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SIMILARITIES AND FUZZY ORDERS IN APPROXIMATE 
REASONING 

 
by 

C. Crisconio and G. Gerla 
 
Abstract. A general approach to fixed point theory is proposed as a tool for logic programming. Such 
an approach extends both fixed point theory in ordered sets and fixed point theory in metric spaces. 
Fuzzy set theory is the natural framework of the paper. In particular, we use the notions of similarity 
and fuzzy order. 
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1. Introduction 
Fixed point theory for operators in a lattice is a basic tool for formal logic. Indeed, usually a 
logical apparatus enables us to define an “immediate consequence operator” T in a lattice L 
whose elements represents “pieces of information”. Given x ∈ L, the last fixed point of T 
greater or equal to x represents the theory generated by x (as an example, see [12] for crisp 
logic and [4] for fuzzy logic). In particular, fixed point theory is very useful in logic 
programming, where L is the power set P(BP), BP  being the Herbrand base of a program P, 
and T is the immediate consequence operator T: P(BP) → P(BP) associated with the program 
P. The fixed points of T are the Herbrand models for P. Now if the logic under consideration 
is monotone (in particular if the program P is positive), T is a monotone operator, and 
therefore it is possible to apply the fixed point theorem of Knaster and Tarski. Nevertheless, 
when the immediate consequence operator T is not monotone, for instance if T is associated 
with a program containing negation, fixed point theorems for ordered set appear to be 
insufficient. In such case, it can be helpful to apply fixed point techniques in a metric space 
which are derived from Banach-Caccioppoli’s theorem (see [7]). Another reason suggesting 
the opportunity to refer to metric spaces comes from fuzzy logic. Indeed, the process leading 
to a fuzzy set of consequences from a fuzzy set of hypotheses happens in a continuous 
environment. Such a process cannot finish by giving the exact output. Rather is an endless 
approximation of the ideal output. From here the need arises to define someway the notion of 
“approximation”. This is possible only in a metric setting. 

On the other hand, fixed point theory in ordered sets and fixed point theory in metric 
spaces can be unified. Indeed, if one introduces the notion of quasi-metric space, lacking in 
symmetric property, it is possible to demonstrate a theorem simultaneously generalising the 
fixed point theorem of Knaster and Tarski for ordered structures and the theorem of Banach-
Caccioppoli for metric spaces (see [7], [8], [9]). 

In this paper, we expose several results in this direction. Also, we emphasize the 
possibility of interpreting such results in terms of fuzzy set theory, extending a duality, proved 
by Valverde in [11], between some metric notions and the similarities. 
 
2. Preliminaries 
Let M be a set; we call fuzzy subset of M or, more simply, fuzzy set any function f: M → [0,1]. 
A fuzzy relation is a fuzzy subset of a cartesian product. Given two fuzzy sets  f and g, we set 
f  g provided that f(x) ≤ g(x) for every x χ M. Moreover a fuzzy set f: M → [0,1] is called 



2 New Logics for the New economy, (Ed. S. Italiane) 

 2 

crisp if f(x) χ {0, 1} for every x χ M; we identify the fuzzy set with the subset of M via the 
characteristic functions. Given a fuzzy set f, for every λ χ [0,1], the subsets 

C(f,  λ) = {xχ M / f(x) ≥  λ}   and   O(f, λ) = {xχ M / f(x) > λ} 
are called the closed λ-cut  and the open λ-cut of f, respectively. 

 
Definition 2.1 Let M be a non-empty set and �: [0,1]2 → [0,1] be a binary operation. Then 
� is called a triangular norm (briefly, a t-norm) provided the following conditions hold: 

(i)   � is associative; 
(ii)  � is commutative; 
(iii) � is order-preserving in both variables; 
(iv)  x � 1 = x  …x χ [0, 1]. 

A t-norm is called continuous provided that it preserves the least upper bounds. 
 

Let � be a t-norm, x χ [0, 1] and n χ �. Then we define x(n) by 
                                               x                                              if n = 1 
      x(n) =  

                                                     x � x � ......� x  n-times        if n > 1. 
Definizione 2.2 A t-norm � is called Archimedean if, for any pair x, y χ [0, 1], an integer n 
exists such that x(n) < y. 

 
The usual product is an example of Archimedean t-norm. The minimum is an example 

of non-Archimedean t-norm. 
Given a first order language L, we can define a fuzzy model for L as a pair (D, I) 

where, for any n-ary relation name r, R = I(r) is a fuzzy subset of Dn, i.e. an n-ary fuzzy 
relation. The constants and the name-functions are interpreted as usual. The logical 
connectives are interpreted by suitable operations in [0, 1]. In particular, usually � is 
interpreted by a triangular norm �. Moreover → is interpreted in such a way that |A → B| = 1 
if and only if |A| � |B|. Also  we consider the unary connective c we interpret by the function 
C: [0, 1] → [0, 1] defined by setting C(x) = 1 if x = 1 C(x) = 0 otherwise. Also, in literature 
one considers some additional connectives called modifiers corresponding to words as “very”, 
“almost”, ... of the natural language. In this paper we are interested to a connective m 
(“much”) we interpret by a power function xc with c > 1. (see Zadeh, [13]). This enables to 
associate with any formula α, whose variables are among x1, ...., xn and any d1, ...., dn χ D, a 
value |α|d1 ... dn χ [0, 1] (see Hájek, [5]). 

Assume that the language L contains a binary relation name r. Then we can consider 
the following axioms, which are basic one to define the notion of order and equivalence in 
classical set theory: 

• …x  r(x, x); 
• …x …y  (r(x, y) → r(y, x)); 
• …x …y …z  (r(x, y) � r(y, z) → r(x, z)); 
• …x …y  (c(r(x, y)) � c(r(y, x)) → x = y). 

It is evident that an interpretation R = I(r) in a domain M satisfies the above axioms if 
and only if the following are satisfied: 

(1) R(x, x) = 1;      (reflexivity) 
(2) R(x, y) = R(y, x);     (symmetry) 
(3) R(x, y) � R(y, z) � R(x, z);   (�-transitivity) 
(4) R(x, y) = 1 and R(y, x) = 1 � x = y.   (antisymmetry) 
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Definition 2.3 When conditions (1) and (3) are  satisfied for any x, y, z χ M, R  is  called  a 
�-fuzzy preorder; when conditions (1), (3) and (4) are satisfied, R is called a �-fuzzy order; 
when conditions (1), (2) and (3) are satisfied, R is called a �-similarity. In particular, when 
� is the t-norm of the minimum, we call R simply a fuzzy preorder, a fuzzy order or a 
similarity, respectively. We also observe that, if R is a �-fuzzy preorder, the position  

x�y       �       R(x, y) = R(y, x) = 1 
defines an equivalence’s relation. In this case we say that x is similar with y. Then it is 
possible  to  consider  the quotient M' = M⁄� = {[x] / x χ M }, where [x] = {y χ M / R(x, y) = 
= R(y, x) = 1}. Moreover, it is immediate to prove that the mapping  

R': M' % M' → [0,1]  such that  R'([x], [y]) = R(x, y)  
is well defined and it is a �-fuzzy order on M'. By this identification is always possible to 
change from a �-fuzzy  preorder  relation  to  a  �-fuzzy order one. In particular, if R is a 
�-similarity, in the quotient M' we still obtain a �-similarity R' such that R'(x, y) = R'(y, x) = 
= 1 � x = y. 
If R is a �-fuzzy preorder, we  define  the  fuzzy  interval  [a, +∞): M → [0,1]  by  setting  [a, 
+∞)(x) = R(a, x). If R is a �-similarity, we write [a] instead of [a, +∞) and we say that [a] is 
a fuzzy class. 

 
Definition 2.4 Given a map f: M → M and a fuzzy relation R we say that x χ M is a fixed 
point for f (w.r. to R) provided that f(x) � x, i.e. R(x, f(x)) = R(f(x), x) = 1. 

In the case that R is a �-fuzzy order, x is a fixed point if and only if f(x) = x. 
 
 
3. Distances. 
Let M be a non-empty set and d: M % M → [0,1] a mapping. Also, consider the following 
axioms for any x, y, z χ M: 

(d1) d(x, y) = 0 � x = y; 
 (d'1) d(x, x) = 0; 

(d2) d(x, y) = d(y, x); 
(d'2) d(x, y) = 0 and d(y, x) = 0   �   x = y; 
(d3) d(x, y) + d(y, z) ≥ d(x, z); 
(d'3) d(x, y) � d(y, z) ≥ d(x, z). 

Then 
                                    generalized ultrametric space            if it satisfies (d'1) and (d'3); 
                                    ultrapseudometric space                    if it satisfies (d'1), (d2) and (d'3); 
(M, d) is called a 
                                    ultrametric space                               if it satisfies (d1), (d2) and (d'3); 
                                    quasi-ultrametric space                     if it satisfies (d'2) and (d'3); 
In the same way, 
                                    generalized metric space                   if it satisfies (d'1) and (d3); 
                                    pseudometric space                           if it satisfies (d'1), (d2) and (d3); 
(M, d) is called a 
                                    metric space                                      if it satisfies (d1), (d2) and (d3); 
                                    quasi-metric space                            if it satisfies (d'2) and (d3). 
 

Then, by refering to the usual definition of metric space, the word “generalized” refers 
to the lack of the symmetric  property. The  word  “pseudo” refers to the lack of the axiom 
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d(x, y) = 0 � x = y. The word “quasi” refers to condition (d'2) we write instead of (d1) in the 
case in which the symmetric property is not required. Finally, the word “ultra” refers to the 
fact that (d3) is substituted by condition (d'3). Moreover, observe that (d'3) entails (d3). So, 
for example, any ultrametric space is a metric space. 

The following proposition, whose proof is immediate, extends to fuzzy orders and 
quasi-ultrametric distances a connection between similarities and metrics proved in [11]. 
 
Proposition 3.1 Let � be the t- norm of the minimum, d: M % M → [0,1] a map, and set
  

R(x, y) = 1 - d(x, y)          … x, y χ M. 
Then: (i) R is a similarity if and only if d is an ultrapseudometrics; 
          (ii) R is a fuzzy preorder if and only if d is a generalized ultrametrics; 
          (iii) R is a fuzzy order if and only if d is a quasi-ultrametrics. 
Example. Recall that a preorder is a pair (M, ≤) satisfying, for all p, q and r in M, p ≤ p, and 
if p ≤ q and q ≤ r then p ≤ r. A partial order is a preorder that moreover is antisymmetric, i.e. 
p ≤ q and q ≤ p � p = q. Since any crisp preorder is a fuzzy preorder, by Proposition 3.1 we 
have that any preorder (M, ≤) can be viewed as a generalized ultrametric space. Namely, the 
map d defined by setting 
                         0       if p ≤ q 

d(p, q) = 
                                               1       if p − q. 
 
is a generalized ultrametric (see also [1], [8]). In the same way, any partial order defines a 
quasi-ultrametric space. 

 
As in the case of the fuzzy relations, if d is a generalized metric (ultrametric) space, 

the position  
x�y       �        d(x, y) = 0 and d(y, x) = 0 

defines an equivalence’s relation. Then  it  is  possible  to  divide  the space into the classes 
[x] = {y χ M / d(x, y) = d(y, x) = 0}. Moreover, it is immediate to prove that the mapping  

d': M⁄� % M⁄�→ [0,1]  such that  d'([x], [y]) = d(x, y)  
is well defined and is a generalized metric (ultrametric) distance satisfying (d1) on the space 
of equivalence’s classes. By this identification is possible to change from a pseudometric 
structure to a metric one. So, from Proposition 3.1 it follows that R' is a similarity if and only 
if d' is an ultrametric distance.  

It is easy to extend to generalized metrics and �-fuzzy preorders the relation between 
pseudometrics and �-similarity exposed in [11]. 
 
Definition 3.2 Let � be a continuous Archimedean t-norm; a continuous strictly decreasing 
function f: [0, 1] → [0, +∞] with f(1) = 0 is called an additive generator of � if  
                                               x � y = f [-1](f(x) + f(y))                                   for all x, y in [0, 1], 
where the pseudoinverse f [-1] of f is so defined: 
 
                                                                     f -1(x)            if x χ f([0, 1]) 
     f [-1](x) =  
                                                                     0                   otherwise. 
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Proposition 3.3 Let d: M % M → [0,1] be a map and f: [0, 1] → [0, +∞] be an additive 
generator of a continuous Archimedean t- norm �. Consider the relation Rd defined by 
setting 

Rd(x, y) = f [-1](d(x,y)). 
Then: (i) Rd is a �-similarity if d is a pseudometrics; 
         (ii) Rd is a �-fuzzy preorder if d is a generalized metrics; 
         (iii) Rd is a �-fuzzy order if d is a quasi-metrics. 

Conversely, let R: M % M → [0,1] be a map, � be a continuous Archimedean t-norm, 
and f be an additive generator of �. Consider the function dR defined by setting 

dR(x, y) = f(R(x, y)) 
Then: (i') dR is a pseudometrics if R is a �-similarity; 
         (ii') dR is a generalized metrics if R is a �-fuzzy preorder; 
        (iiii) dR is a quasi-metrics if R is a �-fuzzy order. 
 
Proof. (i) Reflexivity and simmetry of Rd follows immediatly from definitions. Moreover, to 
prove the �-transitivity it is enough to take x, y, z in M such that d(x,y) and d(y,z) χ f([0, 1]). 
In the opposite case, the inequality (3) is trivially verified. So,  

Rd(x, y) � Rd(y, z) = f -1(d(x,y)) � f -1(d(y,z)) = 
= f [-1](f(f -1(d(x,y))) + f(f -1(d(y,z)))) = 

= f [-1](d(x,y) + d(y,z)) ≤ f [-1](d(x, z)) = Rd(x, z), 
because f [-1] is strictly decreasing. 
(ii) The proof is analogue to the previous one. 
(iii) We have to prove the antisymmetry of Rd. So, let x, y χ M such  that  Rd(x, y) = 1 and 
Rd(y, x) = 1. From  this  conditions follows  that  f [-1](d(x, y)) = 1 = f [-1](d(y, x)), and therefore 
f -1(d(x,y)) = 1 = f -1(d(y,x)). Then d(x,y)) = 0 = d(y,x) and so x = y for the antisymmetry of d. 
(i') Reflexivity and simmetry of dR follows immediatly from definitions. Before to prove the 
transitivity of dR, we observe that 
                                                                     x            if x χ f([0, 1]) 
           f (f [-1](x)) =  
                                                                     f(0)               otherwise 
 
where f(0) is the maximum of the function.  
From �-transitivity of Rd it follows that 

f(R(x, y) � R(y, z)) ≥ f(R(x, z)), 
because f is strictly decreasing. Then  

f [f [-1]( f(R(x, y) � f(R(y, z)))] ≥ f(R(x, z)). 
Now, if f(R(x, y)) + f(R(y, z)) χ f([0, 1]), we obtain that 

f(R(x, y)) + f(R(y, z)) ≥ f(R(x, z), 
and then the thesis. Otherwise, f(R(x, y)) + f(R(y, z)) ≥ f(0) ≥ f(R(x, z). 
(ii') Proof is analogue to the previous one. 
(iii') We have to prove the antisymmetry of dR. So, let x, y χ M such  that  dR(x, y) = 0 and 
dR(y, x) = 0. Then f(R(x, y)) = 0 = f(R(y, x)), hence R(x, y) = 1= R(y, x)) because f is injective. 
From the antisymmetry of R it follows that x = y.                                                                     
 
 
4. Fixed point theorem and fuzzy order 
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A sequence (xn)n��  in M is called forward Cauchy if, for each 0 ≤ ε < 1, there exists a natural 
number N such that R(xn, xm) ≥ ε whenever m ≥ n ≥ N. 

Notice that, when R is a fuzzy order, a sequence is forward Cauchy if and only if for 
each 1 > ε > 0, there exists a natural number N such that R(xn+1, xn) ≥ ε for all n ≥ N. 

Furthermore, a sequence forward Cauchy (xn)n�� converges to ℓ in M, and we write 
limxn = ℓ, if R(ℓ, x) = limR(xn, x) for all x χ M. As usual, ℓ is called limit of (xn)n��. Since the 
proposed convergence depends on the convergence defined in �, it inherits lots of properties 
of the convergence in �. As an example, if (xn)n�� is a sequence forward Cauchy and ℓ is a 
limit of the sequence, an extract sequence of (xi)i�� converges to the same limit ℓ. 

The structure (M, R) is called complete if every forward Cauchy sequence is equipped 
with a limit.  
 
Proposition 4.1 Let R be a �-fuzzy preorder. Then, two limits of a given sequence are 
similar. Also, if R is a �-fuzzy order, then limits are unique. 
 
Proof. Assume that limxn = ℓ and  limxn = ℓ'. Then, by definition, R(ℓ, x) = limR(xn, x) and 
R(ℓ', x) = limR(xn, x) for  all  x χ M. In  particular, by  setting x = ℓ,  1 = (ℓ, ℓ) = limR(xn, ℓ) = 
= R(ℓ', ℓ) and, by setting x = ℓ', 1 = R(ℓ', ℓ') = limR(xn, ℓ') = R(ℓ, ℓ'). Then 1 = R(ℓ', ℓ) = R(ℓ, ℓ') 
and ℓ is similar with ℓ'. Trivially, when R is a �-fuzzy order, limits are unique.                     
 

For instance, assume that R is a partial order ≤; so a sequence (xn)n�� is forward 
Cauchy if and only if �N  …n ≥ N,   xn ≤ xn+1, i.e. if and only if is “eventually chain”. 
Moreover, the statement limxn = ℓ is equivalent to  

…x χ M   (ℓ ≤ x  �  �m …n ≥ m,   xn ≤ x). 
In particular, if xn is order-preserving, then limxn = ℓ if and only if ℓ = Sup{xn / n χ N}. 

 
Let M be a set, R be a �-fuzzy relation, and f: M → M be a mapping. The following 

definitions are the duals of well-known notions in metric space theory. 
 
Definition 4.2 Let R be a �-fuzzy preorder; f is called continuous if from limxn = ℓ it follows 
limf(xn) = f(ℓ), for every forward Cauchy sequence (xn)n�� in M. 
 

Obviously, when M is a partial ordered set, f is continuous if and only if it preserves 
upperbounds of chain. 
 
Definition 4.3 We say that f is non-expansive if R(f(x), f(y)) ≥ R(x, y) for all x, y χ M, i.e. if 
the following formula …x …y  (r(x, y) → r(f(x), f(y))) holds.  
 

Observe that if R is a �-similarity, then a non-expansive map is a function 
“compatible” with the �-similarity R. If R is a �-fuzzy preorder, then a non-expansive map 
is in a sense a order-preserving map. 
 
Definition 4.4 We say that f is contractive if c > 1 exists such that (R(f(x), f(y))) c  ≥ R(x, y), i.e. 
the formula …x …y  (r(x, y) → m(r(f(x), f(y)))) holds, where m is a linguistic modifier 
“much”. 
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In other terms, a contraction is a map that increases the similarity-degree between 
elements.  
 
Theorem 4.5 Let R be a �-fuzzy preorder such that (M, R) is complete and let f: M → M be 
a non-expansive continuous map such that R(x, f(x)) = 1 for a suitable x χ M. Then f has a 
fixed point. 

 
Proof. Consider the sequence (x, f(x), f 2(x),....). Since f is non-expansive, such sequence is 
forward Cauchy. Indeed, trivially we have that  

1 = R(x, f(x)) ≤ R(f(x), f 2(x)) ≤ ... ≤ R(f n(x), f n+1(x)), 
and so R(f n(x), f m(x)) = 1 for each m ≥ n. Moreover, from completeness it follows that there is 
a limit ℓ of the sequence (f n(x))n��. Also, since f is continuous, we have that f(ℓ) is a limit of 
(f n+1(x))n��, and therefore of (f n(x))n��. Since R is a �-fuzzy preorder, limits are similar, 
i.e. R(f(ℓ), ℓ) = 1 = R(ℓ, f(ℓ)). Then ℓ is a fixed point for f.                        
 

 
Theorem 4.6 Assume that � is a t-norm greater or equal to the usual product, R is a �-
fuzzy order and f is continuous and contractive. Then f has a unique fixed point. 
 
Proof. It is enough to prove the thesis for the t-norm of the product ∃. Indeed, if � is a t-norm 
greater or equal to the product, then the �-transitivity implies the ∃-transitivity. Therefore, 
any �-fuzzy order is a ∃-fuzzy order. Let x0 be an element of M, and consider the sequence 
(xn)n�� defined as follows: x1 = f(x0), x2 = f(x1), .... xn+1 = f(xn). We have to prove that the 
sequence is forward Cauchy. Observe by hypotheses that c χ ]0, 1[ exists such that: 

R(x1, x2) = R(f(x0), f(x1)) ≥ (R(x0, x1)) c  = (R(x0, f(x0))) c   
R(x2, x3) = R(f(x1), f(x2)) ≥ (R(x1, x2)) c  ≥ (R(x0, x1))

2c  = (R(x0, f(x0)))
2c   

. . . 
R(xn, xn+1) = R(f(xn-1), f(xn)) ≥ (R(xn-1, xn)) c  ≥ (R(x0, x1))

nc  = (R(x0, f(x0)))
nc   

So, if 0 ≤ ε < 1, we have that R(xn, xn+r) ≥ R(xn, xn+1) ∃ R(xn+1, xn+2) ∃ ...... ∃  R(xn+r-1, xn+r) ≥  
≥(R(x0, f(x0)))

nc ∃(R(x0, f(x0)))
1+nc ∃........∃(R(x0, f(x0)))

1−+rnc =(R(x0, f(x0))) 
11 ... −++ +++ rnnn ccc . 

Observe that cn + cn+1 + .... + cn+r-1 = 
c

cc rnn

−
− +

1
 = ( )

c
cc rn

−
−

1
1  ≤ 

c
cn

−1
. Since cn → 0 if n → ∞, 

we have that lim(cn + cn+1 + .... + cn+r-1) = 0 for all r χ �, provided that n is enough large. 
Therefore lim(R(x0, f(x0)))

11 ... −++ +++ rnnn ccc  = 1, and then (xn)n�� is forward Cauchy. 
From completeness it follows that there is a limit ℓ of  the  sequence. Because of  f is 
continuous, f(ℓ) = limf(xn) = limxn+1 = ℓ, and then ℓ is a fixed point for f. Suppose ℓ1 is another 
fixed point. Then R(ℓ, ℓ1) = R(f(ℓ), f(ℓ1)) ≥ (R(ℓ, ℓ1)) c , hence necessarily R(ℓ, ℓ1) = 1. In the 
same way we have R(ℓ1, ℓ) = 1, so from antisymmetry it follows ℓ = ℓ1.                        
� 

 
Note. In particular, Theorem 4.6 is true for the t-norm of the minimum. Indeed, it is 
immediate to prove that the minimum is the maximum t-norm. 
 
 
5. Examples 
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In order to apply the proposed notions to programming logic, we need to have metric and 
quasi-metrics defined in a power set P(M). In this section we will show some interesting 
examples in such a direction. In accordance with the nomenclature in fuzzy set theory, we call 
fuzzy inclusion a fuzzy order in P(M) extending the  classical  crisp  order. In  the  following 
λ: M → [0,1] is any fixed fuzzy subset of M we interpret as the fuzzy subset of elements 
which are “relevant”. 

 
We define the map µ: P(M) → [0,1] such that µ(⇔) = 0 and, if ⇔ ≠ X  M, 

 µ(X) = Sup{λ(x) / x χ X}. (5.1) 
We interpret µ(X) as the truth-degree of the claim “there is a relevant element in X”. 

Moreover, we associate with µ the map dλ: P(M) × P(M) → [0,1] as follows:  
 dλ(X, Y) = µ(X ∆ Y), (5.2) 
where X ∆ Y denotes the symmetric difference of X, Y, i.e. X ∆ Y = (X / Y) 4 (Y / X).  
 
Proposition 5.1 The map dλ: P(M) × P(M) → [0,1] defined by (5.2) is an ultrametric 
distance.  
 
Proof. (d1)  and  (d2)  follow  from  the  definition;  to  prove  condition  (d'3),  observe  that 
X ∆ Z  ((X ∆ Y) 4 (Y ∆ Z)). As a matter of fact, if x χ X / Z,  then, in  the case x χ Y we have x 
χ Y ∆ Z, in the case x ϖ Y we have x χ X ∆ Y. If x χ Z / X, we proceed in a similar way. 
Obviously,  

sup{λ(x) / x χ X ∆ Z} ≤ sup{λ(x) / x χ (X ∆ Y) 4 (Y ∆ Z)} = 
= sup{λ(x) / x χ X ∆ Y} � sup{λ(x) / x χ Y ∆ Z},  

so (d'3) is verified.                                                                                                                      
 
We interpret dλ(X, Y) as the truth-degree of the claim “X and Y differs for a relevant 

element”. The associated similarity Rλ(X, Y) = 1- dλ(X, Y) is the truth-degree of the claim “X 
and Y contains the same relevant elements” 
 
Proposition 5.2 Let µ be the defined possibility by (5.1) and d: P(M) × P(M) → [0,1] be a 
mapping such that  
 d(X, Y) = µ(X - Y). (5.3) 
Then, d is a quasi-ultrametrics (and not an ultrametrics, since it is lacking in symmetry).  
 
Proof. Actually, (d'1) and (d'2) follow from the definition, and the proof of (d'3) is as the one 
in proposition 5.1.                                                                                                                      
 

Assume that λ: M → [0,1]  satisfies  ∑
∈Mx
λ(x) = 1.  Then  we  can  define  the  mapping 

η: P(M) → [0,1] such that η(⇔) = 0 and, if ⇔ ≠ X  M,  
 η(X) = ∑{λ(x) / x χ X}. (5.4) 

This map is called a finitely additive probability with density λ. Moreover, we 
associate with η the map dλ: P(M) × P(M) → [0,1] as follows:  
 dλ(X, Y) = η(X ∆ Y). (5.5) 
 
Proposition 5.3 η is an ultrametric distance. 
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Proposition 5.4 The map d: P(M) × P(M) → [0,1] such that  
 dλ(X, Y) = inf{α χ [0, 1] / X ρ C(λ, α) 3 Y} (5.6) 
is a quasi-ultrametric distance.  

 
Proof. (d'1) and (d'2) are obvious. To prove that dλ(x, y) � dλ(y, z) ≥ dλ(x, z) it is enough to 
prove this condition: 

if � δ > 0 such that dλ(x, y) < δ and dλ(y, z) < δ then dλ(x, z) ≤ δ. 
In fact, dλ(x, y) � dλ(y, z) = inf{δ / dλ(x, y) < δ and dλ(y, z) < δ} ≥ inf{δ / dλ(x, z) ≤ δ}. So, 
from dλ(x, y) < δ it follows that exists α1 χ [0, 1] such that α1 < δ and X ρ C(λ, α1) 3 Y, and 
from dλ(y, z) < δ it follows that exists  α2 χ [0, 1]  such  that  α2 < δ and  Y ρ C(λ, α2) 3 Z. 
Taking a α = α1 � α2, we have that X ρ C(λ, α) 3 Z with α < δ; then (d'3) is verified.                        

 
 

Observe that such definition extends one given in a Seda’s framework of programming 
logic ([9]). Indeed, given a map n: M → �, consider for every subset X of M the finite set  

I(X, α) = {x χ X / n(x) ≤ α}. 
Then, the map d: P(M) × P(M) → [0,1] such that 
 d(X, Y) = inf{2-α / I(X, α) ρ I(Y, α)} (5.7) 
is the quasi-ultrametric distance defined in [9]. Also, if we consider the fuzzy set λ:M → [0, 1] 
such that λ(x) = 2-n(x), we have dλ(X, Y) = d(X, Y). Actually,  

dλ(X, Y) = inf{α χ [0, 1] / X ρ {x / 2-n(x) ≥ α} 3 Y} = 
= inf{α χ [0, 1] / X ρ {x / log22-n(x) ≥ log2(α)} 3 Y} = 

= inf{α χ [0, 1] / X ρ {x / n(x) ≤ -log2(α)} 3 Y} = 
 = inf{2-α / X ρ {x / n(x) ≤ α} 3 Y} = d(X, Y).  

 
Let P be a non-positive program and BL be the Herbrand base of P. To apply 

Theorems 4.5 and 4.6 to the immediate consequence operator T: P(BL) → P(BL), we can 
introduce  the  distance  defined  in  Proposition 5.4. So  we  consider  the  quasi-ultrametric 
d: P(BL ) × P(BL ) → [0,1] such that 

d(X, Y) = inf{2-α / I(X, α) ρ I(Y, α)}, 
that makes the structure (P(BL), d) complete (see [8]). Therefore, from Proposition 3.1 it 
follows that the map R: P(BL) × P(BL) → [0,1] such that 

R(X, Y) = 1- d(X, Y) 
is a fuzzy order, and (P(BL), R) is complete. So it is possible to prove the theorem which 
guarantees the existence of the least Herbrand model of a non-positive program, under certain 
hypotheses on the immediate consequence operator. 
 
Theorem 5.6 If the immediate consequence operator T: P(BL) → P(BL) is non-expansive and 
continuous, and if a subset X exists in BL  such that R(X, T(X) ) = 1, then T has a fixed point. 
If T is continuous and contractive, then the fixed point is unique. 
 
Proof. It follows from Theorem 4.5 and Theorem 4.6.                                                             � 
 
 
References 
 



10 New Logics for the New economy, (Ed. S. Italiane) 

 10 

[1] M.M. BONSANGUE, F. VAN BREUGEL, J.J.M.M. RUTTEN: Generalized Ultrametric Spaces: 
Completion, Topology, and Powerdomains via the Yoneda Embedding, Technical Report CS-R9560, 
Centrum voor Wiskunde en Informatica, Amsterdam, September, (1995). [Available via FTP at 
ftp.cwi.nl in directory pub/CWIreports/AP/CS-R9560.ps.gz]. 

[2] M. FITTING: Metric Methods: Three Examples and a Theorem, J. Logic Programming 21 (3) (1994) 
113-127. 

[3] F. FORMATO: On Similarity and Its Application to Logic Programming, Ph. D. Thesis, Università di 
Napoli Federico II, (1988). 

[4] G. GERLA: Fuzzy Logic: Mathematical Tools for Approximate Reasoning, Kluwer Ac. Publ., (2001). 
[5] P. HAJEK: Metamathematics of Fuzzy Logic, Kluwer Ac. Publ., Dordrecht, (1998). 
[6] J.W. LLOYD: Foundations of Logic Programming, Springer-Verlag, Berlin, (1984). 
[7] S. PRIESS-CRAMPE, P.RIBENBOIM: Logic Programming and Ultrametric Spaces, Rend. Mat., Serie 

VII, 19, Roma (1999), 155-176. 
[8] J.J.M.M. RUTTEN: Elements of Generalized Ultrametric Domain Theory, Technical Report CS-

R9507, Centrum voor Wiskunde en Informatica, Amsterdam, (1995). [Available via FTP at ftp.cwi.nl 
in directory pub/CWIreports/AP/CS-R9507.ps.gz]. 

[9] A.K. SEDA: Quasi-metrics and the Semantics of Logic Programs, Fundamenta Informaticae 29 (2) 
(1997), 97-117. 

[10] M.B. SMITH: Quasi Uniformities: Reconciling Domains with Metric Spaces. In: M. Main, A. Melton, 
M. Mislove and D. Schmidt (Eds.), Mathematical Foundations of Programming Language Semantics. 
Lecture Notes in Computer Science, Vol. 298, Springer-Verlag, (1987), 236-253. 

[11] L. VALVERDE: On the Structure of F-Indistinguishability Operators. Fuzzy Sets and Systems, 17 
(1985), 313-328. 

[12] R. WỚJCICKI: Theory of Logical Calculi: Basic Theory of Consequence Operations, Kluwer Ac. 
Publ., Dordrecht, (1988). 

[13] L.A. ZADEH: The Concept of a Linguistic Variable and its Application to Approximate Reasoning, Part 
II, Information Science 8 (1975), 301-357. 


