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   This paper is devoted to some mathematical considerations on the geo-

metrical ideas contained in PNK, CN and, successively, in PR. Mainly, we 
will emphasize that these ideas give very promising suggestions for a mod-
ern point-free foundation of geometry.  

1.  Introduction 

Recently the researches in point-free geometry received an increasing inter-
est in different areas. As an example, we can quote computability theory, lat-
tice theory, computer science. Now, the basic ideas of point-free geometry 
were firstly formulated by A. N. Whitehead in PNK and CN where the exten-
sion relation between events is proposed as a primitive. The points, the lines 
and all the “abstract” geometrical entities are defined by suitable abstraction 
processes. As a matter of fact, as observed in Casati and Varzi 1997, the ap-
proach proposed in these books is a basis for a "mereology" (i.e. an investiga-
tion about the part-whole relation) rather than for a point-free geometry.  In-
deed, the inclusion relation is set-theoretical and not topological in nature 
and this generates several difficulties. As an example, the definition of point 
is unsatisfactory (see Section 6). So, it is not surprising that some years later 
the publication of PNK and CN, Whitehead in PR proposed a different ap-
proach in which the primitive notion is the one of connection relation. This 
idea was suggested in de Laguna 1922.  

The aim of this paper is not to give a precise account of geometrical ideas 
contained in these books but only to emphasize their mathematical potenti-
alities.  So, we translate the analysis of Whitehead into suitable first order 
theories and we examine these theories from a logical point of view. Also, 
we argue that multi-valued logic is a promising tool to reformulate the ap-
proach in PNK and CN. 

In the following we refer to first order logic. If L is a first order language, α 
a formula whose free variables are among x1,...,xn and I an interpretation of L 
with domain S, then we write I £ α [d1,...,dn] to say α is satisfied in I by the 
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elements d1,...,dn. Given a relation R⊆Sn, we say that R is defined by α or that R 
is the extension of α in I, provided that R = {(d1,...,dn) : I £ α [d1,...,dn]}. For ex-
ample, the extension of the formula ∃r(r≤x∧r≤y) is the overlapping relation. 

 

2.   A mathematical formulation of the inclusion based 
approach 

In PNK and CN one considers as primitives the events and a binary relation 
named extension. Indeed, Whitehead says: 

“The fact that event a extends over event b will be expressed by the abbreviation 
aKb. Thus 'K' is to be read ‘extends over' and is the symbol for the fundamental 
relation of extension.”  

Moreover, Whitehead in PNK lists the following properties of the extension 
relation. 

“Some properties of K essential for the method of extensive abstraction are, 
i) aKb implies that a is distinct from b, namely, 'part' here means 'proper part':  
ii) Every event extends over other events and is itself part of other events: the set 
of events which an event e extends over is called the set of parts of e: 
iii) If the parts of b are also parts of a and a and b are distinct, then aKb: 
iv) The relation K is transitive, i.e. if aKb and bKc, then aKc :  
v) If aKc, there are events such as b where aKb and bKc:  
vi) If a and b are any two events, there are events such as e where eKa and eKb. “ 

We adopt a slightly different notation which is related in a more strict way 
with the recent researches in point-free geometry. So, in accordance with PR, 
we utilize the word “region” instead of the one of “event”. Also, we call inclu-
sion relation the converse of the extension relation and we refer to the partial 
order ≤ rather than to the strict partial order. In accordance, we can reformu-
late the list of properties proposed by Whitehead into a simple first order 
theory whose language L≤ contains only a binary relation symbol ≤. 

 
Definition 2.1. We call inclusion based point-free geometry the first order the-

ory defined by the following axioms: 
 (i)    ∀x(x≤x)    (reflexive)    
 (ii)   ∀x∀y∀z ((x≤z∧z≤y) ⇒ x≤y)  (transitive) 
 (iii)     ∀x∀xy(x≤y∧y≤x ⇒ x = y)   (anti-simmetric) 
 (iv)    ∀z∃x∃y(x<z<y)      (there is no minimal or maximal region) 
 (v)     ∀x∀y(x<y ⇒ ∃z (x<z<y)  (dense) 
 (vi)     ∀x∀y∃z(x≤z∧y≤z)  (upward-directed) 
 (vii)   ∀x∀y(∀x’(x’<x ⇒x’<y) ⇒ x≤y). 
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We call inclusion space any model of this theory.   
 

Then, if we denote by ≤ the interpretation of ≤, an inclusion space is a struc-
ture (S,≤) where S is a nonempty set and ≤ an order relation with no minimal 
or maximal element which is dense, upward-directed and such that, for 
every region x, x = sup{x’∈S : x’<x}. 

The existence of suitable mathematical models for the inclusion-based 
point-free geometry is a basic question, obviously (in spite of the fact that 
Whitehead looks understimate it). To argue how this should be done, recall 
that, in the case of non-Euclidean geometry, Poincaré, Klein and others 
authors proposed models which were defined from the usual Euclidean 
spaces. In the same way, we are justified in defining models of point-free 
geometry by starting from a n-dimensional (point-based) Euclidean space Rn 
(where R denotes the real numbers set). In accordance, we have to propose a 
suitable class of subsets of Rn to represent the notion of region. To do this, 
usually in literature one refers to the regular subsets of Rn. 

 
Definition 2.2. We call closed regular any subset x of Rn such that x = 

cl(int(x)) where cl and int  denotes the closure and interior operators, respec-
tively. We denote by RC(Rn) the class of all the closed regular subsets of Rn. 

 
There are several reasons in favour of the notion of regular set. As an ex-

ample, in accordance with our intuition, the closed balls and the cubes of 
tridimensional geometry are regular sets. Instead, points, lines and surfaces 
are not regular (in accordance with Whitehead’s aim to define these geomet-
rical notions by abstraction processes). Moreover the class RC(Rn)  defines a 
very elegant algebraic structure. Indeed it is a complete atom-free Boolean 
algebra with respect to the inclusion relation. More precisely, to obtain a 
model of Whitehead’s axioms we have to refer to a suitable subclass of 
RC(Rn). In fact, Axiom iv) says that the whole space Rn and the empty set ∅ 
are not seen as regions by Whitehead. Also, it is evident that Whitehead re-
fers only to bounded regions. Otherwise, for example, the proposed notion 
of “point” (see Section 4) should be not able to exclude points which are “at 
the infinity”. This leads to assume as natural models of the notion of region 
the bounded nonempty closed regular sets. 

 
Theorem 2.3. Let Re be the class of all closed nonempty bounded regular 

subsets of Rn, then (Re,⊆) is an inclusion space we call the canonical inclusion 
space. 
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Proof. Properties (i), (ii), (iii) and (vi) are trivial. To prove (iv), let x∈Re, 
then, since int(x) ≠ ∅, an open ball with radius r and centre P contained in x 
exists. We denote by x1 the closed ball with centre P and radius r/2. Then 
x1∈Re and x1 ⊂ x. Also, since x is bounded, a closed ball with centre P and 
radius r’ containing x exists. Let x2 the closed ball with centre P and radius 
2⋅r’. Then x2∈Re and x ⊂ x2.  

To prove (v), assume that x ⊂ y and let P∈ int(y) such that P∉x. Then there 
is a closed ball y’, y’⊂y and  y’∩x = ∅. By setting z = y’∪x  we obtain a 
bounded regular subset such that x ⊂ z ⊂ y. To prove (vii), assume that all 
the regular proper subsets of x are contained in y and that x is not contained 
in y. Then  int(x) is not contained in y, too. So there is a point P∈ int(x)  and a 
real positive number r such that the closure of the ball with centre P and ra-
dius r is contained in int(x) and disjoint from y: a contradiction.   

 
Notice that in literature inclusion spaces are obtained also from the class 

RO(Rn) of open regular subsets, i.e. the sets x such that x = int(cl(x)) (see for ex-
ample Pratt 2006). The arising model is isomorphic with (Re,⊆). 

 
Proposition 2.4. Denote by Re’ the class of bounded nonempty open regu-

lar subsets. Then the structure (Re’,⊆) is isomorphic with the structure (Re,⊆) 
and therefore is an inclusion space. 

 
Proof. We observe only that the map int : RC(Rn) → RO(Rn) is an order-

isomorphism between (RC(Rn),⊆) and (RO(Rn),⊆). Moreover, x is bounded if 
and only if int(x) is bounded.  

 
Finally, observe that perhaps the class Re is still too large. Indeed White-

head’s intuition refers to the connected (in a topological sense) elements in Re. 
Also, for example, in Pratt 2006 several possible subsets of Re are considered.  

3.  A mathematical formulation of the connection based 
approach 

Some years later the publication of PNK, and CN, Whitehead in PR pro-
posed a different idea in which the primitive notion is the one of connection 
relation: 

“...the terms ‘connection’ and ‘connected’ will be used ...The term ‘region’ will 
be used for the relata which are involved in the scheme of ‘extensive connection’. 
Thus, in the shortened phraseology, regions are the things which are connected.” 
(PR, Chapter II, Section I) 
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Now, Whitehead is not interested to formulate the properties of this rela-
tion as a system of axioms and to reduce them at a logical minimum.  

“No attempt will be made to reduce these enumerated characteristic to a logi-
cal minimum from which the remainder can be deduced by strict deduction. 
There is not a unique set of logical minima from which the rest can be deduced. 
There are many such sets. The investigation of such sets has great logical inter-
est, and has an importance which extends beyond logic. But it is irrelevant for 
the purpose of this discussion.” (PR, Chapter II, Section I) 

So a very long list of “assumptions” is proposed.  As an example in Chapter 
II Whitehead exposed as much as 31 assumptions!  Nevertheless, it is possi-
ble to try to reduce these assumption into a sufficiently small set of axioms. 
As an example, in Gerla and Tortora 1992 one proves that the first 12 as-
sumptions are equivalent to the following first order theory. We refer to a 
language LC with a binary relation symbol C to represent the connection rela-
tion and we write x≤y to denote the formula ∀z(zCx ⇒ zCy) and x<y to de-
note the formula (x≤y)∧(x≠ y). 

 
Definition 3.1. We call connection theory the first order theory whose axi-

oms are: 
 C1  ∀x∀y(xCy ⇒yCx)    (symmetry) 
 C2   ∀x∃y(x<y)         (there is no maximum for ≤) 
 C3   ∀x∀y∃z(zCx∧zCy) 
 C4   ∀x(xCx) 
 C5   ∀z(zCx ⇔ zCy) fl x=y 
 C6   ∀z∃x∃y((x≤z)∧(y≤z)∧(¬xCy)) 

where x≤y denotes the formula ∀z(zCx ⇒ zCy) and x<y the formula (x≤y)∧(x
≠ y). We call  connection space any  model of such a theory.  

 
We denote by C the interpretation of the relation symbol C and by ≤ the in-
terpretation of ≤. So we write (S,C) to denote a connection space. It is easy to 
prove that in any connection space ≤ is an order relation. As in the case of 
inclusion spaces, we can define “canonical” connection spaces.  

 
Theorem 3.2. (Gerla and Tortora 1996) Define in Re the relation C by set-

ting 
XCY ⇔ X∩Y ≠ ∅. 

Then (Re,C) is a connection space we call canonical connection space. More-
over, the associated order relation coincides with the usual set theoretical in-
clusion. 
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An analogous definition can be given by referring to the regular open sets 
and by putting XCY if and only if cl(X)∩cl(Y) ≠ ∅.  

 

4. Abstractive classes 

In order to define the points and the lines and other “abstract” entities, 
Whitehead in PNK considers the following basic notion. 

 
Definition 4.1. Given an inclusion space, we call abstractive class any totally 

ordered class G of regions such that  
i) G is totally ordered 
ii) no region exists which is contained in all the regions in G.  

We denote by AC the set of abstractive classes. 
 
The idea is that an abstractive class represents an “abstract object” which is 

the limit (the intersection, in a sense) of the regions in the abstractive class. 
Condition ii) means that these objects have a dimension lower than the one 
of the regions. As an example, in the canonical Euclidean plane an abstrac-
tive class is intended to represent either a point or a line. Now, it is possible 
that two different abstractive classes represent the same object. For example, 
let G1 be the class of closed balls with centre in P and let G2 be the class of 
closed squares with the same centre. Then while G1 ≠ G2, our intuition says 
that both G1 and G2 represent P. To face such a question, we define a pre-
order relation and a corresponding equivalence relation. 

 
Definition 4.2. The covering relation ≤c is defined by setting, for any G1 and 

G2 in AC, 
G1≤cG2 ⇔ ∀x∈G2 ∃y∈G1 x>y. 

 
The covering relation ≤c is a pre-order in AC, i.e. it is reflexive and transitive, 
and therefore it defines an equivalence.  

 
Proposition 4.3.  Define in AC the relation 

G1 ≡ G2 ⇔ G1≤c G2 and G2 ≤c G1. 
Then ≡ is an equivalence relation. 
 
We can consider the quotient AC/≡ and the partial order relation ≤c in AC/≡ 
defined by setting, for every pair [G1], [G2] of elements in  AC/≡, 

[G1] ≤c [G2]  ⇔  G1 ≤c G2. 
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At this point it is possible to give the notion of geometrical element. Since 
the definition in PNK, and CN is uselessly complicate, we refer to the 
equivalent definition adopted in PR. 

 
Definition  4.4. We call geometrical element any element of the quotient 

AC/≡, i.e. any complete class of equivalence modulo ≡.  Also, we call point 
any geometrical element which is minimal in the ordered set (AC/≡, ≤c). 

 
Analogous definitions can be given by referring to the connection spaces 

provided that we modify the notion of abstractive class by involving the 
topological notion of non-tangential inclusion. 

 
Definition 4.5. Two connected regions are called externally connected if they 
do not overlap. A region y is non-tangentially included in a region x, if  
   (j)   y is included in x,  
   (jj)  no region exists which is externally connected with both x and y.  
 
If we denote by xOy the formula ∃r(r≤x∧r≤y) expressing the overlapping re-
lation, we can represent the non-tangential inclusion in a very simple way. 
 

Proposition 4.6. The non-tangential inclusion is the relation á defined by 
the formula  ∀z(zCy ⇒ zOx).  

 
Proof.  We have to prove that, under the hypothesis y≤x, the conditions  

a) every region z which is externally connected with y is not externally con-
nected with x, 
b)   if a region z is connected with y, then z overlaps x, 
are equivalent. Assume a) and observe that, in account of the inclusion y ≤x, 
any region z which is connected with y is also connected with x. Assume that 
z is connected with y. Then if z overlaps y it is trivial that z overlaps x. Oth-
erwise, z is externally connected with y and therefore, by a), it is not exter-
nally connected with x. So since z is connected with x, then z overlaps x. 

Conversely, assume b). Then since z overlaps x entails that z is connected 
with x, y≤x by definition. Assume that z is externally connected with y. Then, 
since z is  connected with y, it overlaps x. Thus, z is not externally connected 
with x. 

 
The relation á is on the basis of the notion of abstractive class.  
 
Definition 4.7.  An abstractive class is a set G of regions such that 
j)  G is totally ordered by the non-tangential inclusion, 
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jj) no region exists which is contained in all the regions in G.  
 
The geometrical elements and, in particular, the points are defined as in Defi-

nition 4.4. The reference to the non-tangential inclusion will be motivated in 
Section 6. 

 

5. Ovals to define geometrical notions 

The question of defining the basic notion of straight segment arises. Now 
Whitehead in Chapter III of PR criticizes Euclid’s definition “A straight line 
is any line which lies evenly with the points on itself” since “evenly” re-
quires definition and since “nothing has been deduced from it”. In alterna-
tive, a good definition “should be such that the uniqueness of the straight 
segment between two points can be deduced from it”. In accordance, an at-
tempt of giving an adequate definition in terms of the “extensive notions” is 
proposed. More precisely Whitehead assumes that in the space of the re-
gions we can isolate a class of regions whose elements are called ovals. The 
underlying idea is perhaps that the ovals are suitable convex regions of an 
Euclidean space (a set x of points is convex if for every P and Q in x the seg-
ment PQ is contained in x). The interest of the convex sets lies in the fact that 
the straight segment PQ is the intersection of all the convex sets containing P 
and Q.  Obviously, Whitehead lists suitable properties for the class of ovals. 
As an example “Any two overlapping regions of the ovate class have a 
unique intersect which also belongs to that ovate class”. It is an open ques-
tion to translate these properties into a suitable system of axioms. The fol-
lowing is a reformulation, in mathematical terms, of Whitehead’s definition 
if straight segment.   

 
Definition 5.1. We call convex a geometrical element represented by an ab-

stractive class whose elements are ovals. The straight segment between two 
points P and Q is the convex geometrical element containing P and Q and 
which is minimal with respect to this condition. 

 
Whitehead proves that there is one straight segment between two points. 

We conclude this section by emphasizing that Whitehead’s addition of the 
notion of oval as a primitive to the one of connection is a necessary step from 
a mathematical point of view. In fact, taking in account of the topological na-
ture of the notion of connection, we have that all the notions we can define 
in a canonical model are invariant with respect to the topological transfor-
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mations. As a consequence, there is no possible definition of straight seg-
ment based on the connection relation. 

6. Mathematical motivations for the passage from PNK 
and CN to PR 

   Surely there are philosophical motivations on the basis of Whitehead’s 
passage from the inclusion-based approach proposed in the books PNK and 
CN to the connection-based approach proposed in PR. In such a section we 
will argue that, in any case, there are also mathematical reasons (we do not 
know whether  Whitehead were completely aware of this or not). The first 
one is related with the definition of point. Indeed, consider in R2  the abstrac-
tive classes G-0 , G0 and G+0 defined by sequences of balls with radius 1/n 
and centre in (-1/n,0), (0,0) and (1/n,0), respectively. Then, since G-0 , G0 and 
G+0 are not equivalent, they represent different geometrical elements. As a 
matter of fact, the class G0 covers both the classes G-0 and G+0. So, since G0 is 
not minimal, it cannot represent a point. Obviously should be intriguing to 
imagine an universe in which an Euclidean point as P = (0,0) splits in three 
different “points” P-0 =[G-0] , P0 = [G0], P+0 = [G+0] (as a matter of fact into a 
cloud of infinite points). A similar phenomenon occurs in non-standard 
analysis. However, this is surely far from the aim of Whitehead.   

Instead these difficulties do not occur in the case of the canonical connec-
tion spaces. In fact the sequences G-0 and G+0 (differently from G0) are not ab-
stractive classes since they are not ordered with respect to the non-tangential 
inclusion.  As a matter of fact, we can prove the following proposition giving 
a strong reason in favour of the connection-based approach. 
 
Proposition 6.1. Consider a canonical connection space (Re,C) in an Euclid-
ean space Rn. Then the points in (Re,C) defined by the abstractive classes “co-
incide” with the usual points in Rn (i.e. with the elements of Rn). 
   
Another reason is related with the strenght of the two approaches. Indeed, 
the following theorem holds true.   

 
Theorem 6.2. It is not possible to define the connection relation in a ca-

nonical inclusion space (Re,⊆). So, the connection-based approach is strictly 
more potent than the inclusion-based one. 

   
Proof. Theorem 3.2 shows that in a canonical connection space the inclusion 
relation is definable by the formula ∀z(zCx ⇒ zCy) involving only the con-
nection relation. Then the connection-based approach is either equivalent or 
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more potent than the inclusion-based one. Consider an automorphism f : Re
→ Re, i.e. a map such that 

d1⊆d2 ⇔ f(d1)⊆f(d2). 
Then from a general result in model theory we have that  

 (Re,⊆) £ α [d1,d2]   ⇔   (Re,⊆)  £ α  [f(d1),f(d2)] (6.1) 
for any formula α whose free variables x1 and x2 and for any d1,d2 in Re. In 
particular, if α is able to define the connection relation C, then 
 d1 C d2 ⇔ f(d1) C f(d2) (6.2) 
for any automorphism f.  Consider the case n = 2, set 

ry = {(x,y)∈R2 : x = 0}  ;  P< = {(x,y)∈R2: x<0}  ;   P> = {(x,y)∈R2: x>0} 
and define the map g : R2→ R2 by setting  

 g((x,y)) = (x,y+1)    if x∈ry∪P> 

 g((x,y)) = (x,y)         otherwise. 
We can visualize this map as a cut of the Euclidean plane along the y-axis ry 
and a vertical translation of the half-plane ry∪P>.  Now, if X ∈Re, then g(X) is 
not regular, in general. Nevertheless, we have that int(g(X))≠ ∅ and there-
fore that reg(g(X)) is a regular bounded non-empty subset of R2. In fact, since 
int(X) ≠ ∅, either int(X)∩P>≠ ∅  or int(X)∩P<≠ ∅ and therefore either 
g(int(X)∩P>) or g(int(X)∩P>) is a non-empty open set contained in g(X). We 
claim that the map f : Re → Re defined by setting 

f(X) = reg(g(X)) 
is an automorphism.  In fact, it is evident that X⊆Y entails f(X) ⊆ f(Y). To 
prove the converse implication assume that f(X) ⊆ f(Y) and, by absurdity, 
that X is not contained in Y. Then int(X) is not contained in Y and a closed 
ball B exists such that B ⊆ int(X) and B∩Y = ∅. Also, it is not restrictive to as-
sume that B is either completely contained in P> or completely contained in 
P< and therefore that f(B) = g(B). Now, since g is injective and B∩Y = ∅, we 
have that g(B)∩g(Y) = ∅ and therefore int(g(B))∩g(Y) = ∅.  On the other 
hand 

int(g(B)) ⊆ g(B) = f(B) ⊆ f(X) ⊆ f(Y) ⊆ ry∪g(Y). 
Therefore, int(g(B))⊆ry, an absurdity. This proves that f is an automorphism. 
On the other hand, for example, two closed balls which are tangent in the 
same point in ry are connected while their images are not connected.  This 
contradicts (6.2). 

 
Note that analogous results were proved in a series of basic papers of I. Pratt. 
Anyway, in these papers Pratt one refers to a different notion of canonical 
space in which also unbounded regions are admitted (and this is far from 
Whitehead’s ideas). 
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7. Multi-valued logic to reformulate Whithehead’s 
inclusion-based approach 

We have just argued about the inadequateness of the inclusion-based ap-
proach to point-free geometry. Nevertheless, in our opinion, we can get 
around this inadequateness by reconsidering this approach in the frame-
work of multi-valued logic (see Gerla and Miranda 2004). Indeed, consider 
the first two axioms in Definition 2.1 in a language LIncl with a predicate sym-
bol Incl:  

 A1   ∀x(Incl(x,x))      ;      A2  ∀x∀y∀z((Incl(x,z)∧Incl(z,y)) ⇒ Incl(x,y)).  
But, differently from Section 2, interpret these axioms in a multi-valued 
logic. For example, we can consider the product logic (see for example Hájek 
1998) whose set of truth values is [0,1] and in which 

- the conjunction is interpreted by the usual product in [0,1],  
   - the implication by the operation →  defined by setting x→y = 1 if  x≤y and  

x→y = y/x   otherwise,  
   - the equivalence by the operation ↔ defined by setting  x↔y = 1 if x = y 

and x↔y = (x∧y)/(x∨y)  otherwise,  
- the universal quantifier by the greatest lower bound.  

In such a case an interpretation of LIncl is a pair I = (S,incl) such that S is a non-
empty set and incl : S2→ [0,1] is a fuzzy relation to interpret Incl. As in the 
classical case, given a formula α whose free variables are among x1,...,xn and 
d1,...,dn in S, the truth value Val(I,α,d1,...,dn) ∈ [0,1] of α in d1,...,dn is defined. 
This enables us to associate α with its extension in I, i.e. the n-ary fuzzy rela-
tion I(α) : Sn → [0,1] defined by setting 

I(α)(d1,...,dn) = Val(I,α,d1,...,dn) 
for every d1,...,dn in S. Also, (S,incl) is a model of A1 and A2 if and only if  

 a1   incl(x,x) = 1    ;      a2 incl(x,y)⋅incl(y,z) ≤ incl(x,z),  
for every x, y, z ∈ S. In order to express the anti-symmetric property, we as-
sume that in our logic there is a modal operator Cr such that Cr(α) means “α 
is completely true” and that this operator is interpreted by the function cr  : 
[0,1]→ [0,1] such that cr(x) = 1 if x = 1 and cr(x) = 0 otherwise. Then we can 
consider the axiom  

 A3    Cr(Incl(x,y))∧Incl(y,x)) →  x = y. 
A fuzzy interpretation (S, incl) satisfies A3 if and only if 

 a3  (incl(x,y) = incl(y,x) = 1) ⇒ x = y. 
 

Definition 7.1. Denote by x≤y the formula Cr(Incl(x,y)) and by ≤ its exten-
sion in a given interpretation. Then ≤ is called the crisp inclusion associated 
with incl. Denote by Pl(x) the formula ∀x’(x’≤x ⇒ Incl(x,x’)) and by pl its ex-
tension. Then the fuzzy set pl expresses the pointlikeness property. 
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Trivially, the crisp inclusion is defined by,  

 x≤y  ⇔  incl(x,y) = 1 (7.1) 
and the pointlikeness property is defined by, 
 pl(x) = inf{incl(x,x’) : x’≤x}. (7.2)  
Such a property is a graded counterpart of the definition  

“x is a point provided that every part of x coincides with x”. 
The next axiom says that if the regions x and y are (approximately) points, 

then the graded inclusion is (approximately) symmetric.  
 A4)  Pl(x)∧Pl(y)→ (Incl(x,y) ↔ Incl(y,x)). 

Then such an axiom is satisfied if and only if 
 a4) pl(x)⋅pl(y)≤(incl(x,y)↔ incl(y,x))       (7.3) 

or, equivalently, 
pl(x)⋅pl(y)⋅incl(x,y)≤incl(y,x). 

 
Definition 7.2. We call graded inclusion space any model of A1, A2, A3, A4 .  

 
In any graded inclusion space we can define a notion of point as follows. 
 
Definition 7.3. Given a graded inclusion space (S,incl), we call nested ab-

straction process any order-reversing sequence <pn>n∈N of regions such that 
limn→∞ pl(pn) = 1. 

We denote by Nr the class of the nested abstraction processes.  
 
We can give to the set Nr a structure of pseudo-metric space. 
 
Proposition 7.4. Let (S,incl) be a graded inclusion space such that Nr ≠ ∅, 

then the map d : Nr×Nr→R+ obtained by setting 
 d(<pn>n∈N ,<qn>n∈N) = - limn→∞ Log(incl(pn,qn)), (7.4) 

defines a pseudo-metric space (Pr,d).  
  
As it is usual in the theory of pseudo-metric spaces, we can associate (Pr,d) 

with a metric space. 
 
Proposition 7.5. The relation ≡ in Nr defined by setting <pn>n∈N  ≡ <qn>n∈N 

if d(<pn>n∈N ,<qn>n∈N) = 0 is an equivalence relation. In the quotient Nr/≡ we 
can define a metric d by setting 

d([<pn>n∈N ], [<qn>n∈N ]) = d(<pn>n∈N ,<qn>n∈N). 
 

We call points the elements in Nr/≡, i.e. the complete equivalence classes  
[<pn>n∈N ] = {<qn>n∈N ∈Nr : d(<pn>n∈N ,<qn>n∈N) = 0}. 
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 Observe that the “pathological” abstractive classes G-0 , G0 and G+0 defined 
in Section 6 are equivalent nested abstraction processes and therefore they 
represent the same point.  

There is no difficulty to define canonical spaces in the Euclidean space Rn . 
In fact if δ denotes the usual distance in Rn and x, y are nonempty bounded 
subsets of Rn, then we define the excess function e by setting,  

   e(x,y) = supP∈x inf Q∈x δ(P,Q) . (7.5) 
 
Theorem 7.6. Let Re be the class of all nonempty bounded closed regular 

subsets of Rn and define incl : Re×Re →[0,1] by setting 
 incl(x,y) = 10- e(x,y). (7.6) 

Then (Rn,incl) is a graded inclusion space we call canonical graded inclusion 
space. In such a space pl(x) = 10-|x|. 

 
It is possible to see that in these spaces the inclusion and the connection re-

lations are definable by the two formulas Cr(Incl(x,y)) and 
Cr(∃z(Pl(z)∧(Incl(z,x)∧Incl(z,y))), respectively. Moreover the points coincides 
with the usual points in the Euclidean metric space Rn. This suggests that the 
notion of graded inclusion space looks to be a good candidate to reformulate 
Whitehead’s point-free geometry as proposed in PNK and CN.   
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