.  � 
 
4. Fuzzy Herbrand interpretations and universal theories. 
As usual, we call Herbrand universe the set U of ground terms of the language L and Herbrand base 
the set BL  of facts, i.e. atomic ground formulas of L.  
 
Definition 4.1. An L-interpretation (D,I) is an L-Herbrand interpretation (for short H-interpretation) 
provided that: 
  - D is equal to the Herbrand universe U, 
  - for any n-ary operation symbol h, I(h)(t1,...,tn) = h(t1,...,tn), 
  - for any constant c, I(c) = c. 
 
Then, two H-interpretations differ only for the relational part. As in the classical case, we can identify 
the H-interpretations with the fuzzy subsets of BL .  
 
Proposition 4.2. There is a one-one-correspondence between the H-interpretations and the fuzzy 
subsets of BL. Namely, we associate any H-interpretation (U,I) with the fuzzy subset sI of BL  defined 
by setting: 

sI(r(t1,...,tn)) = I(r(t1,...,tn)), 
for any fact r(t1,...,tn). Moreover, we associate any fuzzy subset s of BL with the H-interpretation 
(U,Is) where, for any n-ary relation symbol r, Is(r) is the fuzzy relation in U  defined by setting 

Is(r)(t1,...,tn) = s(r(t1,...,tn)) 
for any t1,...,tn in U. 
 
 In account of such a proposition, in the following we call H-interpretation any fuzzy subset of BL. 
To prove some basic properties of the H-interpretations, we need some further notations. Namely, let 
t(x1,...,xn) be a term. Then, given the terms t1,...,tn, we write t(t1,...,tn) to denote the term obtained by 
substituting each xi with ti in t(x1,...,xn). Trivially, if t is ground, then t(t1,...,tn) is equal to t. Likewise, 
given the formula α(x1,...,xn), if t1,...,tn are terms, α(t1,...,tn) denotes the formula obtained from 
α(x1,...,xn) by substituting each variable xi which is free in α with ti. Trivially, if α is closed, then 
α(t1,...,tn) coincides with α. 
 
Proposition 4.3.  Let (U,I) be an H-interpretation, t(x1,...,xn) to be a term and t1,...,tn ∈ U. Then 
  I(t)(t1,...,tn) = t(t1,...,tn). (4.1) 
Moreover, if α(x1,...,xn) is a formula, 
  I(α)(t1,...,tn) = ||α(t1,...,tn)||I. (4.2) 
Consequently, 
  ||∀x1...∀xn(α)||I = Inf{||α(t1,...,tn)||I  : t1,...,tn ∈ U}.  (4.3) 
 
 Proof. We will prove (4.1) by induction on the complexity of t as in the classical case. Indeed, if t 
is either a variable or a constant, then (4.1) is obvious. Assume that (4.1) is satisfied by the terms 
s1,...,sk and let h be an k-ary operation symbol. Then (4.1) is satisfied by t = h(s1,..,sm). Indeed, 
 I(t)(t1,..,tn) = I(h)(I(s1)(t1,...,tn),..., I(sm)(t1,...,tn))  
                        = I(h)(s1(t1,...,tn),...,sk(t1,...,tn)) = h(s1(t1,...,tn),...,sm(t1,...,tn)) = t(t1,...,tn). 
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 Again, we will prove (4.2) by induction on the number n(α) of connectives and quantifiers in α. 
Indeed, assume that n(α) = 0, and therefore that α is an atomic formula as r(s1,...,sm). Then 
 I(α)(t1,...,tn) = I(r)(I(s1)(t1,...,tn),..., I(sm)(t1,...,tn))  
                         = I(r)(s1(t1,...,tn),..., sm(t1,...,tn)) = I(r(s1(t1,...,tn),..., sm(t1,...,tn))   
                         = ||α(t1,...,tn)||I . 
Assume that n(α) ≠ 0 and that α = l(α1,...,αk). Then, since n(α1)<n(α), ... ,n(αk)<n(α), by induction 
hypothesis, (4.2) is satisfied by each αi. Consequently, 
 I(l(α1,...,αk))(t1,...,tn)  = l(I(α1)(t1,...,tn),..., I(αk)(t1,...,tn))  
                                        = l(||α1(t1,...,tn)||I,..., ||αk(t1,...,tn)||I) = ||l(α1,...,αk)(t1,...,tn)||I. 
This proves that (4.2) is satisfied by l(α1,...,αk). Finally, assume that α is the formula ∀xi(β) and let 
t1,...,tn be elements in U. Then, n(β)<n(α) and n(β(t1,...,xi,...tn))<n(α). Thus, by induction hypothesis, 
for any t∈U, I(β)(t1,...,t,...,tn) = ||β(t1,...,t,...,tn)||I and I(β(t1,...,xi,...,tn))(t) = ||β(t1,...,t,...,tn)||I. 
Consequently, since ∀xi(β(t1,...,xi,...,tn)) is equal to (∀xi(β))(t1,...,tn), we get: 
  I(∀xi(β))(t1,...,tn) = Inf{I(β)(t1,...,t,...,tn) : t∈U} = Inf{||β(t1,...,t,...,tn)||I : t∈U} 
                                 = Inf{I(β(t1,...,xi,...,tn))(t) : t∈U} =  ||∀xi(β(t1,...,xi,...,tn))||I  
                                 = ||(∀xi(β))(t1,...,tn)||I. 
This proves that (4.2) is satisfied by the formula ∀xi(β), too. � 
 
Given an L-interpretation (D,I), the H-interpretation associated with (D,I) is the H-interpretation 
(U,I) defined by the fuzzy set of facts which are true in (D,I). This means that, for any n-ary relation 
symbol r, it is 

I(r)(t1,...,tn) = I(r)(I(t1),...,I(tn)) = I(r(t1,...,tn)), 
for any t1,...,tn ∈ U.  The proof of the following proposition is trivial. 
 
Proposition 4.4. Let (D,I) be an L-interpretation and (U,I) be the fuzzy H-interpretation associated 
with (D,I). Then the map f : U → D, defined by setting f(t) = I(t) for any t∈U, is a full homomorphism 
from I into I. Consequently, if ϕ is a quantifier-free formula, then for any t1,…, tn ∈ U : 
  I(ϕ)(t1,...,tn) = I(ϕ)(I(t1),...,I(tn)). (4.4) 
If ψ is universal,  
  I(ψ)(t1,...,tn) ≥ I(ψ)(I(t1),...,I(tn)), (4.5) 
and therefore 
  ||ψ||I ≥ ||ψ||I. (4.6) 
  
 We say that a fuzzy theory τ : F → L is universal if all the formulas in Supp(τ) are universal. As an 
immediate consequence of (4.6), we have the following proposition: 
 
Proposition 4.5. Let τ be an universal fuzzy theory, (D,I) be an L-interpretation and (U, I) be the H-
interpretation associated with (D,I). Then  

(D,I) is a model of τ   ⇒  (U, I) is a model of τ. 
 
The following theorem shows that we can define the fuzzy set of facts which are logical consequences 
of an universal fuzzy theory, by referring only to the fuzzy Herbrand models of the theory.  
 
Theorem 4.6. Let τ be an universal fuzzy theory. Then, for any fact ϕ, 
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  Lc(τ)(ϕ) = Inf {||ϕ||I  : I is an H-model of τ}. (4.7) 
 
Proof. Let ϕ be a fact. Then, since by (4.4), ||ϕ||I = ||ϕ||I, 
 Lc(a)(ϕ) = Inf{||ϕ||I : I is a model of τ}  
                   = Inf{||ϕ||I : I is the H-interpretation associated with a model I of τ}. 
                   = Inf {||ϕ||I  : I is an H-model of τ}.  � 
 
 Let τ : F→L be a universal fuzzy theory. Then we define the fuzzy set Gr(τ) of ground instances of 
the formulas in τ by setting, for every formula α, 
 
                        0     if α is not ground, 
   Gr(τ)(α) = 
                         Sup{τ(∀x1...∀xn(α')) : α = α'(t1,...,tn) for some t1,...,tn ∈ U},  otherwise. 
 
The following theorem shows that if τ is an universal theory, then τ and Gr(τ) have the same H-
models. 
  
Theorem 4.7. Let τ be an universal fuzzy theory, then, for any H-interpretation I, 

I £ τ     ⇔     I £ Gr(τ). 
 
 Proof. Assume that I £ τ and let α be a formula. Then, if α is not ground, Gr(τ)(α) = 0 and 
therefore  ||α||I ≥ Gr(τ)(α). Assume that α is ground and let α' be a formula such that α = α'(t1,...,tn) for 
some t1,...,tn ∈ U. Then 

||α||I ≥ ||∀x1...∀xn(α')||I ≥ τ(∀x1...∀xn(α')). 
Consequently,  

||α||I ≥ Sup{τ(∀x1...∀xn(α')) : α = α'(t1,...,tn) for some t1,...,tn ∈ U} = Gr(τ)(α), 
and this proves that I is a model of Gr(τ). 
 Conversely, let I be a H-model of Gr(τ) and let ∀x1...∀xn(α') be any closed universal formula. 
Then, in accordance with the definition of Gr(τ),  given t1,...,tn in U,  
  ||α'(t1,...,tn)||I  ≥ Gr(τ)(α'(t1,...,tn)) ≥ τ(∀x1...∀xn(α')). 
Thus, 
  ||∀x1...∀xn(α')||I = Inf{||α'(t1,...,tn)||I  : t1,...,tn∈U} ≥ τ(∀x1...∀xn(α')) 
and this proves that I is a model of τ.  � 
 
5. Fuzzy logic programming    
In this section and in Section 6 we will expose some definitions and results which are well known in 
literature (see, for example, [2], [13], [17] and [18]). To define the notion of fuzzy program, we 
assume that a sequence ⊗1,…,⊗k of commutative and associative operations is defined in L. We 
assume also that, for any x in L, x⊗k1 = x and, for any family (yj)j∈J of elements in L,   

x≈i(Supj∈Jyj) = Supj∈J (x≈iyj). 
Under these conditions, we can define the implication operations →i by setting, for any x, y∈L,  

x→iy = Sup{z∈L : x≈iz ≤ y}. 
It is easy to prove that each pair →i and ⊗i satisfies the adjunction property, i.e, for any a, b, x in L, 

a→ib ≥ x  ⇔  b ≥ x⊗ia. 
We suppose that L contains logical connectives →1,…,→k corresponding to the operations →1,…,→k. 
Let L* be the sentential calculus whose logical connectives are the same as in L .  Then we write 
h(p1,...,pn) to denote a formula of L* whose propositional variables are among p1,...,pn. As usual, we 
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can associate any formula h(p1,...,pn) with a truth-table h : Ln→L. Let α1,...,αn be atomic formulas of 
L and h(α1,...,αn) be the formula in L obtained from h(p1,...,pn) by substituting each occurrence of pi 
with αi. Then we say that h(α1,...,αn) is a combination of the formulas α1,...,αn. If h preserves the least 
upper bounds (and therefore is monotone), then we say that h(α1,...,αn) is a positive combination of 
α1,...,αn. Trivially, this happens every time h(p1,...,pn) is defined only by conjunctions and disjunctions 
interpreted by continuous norms and co-norms, respectively.  
 
Definition 5.1. A (positive) implicative clause is either an atomic formula or a formula like 
h(α1,...,αn)→iα where α, α1,…,αn are atomic formulas and h(α1,...,αn) is a (positive) combination of 
α1,…,αn. A fuzzy subset p: F→L of formulas is a (positive, ground) fuzzy program if Supp(p) is a set 
of (positive, ground) implicative clauses.  
 
 A simple characterization of the fuzzy models of a fuzzy program is the following. 
 
Proposition 5.2. Let p : F → L  be a fuzzy program and (D,I) be an interpretation. Then I is a fuzzy 
model of p if and only if,   
 i)   I(α)(d1,...,dh) ≥ p(α) 
for any atomic formula α ∈ Supp(p) and d1,...,dh in D ; 
  ii)  I(α)(d1,...,dh) ≥ p(h(α1,...,αn)→iα)≈ih(I(α1)(d1,...,dh),...,I(αn)(d1,...,dh))   
for any implicative clause h(α1,...,αn)→iα in Supp(p) and d1,...,dh in D. 
 
 Proof. An interpretation I is a model of p if and only if,  

||α||I = Inf {I(α)(d1,...,dh) : d1,...,dh∈D} ≥ p(α) 
for any atomic formula α ∈Supp(p) and 

||h(α1,...,αn)→iα||I = Inf{I(h(α1,...,αn)→iα)(d1,...,dh) : d1,...,dh∈D}≥ p(h(α1,...,αn)→iα), 
for any formula h(α1,...,αn)→iα in Supp(p). The first condition is equivalent to the claim that 
I(α)(d1,...,dh) ≥ p(α) for any d1,...,dh in D and therefore it is equivalent with i). The second condition is 
equivalent to say that, for any d1,...,dh in D, 
I(h(α1,...,αn)→iα)(d1,...,dh) = h(I(α1)(d1,...,dh),...,I(αn)(d1,...,dh))→iI(α)(d1,...,dh) 
                                             ≥ p(h(α1,...,αn)→iα).  
By the adjunction property, such an inequality is equivalent with ii). � 
 
By Propositions 4.2, 5.2 and Theorem 4.7, we obtain the following theorem: 
 
Theorem 5.3. Let p : F → L  be a fuzzy program and s : BL  → L be a fuzzy set of facts. Then s is a H-
model of p if and only if for any fact α ∈ Supp(Gr(p)), 
i) s(α) ≥ Gr(p)(α) 
and, for any implicative clause h(α1,...,αn)→iα in Supp(Gr(p)), 
ii) s(α) ≥ Gr(p)(h(α1,...,αn)→iα)≈i h(s(α1)...,s(αn)). 
 
To calculate the H-models of a fuzzy program, it is very useful the notion of immediate consequence 
operator (see, also, P. Vojtas [17] and [18]). 
 
Definition 5.4. Let p : F → L  be a fuzzy program. Then the immediate consequence operator 
associated with p is the operator Tp : F(BL) → F(BL) defined by setting, for any s∈F(BL) and α ∈ BL,  
  T1(s)(α) = Gr(p)(α)∨s(α), 
  T2(s)(α) = ( ))((),...,( 1 pGrSupph in

Sup ∈→ ααα Gr(p)(h(α1,...,αn)→iα)≈ih(s(α1),...,s(αn))), 

  Tp(s) = T1(s)∪T2(s). 
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Observe that Tp is not monotonic, in general and that inclusion property Tp(s)⊇s is satisfied by 
definition. As in the classical case, the immediate consequence operator enables us to give the 
following elegant and useful characterization of the H-models of a fuzzy program. 
  
Theorem 5.5. Let p : F → L be a fuzzy program and s ∈ F(BL ). Then s is an H-model of p if and only 
if s is a fixed point for the immediate consequence operator Tp. 
 
 Proof. It is sufficient to apply Theorem 5.3. Indeed, let s be a fixed point for Tp, i.e. assume that 
Tp(s)⊆s. Then we have T1(s)⊆s and T2(s)⊆s. Let α be a fact in Supp(Gr(p)). Then, since s(α) ≥ 
T1(s)(α) ≥ Gr(p)(α), we have that condition i) is satisfied. Let h(α1,...,αn)→iα be a ground implicative 
clause in Supp(Gr(p)). Then, since 

s(α) ≥ T2(s)(α) = ))((),...,( 1 pGrSupph in
Sup ∈→ ααα Gr(p)(h(α1,...,αn)→iα) ⊗i h(s(α1),...,s(αn)), 

we have that  
s(α) ≥ Gr(p)(h(α1,...,αn)→iα) ⊗i h(s(α1),...,s(αn)) 

for any h(α1,...,αn)→iα in Supp(p). Hence, condition ii) is satisfied. This proves that s is a H-model of 
p.  
 Conversely, assume that s is a H-model of p and therefore that both i) and ii) are satisfied. Then, by 
i), we have that, for any fact α, s(α) ≥ Gr(p)(α) and therefore s(α) ≥ T1(α). Moreover, by ii), 

s(α) ≥ Gr(p)(h(α1,...,αn)→iα) ⊗i h(s(α1),...,s(αn)) 
and therefore 
  s(α) ≥ ( ))((),...,( 1 pGrSupph in

Sup ∈→ ααα Gr(p)(h(α1,...,αn)→iα)⊗ih(s(α1),...,s(αn)))∨s(α) = T2(s)(α). 

This proves that s(α) ≥ Tp(s)(α). Thus, s is a fixed point for Tp. � 
 
6. Calculus of the fuzzy Herbrand models. 
In accordance with Theorem 5.3, any fuzzy program p admits as a H-model the map s : BL→L 
constantly equal to 1. We are interested to the H-models which represents, in a sense, the informative 
content of p. As an example, we are interested to the least Herbrand model of a program p, i.e. to a H-
model mp : BL → L of p which is contained in any H-model of p. In order to prove the existence of mp 
and to calculate mp, we recall some basic results in the theory of fixed points in a complete lattice. We 
say that a family (si)i∈I of fuzzy subsets of a set S is directed provided that for every si and sj there is sh 
such that si⊆sh and sj⊆sh. An operator J : F(S) → F(S) is continuous provided that  

J(»i∈Isi) = »i∈IJ(si) 
for any directed family (si)i∈I of fuzzy subsets of S. A continuous almost closure operator is a 
continuous operator J such that J(s) ⊇ s.  
 
Proposition 6.1. Let J1 : F(S) → F(S) and J2 : F(S) → F(S) be two operators satisfying the continuity 
property. Then the union J = J1∪J2 satisfies the continuity property. 
 
 Proof. Let (sj)j∈J be a directed family of fuzzy subsets of S. Then 

J(U i∈I si) = J1(U i∈I si)∪J2(U i∈I si) = (U i∈I J1(si))∪( U i∈I J2(si)) = U {J1(si)∪J2(sj) : i∈I, j∈I}. 
Now, since (sj)j∈J is directed, we have that any i∈I and j∈I, there is h∈I such that si⊆sh and sj⊆sh, and 
therefore J1(si) ⊆J1(sh) and J2(sj)⊆J2(sh). Then, 
  J(U i∈I si) = U {J1(si)∪J2(sj) : i∈I, j∈I}= U h∈I (J1(sh)∪J2(sh)) = U h∈I J(sh). � 
 
The following theorem summarizes the main properties of the continuous almost closure operators 
(see, for example, [7]). 
 
Theorem 6.2. Let J : F(S) → F(S) be a continuous almost closure operator, then: 
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- the class of fixed points of J is a closure system, i.e. it is closed under arbitrary intersections, 
- the least fixed point operator D : F(S) → F(S) defined by setting, for any fuzzy subset s,  

D(s) = I {s' : J(s) = s, s' ⊇s}, 
is a closure operator 
- for any fuzzy subset s, 
  D(s) = U n∈N Jn(s). (6.1) 
 
We can apply this theorem to the immediate consequence operator. 
 
Theorem 6.3. Let p be a positive fuzzy program. Then Tp is a continuous almost closure operator. As 
a consequence, the class of fuzzy H-models of a positive fuzzy program p is a closure system and the 
least fuzzy Herbrand model mp for p is given by: 
  mp = I {s ∈ F(BL)  : s is a model of p}. (6.2) 
Moreover, 
  mp = U n∈N Tp n(∅). (6.3) 
 
 Proof. Let T1 and T2 be as in Definition 5.4. Then it is immediate that T1 satisfies the continuity 
property. To prove that T2 satisfies the continuity property, we assume that (sj)j∈J is a directed family 
of fuzzy subsets of BL. Moreover, in order to simplify our notations, we denote the expression 

))((),...,( 1 pGrSupph in
Sup ∈→ ααα by Sup. Then  

 T2(U j∈Jsj)(α) = Sup{Gr(p)(h(α1,...,αn)→iα)≈ih(Supj∈Jsj(α1),..., Supj∈Jsj(αn))} 
                         = Sup{Gr(p)(h(α1,...,αn)→iα)≈i(Supj(1),...,j(n)h(sj(1)(α1),...,sj(n)(αn))}. 
Now, we observe that, since (sj)j∈J is directed, given sj(1),..., sj(n) there is j∈J such that sj(1)⊆sj,..., sj(n)⊆sj 
and therefore h(sj(1)(α1),..., sj(n)(αn)) ≤ h(sj(α1),..., sj(αn)). Consequently, 
 T2(U j∈Jsj)(α) = Sup{Gr(p)(h(α1,...,αn)→iα)≈(Supj∈Jh(sj(α1),..., sj(αn))} 
                          = Supj∈J Sup{Gr(p)(h(α1,...,αn)→iα)≈(h(sj(α1),..., sj(αn))} 
                          = Supj∈JT2(sj)(α) = U j∈J T2(sj)(α)  
and this proves that T2 is continuous. The remaining part of the theorem is trivial.  � 
 
Equation (6.3) suggests an algorithm to calculate, for any fact α, the value mp(α). More precisely, if 
we adopt the definition of recursive enumerability for fuzzy sets proposed in [1] and [6], then, under 
very natural hypotheses, it is easy to show that mp is a recursively enumerable fuzzy subset of BL.  
 The following theorem shows that the least fuzzy Herbrand model of a positive fuzzy program 
represents the informative content of p. 
 
Theorem 6.4. Let p be a positive fuzzy program. Then the least fuzzy Herbrand model of p is equal to 
the fuzzy subset of facts which are logical consequences of p, i.e., for any fact α ,  
  mp(α) = Lc(p)(α). (6.4)
  
 Proof. By Theorem 4.6 and formula (6.2), for any fact α,  
  Lc(p)(α) = Inf {||α||I  : I is an H-model of p} = mp(α). �  
 
As in the classical case, several difficulties exist for fuzzy programs which are non positive. We 
confine ourselves only to the very simple case of hierarchical fuzzy programs. We call level mapping 
any map lev : BL→N from the Herbrand base to the set of natural numbers. We say that a fuzzy  
program p is hierarchical if a level mapping exists such that for any rule h(α1,...,αn)→α in 
Supp(Gr(p)), lev(α)>lev(α1),..., lev(α)>lev(αn). Trivially, it is no restrictive to assume that the level of 
the atomic formulas is equal to 1. 
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Proposition 6.5. Let p be a hierarchical fuzzy program. Then, for any α∈BL ,  
  lev(α) ≤ n   ⇒  Tp

n+1(∅)(α) = Tp
n(∅)(α) (6.5) 

Consequently, U Nn
n

pT∈ ∅)(  is a H-model of p. 
 
 Proof. We will prove (6.5) by induction on n. In the case n = 1, we have that α is atomic and that 
no rule in Supp(Gr(p)) exists whose head is α. Then, T2(Tp(∅))(α) = 0 and T2(∅)(α) = 0. Therefore, 
since  Tp(∅)(α) = Gr(p)(α),  
 Tp

2(∅)(α) = Tp(Tp(∅))(α) = T1(Tp(∅))(α)∨T2(Tp(∅))(α) = T1(Tp(∅))(α)  
                      = Gr(p)(α)∨Tp(∅)(α) = Tp(∅)(α). 
Assume that n ≠ 1, that lev(α)≤n and that h(α1,…αn)→iα is a rule in Supp(Gr(p)). Then, since 
lev(αi)<lev(α)≤n and therefore lev(αi)≤n-1, by inductive hypothesis Tp

n(∅)(αi) = Tp
n-1(∅)(αi). Then,  

 Tp
n+1(∅)(α) = Gr(p)(α)∨Tp

n(∅)(α)∨ 
                           ( ))((),...,( 1 pGrSupph in

Sup ∈→ ααα Gr(p)(h(α1,...,αn)→iα)≈ih(Tp
n(α1),..., Tp

n(αn))). 

                         = Gr(p)(α)∨Tp
n(∅)(α)∨ 

                            ( ))((),...,( 1 pGrSupph in
Sup ∈→ ααα Gr(p)(h(α1,...,αn)→iα)≈ih(Tp

n-1(α1),..., Tp
n-1(αn))). 

By noticing that Gr(p)(α) ≤ Tp
n(∅)(α) and 

  ( ))((),...,( 1 pGrSupph in
Sup ∈→ ααα Gr(p)(h(α1,...,αn)→iα)≈ih(Tp

n-1(α1),..., Tp
n-1(αn)))≤ Tp

n(∅)(α), 

we obtain that Tp
n+1(∅)(α) ≤ Tp

n(∅)(α) and therefore Tp
n+1(∅)(α) = Tp

n(∅)(α). � 
 
In the following we say that U Nn

n
pT∈ ∅)( is the canonical H-model of p. 

 
7. Fuzzy control 
As an application of the sketched fuzzy logic programming theory, we will consider the main success 
of fuzzy set theory: fuzzy control. Recall that the aim of classical control theory is to individuate a 
function f : X → Y such that f(x) gives the correct control given the input x. To do this, the starting 
point is a general theory about the phenomenon under consideration. From this theory we obtain some 
differential equations and then f is obtained as a solution of these equations. The paradigm used in 
fuzzy control theory, as devised by Zadeh in [19], [20] and by Mamdani in [12], is totally different. 
Indeed, in fuzzy control one tries to obtain f from the verbal information given by an expert on the 
control under consideration (imagine the expert as a cleaver “old hand” with no theoretical knowledge 
or mathematical competence). The expert expresses its experience by a system of IF-THEN rules like 
 
 If x is Little, then I suggest to put y Slow, 
 If x is Small, then I suggest to put y Fast, 
  If x is Medium, then I suggest to put y Moderate, (7.1) 
 If x is Big, then I suggest to put y Veryfast, 
 If x is Verybig, then I suggest to put y Moderate. 
 
Successively, fuzzy control theory interprets such an information, qualitative in nature, by translating 
it into a function f' : X→Y in such a way that f’ can be considered an adequate control function. This is 
done by suitable procedures based on the interpretation the words Little, Slow, ... by suitable fuzzy 
quantities, or fuzzy granules,  little : X→[0,1], slow : Y → [0,1], .... By proceeding in a general way, 
consider a general IF-THEN system: 
 
  IF x is A1 THEN y is B1, 
               . . .   (7.2) 
  IF x is An THEN y is Bn. 
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Then, in fuzzy control such a system can be interpreted in two different ways. In the conjunction-
based fuzzy control we consider the following procedure:  
 
- Step 1. A tentative interpretation of the constants A1,...,An, B1,...,Bn by suitable "fuzzy quantities" a1 : 
X → [0,1],..., an : X → [0,1], b1 : Y → [0,1], bn : Y → [0,1] is proposed. 
- Step 2. Each rule "IF x is Ai THEN y is Bi" is associated with the fuzzy point ai×bi obtained as the ≈-
Cartesian product of the fuzzy quantities ai and bi. 
- Step 3. The whole system of rules is associated with the fuzzy function f : X×Y → [0,1] defined as an 
union of these fuzzy points, i.e. 
   f = U i=1,...,n(ai×bi). (7.3) 
- Step 4. A suitable defuzzification process associates the fuzzy function f with a crisp function f'. 
Usually, this is obtained by the centroid method, where we set, for every r ∈ X, 

∫
∫ ⋅

=
Y

Y

dyyrf

dyyyrf
rf'

),(

),(
)(  

- Step 5. If f' is satisfactory (it is sufficiently close to f), then the procedure terminates, otherwise the 
interpretation of the expert's words is chanced in accordance with a suitable strategy. After this, one 
goes back to Step 2.   
 
Notice that the basic feature of such a procedure is the tuning process, where the interpretation of the 
constants A1,...,An,B1,..,Bn is changed until we obtain a satisfactory interpretation. By referring to the 
system (6.1), set X = [0,10], Y = [0,5] and interpret the constants Little, Small, Medioum, Big, Verybig, 
Slow, Moderate, Fast, Veryfast by suitable triangle functions: 
 

 Also, consider the triangular norm of the minimum. Then, the following picture represents both the 
corresponding fuzzy function f and the crisp function f'. 
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In the implication-based procedure (see, for example, [11]),  instead of steps 2 and 3 we have: 
 
- Step 2'. Each rule "IF x is Ai THEN y is Bi" is associated with the fuzzy relation ai→bi defined by 
setting, for any x ∈ X and y ∈ Y, (ai→bi)(x,y) = ai(x)→bi(y).  
- Step 3'. The whole system of rules is associated with the fuzzy function: 
  g = I i=1,...,n(ai→bi). (7.4) 
 
8. Fuzzy control and logic programming. 
In spite of the great success of fuzzy control, there is no convincing justification of the applied 
techniques. Obviously, the first temptation is to interpret the IF-THEN structure of the rules as a 
logical implication. As an example, we could interpret a rule as "If x is Little then y is Slow" by the 
first order formula Little(x)→Slow(y). Unfortunately, this cannot be done in a so direct way. Indeed 
assume that r is an input such that Little(r) is false. Then the formula Little(r)→Slow(t) is true for any t 
in Y and therefore any t∈Y gives a correct control. 
 As a consequence of such considerations, in [8] we sketched a logical approach to fuzzy control 
based on the idea that, given the input r, and a possible output t, the number f(r,t) is the truth degree of 
the claim "t is a good answer given r". This means that f is obtained as an interpretation of a vague 
predicate Good in a multivalued first-order logic. Namely, we show that f is the interpretation of Good 
in the least fuzzy Herbrand model of a suitable fuzzy program. To illustrate this idea, we consider the 
multivalued logic defined by the complete lattice [0,1] equipped with a triangular norm ≈ and the map 
∼ : [0,1]→ [0,1] defined by setting ∼(x) = 1-x. These operations are devoted to interpret the 
conjunction and the negation connectives, respectively. The disjunction is interpreted by the co-norm 
⊕ defined by setting x⊕y = ∼(∼x≈∼y) and the implication by the operation → defined by setting x→y 
= (∼x)⊕y. Also, the language L contains a binary relation symbol Good and unary predicate symbols. 
Also, we consider each element r in X and t in Y as a constant and therefore we assume that the 
Herbrand universe is X∪Y. Then, we translate the system (7.2) into a fuzzy program p : F → [0,1] 
defined by setting: 
 
 A1(x)∧B1(y) → Good(x,y)      [1] 
 . . . 
 An(x)∧Bn(y) → Good(x,y)    [1] 
 A1(r)                         [a1(r)] 
 . . . ...   (8.1) 
 An(r)                         [an(r)] 
 B1(t)                         [b1(t)] 
 . . . ... 
 Bn(t)                         [bn(t)], 
 
where r∈X and t∈Y. More precisely, p is defined by setting 
 
       1      if α  is the clause Ai(x)∧Bi(y) → Good(x,y), 
                ai(r) if α is the fact Ai(r), r∈X 
  p(α) =     
                    bi(t)      if α is the fact Bi(t), t∈Y 
                    0      otherwise. 
 
 Observe that A1,...,An, B1,...,Bn are considered as unary predicate symbols and not constants for 
fuzzy quantities as in the system (7.1). Observe also that, while p(Ai(r)) = ai(r) for any r∈X, we have 
set p(Ai(t)) = 0 for any t∈Y, and that while p(Bi(t)) = bi(t) for any t∈Y, we have set p(Ai(r)) = 0 for any 
r∈X (it is not restrictive to assume that X∩Y = ∅). A better alternative should be to extend the results 
of this paper into a two sorted logic, one type for the elements in X and one type for the elements in Y.  
 The following theorem shows that the calculus of the fuzzy function f obtained by the conjunction-
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procedure is equivalent to the calculus of the least fuzzy Herbrand model of such a fuzzy program. 
 
Theorem 8.1. Consider the fuzzy control system (7.2), let f be the associated fuzzy function by the 
conjunction procedure and let p be the fuzzy program given by (8.1). Then, for any r∈X and t∈Y, 
  f(r,t) = mp(Good(r,t)), 
i.e., f is the extension of the predicate Good in the least fuzzy Herbrand model of p.  
 
 Proof. We observe only that, due to the one-level structure of the program p, mp = Tp

2(∅). � 
 
Likewise, in order to give a logical interpretation of implication-based fuzzy control, we consider a 
new binary predicate symbol Bad and the following hierarchical fuzzy program p:   
 
 A1(x)∧¬B1(y) → Bad(x,y)      [1] 
 . . . 
 An(x)∧¬Bn(y) → Bad(x,y)     [1] 
 A1(r)                          [a1(r)] 
   . . . ...   (8.2) 
 An(r)                          [an(r)] 
 B1(t)  [b1(t)] 
 . . .  ... 
 Bn(t)                          [bn(t)], 
 
where r∈X and t∈Y. The following theorem shows that the calculus of the fuzzy function f obtained by 
the implication-procedure is equivalent to the calculus of the canonical fuzzy Herbrand model of such 
a fuzzy program. 
 
Theorem 8.2. Consider the fuzzy control system (7.2), let g be the fuzzy function obtained by the 
implication-procedure and let p be the fuzzy program defined by (8.1). Then, for any r∈X and t∈Y, 
  g(r,t) = ∼mp(Bad(r,t)), 
i.e, g is the extension of the predicate ¬Bad in the canonical Herbrand model of p. 
 
 Proof. It is immediate that mp(Bad(r,t)) = Maxi=1,...,n{ai(r)≈∼bi(t)}and therefore that, 
 ∼mp(Bad(r,t)) = Mini=1,...,n ~(ai(r)≈~bi(t))  
                            = Mini=1,...,n (~ai(r)∆bi(t)) = … i=1,...,n(ai(r)→bi(t)) = g(r,t). � 
 
Theorems 8.1 and 8.2 enable us to emphasize the different meaning of the two procedures (see, also, 
[3]). Indeed, while conjunction-based procedure is useful to give positive information (given r, the 
fuzzy subset good(r,y) of outputs that we consider good), the implication-based procedure is useful to 
manage negative information (given r, the fuzzy subset bad(r,y) of outputs that we suggest to avoid).  
 Also, this approach enables us to consider both the approaches at the same time. In fact we can 
consider a hierarchical fuzzy program containing both rules for the predicate Good and rules for the 
predicate Bad. As an example, we can consider the hierarchical fuzzy program obtained by adding at 
the fuzzy program (8.1), the rule 
    (¬Big(x))∧(Fast(y)∨Verifast(y)) → Bad(x,y)         [1] 
able to define Bad and the rule 
 Good(x,y)∧¬Bad(x,y) → Optimum(x,y) [1] 
to compose the two different kinds of information. In such a case the fuzzy function we have to 
consider is the extension of the predicate Optimum and not to the extension of the predicate Good in 
the successive defuzzification process, obviously. In the following picture we represent both such a 
fuzzy function and the corresponding crisp function f' obtained by the defuzzification process. 
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Notice that such an approach to fuzzy control is related with the approach sketched by P. Hájek in 
[10]. In fact, Hájek defined the predicate Mamd(x,y) by the axiom 

Mamd(x,y)  ↔ (A1(x)∧B1(y)) ∨…∨ (A1(x)∧B1(y)). 
It is immediate that in any H-model in which such an axiom is satisfied, the extension of the predicate 
Mamd is the fuzzy relation defined in fuzzy control. Then, while we associate any IF-THEN system 
with a fuzzy program p, Hájek refers to the completion of p. 
  
9.  Possible future researches on fuzzy control 
As a matter of fact the proposed immersion of fuzzy control into fuzzy logic programming uses only a 
very small piece of this theory. Then, we can try to extend fuzzy control taking in account the whole 
potentialities of fuzzy logic programming. For example, we can indicate the following research 
directions. 
 
9.1. Learning process. In defining the fuzzy programs (8.1), we can assign to a rule Ai(x)∧Bi(y) → 
Good(x,y) a weight λi different form 1 as a measure of the corresponding “degree of confidence” of 
the expert in such a rule. Then, the interpretation f of Good in the resulting canonical Herbrand model 
mp is obtained by the expression  
    f = U i=1,...,n (λi≈(ai×bi)).  (9.1) 
This means that, in the learning process, we can modify both the interpretations of the vague 
predicates and the parameters λ1,...,λn. Obviously, it is also possible that in such a process a parameter 
λi becomes equal to zero and therefore that the i-rule is deleted. 
 
9.2. Further connectives and linguistic modifiers. We can consider a fuzzy logic with several kind 
of implication and further logical connectives in [0,1]. For instance, we can consider linguistic 
modifiers as "Clearly" and "Vaguely" interpreted by the functions cl : [0,1]→ [0,1] and vag : [0,1]→ 
[0,1] defined by setting cl(x) = x2 and vag(x) = x0.5 for any x∈[0,1], respectively. Then we can consider 
a fuzzy control able to manage rules as 
 Vaguely(Little(x)) ∧ Fast(y) → Good(x,y), 
   Little(x) ∧ Clearly(Slow(y)) → Good(x,y) 
where Vaguely(Little(x)) is interpreted by the fuzzy subset little(x)0.5

 and Clearly(Slow(y)) is 
interpreted by the fuzzy set slow(y)2. 
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9.3. Fuzzy control based on bilattices. We can imagine a fuzzy control based on a logic 
programming with a valuation structure L different from the interval [0,1]. For example, we can 
assume that S is a set of expert and that L is the power set Boolean algebra ℘(S). In such a case a 
fuzzy program p associates any clause α with the set p(α) of experts whose opinion is that α is valid. 
In accordance with [4], should be very interesting to assume that L is a bilattice based on [0,1]×[0,1]. 
The resulting fuzzy control should be able to manage both positive and negative information. 
 
9.4. Rule chaining. The power of logic programming is mainly based on recursion and on many-steps 
deductions. Instead fuzzy control usually considers one-step deductions. Then, our translation suggests 
a fuzzy control able to define predicates which, in turn, are used to define new predicates and so on. A 
simple example is furnished in the previous section in defining Optimum from Good and Bad. To give 
a further example, assume that an element r in X exists such that a1(r) = ... = an(r) = 0. Then f(r,t) = 0 
for any t∈Y. This means that the proposed rules are not able to suggest a correct control given r. In 
such a case we can add to the rules used to define Good the default rule  
 Undefined(x)∧By_default(y) → Good(x,y), 
Where, in turn, the meaning of the predicate Undefined is furnished by the rule:  
 ¬A1(x)∧...∧¬An(x) → Undefined(x)  
and the meaning of By_default(y) is defined by suitable rules. 
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