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Abstract 
This is an extended abstract of the published paper “Approximate Similarity and Poincaré Paradox to be 
published in Notre Dame Journal of Formal Logic, 49, 2008”. The startin point is an observation by De 
Cock and Kerre, in which, in considering Poincaré paradox, one observes that the intuitive notion of 
“approximate similarity” cannot be adequately represented by the fuzzy equivalence relations. In this 
note we argue that the deduction apparatus of fuzzy logic gives adequate tools to face the question with. 
Indeed a first order theory is proposed whose fuzzy models are plausible candidates for the notion of 
approximate similarity. A connection between these structures and the point-free metric spaces is also 
established.  
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1. Introduction 
As it is well known, the so called “paradox” of Poincaré refers to indistinguishability by emphasizing 
that, in spite of common intuition, this relation is not transitive (see [21]). In fact, it is possible that we 
are not able to distinguish d1 from d2, d2 from d3, . . . ,dm-1 from dm and, nevertheless, that we have no 
difficulty in distinguishing d1 from dm. Now an immediate solution of this paradox would merely 
conclude that our intuition about this notion is wrong. A different solution is proposed by fuzzy logic in 
which the paradoxical effect of the transitivity is avoided by assuming that the indistinguishability is a 
graded property. Indeed, assume that such a notion is represented by a fuzzy ≈-equivalence, i.e. a fuzzy 
relation eq : S × S → [0,1] such that, for every x, y, z in S,  

eq(x,x) = 1                             (reflexive) 
eq(x,y) = eq(y,x)                    (symmetric) 
eq(x,z)≈eq(y,z) ≤ eq(x,y)       (≈-transitive) 

where S is a nonempty set and ≈ a triangular norm. Also, assume that eq(di,di+ 1) = λ where λ is very 
close to 1 but different from 1. Then from the proposed properties we can conclude only that eq(d1,dm) 
≥ λ(m-1) where λ(m-1) denotes the m-1 power of λ with respect to ⊗. Such a conclusion is not a paradox at 
all. In fact if ⊗ is the Łukasiewicz norm and m such that λ(m-1) = 0, then it assert only the trivial 
inequality eq(d1,dm)≥0 (a more formal argument can be found in Section 4).  
 Now, De Cock and Kerre in [3] claim that such a solution is not adequate since the hypothesis λ ≠ 1 
is not justified. The argumentation of these authors refers to an example as the following one. Consider 
the interval S = [1.50, 2.50] of possible heights a man can have and assume that the notion  
“approximately equal heights” is modelled by a fuzzy equivalence eq such that eq(1.50,1.51) = 
eq(1.51,1.52) = … = eq(2.49,2.50) = λ. Then, in accordance with the fact that we cannot distinguish a 
difference in heights of less than 0.01, we have to assume that λ = 1. In fact, we have to differentiate a 
claim as “1.50 is approximately equal to 1.51” which is completely true from a claim as “1.50 is equal 
to 1.51” which is only partially true. Moreover, as observed by Bodenhofer in [2],  
 

“Even if a measuring device can give seemingly precise numbers, accuracy is limited due to various 
external influences. It is not even guaranteed that two measurements of the same person give the same 



- 2 - 
result. So how can we justify that two persons whose heights differ only by two millimetres are given a 
degree of similarity which is strictly less that 1, while two consecutive measurements of the same 
person may differ in the same range?” 
 
On the other hand, if we admit that λ = 1,  then, by the ≈-transitivity and the fact that 1≈1 = 1, we can 
prove that eq(1.50,2.50) = 1,  that is to say that the height of 1.50 is approximately equal to the height of 
2.50. This is clearly an absurdity. 
 Observe that the same considerations apply to the [0,1]-valued equalities defined by Höhle in [13] 
and [14], i.e. the fuzzy relation satisfying the following axioms: 
 e1)   eq(x,y) ≤ eq(x,x) 
 e2)   eq(x,y) = eq(y,x) 
 e3)  eq(x,z)⊗(eq(z,z)→eq(y,z)) ≤ eq(x,y) 
(where → is the residuum associated with ⊗). Indeed, again the paradox is solved by assuming that 
eq(di,di+1) = λ ≠ 1, and again in the case λ = 1 we are forced to conclude that eq(d1,dm) = 1. As a matter 
of fact, as observed in [2], the criticism of De Cock and Kerre applies to all the fuzzy relations eq such 
that kernel(eq) = {( x,y)∈S×S : eq(x,y) = 1} is a transitive relation.  
 As an alternative, De Cock and Kerre proposed the distance-based notion of “resemblance relation” 
in which it is emphasized the idea that “The closer two objects are to each other, the more they are 
(approximately) equal” (see Section 2). Now, even if I completely agree with the criticisms about the 

hypothesis λ ≠ 1, there is something unsatisfactory in the definition of resemblance relation. Indeed,  
- there is no reference to the transitivity while, in my opinion, the basic question is to give a formal 
representation of our intuition suggesting that indistinguishability is transitive in some way 
- there is a strong reference to a pseudo-metric and this precludes an approach within first order logic 
formalisms. 
 In accordance, in this note I propose to face the question by using first order fuzzy logic and by 
admitting a “relaxed” transitivity property. The idea is to take into account the capability of each 
element to be “distinguished” from the remaining ones. This provides a “solution” to Poincaré Paradox 
whose nature is similar to the solution of the Heap paradox proposed by J. A. Goguen [8] and others 
(for example, see Hájek and Novák [12]).  
 Finally, in the paper we show that, in spite of their logical nature, the proposed notions can be 
interpreted in a geometrical setting. Indeed we can connect them with the approach to point-free 
geometry based on the notion of distance between regions and diameter of a region (see [7] and [4]).  
 
2. The resemblance relations 
We define the notion of resemblance relation by referring to the simplified definition given by F. 
Klawonn in [16]. 
 
Definition 2.1. Let (S,d) be a pseudo-metric space, then a fuzzy relation e : S×S → [0,1] is a 
resemblance relation with respect to d provided that: 
 - e(x,x) = 1 
 - e(x,y) = e(y,x) 
 - d(x,y) ≤≤≤≤ d(z,u)  ⇒⇒⇒⇒  e(x,y) ≥ e(z,u). 
 
Given a pseudo-metric space (S,d) and a real number ε ≥0, a simple (crisp) example of resemblance 
relation can be obtained by setting e equal to (the characteristic function of) the relation ≡ defined by 
setting 

x ≡ y  ⇔  d(x,y) ≤ ε. 
It is apparent that such a relation is not transitive, in general. A more interesting class of graded 
resemblance relations can be obtained as follows (see Proposition 7 in [3]).  
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Proposition 2.2. Consider a pseudo-metric space (S,d), a real number ε ≥ 0 and set  
 e(x,y) = 1  if  d(x,y) ≤ ε,  
 e(x,y) = 0  if  d(x,y) ≥ 1+ε,  
 e(x,y) = 1-(d(x,y)-ε) otherwise. 
Then e is a resemblance relation with respect to d.  
 
We say that e is the resemblance relation associated with (S,d) and ε. A more synthetic definition of e 
is given by the following equation  
 e(x,y) = 0∨(1∧(1 – (d(x,y)-ε)).  
A characteristic of these fuzzy relations is that they cannot distinguish small differences and that at the 
same time they are able to detect sufficiently big differences. This shows the existence of a “fuzzy 
model” of Poincaré’s conditions and therefore this gives a solution to the paradox from a semantical 
point of view. Indeed, by reconsidering the example of heights, we can consider the resemblance e 
obtained by assuming that S = [1.50, 2.50], d(x,y) = 20⋅|x-y| and ε = 0.2. In such a case we have   
 e(1.50, 1.51) = e(1.51, 1.52) = . . . = e(2.49, 2.50) = 1  
while   
 e(1.50,1.52) = 0.8, e(1.50,1.53) = 0.6, . . . , e(1.50,1.56) = 0, ...., e(1.50,2.50) = 0.   
 
3. Some basic notions in fuzzy logic 
The reader is assumed to be familiar with the basic notions of fuzzy logic (see, for example [5] and 
[19]). In this section we confine ourselves to list some elementary definitions. We consider as set of 
truth values the interval [0,1] equipped with a continuous t-norm ≈, i.e. an order-preserving associative, 
commutative operation such that x≈1 = x (as an example, see [17]). From this operation we define a 
residuum operation → by setting 

x→y = Sup{ z ∈[0,1] : x≈z ≤y}, 
a negation by setting ¬x = x→0 and a co-norm ⊕ by setting x⊕y = ¬(¬x⊗¬y). A basic property of the 
pair ≈ and  →  is that 

x≈z ≤ y  ⇔  z≤ x→y. 
Given x∈[0,1], we denote by x(n) the n-power of x with respect to ≈, i.e. we set x(n+1) = x≈x(n) and x(0) = 
1. In this paper we refer to Łukasiewicz triangular norm defined by setting  

x⊗y = (x+y-1)∨0. 
For such a norm x→y = min{1,1+y-x}, ¬x = 1-x and x⊕y = (x+y)∧1. Also x(n) = (n⋅x-n+1)∨0 and 
therefore x(n) = 0 for every n such that  n≥1/(1-x). 
 The algebraic structure ([0,1], ⊗, →) defines a first order multi-valued logic. The languages are the 
usual first order languages of classical logic further extended by logical constants {λ : λ∈[0,1]}. The 

conjunction, disjunction, implication are interpreted by ⊗, ⊕, →, respectively. The negation by ¬ and 

the logical constant λ with λ. Moreover, the universal and existential quantifiers are interpreted by the 
greatest lower bound and the least upper bound operators, respectively. A fuzzy interpretation is a pair 
(S, I) where I is a map associating : 
 - any constant c with an element I(c) of S,  
 - any n-ary operation symbol h with an n-ary operation I(h) : Sn

→S, 
 - any n-ary relation symbol r with an n-ary fuzzy relation I(r) : Sn

→[0,1].  
The fuzzy interpretation (S,I) defines a valuation of the formulas in a truth-functional way (see for 
example [19], [5] and [11]). So, given a formula α whose free variables are among x1,...,xn and d1,...,dn 
in S, the truth value Val(S,I)(α,d1,...,dn) of α in d1,...,dn is defined. We denote by Val(S,I)(α) the truth value 
of the universal closure of α. Given a formula α whose free variables are among x1,x2,....,xn, the 
extension of α is the fuzzy relation |α| : Sn

→[0,1] defined by the equation |α|(d1,...,dn) = 
Val(S,I)(α,d1,...,dn). 
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Definition 3.1. Denote by F the set of closed formulas, then a fuzzy system of axioms or fuzzy theory, is 
a fuzzy subset τ : F→[0,1] of F. A fuzzy interpretation (S,I) is a fuzzy model of τ, in brief (S,I) £ τ, 
provided that Val(S,I)(α)≥τ(α) for every α ∈F. The logical consequence operator Lc is defined by 
setting 

Lc(τ)(α) = Inf{ Val(S,I)(α) :  (S,I) £ τ}. 
 
It is useful to represent a fuzzy theory τ  by the set  

Sign(τ) = {( α,λ) : α∈F, λ = τ(α), λ ≠0} 
of signed formulas. Then (S,I) £ τ  provided that Val(S,I)(α) ≥ λ for every (α,λ) in Sign(τ). In the case of 
a crisp theory, we represent τ simply by listing the elements in the support {α∈F : τ(α) ≠ 0}.  
 In this paper we are interested mainly in positive clauses, i.e. formulas such as 

∀x1…∀xn((α1∧…∧αh)→α) where α1,…,αh and α are atomic. A fuzzy interpretation satisfies such a 
formula provided that, for every d1,…,dn in S, 
  

|α1|(d1,…,dn)⊗…⊗|αh|(d1,…,dn) ≤ |α|(d1,…,dn). 
 To define a deduction apparatus for fuzzy logic we refer to the formalization proposed by Pavelka 
in [20] (see also [5], [8], [19]). The idea is that the notion of inference rule have to be extended by 
specifying how a constraint on the truth value of a conclusion depends on the available constraints on 
the truth values of the premises. As an example, we can extend the modus ponens rule by assuming that, 
       IF   you know that α is true at least at degree λ1  
    AND  α ⇒β  is true at least at degree λ2,  
    THEN  you can conclude that β  is true at least at degree λ1≈λ2, 
where α and β are formulas and λ1 and λ2 are elements in [0,1]. Also, given two formulas α and β, we 
extend the classical ∧-introduction rule by assuming that 
 IF      you know that α is true at least at degree λ1  
    AND that β is true at least at degree λ2,  
    THEN you can conclude that α∧β is true at least at degree λ1≈λ2. 
Given a fuzzy theory τ, any proof π of α is evaluated by a number Val(π,τ)∈[0,1]. This number is a 
constraint (a lower bound) on the truth value of α depending on the information carried on by τ. A 
fuzzy theory is contradictory if there are two proofs π1 and π2 of a formula α and its negation ¬α, 
respectively, such that Val(π1,τ)⊗Val(π2,τ) > 0.  We say that τ is consistent if it is not contradictory.  
 Because different proofs give different constraints, we have to consider a constraint D(τ)(α) 
obtained by fusing the totality of the constraints furnished by the proofs of α. 
 
Definition 3.2. Given a fuzzy theory τ and a formula α, we set 

D(τ)(α) = Sup{ Val(π,τ) : π is a proof of α}. 
The fuzzy subset D(τ) is interpreted as the fuzzy subset of formulas of we can derive from τ. The 
operator D is called deduction operator. 
 
We call axiomatizable a fuzzy logic such that there is a fuzzy deduction apparatus whose deduction 
operator D coincides with the logical consequence operator Lc. In such a case a fuzzy theory is 
consistent if and only if it admits a model. The axiomatizability is an important property for a fuzzy 
logic since, in contrast with the logical consequence operator, the deduction operator is defined by an 
“effective” procedure. The effectiveness is expressed, for example, by the fact that if the fuzzy set τ of 
axioms is decidable, then D(τ) is recursively enumerable; if τ is also complete, then D(τ) is decidable  
(see [6]).  
 In this paper we refer mainly to Łukasiewicz fuzzy logic and to the axiomatization proposed in [19]. 
To simplify the writing of the proofs, besides the basic fuzzy inference rules proposed in such a book 
we also consider some derivable rules. 
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4. The paradox and the fuzzy equivalence relations 
Consider a language LE with a binary relation symbol E. Then a fuzzy interpretation of LE is a pair (S,e) 
where e is a binary fuzzy relation in S. In such a language we reformulate the definition of fuzzy ⊗-
equivalence relation given in Section 1 in logical terms.  
 
Definition 4.1. A fuzzy relation e : S×S→[0,1] is a fuzzy ≈-equivalence relation in S if (S,e) is a fuzzy 
model of the set of formulas,  

∀xE(x,x)                                              (reflexive),   
∀x∀y(E(x,y) ⇒ E(y,x))                       (symmetric),   
∀z∀x∀y(E(x,z)∧E(y,z) ⇒ E(x,y))       (transitive). 

 
In [22] L. Valverde shows that the notion of fuzzy ⊗-equivalence is strictly related with the one of 
pseudo-distance. To show this, we have to refer to Archimedean t-norms, i.e. those norms such that, for 
any x, y ∈ (0, 1) an integer n exists such that x(n) < y. The Archimedean t-norms can be obtained in a 
very simple way via additive generators.  
 
Definition 4.2. We call additive generator any continuous strictly decreasing map h : [0,1] →[0,∞] 

such that h(1) = 0. Also, we denote by h[-1] : [0,∞]→[0,1] the map defined by setting  

h[-1](x) = h-1(x∧h(0)). 
 

Proposition 4.3. A binary operation ≈ is a continuous Archimedean t-norm if and only if there exists 
an additive generator h such that, for all x, y∈[0,1], 

x≈y = h[-1](h(x)+h(y)). 
 
As an example, if h(x) = -log(x), then ⊗ is the usual product.  
 
Definition 4.4. We call Łukasiewicz generator the map l : [0,1] →[0,∞] defined by setting l(x) = 1-x.  
 
Observe that l [-1](x) = 1-(x∧1) = (1-x)∨0 and that l generates the Łukasiewicz t-norm defined by  

x⊗y = (x+y-1)∨0. 
We call Łukasiewicz fuzzy logic the fuzzy logic based on such a t-norm. 
  
Theorem 4.5. Let h be an additive generator, ≈ the related t-norm and d a pseudo-metric d in a set S. 
Then we obtain a ≈-equivalence eq in S by setting 
  eq(x,y) = h[-1](d(x,y)). (4.1) 
Conversely, let eq be a ≈-equivalence, then we obtain a pseudo-distance d by setting 
  d(x,y) = h(eq(x,y)). (4.2) 
 
Trivially, given a pseudo-metric d, the fuzzy equivalence eq associated with d by (4.1) is also a 
resemblance relation with respect to d. 
 Assume that in LE  there is a sequence c1, c2, ... of constants. Then the following theorem gives a  
solution of Poincaré paradox once we admit that the formulas E(c1,c2), E(c2,c3), . . . are axioms at a 
degree λ ≠ 1.  
 
Theorem 4.6. Consider Łukasiewicz fuzzy logic and consider the fuzzy theory obtained by adding to the 
axioms for the fuzzy ⊗-equivalence relations the following axioms  

(E(c1,c2), λ) 
(E(c2,c3), λ) 
  . . .  
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(¬E(c1,cm), 1) 

where λ ≠ 1 and m is a fixed number such that λ(m-1) = 0. Then such a theory admits a fuzzy model and 
therefore it is consistent. Also such a logic enables us to give a formal representation of Poincaré 
argument preserving its intuitive content but avoiding its paradoxical character.  
 
 Proof. Let S be the set of natural numbers and define a distance d in S by setting d(x,y) = |x-y|⋅(1-λ) 
if |x-y|⋅(1-λ)≤1 and d(x,y) = 1 otherwise. Also, set eq(x,y) = 1- d(x,y). Then eq is a ⊗-equivalence with 
respect to the Łukasiewicz triangular norm ≈. Moreover, eq(n,n+1) = 1-1+λ = λ and, since λ(m-1) = 0 
entails (m-1)⋅(1-λ) ≥1, eq(1,m) = 0. This proves that (S,eq) is a model of the considered fuzzy theory.  
 Also, in fuzzy logic we can formalize Poincaré argument as follows: 
 

Step 1.  
-  Since  E(c1,c2)  [at degree λ] 
- and E(c2,c3)  [at degree λ] 
we can state  
     E(c1,c2)∧E(c2,c3).             [at degree λ⊗λ]  
- Therefore, since 
       E(c1,c2)∧E(c2,c3) ⇒⇒⇒⇒ E(c1,c3)            [at degree 1]  
 we can state 
   E(c1,c3)   [at degree  λ⊗λ]  
Step 2.    
- Since  E(c1,c3)   [at degree  λ(2)]  
- and E(c3, c4)   [at degree  λ]  
we can state 
  E(c1,c3)∧E(c3,c4). [at degree λ(3)] 
- Therefore, since 
  E(c1,c3)∧E(c3,c4) ⇒⇒⇒⇒ E(c1,c4)            [at degree 1]  
 we can state 
       E(c1,c4)            [at degree λ(3)] 
     . . .  
Step m-1.  
-  Since  E(c1, cm-1)   [at degree  λ(m-2)]  
- and  E(cm-1,cm)   [at degree  λ]  
we can state 
  E(c1, cm)∧E(cm, cm+1). [at degree λ(m-1)] 
- Therefore, since 
   E(c1, cm)∧E(cm, cm+1) ⇒⇒⇒⇒ E(c1, cm+1)    [at degree 1]  
we can state      
  E(c1, cm+1)            [at degree λ(m-1)]. 
 

Thus, such a proof entails that the conclusion E(c1,cm+1) is true at least at degree λ(m-1) = 0 (no 
information).  This is not paradoxical. 
 
5. Approximate ƒ-similarity structures 
As argued in Section 1, the assumption that the formulas E(cn,cn+1) are axioms at degree λ ≠ 1 is 
questionable. Then, to avoid the paradox in the case λ = 1 we have to consider a new class of fuzzy 
relations in which the transitivity property is in some way relaxed. At first observe that if a fuzzy 
relation is not transitive, then we can define the following interesting notions. 
 
Definition 5.1.  Given a fuzzy relation e, the discernibility measure is the extension dis : S→[0,1] of the 
formula 
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Dis(z) ≡ ∀x∀y(E(x,z)∧E(y,z) ⇒ E(x,y)). 

 
The formula Dis(z) says that things equal to z are also equal each other. In other words, it says that z is 
adequate for comparison. By the way, such a property is the first common notion in Book 1 of Euclid’s 
Elements. Observe that I am not sure that it is correct to interpret dis(z) as a measure of the degree of 
discernibility of z from the remaining elements or not. Surely, if e is symmetric, dis(z) it is a measure of 
the behaviour of z with respect to the transitivity. Now, while dis is a “local”  measure of transitivity, in 
a sense, we can also define a “global”  measure of transitivity as follows. 
 
Definition 5.2.  We call transitivity degree of a fuzzy relation e the valuation trans(e) of the formula 

∀z∀x∀y(E(x,z)∧E(y,z) ⇒ E(x,y)). 
 
Equivalently, trans(e) is the valuation of the formula 

∀z(Dis(z)), 
i.e.  of the claim “every element in S is discernible”. Obviously, 
  dis(z) = Inf{ e(x,z)≈e(y,z) →e(x,y)  : x, y ∈S} (5.1) 
and 
  trans(e) = Inf{dis(z)  : z ∈S} (5.2) 
Notice that the notion of “transitivity degree” was proposed by S. Gottwald in [9] and [10] (see also [1]). 
As an example, let e be the crisp resemblance relation defined in Section 2 in the case (S,d) is the usual 
metric space in the real line and ε > 0. Then it is clear that dis(z) = 0 for every real number z and 
therefore that trans(e) = 0. Instead, if we consider only the positive real line, then dis(0) = 1 while again 
trans(e) = 0. In the graded cases both trans(e) and dis(z) depend strongly on the triangular norm, 
obviously. As an example, let e be the graded resemblance relation defined in Section 2. Then, dis(1.50) 
= dis(2.50) = 1 and 

dis(1.51) ≤ e(1.50, 1.51)≈e(1.51, 1.56) → e(1.50, 1.56) = 1≈0.2→ 0 = 0.2→ 0. 
So, in the case ⊗ is either the minimum or the usual product, we have dis(1.51) = 0 and the function dis 
ranges continuously from 0 to 1. In such a case trans(e) = 0. Instead, in the case ⊗ is the Łukasiewicz t-
norm, dis(1.51) = 0.8 and dis ranges continuously from 0.8 to 1. In such a case trans(e) = 0.8).  
 It is easy to prove that the formula 

  ∀x∀y∀z(E(x,z)∧E(y,z)∧Dis(z) ⇒ E(x, y)), (5.3) 
is true, i.e. that 
  e(x,z)≈e(z,y)≈dis(z) ≤ e(x,y). (5.4) 
Indeed, recall the basic property of the pair ≈, → and observe that, for any x, y, z in S, 
  e(x,z)≈e(y,z)→e(x,y) ≥ dis(z).  (5.5) 
Implication (5.3) suggests the following definition.  
 
Definition 5.3. Consider a language LE,P with two relation symbols E and P.  Then an approximate ≈-
similarity structure, in brief an approximate similarity, is a fuzzy model of the system of axioms: 
 A1   ∀xE(x,x), 
 A2   ∀x∀y(E(x,y) ⇒ E(y,x)), 
 A3   ∀x∀y∀z(E(x,z)∧E(y,z)∧P(z) ⇒ E(x,y)). 
 
As usual, we denote by (S, e, p) a fuzzy interpretation of LE,P where e = I(E) and p = I(P). The proof of 
the following proposition is obvious. 
 
Proposition 5.4. A  fuzzy interpretation (S, e, p) is an approximate ≈-similarity structure if and only if   
 i)     e(x,x) = 1,     
 ii)    e(x,y) = e(y,x),     
 iii )   e(x,z)≈e(y,z)≈p(z) ≤ e(x,y). 
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We can obtain the usual theory of fuzzy ≈-equivalences by adding the axiom ∀zP(z), i.e. the condition 
p(z) = 1 for any z∈S. The following proposition relates the approximate similarities with the 
discernibility measure.  
 
Proposition 5.5. Let e be a reflexive and symmetric fuzzy relation in a nonempty set S and let p be a 
fuzzy subset of S. Then the structure (S, e, p) is an approximate similarity if and only if p ⊆ dis. In other 
words, the approximate similarities are the models of the system of axioms 
 A1    ∀xE(x,x), 
 A2    ∀x∀y(E(x,y) ⇒ E(y,x)), 
 A3’   ∀z(P(z) ⇒ Dis(z)). 
 
 Proof. If p ⊆ dis, then  

e(x,z)≈e(y,z)≈p(z) ≤ e(x,z)≈e(y,z)≈dis(z) ≤ e(x, y).  
Conversely, if e(x,z)≈e(y,z)≈p(z) ≤ e(x,y), then  

p(z) ≤ e(x,z)≈e(y,z)→e(x,y) ≤ dis(z). 
 
Observe that the equivalence between the systems A1-A2-A3 and A1-A2-A3’ can be proved also in a 
syntactical way by the deduction apparatus of Hájek’s basic fuzzy logic.  
 Implication (5.3) shows that, given a reflexive and symmetric fuzzy relation e, the structure (S, e, 
dis) is the “best” approximate similarity structure we can define from e. In spite of that, I prefer not to 
limit the theory to the case p = dis. Indeed, while dis(z) depends on the behaviour of z with respect to 
the remaining elements in S, p(z) can represent also an intrinsic property of z (as an example “to be 
precise”, to be “sharply defined” and so on). We require only that such a property entails the 
discernibility property.  
 The following proposition, whose proof is immediate, shows that in the case p is a constant 
function, we can give another system of axioms for the approximate similarities in which the predicate 
P is not involved. 
 
Proposition 5.6.  The class of ⊗-similarities in which p is a fuzzy subset constantly equal to ε coincides 
with the class of models of the axioms A1 and A2 and the signed formula 
 A3” (∀x∀y∀z(E(x,z)∧E(y,z) ⇒ E(x,y)), ε). 
or, equivalently, the signed formula 
 A3’’’   (∀zDis(z),ε). 
 
6. Examples of approximate similarities 
The following proposition gives a class of examples of approximate ⊗-similarities whose geometrical 
meaning will be evident in Section 10.  
 
Proposition 6.1. Let ⊗ be the Łukasiewicz t-norm, (S,eq) a fuzzy ⊗-equivalence and p : S →[0,1] be a 
fuzzy subset of S. Moreover, set m(x,y) = l((p(x)+p(y))/2) and 

e(x,y) = eq(x,y)⊕m(x,y). 
Then (S,e,p) is an approximate ⊗-similarity. 
 
 Proof. It is evident that e is reflexive and symmetric. To prove that 

e(x,z)≈e(y,z)≈p(z) ≤ e(x,y) 
or equivalently, that 

e(x,z)+e(y,z)+p(z)-2 ≤ e(x,y), 
it is not restrictive to assume that e(x,y) ≠ 1 and therefore that e(x,y) = eq(x,y) +1-p(x)/2-p(y)/2. Then 
 e(x,z)+e(y,z)+p(z)-2 ≤ (eq(x,z)+1-p(x)/2+1-p(z)/2)+(eq(y,z)+1-p(y)/2-p(z)/2)+p(z)-2 
                                       = eq(x,z)+eq(y,z)+1-p(x)/2-p(y)/2 ≤ eq(x,y)+1-p(x)/2-p(y)/2 = e(x,y). 
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We call an approximate ⊗-similarity obtained in such a way the approximate ⊗-similarity associated 
with (S,eq) and p. The following proposition shows that in the case p is a constant function, these 
approximate similarities coincide with the resemblance relations defined in Proposition 2.2. 
  
Proposition 6.2. Let ⊗ be the Łukasiewicz t-norm and (S,e,p) be the approximate ⊗-similarity 
associated with the fuzzy equivalence eq and with the fuzzy set p constantly equal to ε. Then e coincides 
with the resemblance relation associated with the pseudo-metric d(x,y) = l(eq(x,y)) and ε. Conversely 
let e be the resemblance relation associated with the pseudo-metric space (S,d) and ε∈[0,1] . Then e 
coincides with the approximate similarity associated with the fuzzy equivalence eq(x,y) = l(d(x,y)) and 
the fuzzy set p constantly equal to ε. 
 
 Proof. Let e be the ⊗-similarity obtained from the fuzzy ⊗-equivalence (S,eq) and the fuzzy subset 
p  constantly equal to ε and set d(x,y) = l(eq(x,y)). Then 

e(x,y) = (eq(x,y)+ε)∧1 = (1-d(x,y)+ε)∧1, 
and therefore, e(x,y) = 1 if d(x,y) ≤ ε,  and e(x,y) = 1-(d(x,y)-ε) otherwise. Then, in account of the fact 
that e(x,y) < 1+ε, this shows that e is the resemblance relation defined from d and ε. In a similar way 
one proves the second part of the proposition. 
 
Proposition 6.3. In the approximate ⊗-similarities defined in Proposition 6.2 we have p ≠ dis, in 
general. 
 

 Proof. To give an example in which dis ≠ p, assume that S = [0,1], eq(x,y) = l(|x-y|) and ε  ≠1. Then 

e(x,y) = 1 if |x-y| ≤ ε and e(x,y) = 1- |x-y| +ε otherwise. We claim that that  
e(x,y) ≥ e(x,0)≈e(y,0) 

for any x, y in S and therefore that dis(0) = 1 ≠ p(0). Indeed, it is not restrictive to assume that x ≥ y and 
e(x,y) ≠ 1 and therefore that e(x,y) = 1 – x+y+ε. Consider the case e(x,0) = 1. Then x ≤ ε  and therefore 

1 - x +y +ε ≥ 1 -ε + y+ε = 1+y ≥ e(y,0) = e(x,0)⊗e(0,y). 
Consider the case e(x,0) ≠ 1, then e(x,0) = 1-x+ε  and therefore     

1 - x +y +ε  = e(x,0)+y ≥ e(x,0) ≥ e(x,0)⊗e(0,y). 
 
Consider the just exposed example in the case ε = 1/2, then while dis(0) = dis(1) = 1 we have that  
dis(1/2) = 1/2.  
 The structures defined in such a section can be embedded into a unique structure. Given a 
nonempty set S, we call fuzzy point a pair (x,λ) such that x∈S and λ∈[0,1]. We denote by xλ the fuzzy 
point (x,λ) and by FP(S) the set S×[0,1] of all the fuzzy points in S. We can interpret a fuzzy point xλ as 
an “event” x together a “discriminability degree” of the observation instrument in x. The proof of the 
following proposition is trivial. 
 
Proposition 6.4. Let ⊗ be the Łukasiewicz t-norm and (S,eq) be a fuzzy ⊗-equivalence. Moreover, 
define e’ by setting 

e’(xλ,yµ) = eq(x,y)⊕l((λ+µ)/2) 
and define p’ by setting p’(yµ) = µ . Then (FP(S),e’,p’) is an approximate ≈-similarity structure. Let 
(S,e,p) be defined as in Proposition 6.1. Then the map h  : S →S’ associating any x∈S with xp(x) is an 
embedding of (S,e,p) into (Sf, e’, p’). 
 
7. Approximate ⊗⊗⊗⊗-similarities and the paradox 
The kernel of an approximate ⊗-similarity e is not an equivalence relation, in general. Indeed, given an 
element z ∈S such that p(z) ≠ 1, from e(x,z) = 1 and e(z,y) = 1 we can only derive that e(x,y) ≥ p(z). This 
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suggests that these relations are good candidate to face Poincaré paradox in spite of the fact that 
E(cn,cn+1) is accepted as an axioms at degree 1. 
 
Theorem 7.1. Consider in Łukasiewicz fuzzy logic the fuzzy theory obtained by adding to the axioms for 
the approximate ⊗-similarities the axioms  

(¬E(c1,cm), 1) 
(E(c1,c2), 1) 
(E(c2,c3), 1) 
. . . 
(P(c1),ε) 
(P(c2),ε) 

  . . .  
where ε is different from 0 and 1 and m is such that ε(m-2) = 0. Then such a theory admits a fuzzy model 
and therefore it is consistent. Moreover, such a logic enable us to give a formal representation of 
Poincaré argument preserving its intuitive content but avoiding its paradoxical character.  
 
Proof. Let S be the set of positive natural numbers and set e(x,y) = ε(|(x-y| -1) if x ≠ y and e(x,y) = 1 if x = y. 
Then it is evident that e is symmetric and reflexive. We claim that, 

e(x,z)⊗e(y,z)⊗ε ≤ e(x,y). 
In fact, in all the cases x = z, y = z and x = y such an inequality is immediate. Otherwise, since |x-z|+|y-z| 
-1≥|x-y| -1, 

e(x,z)⊗e(y,z)⊗ε = ε(|x-z| -1) ⊗ε|(|y-z| -1)⊗ε  = ε(|x-z| + |(|y-z| -1)  ≤ ε(|x-y| -1) = e(x,y). 
As a consequence, if we define p by setting p(x) = ε for every x∈S, we obtain a ⊗-similarity structure 
(S,e,p). Moreover, since e(n,n+1) = ε(0) = 1 and e(1,m) = ε(m-2) = 0, such a structure is a model of the 
proposed fuzzy theory. 
 To formalize Poincaré argument we can consider the following proof: 
 
Step 1.  
-  Since  E(c1,c2)  [at degree 1] 
- and E(c2,c3)  [at degree 1] 
- and P(c2) [at degree ε] 
we can state 
     E(c1,c2)∧E(c2,c3)∧P(c2).             [at degree 1⊗1⊗ε]  
- Therefore, since 
       E(c1,c2)∧E(c2,c3)∧P(c2) ⇒⇒⇒⇒ E(c1,c3)            [at degree 1]  
 we can state 
   E(c1,c3)   [at degree  ε(1)]  
Step 2.    
- Since  E(c1,c3)   [at degree  ε(1)]  
- and  E(c3, c4)   [at degree  1]  
- and P(c3) [at degree ε] 
we can state 
  E(c1,c3)∧E(c3,c4)∧P(c3). [at degree ε(2)] 
- Therefore, since 
  E(c1,c3)∧E(c3,c4)∧P(c3) ⇒⇒⇒⇒ E(c1,c4)            [at degree 1]  
 we can state 
       E(c1,c4)            [at degree ε(2)] 
     . . .  
Step m-1.  
-  Since  E(c1, cm-1)   [at degree  ε(m-3)]  
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- and  E(cm-1,cm)   [at degree  1]  
- and P(cm-1) [at degree ε] 
we can state  
  E(c1, cm-1)∧E(cm-1, cm)∧P(cm-1). [at degree ε(m-2)] 
- Therefore, since 
   E(c1, cm)∧E(cm, cm+1)∧P(cm) ⇒⇒⇒⇒ E(c1, cm+1)    [at degree 1]  
we can state       
  E(c1, cm)            [at degree ε(m-2)]. 
 
Thus, such proof entails that the conclusion E(c1, cm) is true at least at degree ε(m-2) = 0. As such, this 
conclusion is not contradictory with the axiom (¬E(c1,cm), 1). 
 
We emphasize that the fact that a proof π of E(c1,cm) is evaluated to 0 does not mean that such a 
formula is false but rather that π gives no information on its truth value. As an example imagine to add 
the axiom E(c1,c3) to our theory. Then there is a proof to prove E(c1,cm) at degree ε(m-3) and it is possible 
that such a value is different from 0.  
 
8. Some connections with the sorites paradox 
We will compare the solution we have just proposed for Poincaré paradox with the solutions proposed 
by fuzzy logic to another famous paradox: the sorites paradox. In particular, we refer to the paper [12] 
by Hájek and Novák. This paradox runs as follows. Consider a predicate Small and an infinite sequence 
c1, c2, . . . of constants. The intended meaning is that cn denotes an heap dn with n grains and Small(cn) 
means that such an heap is small. In accordance with such an interpretation, we assume that the 
formulas 

Small(c1), Small(c1) ⇒ Small(c2), . . . , Small(cn) ⇒ Small(cn+1), . . . 
holds true. On the other hand, it is evident that, given any n∈N, from these formulas we can prove 
Small(cn) by a suitable number of applications of Modus Ponens. This contradicts our intuition 
suggesting that there is m ∈N such that Small(cm) is false. 
 A first analysis of such a paradox in fuzzy logic was proposed by Goguen in [8]. Successively, 
Hájek and Novák in [12] rendered his considerations more precise and introduced new interesting ideas. 
In particular, two approaches are considered. The first one is based on the idea for which if “dn is 
small”, then it is almost true that “dn+1 is small”. The second idea is that the implication “if dn is small 
then dn+1 is small” is almost true.  
 In the first case the logical connective “almost true” At is considered and it is interpreted in such a 
way that the two axiom schemata α ⇒ At(α) and (α⇒β) ⇒ (At(α)⇒At(β)) are satisfied. A simple 
example is obtained by considering a value ε different from 0 and 1 and by interpreting At by the 

function at(x) = ε→x. In particular, by assuming that → is the Łukasiewicz implication, we obtain that 

at(x) = 1∧(x+1-ε). In such a case, since atn(x) = 1∧(x+n(1-ε)), we have that atn(0) = 1∧n⋅(1-ε) and 

therefore, if ε ≠1, atn(0) = 1 for every n such that n ≥ 1/(1-ε). This means that given a false formula α, 

there is m∈N such that Atm(α) is true. Now, in this enriched fuzzy logic we can formulate the heap’s 
axioms as follows: 

Small(c1), Small(c1) ⇒ At(Small(c2)), . . . , Small(cn) ⇒ At(Small(cn+1)), . . . 
From these axioms we can derive Atm(Small(cm)) (and not Small(cm)). If m≥1/(1-ε), since atm(0) = 1, this 
conclusion is not in contradiction with the falsity of Small(cm). Thus such a reformulation of the 
paradoxical argument gives no paradox. Observe that the price to pay for such a solution is to admit that 
Atm(α) is true in spite of the falsity of α. Now, in spite of the justification given in the paper for which 
“we may not be 100% sure that something is false”, there is something of unsatisfactory in such an 
acceptance. Indeed, the interpretation of a logic connective is independent of the meaning of the 
formulas since it depends only on the considered truth values. Then it is sufficient that there is only a 
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formula which is surely false (as an example 0, or β∧¬β) to impose that at(0) = 0 and therefore that 
atn(0) = 0 for every natural n. Then, the property admitted for the logical connective At is no less 
“paradoxical” than the heap paradox.  
 The second idea exposed in [12] leads to assume the axioms Small(cn) ⇒ Small(cn+1) at a degree ε ≠ 
1. Indeed, it is easy to see that in the deduction apparatus of fuzzy logic the sorites argument enables us 
to prove Small(cm) only at a degree ε(m) = 0. Such an approach is the same proposed firstly by Goguen in 
[8] (see also [5]). 
 Now the first approach suggests the possibility to solve the Poincaré paradox by considering the 
following class of fuzzy relations defined by using the logical operator At.  
 
Definition 8.1. A fuzzy relation eq in a set S is called an almost-⊗-similarity provided that (S, eq) 
satisfies the following axioms 
 ∀xE(x,x)                                               (reflexive),   
 ∀x∀y(E(x,y) ⇒ E(y,x))                        (symmetric),   
 ∀z∀x∀y(E(x,z)∧E(y,z) ⇒ At(E(x,y))       (almost-transitive). 
 
Then in an almost-⊗-similarity e the transitivity is expressed by the inequality 
 e(x,z)⊗e(y,z) ≤ at(e(x,y)). 
Now, in such a case Poincaré argument gives as a theorem the formula Atm(E(c1,cm)) and not E(c1,cm). 
Such a theorem is not in contradiction with the falsity of E(c1,cm).  
 As a matter of fact if we consider as an interpretation of At the fuzzy function ε→x, the notion of 
almost-⊗-similarity coincides with the one of fuzzy ⊗-similarity with respect to the fuzzy subset p 
constantly equal to ε. In fact, we have  
 e(x,z)⊗e(y,z) ≤ at(e(x,y))  ⇔  e(x,z)⊗e(y,z) ≤ (ε→e(x,y))  
                                          ⇔  e(x,z)⊗e(y,z)⊗ε ≤ e(x,y)   ⇔   e(x,z)⊗e(y,z)⊗p(z) ≤ e(x,y). 
Then it is not surprising that the notion of almost-⊗-similarity enables us to prove an analogous of 
Theorem 7.1 and therefore to solve the paradox. 
 The second approach suggests to consider the transitivity property as an axiom at degree ε with ε ≠1, 
i.e. to represent such a property by the signed formula (∀z∀x∀y(E(x,z)∧E(y,z) ⇒ E(x,y)), ε). A fuzzy 
relation satisfies such a property provided that 
 e(x,z)⊗e(y,z)→e(x,y) ≥ε. 
Again, the presence of such a weak formulation of the transitivity enables us to solve the paradox. 
Again, this is not surprising since, in accordance with Proposition 5.6, assuming the transitivity at 
degree ε is equivalent to referrring to the ⊗-similarities in which p is constantly equal to ε. 
 Finally, we observe that the sorites paradox can be expressed by involving the distinguishability 
relation E, too. As an example, a phenomenal reformulation of such a paradox is obtained by assuming 
that  
- the heaps d1,….,d1000 look to be small for me  
- for n ≥ 1000 I am not able to distinguish dn from dn+1 
- if an heap x is small and we are not able to distinguish x from an heap y, then y is small 
- dm is not small, 
where m is a sufficiently big number. In classical logic we can express this by the following system of 
axioms 
 Small(cn)   for n ≤ 1000 
 E(cn,cn+1)  for every n ≥ 1000 
 ¬Small(cm)  
 ∀x∀y(Small(x)∧E(x,y) ⇒ Small(y)). 
Trivially, for every n∈N, the formula Small(cn) is a theorem of such a system and this contradicts the 
axiom ¬Small(cm). In fact, Small(c1),…, Small(c1000) are axioms (and therefore theorems). Assume that 
Small(cn) is a theorem with n ≥ 1000, then since E(cn,cn+1) and Small(cn-1)∧E(cn-1,cn) ⇒ Small(cn) are 
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axioms, Small(cn) is a theorem, too. It is interesting to observe that in such a version of sorites paradox 
the transitivity property of E plays no role and the only hypothesis is that the formulas E(cn,cn+1) are 
assumed at degree 1 for every n ≥ 1000. Then, independently from the fact that E is interpreted by a 
fuzzy equivalence relation, by a resemblance relation or by an approximate ⊗-similarity, the 
paradoxical argument remains valid. Obviously, fuzzy logic is able to give a solution in the case the 
formulas E(cn,,cn+1) are substituted with the signed formulas (E(cn,cn+1),λ) where λ is a suitable number 
different from 1.  
 

Theorem 8.2. Given q∈N and λ ≠1, consider in Łukasiewicz fuzzy logic the fuzzy theory obtained by 

adding to the axioms for the fuzzy ⊗-equivalences the axioms 
 Small(cn)          for n ≤ q 
 (E(cn,cn+1), λ)   for every n > q 
 ∀x∀y(Small(x)∧E(x,y) ⇒ Small(y)). 
Then there is a fuzzy model of such a theory satisfying the formula ¬Small(cm) for a suitable m∈N. 
  
 Proof. Let S be the set of heaps and let (an)n∈N  be a sequence of real numbers in [0,1]. Define eq by 
setting  
 eq(dh,dk) = 1                                  if h = k  
 eq(dh,dk) =  ah-1⊗ah-2⊗…⊗ak        if h>k 
 eq(dh,dk) = eq(dk,dh)                     otherwise.  
Then e is a fuzzy ⊗-equivalence. In fact, while it is evident that eq is reflexive and symmetric, to prove 
that, for every dh and dk in S, 

eq(dh,dk) ≥ eq(dh,di)⊗eq(di,dk) 
it is not restrictive to assume that h > k. Then, in the case i ≥ h  

eq(dh,dk) ≥ eq(di,dk) ≥ eq(dh,di)⊗eq(di,dk), 
in the case i ≤ k  

eq(dh,dk) ≥ eq(dh,di) ≥ eq(dh,di)⊗eq(di,dk). 
Finally, in the case h > i >k,   

eq(dh,dk) = ah-1⊗ah-2⊗ai⊗ai-1⊗…⊗ak = (ah-1⊗ah-2⊗ai)⊗(ai-1⊗…⊗ak)  = eq(dh,di)⊗eq(di,dk). 
 Define the fuzzy relation small by setting small(d1) = 1 and, for n>1,   

small(dn) = an-1⊗…⊗a1. 
Obviously, (small(dn))n∈N  is an order-reversing sequence. We claim that  

small(dh) ≥ small(dk)⊗eq(dh,dk) 
for every pair dh, dk in S. In fact, in the case h > k,  

small(dh) = (ah-1⊗ah-2⊗…⊗ak)⊗(ak-1⊗ak-2⊗…⊗a1) =  eq(dh,dk)⊗small(dk). 
In the case h ≤ k,  

small(dh) ≥ small(dk) ≥ small(dk)⊗eq(dh,dk). 
 In order to satisfy the remaining axioms, we have to consider a sequence (an)n∈N satisfying suitable 

properties. Now, consider a sequence (cn)n∈N of elements in [0,1] such that cn ≤ 1-λ and  1
1

>∑
∞=

=
n

n nc  

and define (an)n∈N by setting an = 1 if n ≤ q and an = 1-cn-q otherwise. Then, small(d1) = small(d2) =… = 

small(dq) = 1 and eq(dn,dn+1) = an = 1-cn-q ≥ λ for every n>p. Let k∈N such that  1
1

≥∑
=
=

kn

n nc . Then, 

since 1-aq+1 +…+1-aq+k = c1 +…+ck ≥ 1,  we have that aq+1+…+aq+k –k+1≤ 0. Thus, if we set m = 
k+1+q, we obtain that aq+1+…+am-1 +q-m+2≤ 0 and therefore 

small(dm) = a1⊗…⊗am-1 = aq+1⊗…⊗am-1 = (aq+1+…+am-1 –m+q +2)∨0 = 0 
and this proves that (S, eq, small) is a fuzzy model of our fuzzy theory satisfying Small(cm). 
 We conclude the proof by observing that there is no difficulty in exhibiting a sequence (cn)n∈N 
satisfying the required property. As an example, we can set ci = 1-λ and therefore aq+i = λ for every 
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n∈N. In such a case, it is sufficient to assume that m ≥ 1+q+ 1/(1-λ) to obtain that small(dm) = λ(m-1- q) = 
0. A more interesting example is obtained, under the hypothesis λ < 1/2, by considering a real number h 

such that 1/2  < h ≤ 1-λ and set cn = hn. Then 1
1

1
1

1
1

≥
−

=−
−

=∑
∞=

= h

h

h
c

n

n n  and it is evident that cn ≤ 

1-λ. In such a case, since c1+…+ck = (1-hk+1)/(1-h)-1 and 
c1+…+ck ≥ 1 ⇔ 1-hk+1 ≥ 2(1-h) ⇔  k ≥ logh(2h-1), 

we can set m equal to any natural number such that m ≥ logh(2h-1) -1-q.  
 
 It is an open question to find a similar solution of the sorites paradox in which the axioms E(cn,cn+1) 
are assumed at degree 1 and E is interpreted by an approximate ⊗-similarity. 
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9. Distances and diameters in point-free geometry 
Theorem 4.5 points to a bridge between a notion logical in nature and a notion metrical in nature. We 
can extend such a connection to the approximate ⊗-similarities provided we refer to the notion of 
pointless metric space. Such a notion was proposed in a series of papers as a basis for a metrical 
approach to point-free geometry (see [7] and [4]) in which the notion of region, distance, diameter, 
inclusion are assumed as primitive and the points are defined in a suitable way. This in accordance with 
the ideas of A. N. Whitehead (see [23]). 
 
Definition 9.1. A pointless pseudo-metric space, in short  a ppm-space,  is a structure (S, ≤, δ, | |), 
where (S,≤) is an ordered set,  δ : S×S→[0,∞) is order-reversing, | | :S → [0, ∞] is order-preserving and, 
for every  x, y, z ∈ S : 

(a1) δ(x,x) = 0 
(a2) δ(x,y) = δ(y,x) 
(a3) δ(x,y) ≤ δ(x,z) + δ(z,y) + z. 

 
The elements in S are called regions, the order ≤ is called inclusion relation, δ(x,y)  distance between x 
and y, |x| the diameter of x. Observe that a3) is a weak form of the triangular inequality taking in 
account the diameters of the regions. In fact, if all the diameters are equal to zero, then a3) coincides 
with the triangular inequality and the ppm-space is a pseudo-metric space. Then the notion of ppm-
space extends the one of pseudo-metric space (and therefore of metric space). More precisely, we can 
identify the pseudo-metric spaces as the ppm-spaces in which ≤ is the identity and all the diameters are 
equal to zero. The prototypical examples of ppm-space are given in the following proposition (see [4]). 
 
Proposition 9.2. Let (M, d) be a pseudo-metric space and let C be a nonempty class of bounded and 
nonempty subsets of M. Define δ and | | by setting  
     δ (X,Y) = inf{d(x,y) : x∈ X,  y∈Y} (9.1) 
      |X| = sup{d(x,y) : x, y ∈ X}, (9.2) 
respectively. Then (C, ⊆, δ, | |) is a ppm-space. 
 
We call the so-defined spaces canonical. Such an interpretation enables us to illustrate the meaning of 
a3). Indeed, by referring to the Euclidean plane, in the following picture 
 
  
                                                                     Z                               δδδδ(Z,Y) 
                                              δδδδ(X,Z)  
  
                                            X                                                                    Y 
                                                                              δδδδ(X,Y) 
 
 
it is evident that δ(X,Y) > δ(X,Z) + δ(Z,Y) and therefore that the usual triangular inequality cannot be 
assumed. Instead, it is matter of routine to prove that δ(X,Y) ≤ δ(X,Z) + δ(Z,Y) + |Z|.  
 For instance, let (E,d) be a Euclidean metric space, and s : E →[0,∞) be a function. Also, denote by 
B(P, s(P)) the closed ball centered in P and whose diameter is s(P) and set S = {B(P, s(P)) : P∈E}. 
Then we can consider the canonical space defined by this class of closed balls. In such a space the order 
is the identity relation, the diameter | | coincides with the function s and 
 δ(B(P, s(P)),B(Q, s(Q))) = 0                                        if d(P,Q) ≤ (s(P)+s(Q))/2 
 δ(B(P, s(P)),B(Q, s(Q))) = d(P,Q) - (s(P)+ s(Q))/2    otherwise. 
If we denote by P the ball B(P, s(P)), we can define directly in E a ppm-space by setting 
 δ(P,Q) = 0                                         if d(P,Q) ≤ (s(P)+ s(Q))/2 
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 δ(P,Q) = d(P,Q) - (s(P)+ s(Q))/2     otherwise. 
This suggests the definition of a simple class of ppm-spaces we call formal balls space. 
 
Proposition 9.3. Given a pseudo-metric space (S,d) and a function s :S→ [0,∞), define δs by setting 
  δs(x,y) = (d(x,y) - (s(x)+s(y))/2)∨0. 
Then, the structure (S, δs, s) is a ppm-space. 
  
 Proof.  In the case d(x,y) < (s(x)+s(y))/2 the inequality     

δs(x,z)+δs(z,y)+ s(z) ≥ δs(x,y) 
is trivial. So, we assume that d(x,y) ≥ (s(x)+s(y))/2. In the case  d(x,z) ≥ (s(x)+s(z))/2 and d(z,y) ≥ 
(s(z)+s(y))/2, 
 δs(x,z)+δs(z,y)+ s(z) = d(x,z) - (s(x)+s(z))/2 +d(z,y) - (s(y)+s(z))/2 +  s(z)  
                                      ≥ d(x,y) - (s(x)+s(y))/2 = δs(x,y). 
Assume that d(x,z)< (s(x)+s(z))/2  and therefore that 
 s(z)/2-s(y)/2 = (s(x)+s(z))/2- (s(x)+s(y))/2 ≥ d(x,z) - (s(x)+s(y))/2. 
Then, in the case d(z,y) ≥ (s(z)+s(y))/2  
 δs(x,z)+δs(z,y)+ s(z) = d(z,y) - (s(z)+s(y))/2 + s(z) = d(z,y) + s(z)/2-s(y))/2 
                                      ≥ d(z,y)+d(x,z) - (s(x)+s(y))/2   
                                      ≥ d(x,y) - (s(x)+s(y))/2 = δs(x,y). 
In the case d(z,y) ≤ (s(z)+s(y))/2 we have that d(x,z)+d(z,y) ≤ (s(x)+s(z))/2+(s(z)+s(y))/2 and therefore 
 s(z) ≥ d(x,z)+d(z,y) - (s(x)+s(y))/2. 
So, 
 δs(x,z)+δs(z,y)+ s(z) =  s(z) ≥ d(x,z)+d(z,y) - (s(x)+s(y))/2 ≥ d(x,y) - (s(x)+s(y))/2 = δs(x,y). 
In a similar way we go on in the remaining cases. 
 
 In a canonical space a region can be interpreted as an incomplete information (i.e. a constraint) on a 
point. This means that the approximation originates from the imprecision of the objects whose distance 
we have to calculate. We can consider also the case in which the objects are given in a precise way but 
the approximation originates from the instrument used to measure distances. As an example, given a 
natural number n, denote by truncn(x) the n-decimal truncation of a real number x. Then the proof of the 
following proposition is matter of routine. 
 
Proposition 9.4. Let (M, d) be a pseudo-metric space and n be a fixed natural number. Also, set δ(x,y) 
= truncn(d(x,y)) and  |x| = 2⋅10-n. Then (M, =, δ, | |) is a ppm-space.  
 
10. Geometrical interpretations of the approximate ⊗⊗⊗⊗-similarities 
This section is devoted to show that the logical notion of approximate ⊗-similarity is strictly connected 
with the metrical notion of ppm-space. We are not interested in the order relation ≤ and therefore we 
confine ourselves to the cases in which ≤ is the identity. For these structures we write (S, δ, | |) instead 
of (S, =, δ, | |). Notice that if (S, ≤, δ, | |) is a ppm-space, then (S, =, δ, | |) is a ppm-space too. 
 
Theorem 10.1. Let h be an additive generator and ≈ be the related t-norm. Then we can associate any 
ppm-space (S, δ, | |) with an approximate ≈-similarity space (S, e, p) such that 

e(x,y) = h[-1](δ(x,y))    ;    p(x) = h[-1](|x|). 
Conversely, we can associate any approximate ≈-similarity space (S, e, p) with a ppm-space (S, δ, | |) 
by setting 

δ(x,y) = h(e(x,y))  ;  |x| = h(p(x)). 
 
 Proof. Let (S, δ, | |) be a ppm-space. Then, since 
 δ(x,y)∧h(0) ≤ δ(x,z)∧h(0) + δ(z,y)∧h(0) + |z|∧h(0) 
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we have 
 e(x,y) = h-1(δ(x,y)∧h(0)) ≥ h-1((δ(x,z)∧h(0))+(δ(z,y)∧h(0))+(|z|∧h(0)))  
               = h-1(δ(x,z)∧h(0)) ⊗h-1(δ(z,y)∧h(0))⊗h-1(|z|∧h(0)))  = e(x,z)⊗e(y,z)⊗p(z). 
This proves that (S, e, p) is an approximate similarity space.  
 Conversely, let (S, e, p) be an approximate similarity space and set λ+tµ = (λ+µ)∧h(0). Then, since h 
is an order-reversing isomorphism from ([0,1],≈,1) to ([0,h(0)], +t,0), 

δ(x,y) = h(e(x,y))≤h(e(x,z)≈e(y,z)≈p(z)) = h(e(x,z))+th(e(y,z))+th(p(z)) ≤ δ(x,z)+δ(z,y)+|z|. 
This proves that (S, δ, | |) is a ppm-space. 
  
In accordance with such a theorem, every example of pmm-space gives an example of approximate ⊗-
similarity. As a first example, we consider the ppm-spaces of the formal balls. 
 
Proposition 10.2. The Łukasiewicz generator l defines a connection between the ppm-spaces of the 
formal-balls and the class of the approximate ⊗-similarities defined in Proposition 6.1.  
 
 Proof. Consider a pseudo-metric (S, d) and let s : S → [0,1] be a function. Define d1 by setting 
d1(x,y) = d(x,y)∧1 and let (S, δs, s) be the pmm-space associated with (S, d1) and s by Proposition 9.3. 
Then by the Łukasiewicz generator l we can obtain an approximate ⊗-similarity (S, e, p) where e(x,y) = 
1-δs(x,y) and  p(x) = 1-s(x). Moreover, if we set eq(x,y) = 1-d1(x,y), we have that eq is a fuzzy ⊗-
equivalence and that e(x,y) = 1 in the case d1(x,y) ≤ (s(x)+s(y))/2, i.e. in the case  

eq(x,y) = 1- d1(x,y) ≥ 1- (s(x)+s(y))/2 = (1-s(x) +1- s(y))/2 = m(x,y). 
Otherwise, we have 

e(x,y) = 1 – (d1(x,y) - (s(x)+s(y))/2)∨0 =  eq(x,y) +1- (p(x)+p(y))/2 = eq(x,y) +m(x,y). 
This proves that e(x,y) = eq(x,y)⊕m(x,y).  
 Conversely let (S, e, p) be the approximate ⊗-similarity defined in Proposition 6.1 from the fuzzy ⊗-
equivalence eq and the function p. Also, set d(x,y) = 1-eq(x,y) and s(x) = 1-p(x), then d is a pseudo-
metric and, in accordance with Proposition 9.3, the pair d, s define a ppm-space (S, δs, s). Trivially, the 
approximate ⊗-similarity associated with such a space coincides with (S, e, p). 
 
 In accordance with Proposition 6.2, we obtain a geometrical interpretation for the resemblance 
relations defined in Proposition 2.2. In fact, these relations are the dual ones of the ppm-spaces of the 
formal balls with a fixed diameter. 
 A second class of examples is furnished by the ppm-spaces defined in Proposition 9.4. 
 
Proposition 10.3. Consider the a pseudo-metric space (M,d) and a fixed natural number n. Then, we 
obtain an approximate ⊗-similarity by setting  

e(x,y) = l [-1](truncn(d(x,y))) = 1- truncn(d(x,y))∧1 ;  p(x) = 1-2⋅10-n. 
Such a ⊗-similarity is a resemblance relation with respect to d.  
 
Notice that, since e(x,y) = 1 for every x, y such that d(x,y) ≤ 10-n, the similarity so defined is not able to 
detect small differences. 
 Finally, we show that the duality defined in Theorem 10.1 gives geometrical examples of [0,1]-
valued equalities. 
 
Proposition 10.4. Let (S,d) be a pseudo-metric, ε ∈ [0,1] and consider  the function δε defined by 
setting  

δ
ε(x,y) = d(x,y) +ε. 

Then the fuzzy relation e defined by setting  
eq(x,y) = l [-1](δ(x,y)),  

is a [0,1]-valued equality. 
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 Proof. Properties e1) and e2) are evident. To prove e3) at first observe that 

eq(x,y) = (1- δε(x,y))∨0 = (1- d(x,y)-ε)∨0. 
Since it is not restrictive to assume that eq(x,z)⊗(eq(z,z)→eq(y,z)) is different from 0, we have that 

eq(x,z) ≠0 and therefore that eq(x,z) = 1- δε(x,z) = 1-d(x,z)-ε >0. Also, since  

 eq(x,z)⊗(eq(z,z)→eq(y,z)) = 1-d(x,z)-ε + (eq(y,z) + ε)∧1 -1  
  ≤  1-d(x,z)-ε + (eq(y,z) + ε) -1   
  = -d(x,z) + eq(y,z),   
we have, -d(x,z) + eq(y,z) > 0 and therefore eq(y,z) > 0. Then,  
 eq(x,z)⊗(eq(z,z)→eq(y,z)) ≤ -d(x,z) + 1- d(y,z)-ε   
                                                ≤ - d(x,y) - ε + 1 ≤ (- d(x,y) - ε + 1)∨0 = eq(x,y). 
 
11. Conclusions  and future works 
This paper is addressed mainly to face the “paradoxes” arising from the indistinguishability relation and 
this was done by proposing a weakened form of the transitivity property in the framework of fuzzy 
logic. Patently, I do not affirm that the solution I propose is the definitive one. Indeed, any genuine 
paradox admits several different solutions, in general. Moreover, all these solutions are interesting from 
some point of view and no solution is definitive. For example, in set theory the paradoxes where faced 
by proposing totally different systems of axioms or mathematical philosophies and we cannot exclude 
that further answers will be given in the future. Then the main role of a paradox is to stimulate analyses 
and discussions and to suggest new mathematical formalisms. 
 From a theoretical point of view there is a lot of work to do. As an example, an important task is to 
give a suitable notion of morphism and to investigate the properties of the resulting category. This in 
analogy with the papers of Höhle. Also, in order to make the duality established in Theorem 10.1 
complete, it should be opportune to extend the notion of approximate similarity structure by introducing 
an order relation over the set S of elements under consideration. Once we interpret the elements in S as 
pieces of information, the interpretation of x≤y should be that x is obtained from y by adding further 
information. 
 Finally, another interesting task is to investigate the potentialities of the notion of approximate 
similarity for applications. Now, assume that the elements in S are pieces of information on the 
elements we are interested and that p is a measure of the completeness of the information. Then perhaps 
applications are possible in all the frameworks in which 
- the notion of similarity (or distance) plays a basic role, 
- there is not a complete information on the objects under consideration. 
Nevertheless, due to the initial state of my researches on this subject, I have no concrete example to 
support this claim. 
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