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Abstract
This is an extended abstract of the published pagasroximate Similarity and Poincaré Paradox to be
published in Notre Dame Journal of Formal Logic, 2@08”. The startin point is an observation by De
Cock and Kerre, in which, in considering Poincaagapox, one observes that the intuitive notion of
“approximate similarity” cannot be adequately reyerged by the fuzzy equivalence relations. In this
note we argue that the deduction apparatus of flogig gives adequate tools to face the questidh.wi
Indeed a first order theory is proposed whose fumpyglels are plausible candidates for the notion of
approximate similarity. A connection between theseactures and the point-free metric spaces is also
established.
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1. Introduction
As it is well known, the so called “paradox” of Roaré refers to indistinguishability by emphasizing
that, in spite of common intuition, this relatiariot transitive (see [21]). In fact, it is possilihat we
are not able to distinguigh from d,, d, from ds, . . . dy4 from dy, and, nevertheless, that we have no
difficulty in distinguishingd; from d,. Now an immediate solution of this paradox wouldrety
conclude that our intuition about this notion isong. A different solution is proposed by fuzzy @i
which the paradoxical effect of the transitivityagoided by assuming that the indistinguishabibty
graded property. Indeed, assume that such a nisti@presented by a fuzgrequivalence, i.e. a fuzzy
relationeq: Sx S— [0,1] such that, for every, y, zin S

eqxx) =1 (reflexive)

eqxy) =eqy,X) (symmetric)

eqx,2®eqy,2) < eqXx.y) ®-transitive)
whereSis a nonempty set angl a triangular norm. Also, assume tleafd;,d..;) = A where is very
close to 1 but different from 1. Then from the pyepd properties we can conclude only gt d)
> A™ whereA™Y denotes then-1 power ofd with respect td]. Such a conclusion is not a paradox at
all. In fact if O is the tukasiewicz norm anch such thatA™® = 0, then it assert only the trivial
inequalityeq(d;,d)=0 (a more formal argument can be found in Sectjon 4

Now, De Cock and Kerre in [3] claim that such lugon is not adequate since the hypothdsisl

is not justified. The argumentation of these awhrefers to an example as the following one. Cansid
the interval S = [1.50, 2.50] of possible heights a man can hawd assume that the notion
“approximately equal heights” is modelled by a fwzzquivalenceeq such thateq(1.50,1.51) =
e(q1.51,1.52) = ... ==(2.49,2.50) =A. Then, in accordance with the fact that we caminstinguish a
difference in heights of less than 0.01, we havassume that = 1. In fact, we have to differentiate a
claim as “1.50 is approximately equal to 1.51” whis completely true from a claim as “1.50 is equal
to 1.51” which is only partially true. Moreover, agserved by Bodenhofer in [2],

“Even if a measuring device can give seemingly iseeoumbers, accuracy is limited due to various
external influences. It is not even guaranteed thvat measurements of the same person give the same



-2-

result. So how can we justify that two persons whasghts differ only by two millimetres are givgen
degree of similarity which is strictly less that While two consecutive measurements of the same
person may differ in the same range?”

On the other hand, if we admit that 1, then, by thep-transitivity and the fact thatgil = 1, we can
prove thate1.50,2.50) = 1, that is to say that the height.8D is approximately equal to the height of
2.50. This is clearly an absurdity.

Observe that the same considerations apply tf0th¢valued equalitieslefined by Hohle in [13]
and [14], i.e. the fuzzy relation satisfying théddwing axioms:

el) eqxy) < eqxX)

e2) eqxy) =eqy.x)

e3) eqx,20(eqz2—eqy,2) < eqXx,y)
(where— is the residuum associated wiil). Indeed, again the paradox is solved by assunhiat
eqd,d+1) =A#1, and again in the cade= 1 we are forced to conclude ttefd;,d,) = 1. As a matter
of fact, as observed in [2], the criticism of Dedk@nd Kerre applies to all the fuzzy relati@wsuch
thatkerneleq) = {(x,y)ISxS: eqx,y) = 1} is a transitive relation.

As an alternative, De Cock and Kerre proposediitsiance-based notion of “resemblance relation”
in which it is emphasized the idea tH@he closer two objects are to each other, the mibrey are
(approximately) equal{see Section 2). Now, even if | completely agrethlie criticisms about the

hypothesisi # 1, there is something unsatisfactory in the de€iniof resemblance relation. Indeed,

- there is no reference to the transitivity while,my opinion, the basic question is to give a fafm
representation of our intuition suggesting thatstidguishability is transitive in some way

- there is a strong reference to a pseudo-metdctlais precludes an approach within first ordelidog
formalisms.

In accordance, in this note | propose to facedihestion by using first order fuzzy logic and by
admitting a “relaxed” transitivity property. Theeid is to take into account the capability of each
element to be “distinguished” from the remaining®nThis provides a “solution” to Poincaré Paradox
whose nature is similar to the solution of the Hpapadox proposed by J. A. Goguen [8] and others
(for example, see Hajek and Novak [12]).

Finally, in the paper we show that, in spite ofithogical nature, the proposed notions can be
interpreted in a geometrical setting. Indeed we cannect them with the approach to point-free
geometry based on the notion of distance betwegiang and diameter of a region (see [7] and [4]).

2. The resemblance relations
We define the notion of resemblance relation byeméig to the simplified definition given by F.
Klawonn in [16].

Definition 2.1. Let (Sd) be a pseudo-metric space, then a fuzzy relatianSxS — [0,1] is a
resemblance relatiowith respect to grrovided that:

-e(xx) =1

- e(xy) = &(y.X)

-dixy) £d(zu) = e(xy) = gzu).

Given a pseudo-metric spacgd) and a real number =0, a simple (crisp) example of resemblance
relation can be obtained by settiag@qual to (the characteristic function of) the riela& defined by
setting

XEYy = dxy)<e
It is apparent that such a relation is not trawsjtin general. A more interesting class of graded
resemblance relations can be obtained as folloges Psoposition 7 in [3]).
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Proposition 2.2.Consider a pseudo-metric spa@d), a real numbeg = 0 and set

e(xy) =1 if dixy)< e
e(xy) =0 if d(xy) = 1+e
e(xy) = 1-(d(xy)-¢ otherwise.

Then e is a resemblance relation with respect to d

We say that is the resemblance relation associated wiBd) and & A more synthetic definition of
is given by the following equation
e(x,y) = 0(10(1 - (d(x.y)-£)).

A characteristic of these fuzzy relations is tlnetyt cannot distinguish small differences and thathe
same time they are able to detect sufficiently differences. This shows the existence of a “fuzzy
model” of Poincaré’s conditions and therefore tilges a solution to the paradox from a semantical
point of view. Indeed, by reconsidering the exampieheights, we can consider the resemblamce
obtained by assuming th&t [1.50, 2.50]d(x,y) = 20]x-y| ands= 0.2. In such a case we have

€(1.50, 1.51) =¢(1.51, 1.52) = . . . #(2.49, 2.50) = 1
while

€(1.50,1.52) 0.8,¢(1.50,1.53) 0.6, . . . £1.50,1.56) 0, ....,e(1.50,2.50) =0.

3. Some basic notions in fuzzy logic
The reader is assumed to be familiar with the bast®ons of fuzzy logic (see, for example [5] and
[19]). In this section we confine ourselves to Bsime elementary definitions. We consider as set of
truth values the interval [0,1] equipped with atbmmoust-norm®, i.e. an order-preserving associative,
commutative operation such thapl =x (as an example, see [17]). From this operation efene a
residuum operation- by setting
x—Yy = Sud z0[0,1] : x®z <y},
anegationby setting~x = x—0 and aco-norm[] by settingxly = = (- x-Yy). A basic property of the
pair® and — is that
XQZSY = ZKX-Y.
Givenx[0,1], we denote bx™ then-power ofx with respect ta®, i.e. we sek™? = x@x® andx?® =
1. In this paper we refer to Lukasiewicz trianguiarm defined by setting
xOy = (x+y-1)CI0.
For such a normx—y = min{1,1+y-%, -x = 1-x andxOy = (x+y)O1. Also x® = (nX-n+1)0 and
thereforex™ = 0 for everyn such thatn>1/(1-x).

The algebraic structure ([0,1]l, —) defines a first order multi-valued logic. The daages are the
usual first order languages of classical logicHartextended by logical constantd {AC[0,1]}. The
conjunction, disjunction, implication are intergdtby, 0, —, respectively. The negation by and
the logical constard with A. Moreover, the universal and existential quantfiare interpreted by the
greatest lower bound and the least upper boundatiper respectively. Auzzy interpretations a pair
(S I) wherel is a map associating :

- any constant with an element(c) of S

- anyn-ary operation symbah with ann-ary operatiori(h) : S-S

- anyn-aryrelation symbol with ann-aryfuzzy relationi(r) : S'—[0,1].

The fuzzy interpretationS) defines a valuation of the formulas in a truthdtional way (see for
example [19], [5] and [11]). So, given a formufavhose free variables are amang..x, andd,,...d,
in S the truth valuevals y(a,d,,...d,) of ain ds,...d, is defined. We denote Byals y(a) the truth value
of the universal closure ofr. Given a formulaa whose free variables are amorgx,,....%, the
extensionof a is the fuzzy relationa| : S—[0,1] defined by the equationa|(d,,...d,) =
Val(s,o(a',dl,...,dn).
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Definition 3.1. Denote byF the set of closed formulas, theffuazy system of axiorosfuzzy theoryis
a fuzzy subser : F—[0,1] of F. A fuzzy interpretation§!) is afuzzy model of, in brief §l) F 7,
provided thatValsy(a)=7(a) for every a OF. The logical consequence operator lis defined by
setting

Le(7)(a) = Inf{Valsy(a) : SI) E 3.

It is useful to represent a fuzzy thearyy the set
Sign(?) ={(a,A) : adF, A = 1(a), A #0}
of signed formulasThen §l) £ 7 provided thavalsy(a) = A for every @A) in Sigr(7). In the case of
a crisp theory, we represensimply by listing the elements in the suppastyF : 7(a) # O}.
In this paper we are interested mainly in positigkauses, i.e. formulas such as
Oxq...O%((enO...Oan)—» @) where a4,...,an and a are atomic. A fuzzy interpretation satisfies such a

formula provided that, for eved,...,d,in §

|ai|(dy,...,dn)O...O]ak|(dy, ... ,dy) < |a|(dy, ... ,dy).
To define a deduction apparatus for fuzzy logicrefer to the formalization proposed by Pavelka
in [20] (see also [9], [8], [19]). The idea is thhe notion of inference rule have to be extendgd b
specifying how a constraint on the truth value aoaclusion depends on the available constraints on
the truth values of the premises. As an example;ameextend the modus ponens tyeassuming that,

IF you know thadr is true at least at degrde
AND a=f istrue at least at degrédg
THEN you can conclude thatis true at least at degrdexA,,

wherea andp are formulas and; and A, are elements in [0,1]. Also, given two formulasndp, we
extend the classicalintroduction rule by assuming that

IF you know thatr is true at least at degrde
AND thatgis true at least at degrde
THEN you can conclude that}s is true at least at degrdexA,.

Given a fuzzy theory, any proof/rof a is evaluated by a numb#&tal(7z7)0J[0,1]. This number is a
constraint (a lower bound)n the truth value ofr depending on the information carried on byA
fuzzy theory iscontradictoryif there are two proofgz and 7z of a formulaa and its negation a,
respectively, such th&tal(7z, 7)0Val(7z,7) > 0. We say that is consistentf it is not contradictory.

Because different proofs give different constiginve have to consider a constraidgr)(a)
obtained by fusing the totality of the constraiftiiished by the proofs af.

Definition 3.2. Given a fuzzy theory and a formular, we set

D(7)(a) = Sud Val(7zr) : rris a proof ofa}.
The fuzzy subseD(7) is interpreted as thkizzy subset of formulas of we can derive fronthe
operatomD is calleddeduction operator.

We call axiomatizablea fuzzy logic such that there is a fuzzy deductpparatus whose deduction
operatorD coincides with the logical consequence operdtor In such a case a fuzzy theory is
consistent if and only if it admits a model. Thaoaxatizability is an important property for a fuzzy
logic since, in contrast with the logical conseqeenperator, the deduction operator is definedrby a
“effective” procedure. The effectiveness is expedsgor example, by the fact that if the fuzzy sef
axioms is decidable, thdD(7) is recursivelyenumerable; iff is also complete, theld(7) is decidable
(see [6]).

In this paper we refer mainly to tukasiewicz fuzagic and to the axiomatization proposed in [19].
To simplify the writing of the proofs, besides thasic fuzzy inference rules proposed in such a book
we also consider some derivable rules.
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4. The paradox and the fuzzy equivalence relations
Consider a languade: with a binary relation symbdt. Then a fuzzy interpretation &f is a pair §e)

wheree is a binary fuzzy relation i%. In such a language we reformulate the definitioffuakzy O-
equivalence relation given in Section 1 in logieasims.

Definition 4.1. A fuzzy relatione : SxS—[0,1] is afuzzy®-equivalence relatiom Sif (Se) is a fuzzy
model of the set of formulas,

OXE(X,X) reflexive,

OxOY(E(X,Y) = E(Y,X)) gymmetrig,

OzOxOy(E(x,2) DE(Y,2) = E(X,y)) transitive).

In [22] L. Valverde shows that the notion of fuzzirequivalence is strictly related with the one of
pseudo-distance. To show this, we have to ref@r¢bimedeart-norms, i.e. those norms such that, for
anyx, y O (0, 1) an integen exists such that” <y. The Archimedeat-norms can be obtained in a
very simple way via additive generators.

Definition 4.2. We call additive generatorany continuous strictly decreasing map [0,1] —[0,00]
such thah(1) = 0. Also, we denote HBy™ : [0,:0]-[0,1] the map defined by setting

ht¥(x) = h*(xTh(0)).
Proposition 4.3.A binary operation® is a continuous Archimedean t-norm if and onlghére exists

an additive generator h such that, for allyﬂ[o,l%,
x®Yy = hFH(h(x)+h(y)).

As an example, ifi(x) =-log(x), thenl is the usual product.

Definition 4.4. We calltukasiewicz generatdhe mag : [0,1] —[0,e0] defined by settind(x) = 1-x.

Observe thatf!(x) = 1-(x01) = (1-x)C0 and that generates the tukasiewitnorm defined by
xOy = (x+y-1)0.

We calltukasiewicz fuzzy logtbe fuzzy logic based on sucltaorm.

Theorem 4.5.Let h be an additive generata®, the related t-norm and d a pseudo-metric d intaSse
Then we obtain ®@-equivalence eq in S by setting

eqxy) = h™(d(xy)). (4.1)
Conversely, let eq be@-equivalence, then we obtain a pseudo-distancesktiing
d(xy) = h(edaxy)). (4.2)

Trivially, given a pseudo-metrid, the fuzzy equivalenceq associated withd by (4.1) is also a
resemblance relation with respectito

Assume that ing there is a sequenag, C,, ... of constants. Then the following theorem gize
solution of Poincaré paradox once we admit thatfehmulasE(c,,c,), E(c,,C3), . . . are axioms at a
degreel # 1.

Theorem 4.6.Consider Lukasiewicz fuzzy logind consider the fuzzy theasbtained by adding to the
axioms for the fuzzyl-equivalence relations the following axioms

(E(C1,C2), 1)

(E(C2,Ca), 1)



(~E(c,Cm), 1)

whereA # 1 and m is a fixed number such thit

0.Then such a theory admits a fuzzy model and

therefore it is consistenfAlso such a logic enables us to give a formal repngation of Poincaré
argument preserving its intuitive content but auagdts paradoxical character.

Proof. Let Sbe the set of natural numbexsd define a distanakin Sby settingd(x,y) = K-y|{1-1)
if |[x-y|l1-A)<1 andd(x,y) = 1 otherwise. Also, saqx,y) = 1-d(x,y). Theneqis all-equivalence with
respect to the tukasiewicz triangular nogn Moreover,eqn,n+1) = 1-1+4 = A and, sinceA™® = 0
entails (-1)[(1-4) =1, eq1,m) = 0.This proves that3eq) is a model of the considered fuzzy theory.

Also, in fuzzy logic we can formalize Poincaréwargnt as follows:

Step 1.
- Since E(c1,c0)
- and E(c,,C3)

we can state

E(Cl,Cg) DE(CZ,C3) .
- Therefore, since

E(c1,Co)E(C,C3) = E(Cy,Ca)
we can state

E(c1,Ca)
Step 2.
- Since E(c1,C3)
-and E(cs, C4)
we can state
E(c1,C3) LE(Cs,Ca).

- Therefore, since
E(Cl,Cg) DE(C3,04) = E(C]_,C4)
we can state

E(c1.a)
Stepm-1.
- Since E(cy, Gna)
-and E(Cm1,Cm)

we can state

E(Cl1 QTI)DE(CITH Cm+1)-
- Therefore, since

E(C1, G)UE(Cry Cne1) = E(C1y Crer)

we can state
E(C1, Gne1)

[at degreed]
[at degreed]

[at degredl]A]
[at degree 1]
[at degreedl]]

[at degreel®)]
[at degreed]

[at degreel®]
[at degree 1]
[at degred®)]

[at degreeA™?)]

[at degreed]

[at degreel™Y)]

[at degree 1]

[at degred™™).

Thus, such a proof entails that the conclusk{n,,cn:1) is true at least at degreé™ = 0 (no

information). This is not paradoxical.

5. Approximate ®-similarity structures

As argued in Section 1, the assumption that thendtas E(c,,c..;) are axioms at degregé # 1 is
guestionable. Then, to avoid the paradox in the das 1 we have to consider a new class of fuzzy
relations in which the transitivity property is some way relaxed. At first observe that if a fuzzy
relation is not transitive, then we can defineftiitowing interesting notions.

Definition 5.1. Given a fuzzy relatioe, thediscernibility measurés the extensiodis: S—[0,1] of the

formula
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Dis(2) = OxOy(E(x,2CE(Y,2) = E(xy)).

The formulaDis(2) says that things equal tare also equal each other. In other words, it etz is
adequate for comparison. By the way, such a prgjgthe first common notion in Book 1 of Euclid’s
Elements. Observe that | am not sure that it isecorto interpretlis(z) as a measure of the degree of
discernibility ofz from the remaining elements or not. Surelye i§ symmetricdis(2) it is a measure of
the behaviour of with respect to the transitivity. Now, whitks is a“local” measure of transitivity, in
a sense, we can also definggbobal” measure of transitivity as follows.

Definition 5.2. We calltransitivity degreef a fuzzy relatiore the valuatiortrange) of the formula
OzOxOy(E(x,2)E(Y,2) = E(X.y)).

Equivalently trange) is the valuation of the formula

Oz(Dis(2)),
I.e. of the claim évery element in S is discernibl€bviously,
dis(2) = Inf{e(x,2®e(y,2 —e(xy) : X yUS} (5.2)
and
trange) = Inf{dis(2) :z0SF (5.2)

Notice that the notion of “transitivity degree” waoposed by S. Gottwald in [9] and [10] (see §i3p
As an example, let be the crisp resemblance relation defined in Se@im the caseSd) is the usual
metric space in the real line amd> 0. Then it is clear thadis(z) = 0 for every real numbez and
therefore thatrange) = 0.Instead, if we consider only the positive real litteendis(0) = 1 while again
trange) = 0. In the graded cases bdthnge) and dis(z) depend strongly on the triangular norm,
obviously. As an example, letbe the graded resemblance relation defined in @e2ti Thendis(1.50)
=dig(2.50) =1 and
dis(1.51)< ¢(1.50, 1.51®pe(1.51, 1.56)— &(1.50, 1.56) = ®0.2—» 0 =0.2- 0.

So, in the cas#l is either the minimum or the usual product, weetdig(1.51) = 0 and the functiodis
ranges continuously from 0 to 1. In such a demege) = 0. Instead, in the cagéis the Lukasiewict-
norm,dis(1.51) = 0.8 andlis ranges continuously from 0.8 to 1. In such a tesese) = 0.8).

It is easy to prove that the formula

OxOyOz(E(x,2) OE(Y,2)[Dis(2) = E(X, Y)), (5.3)
is true, i.e. that
&Xx,2Qe(zy)®dis(2) < e(xy). (5.4)
Indeed, recall the basic property of the @mjr— and observe that, for anyy, zin §
&X,2)R€e(y,2—e(xy) = dis(2). (5.5)

Implication (5.3) suggests the following definition

Definition 5.3. Consider a languade: p with two relation symbol& andP. Thenanapproximate®-
similarity structure in brief anapproximate similarityis a fuzzy model of the system of axioms:
Al OxE(xX),
A2 DxXOY(E(xy) = E(y.X),
A3 OxOyDz(E(x,2)UE(Y,2UP(2) = E(xY)).

As usual, we denote by (e, p) a fuzzy interpretation dfg p wheree = I(E) andp = I(P). The proof of
the following proposition is obvious.

Proposition 5.4.A fuzzy interpretatio(fS e, p) is an approximate-similarity structure if and only if
i) €xx) =1,
i) e(xy) =e(yx),
i) e(x,2®e(y,2®p(2) < ex,y).
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We can obtain the usual theory of fuzgyequivalences by adding the axiamP(2), i.e. the condition

p(2 = 1 for anyzOS. The following proposition relates the approximatienilarities with the
discernibility measure.

Proposition 5.5.Let e be a reflexive and symmetric fuzzy relatioa honempty set S and let p be a
fuzzy subset of S. Then the structure (S, e,gy) &proximate similarity if and onlyif dis. In other
words, the approximate similarities are the moadlthe system of axioms

Al [OXE(X,X),

A2 DOxOy(E(xy) = E(y,X),

A3 Uz(P(2) = Dis(2).

Proof. If p O dis, then
e(x,20e(y,2)®p(2) < &(x,2)®e(y.2)®dis(2) < &x, y).
Conversely, ie(x,2®e(y,2®p(2) < e(X,y), then
P(2) < e(x,2)®e(y.2) - e(xy) < dis(2).

Observe that the equivalence between the systems2-A3and A1-A2-A3’can be proved also in a
syntactical way by the deduction apparatus of Hajbsic fuzzy logic.

Implication (5.3) shows that, given a reflexive ayinmetric fuzzy relatioe, the structure§ e,
dis) is the “best” approximate similarity structure wen define frone. In spite of that, | prefer not to
limit the theory to the cage= dis. Indeed, whiledis(z) depends on the behaviourzo#ith respect to
the remaining elements 8 p(z) can represent also an intrinsic propertyz ¢as an exampl&o be
precise”, to be “sharply defined” and so on). We require only that such a propentails the
discernibility property.

The following proposition, whose proof is imme@ashows that in the cageis a constant
function, we can give another system of axiomgHerapproximate similarities in which the predicate
P is not involved.

Proposition 5.6. The class of ~similarities in which p is a fuzzy subset condtaatual tos coincides
with the class of models of the axioms Al and APtl& signed formula

A3 (OxOyOz(E(x,2UE(Y,2 = E(Xy)), &).
or, equivalently, the signed formula

A3’ (0zDig2),9).

6. Examples of approximate similarities
The following proposition gives a class of examméspproximatel-similarities whose geometrical
meaning will be evident in Section 10.

Proposition 6.1.Let [0 be the Lukasiewicz t-norrf§eq) a fuzzyl-equivalence ang : S—[0,1] be a
fuzzy subset &. Moreover, set my) = 1((p(xX)+p(y))/2) and

e(xy) = eqxy)lm(xy).
Then(Se,p) is an approximaté&l-similarity.

Proof. It is evident thatis reflexive and symmetric. To prove that
e(x.2)®e(y,2®p(2) < exy)

e(x,2+e(y,2+p(2)-2 < e(xy),
it is not restrictive to assume thefk,y) # 1 and therefore th&x,y) = eqxy) +1-p(X)/2-p(y)/2. Then
ex,2+e(y,2+p(2)-2 < (eq(x,2)+1-p(x)/2+1-p(2)/2)+(eAY, D +1-p(y)/2-p(2)/2)+p(2)-2
eq(x,2)+edy,2)+1-p(x)/2-p(y)/2 < eqx,y)+1-p(x)/2-p(y)/2 = &(xy).

or equivalently, that
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We call an approximatgl-similarity obtained in such a wahe approximate /~similarity associated
with (S,eq) and pThe following proposition shows that in the cgsés a constant function, these
approximate similarities coincide with the resemblarelations defined in Proposition 2.2.

Proposition 6.2. Let /7 be the tukasiewicz t-norm and (S,el® the approximate -similarity
associated with the fuzzy equivalence eq and Wlilzzy set p constantly equaktd@hen e coincides
with the resemblance relation associated with theuglo-metric €k,y) = I(eq(x,y)) and & Conversely
let e be the resemblance relation associated with theighsenetric space (&) and £.10,1]. Then e
coincides with the approximate similarity assoadibtéith the fuzzy equivalence eq(x,y) = I(d(x,y)l an
the fuzzy set p constantly equakto

Proof. Let e be thell-similarity obtained from the fuzziyi-equivalence $eq and the fuzzy subset
p constantly equal te and setl(x,y) =l(edX.y)). Then
e(xy) = (eaxy)+gL = (1-d(x,y)+&),
and thereforeg(x,y) = 1 ifd(x,y) < & ande(xy) = 1-(d(x,y)-¢) otherwise. Then, in account of the fact
thate(x,y) < 1+, this shows thae is the resemblance relation defined frdrand €. In a similar way
one proves the second part of the proposition.

Proposition 6.3.In the approximate/~similarities defined in Proposition 6.2 we havetpdis, in
general.

Proof. To give an example in whiallis # p, assume tha® = [0,1], eqx,y) = I(|x-y]) and¢s #1. Then
e(xy) = 1if k-y| £ cande(xy) = 1- [x-y| +&otherwise. We claim that that
e(xy) 2 e(x,0)®&(y,0)
for anyx, y in Sand therefore thatis(0) = 1# p(0). Indeed, it is not restrictive to assume thaty and
e(x,y) # 1 and therefore tha{x,y) = 1—x+y+ & Consider the cas#x,0) = 1. Therx < £ and therefore
1-x+y +ez21-e+y+e= 142 €y,0) =¢(x,0)0¢(0)y).
Consider the cas®x,0) # 1, theng(x,0) = x+& and therefore
1-x+y +& =¢(x,0)+y = e(x,0) = g(x,0)1e(0)y).

Consider the just exposed example in the @asel/2, then whiledis(0) = dis(1) = 1 we have that
dis(1/2) = 1/2.

The structures defined in such a section can beedddul into a unique structure. Given a
nonempty se§, we callfuzzy poin@a pair &) such thaxOS andA0[0,1]. We denote by’ the fuzzy
point (x,A) and byFP(S) the setSx[0,1] of all the fuzzy points i§.We can interpret a fuzzy poirt as
an“event” x together ddiscriminability degree” of the observation instrument x1 The proof of the
following proposition is trivial.

Proposition 6.4.Let [0 be the tukasiewicz t-norm arf§eq be a fuzzyi-equivalence. Moreover,
define e’ by setting

e’ (X y") = eqx,y) Ol ((A+1)/2)
and define p’ by setting p{y= x . Then(FP(9),e’,p’) is an approximaten-similarity structure. Let
(Se,p) be defined as in Proposition 6.1. Then the map3$i—S’ associating any XS withx*® is an
embedding ofSe,p) into (S, €', p).

7. Approximate O-similarities and the paradox
The kernel of an approximafe-similarity e is not an equivalence relation, in general. Indegden an
elementz JSsuch thap(2) # 1, frome(x,2 = 1 ande(z,y) = 1 we can only derive thafx,y) = p(z). This
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suggests that these relations are good candidatace Poincaré paradox in spite of the fact that
E(cn,Cne1) is accepted as an axioms at degree 1.

Theorem 7.1.Consider in Lukasiewicz fuzzy logic the fuzzy thedtained by adding to the axioms for
the approximate ~similarities the axioms

(=E(cicm), 1)

(E(Cl,Cg), 1)

(E(cz,c), 1)

(P(cw).8)

(P(c2).8)
whereeis different fronD and 1 and m is such thaf™® = 0. Then such a theory admits a fuzzy model

and therefore it is consistent. Moreovsuch a logic enable us to give a formal represeomadf
Poincaré argument preserving its intuitive conteat avoiding its paradoxical character.

Proof. Let Sbe the set of positive natural numbers anaey) = {1 if x #y ande(xy) = 1 ifx =y.
Then it is evident thagis symmetric and reflexive. We claim that,
e(x,20e(y,20&< gxy).
In fact, in all the cases=z, y = zandx =y such an inequality is immediate. Otherwise, sireztly-2
-1>[x-y] -1,
e(x,20ey,2)0e= A DOd0AD0 e = dhed+ 104D ¢ ofD) = gy vy
As a consequence, if we defipdoy settingp(x) = £ for everyxdS, we obtain al-similarity structure
(Se,p). Moreover, sincen,n+1) = £ = 1 ande(1m) = €™ = 0, such a structure is a model of the
proposed fuzzy theory.
To formalize Poincaré argument we can considefdl@wving proof:

Step 1.
- Since E(c1,c0) [at degree 1]
- and E(c,,C3) [at degree 1]
- and P(cy) [at degreed
we can state
E(c1,C2) UE(Cy,C3) [IP(Cy). [at degree11[]¢]

- Therefore, since

we can state

E(C1,Co) E(C2,C3) P(C2) = E(C1,Ca)

[at degree 1]

E(cy,Ca) [at degrees™]
Step 2.
- Since E(Cy1,Cs) [at degrees™]
- and E(cs, C4) [at degreel]
- and P(cs) [at degreed
we can state

E(C1,C3) TE(Cs,Ca) IP(Cy). [at degree®]

- Therefore, since

we can state

Stepm-1.
- Since

E(C1,C3) JE(C3,Ca) OP(C3) = E(C1,Ca)

E(cy1,Ca)

E(cy, Gna)

[at degree 1]

[at degre€?]

[at degrees™?)]
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- and E(Cm1,Cm) [at degreel]
- and P(Cm1) [at degreed
we can state

E(C1, Gna) TE(Cma, G)IP(Cma). [at degree™)]
- Therefore, since

E(C1, Gm)IE(Crm, Cnv) TP(Cr) = E(Cy, Grnea) [at degree 1]
we can state

E(Cy, Gn) [at degred™?).

Thus, such proof entails that the conclusifn;, G,) is true at least at degre€? = 0. As such, this
conclusion is not contradictory with the axiofE(c;,cy), 1).

We emphasize that the fact that a prendf E(c;,G,) is evaluated to O does not mean that such a
formula is false but rather thatgives no information on its truth valués an example imagine to add
the axiomE(cy,cs) to our theory. Then there is a proof to pré&{ey,c,,) at degree™? and it is possible
that such a value is different from O.

8. Some connections with the sorites paradox
We will compare the solution we have just proposedoincaré paradox with the solutions proposed
by fuzzy logic to another famous paradox: the serjtaradox. In particular, we refer to the papa} [1
by Hajek and Novéak. This paradox runs as followsngider a predicatémalland an infinite sequence
Ci, G, . . .Of constants. The intended meaning is thatenotes an heagy, with n grains andSmal(c,)
means that such an heap is small. In accordande smith an interpretation, we assume that the
formulas

Smallc,), Smallc;) = Smallcy), . . . ,Smallc,) = Smal(Cn+1), . . .
holds true. On the other hand, it is evident tigaten anynlIN, from these formulas we can prove
Smallc,) by a suitable number of applications of Modus & This contradicts our intuition
suggesting that there fis ON such thaSmal(c,,) is false.

A first analysis of such a paradox in fuzzy logias proposed by Goguen in [8]. Successively,
Hajek and Novak in [12] rendered his consideratimese precise and introduced new interesting ideas.
In particular, two approaches are considered. Tis¢ dne is based on the idea for which df, is
small”, then it isalmost truethat “d,.; is small”. The second idea is that the implicatidnd, is small
thend,.4 is small” is almost true.

In the first case the logical connective “almaset At is considered and it is interpreted in such a
way that the two axiom schemata= At(a) and @=p) = (At(a)=At(f)) are satisfied. A simple
example is obtained by considering a vakudifferent from 0 and 1 and by interpretidg by the

functionat(x) = &—x. In particular, by assuming thatis the Lukasiewicz implication, we obtain that
at(x) = 1J(x+1-&). In such a case, sin@'(x) = 10(x+n(1-¢)), we have thaat'(0) = 1n{1-&) and
therefore, ife #1, at"(0) = 1 for everyn such than > 1/(1-€). This means that given a false formala

there ismON such thatAt"(a) is true.Now, in this enriched fuzzy logic we can formulde heap’s
axioms as follows:

Smal(c,), Smallc;) = At(Smallcy)), . . . ,Smallc,) = At(Smal(c,+1)), - - -
From these axioms we can der&€(Smal(c,)) (and notSmallc.)). If m=1/(1-¢), sinceat™(0) = 1, this
conclusion is not in contradiction with the falsitf Smal(c,). Thus such a reformulation of the
paradoxical argument gives no paradox. Observetiegirice to pay for such a solution is to adimét t
At"(a) is true in spite of the falsity af. Now, in spite of the justification given in the ador which
“we may not be 100% sure that something is falff@dre is something of unsatisfactory in such an
acceptance. Indeed, the interpretation of a logicnective is independent of the meaning of the
formulas since it depends only on the considengtth tvalues. Then it is sufficient that there isyoal
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formula which is surely false (as an exampleofs1=p4) to impose thaat(0) = 0 and therefore that
at'(0) = 0 for every naturah. Then,the property admitted for the logical connectifeis no less
“paradoxical” than the heap paradox.

The second idea exposed in [12] leads to assuenaxibmsSmal(c,) = Small(c,.,) at a degree #
1. Indeed, it is easy to see that in the deductparatus of fuzzy logic the sorites argument exsabs
to proveSmall(c,) only at a degre€™ = 0. Such an approach is the same proposed firgtyoguen in
[8] (see also [5]).

Now the first approach suggests the possibilitsdtve the Poincaré paradox by considering the
following class of fuzzy relations defined by usihg logical operatoAt.

Definition 8.1. A fuzzy relationeqin a setSis called analmost/~-similarity provided that $, eg)
satisfies the following axioms

OxE(x,X) flexive),

OxOy(E(x,y) = E(Y,X)) (symmetric),

UzOxOy(E(x,2)CE(Y,2) = At(E(X,y)) (almost-transitive).

Then in an almosii-similarity e the transitivity is expressed by the inequality

e(x,2)Ue(y,2) < at(e(x.y)).
Now, in such a case Poincaré argument gives asaaetim the formul@t™(E(c;,c)) and notE(cy,Cry).
Such a theorem is not in contradiction with theifglof E(c;,Cr).

As a matter of fact if we consider as an inteigtien of At the fuzzy functions—x, the notion of
almost-similarity coincides with the one of fuzzy-similarity with respect to the fuzzy subget
constantly equal te. In fact, we have

e(x,2)Ue(y.2) < at(e(xy)) < e(x2Ue(y,2) < (e-e(xy))

= exg)Uey.glUese(xy) < ex20ey,2Up() < eXy).
Then it is not surprising that the notion of almibssimilarity enables us to prove an analogous of
Theorem 7.1 and therefore to solve the paradox.

The second approach suggests to consider thativaypproperty as an axiom at degreavith £#1,

I.e. to represent such a property by the signechdta (JzOxOy(E(x,2UE(Y,2) = E(XY)), &). A fuzzy
relation satisfies such a property provided that

e(x,20e(y,2—e(xy) =&

Again, the presence of such a weak formulationhef transitivity enables us to solve the paradox.
Again, this is not surprising since, in accordamdth Proposition 5.6, assuming the transitivity at
degreesis equivalent to referrring to theé-similarities in whichp is constantly equal ta

Finally, we observe that the sorites paradox carexpressed by involving the distinguishability
relationE, too. As an example, ghenomenateformulation of such a paradox is obtained by @mésg
that
- the heapsl,....,di000/00k to be small for me
- forn= 1000 | am not able to distinguighfrom d1
- if an heapcis small and we are not able to distinguwdhom an heayy, theny is small
- dp, is not small,
wheremis a sufficiently big number. In classical logic wan express this by the following system of
axioms

Smal(c,) forn< 1000

E(CnCn+1) for everyn= 1000

- Smallcy)

OxOy(Smal(x)CE(x,y) = Smally)).

Trivially, for everyn(N, the formulaSmal(c,) is a theorem of such a system and this contiadhet
axiom-Smallc,). In fact,Smal(c,),..., Smal(cioog are axioms (and therefore theorems). Assume that
Smallc,) is a theorem witin = 1000, then sinc&(c,,cn+1) and Smal(c,.1)0E(c,1,¢,) = Smal(c,) are
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axioms,Smallc,) is a theorem, too. It is interesting to obseha in such a version of sorites paradox
the transitivity property ok plays no role and the only hypothesis is that trenfilasg(c,,c..1) are
assumed at degree 1 for everg 1000. Then, independently from the fact tkas interpreted by a
fuzzy equivalence relation, by a resemblance mHator by an approximatél-similarity, the
paradoxical argument remains valid. Obviously, fulkgic is able to give a solution in the case the
formulasE(c,,Cn+1) are substituted with the signed formul&gc,c,.1),4) whereA is a suitable number
different from 1.

Theorem 8.2.Given N andA #1, consider in tukasiewicz fuzzy logic the fuzeph obtained by

adding to the axioms for the fuzziequivalences the axioms
Smallc,) forn<q
(E(Ccn,Cns1), A) for everyn>q
OxOy(Small(x)E(x,y) = Smally)).
Then there is a fuzzy model of such a theory gatisthe formula- Small(c,) for a suitable mN.

Proof. Let Sbe the set of heaps and lef)f-n be a sequence of real numbers in [0,1]. Defigby
setting

eqdnd) =1 tif= k
eqdn,dy) = ans0an.0...Oag if h>k
eqdn,dy) =eq(dydh) otherwise.

Theneis a fuzzyll-equivalence. In fact, while it is evident tlegtis reflexive and symmetric, to prove
that, for evenyd, anddin S
eq(dh,dy) = eq(dn,d)Ueq(d;,dy)
it is not restrictive to assume thHat k. Then, in the case> h
eq(dh,d = eq(d;,dy) = eq(dh,d)Ueq(d;,dy),
in the case<k
eqdh,dk) 2 eqdh,di) 2 eqdh,di)Deqdi,dk).
Finally, in the casé >i >k,
eq(dn,dy) = anHanOa0a.,0...Oa = (anHan0a) (a1 0...Oa) = eq(dy,d)Deqd;,dy).
Define the fuzzy relatioemall by settingsmal(d;) = 1 and, fom>1,
smalld,) = a,,0...0a.
Obviously, émalld,)).on is an order-reversing sequence. We claim that
smalld,) = small(d,)Ceqd,,dy)
for every paird,, d¢ in S. In fact, in the cask > k,
smalldy) = (an10an.0...Oa)d(a10a.0...0ag) = eq(dn,d)Osmalldy).
In the casér < k,
smalld,) = smalld,) = smal(d,)Oeqd,dy).
In order to satisfy the remaining axioms, we hveonsider a sequenca,),on satisfying suitable

properties. Now, consider a sequencg.{n of elements in [0,1] such that< 1-1 and Z:jcn >1
and define &,).on by settinga, = 1 if n < g anda, = 1-¢,q otherwise. Thersmall(d;) = smalld,) =... =
smalldy) = 1 ande((d,,dn+1) = @, = 1-Cr.q 2 A for everyn>p. Let KON such that Z:jl(cn = 1Then,
since lag:1 +...+1aq = C; +...+C = 1, we have tha#. +...+ag« —k+1< 0. Thus, if we setn =
k+1+q, we obtain thafiy,1+...+a,1 +g-m+2< 0 and therefore

smal(dy) = a,0...0am1 = ag+10...08n1 = @gsrt...+8n1 —M+q+2)I0 = 0
and this proves thag(eq smal) is a fuzzy model of our fuzzy theory satisfyiBmal(cy,).

We conclude the proof by observing that there asdifficulty in exhibiting a sequence J.on
satisfying the required property. As an example,cae setti = 1-1 and therefore,.; = A for every
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nON. In such a case, it is sufficient to assume thatl+g+ 1/(1-1) to obtain thasmal(d,) = /™9 =
0. A more interesting example is obtained, undermtypothesigl < 1/2, by considering a real numlbier
such that 1/2 4 < 1-1 and set, = h". Then z:;fcn :r1h—1=rthl and it is evident that, <
1-A. In such a case, sincer...+c = (1-h*Y/(1-h)-1 and
Cit.. 4621« 1h" > 2(1h) = k=log,(2h-1),
we can sen equal to any natural number such thet log,(2h-1) -1-q.

It is an open question to find a similar solutathe sorites paradox in which the axioE(g,,Cq+1)
are assumed at degree 1 &nd interpreted by an approximdiesimilarity.
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9. Distances and diameters in point-free geometry
Theorem 4.5 points to a bridge between a notioicdddgn nature and a notion metrical in nature. We
can extend such a connection to the approximatmilarities provided we refer to the notion of
pointless metric space. Such a notion was proposed series of papers as a basis for a metrical
approach to point-free geometry (see [7] and [A]which the notion of region, distance, diameter,
inclusion are assumed as primitive and the poirgsiafined in a suitable way. This in accordandé wi
the ideas of A. N. Whitehead (see [23]).

Definition 9.1. A pointless pseudo-metric spada short appm-space is a structurey, <, J | |),
where §<) is an ordered set): SxS- [0,) is order-reversing, | :— [0, o] is order-preserving and,
forevery x,y, zZO S:

(@l)daxx)=0

(a2) Axy) = Ay.x)

(al3) Axy) < Ax,2) + Azy) + [

The elements i% are calledegions the ordek is calledinclusion relation d(x,y) distance betweex
and y x| thediameter of x Observe that a3) is a weak form of the triangihaquality taking in
account the diameters of the regions. In fact]lifree diameters are equal to zero, then a3) coaxi
with the triangular inequality and thpmspace is a pseudo-metric space. Then the notigppmof
space extends the one of pseudo-metric space lfanefdre of metric space). More precisely, we can
identify the pseudo-metric spaces asgpenspaces in whick is the identity and all the diameters are
equal to zero. The prototypical exampleppimspace are given in the following proposition (sé. [

Proposition 9.2.Let (M, d) be a pseudo-metric space and let C be a nonentgdg of bounded and
nonempty subsets of M. Defidand| | by setting
O(X,Y) =inf{d(x,y) : xO X, yIY} (9.1)
Kl =sudd(x,y) : x, yO X}, (9.2)
respectively. The(C, [, J, | |)is a ppm-space.

We call the so-defined spaceanonical Such an interpretation enables us to illustdageneaning of
a3). Indeed, by referring to the Euclidean plandhé following picture

it is evident thatd(X,Y) > AX,2) + AZ,Y) and therefore that the usual triangular inequal&nnot be
assumed. Instead, it is matter of routine to ptbaedX)Y) < AX,2) + AZY) + [

For instance, letH,d) be a Euclidean metric space, &1E —[0,») be a function. Also, denote by
B(P, S(P)) the closed ball centered ihand whose diameter &P) and setS = {B(P, s(P)) : PLE}.
Then we can consider tisanonical space defined by this class of closeld.ldalsuch a space the order
is the identity relation, the diameter | | coinsiaéth the functiors and

o(B(P, s(P)),B(Q, Q))) = 0 dfP,Q = (s(P)+s(Q))/2

o(B(P, s(P)),B(Q, 4Q))) =d(P,Q) - (s(P)+ s(Q))/2 otherwise.

If we denote by, the ballB(P, s(P)), we can define directly iR appmspace by setting

o(P.Q) =0 diP.Q = (s(P)+ (Q))/2
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o(P,Q) =d(P,Q) - (S(P)+ Q))/2  otherwise.

This suggests the definition of a simple claspfhspaces we calbrmal balls space

Proposition 9.3.Given a pseudo-metric spagd) and a function sS— [0,), defineds by setting

d5(xy) = (d(xy) - (s(x)+s(y))/2)L0.
Then, the structur€s, J,, S) is appm-space

Proof. In the cas@(x,y) < (s(X)+s(y))/2 the inequality
I{(X,2)+dZy)*+ A2) = d4(X.y)
is trivial. So, we assume thd{x,y) = (s(X)+s(y))/2. In the cased(x,2) = (s(X)+s(2))/2 andd(zy) =
(s(@+s(y))/2,
I§(X,2)+3(zy)* S(2) = d(x,2) - (s(X)+5(2))/2 +d(zy) - (S(y)*+s(2)/2 + S(2)
= d(xy) - (S(X)+S(¥))/2 = 3{x.y).
Assume that(x,2)< (s(X)+s(2))/2 and therefore that
A2/2-9(y)12 = S(X)+(2))/2- (S(x)+s(y))/2 = d(X,2) - (S(x)+S(y))/2.
Then, in the casé(zy) = ((2)+3(y))/2
I{(X,.2)+d{zy)*+ S(2) = d(zy) - (S(2)+s(y))/2 +5(2) = d(zy) +(2)/2-Hy))/2
= d(zy)+d(x,2) - (s(x)+s(y))/2
Z d(x,y) - (S(X)+s(¥))/2 = o4x.y).
In the casel(zy) < (s(2+s(y))/2 we have thad(x,2)+d(z)y) < (S(X)+5(2))/2+(s(2)+s(y))/2 and therefore
S(2) 2 d(x,2)+d(zy) - (S(x)+s(y))/2.
0]

bs(x,2)+5s(z,y)+ S(2) = 8(2) 2 d(x,2)+d(zy) - (S(x)+(y))/2 2 d(xy) - (S(X)+S())/2 = I{X.Y).
In a similar way we go on in the remaining cases.

S

In a canonical space a region can be interpretethancomplete information (i.e. a constrainton
point. This means that the approximation originditesh the imprecision of the objects whose distance
we have to calculate. We can consider also theioashich the objects are given in a precise waly bu
the approximation originates from the instrumergdugo measure distances. As an example, given a
natural numben, denote bytrunc,(x) then-decimal truncation of a real numberThen the proof of the
following proposition is matter of routine.

Proposition 9.4.Let (M, d) be a pseudo-metric space and n be a fixed naturaiber. Also, sel(x,y)
= trunc,(d(x,y)) and [x] = 210". Then(M, =, J, | |)is a ppm-space.

10. Geometrical interpretations of the approximateJ-similarities

This section is devoted to show that the logicalomoof approximaté]l-similarity is strictly connected
with the metrical notion oppmspace. We are not interested in the order relatiamd therefore we
confine ourselves to the cases in whicls the identity. For these structures we wreq | |) instead
of (S =, 4 ||). Notice that if§,<, J, | |) is appmspace, thenS,=, J, | |) is appmspace too.

Theorem 10.1.Let h be an additive generator agdbe the related t-norm. Then we can associate any
ppm-spacks, o, | |)with an approximate-similarity spacgS e, p) such that

e(xy) =h(5(xy) ;  p(x) = (X))
Conversely, we can associate any approxingdgmilarity space(S, e, p) with a ppm-spacé€s o, | |)

by setting
o(xy) = h(e(xy)) ; K =h(p(x)).

Proof. Let S 0, | |) be g@pmspace. Then, since
Ax,y)0h(0) < dx,2)n(0) + Azy)h(0) + h(0)
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we have

e(xy) = h(6(xy)0h(0)) 2 h™((dx,2) Th(0))+(dzY)Th(0))+(Iz[h(0)))

=h"(dAx2)Ch(0)) Dh™(Azy)Th(0))DTh™(|ZI0h(0))) =e(x,2)De(y,20p(2).

This proves that§ e, p) is an approximate similarity space.

Converselylet (S, e p) be an approximate similarity space andisét/= (A+ £)Ch(0). Then, sincé
is an order-reversing isomorphism from ([0gL]1) to ([0h(0)], +,0),

d(xy) = h(e(xy))sh(e(x, 2 ®e(y,2)®p(2)) = h(e(x.2))+h(e(y,2))+h(p(2)) < 6(x,2)+3(zy)+[2.

This proves thatg, d, | |) is gppmspace.

In accordance with such a theorem, every exampgnofispace gives an example of approximate
similarity. As a first example, we consider thgmspaces of the formal balls.

Proposition 10.2. The tukasiewicz generator | defines a connectiawéen the ppm-spaces of the
formal-balls and the class of the approximateimilarities defined in Proposition 6.1.

Proof. Consider a pseudo-metri§ (d) and lets : S— [0,1] be a function. Defing,; by setting
di(x,y) = d(x,y)1 and let § Js, S) be thepmmspace associated witlg, (d;) ands by Proposition 9.3.
Then by the Lukasiewicz generatowe can obtain an approximdfesimilarity (S, e, p) wheree(x,y) =
1-04xy) and p(x) = 1-s(x). Moreover, if we seeqxy) = 1-di(x,y), we have thatqis a fuzzylO-
equivalence and thafx,y) = 1 in the casd;(xy) < (s(X)+s(y))/2, i.e. in the case

eqx,y) = I- di(xy) 2 1- (S(X)+5(y))/2 = (Is(X) +1- S(y))/2 = m(xy).
Otherwise, we have
e(xy) = 1 — Eh(xy) - (S(})+s(y))/2)L0 = edxy) +1- (p(x)+p(y))/2 = eqX.y) +m(x.y).
This proves thag(x,y) = eqx,y)Tm(X,y).

Conversely letg, e p) be the approximate-similarity defined in Proposition 6.1 from the fyzz-
equivalenceeq and the functiomp. Also, setd(xy) = 1-eqxy) ands(x) = 1-p(x), thend is a pseudo-
metric and, in accordance with Proposition 9.3,ghied, s define appm-spac€s, Js, ). Trivially, the
approximatel-similarity associated with such a space coincigigls (S, e p).

In accordance with Proposition 6.2, we obtain anggrical interpretation for the resemblance
relations defined in Proposition 2.2. In fact, #heslations are the dual ones of gEmspaces of the
formal balls with a fixed diameter.

A second class of examples is furnished bypibraspaces defined in Proposition 9.4.

Proposition 10.3.Consider the a pseudo-metric spdbkd) and a fixed natural number n. Then, we
obtain an approximatél-similarity by setting

e(xy) = 1M (trunc(d(x,y))) = 1- trunc,(d(x,y))1 ; p(x) = 1-2010".
Such al-similarity is a resemblance relation with respezd.

Notice that, since(x,y) = 1 for everyx, y such thatl(x,y) < 10", the similarity so defined is not able to
detect small differences.

Finally, we show that the duality defined in Theror 10.1 gives geometrical examples of [0,1]-
valued equalities.

Proposition 10.4.Let (Sd) be a pseudo-metrics 00 [0,1] and consider the functiof defined by
setting
I(xy) =d(xy) +&.
Then the fuzzy relation e defined by setting
eqxy) =1"(5(xy)),
is a [0,1]-valued equality.
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Proof. Properties el) and e2) are evident. To prove efstibbserve that
eqxy) = (I- 9(xy))00 = (% d(xy)-§LD0.
Since it is not restrictive to assume tleafx,2)[1(eqz,2—edy,2) is different from 0, we have that
eqx,2) #0 and therefore that(x,2) = 1- 6°(x,2) = 1-d(x,2)-£ >0. Also, since
eqx,20(eqz2—eqy,2) = 1-d(x,2-£+ (eqy,2 + &1 -1
< 1-d(x,2-£+ (eqy,2 + ¢ -1
=-d(x,2 + eqy.2),
we have;d(x,2) + eqy,2) > 0 and thereforeqy,z) > 0. Then,
eqx,20(eqz2—eqy,2) < -d(x,2) + 1- d(y,2)-&
<-dxy) - €+ 1< (-d(xy) - €+ 10 =eqXx,y).

11. Conclusions and future works

This paper is addressed mainly to face the “paresioarising from the indistinguishability relatiamd

this was done by proposing a weakened form of ithesttivity property in the framework of fuzzy
logic. Patently, | do not affirm that the solutibpropose is the definitive one. Indeed, any geauin
paradox admits several different solutions, in galndoreover, all these solutions are interestmom
some point of view and no solution is definitivarfexample, in set theory the paradoxes where faced
by proposing totally different systems of axiomsnmathematical philosophies and we cannot exclude
that further answers will be given in the futuréen the main role of a paradox is to stimulate yeses

and discussions and to suggest new mathematicahfisms.

From a theoretical point of view there is a lowadfrk to do. As an example, an important task is to
give a suitable notion of morphism and to invedgghe properties of the resulting category. This i
analogy with the papers of Hohle. Also, in orderntake the duality established in Theorem 10.1
complete, it should be opportune to extend theonadf approximate similarity structure by introdugi
an order relation over the s&bf elements under consideration. Once we intetpeeelements s as
pieces of information, the interpretation>afy should be thak is obtained fromy by adding further
information.

Finally, another interesting task is to investigg#éite potentialities of the notion of approximate
similarity for applications. Now, assume that thensents inS are pieces of information on the
elements we are interested and fhiet a measure of the completeness of the informafiban perhaps
applications are possible in all the frameworke/irich
- the notion of similarity (or distance) plays atzarole,

- there is not a complete information on the olsjertder consideration.
Nevertheless, due to the initial state of my red®s on this subject, | have no concrete example to
support this claim.
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