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Abstract.
The paper concerns some paradoxes arising from the vagueness. For example, the Heap para-
dox, the Bold Man paradox and Poincaré’s paradox of the indiscernibility are considered. The
solutions proposed by fuzzy logic in the framework of approximate reasoning theory are exhib-
ited.

Riassunto. Il lavoro considera alcuni paradossi che nascono da nozioni vaghe. Ad esempio si
esaminano il paradosso del mucchio di grano, il paradosso dell’uomo calvo ed il paradosso sugli
indiscernibili di Poincaré . Si espongono le soluzioni proposte dalla logica fuzzy nell’ambito
della teoria dei ragionamenti approssimati.
————————————————————————————————————

1 Introduction

The aim of this note, popular in nature, is to generate some interests in fuzzy logic and approx-
imate reasoning theory. To do this we show that fuzzy logic is an useful tool to give a solution
to some famous paradoxes as the Heap paradox, the Bald Man paradox and Poincaré paradox
of the indiscernibility (see Goguen [1968/69], Höhle [1991], Gerla [2008]). Also, we suggest new
paradoxes. These paradoxes show that difficulties related with the vagueness arise also in two
basic fields of the scientific activity, physics and evolution theory, and not only in the everyday
activities.
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1



2 Heap paradox and Goguen’s solution

Denote by Small(n) the sentence “a heap with n stones is small”. Then the formula
(a) Small(1)
is true since an heap with only one stone is small. Moreover, it is natural to admit that all the
formulas
(b) Small(n) → Small(n+1)
are true, where n is any numeral. This since if you add one stone to a small heap, it remains
small. Then, it is evident that, given any numeral n, we can prove that the formula Small(n)
is true: a paradox. Denote by MP the modus ponens rule, i.e. the rule enabling us to derive B
from two formulas as A and A→B. Then we can formalize the Heap paradox as follows.

Proposition 2.1 Given any numeral m, from (a) and the formulas in (b) we can prove
Small(m). Then, every heap is small.

Proof. Assume (a) and the formulas in (b). Then by MP :
from Small(1) and Small(1)→Small(2), we may state Small(2);
from Small(2) and Small(2)→Small(3), we may state Small(3);
. . .
from Small(n) and Small(n)→Small(n+1), we may state Small(n+1).
In such a way, whatever the integer m is fixed, we may prove Small(m). �

Such a reasoning is correct, (a) is true and the conclusion is false. Then, the only possibil-
ity looks to deny a formula in the schema (b) and therefore to admit the existence of an integer
m such that Small(m)→Small(m+1) is false. In turn, this means that Small(m) is true and
Small(m+1) is false and therefore that we have to admit the existence of a “critical” number
m such that:
while a heap with m stones is small, by adding just one stone this heap becomes not small!
Many peoples accept such a point of view and consider the Heap paradox as a proof of the fact
that a vague notion as small has an exact hidden boundary. Such a claim is extended to any
vague notion. Namely, it is claimed that both the crisp and the vague predicates have sharp
boundaries but it is a characteristic of a vague predicate that, due to the limitations of the
human being, such a boundary is unknowable. In other words, vagueness is an epistemological
phenomenon related to ignorance (Sorensen [2001]). So, as in some ideal world there is the set
of odd numbers which is clearly distinct from the set even numbers, in the same world there is
the set of all the small numbers clearly distinct from the set of all the numbers which are not
small.
A different approach is proposed in fuzzy logic (see Goguen [68/69]) where one claims that in
presence of vague predicates the notion of an inference rule has to be modified. This means
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that in a rule we have to specify how (a constraint on) the truth degree of a conclusion depends
on the available (constraints on the) truth degrees of the premises. For example, in accordance
with Goguen proposal, it is reasonable to extend the classical modus ponens rule by assuming
that,
IF you know that α is true at least at degree λ1

AND α→ β is true at least at degree λ2,
THEN you can conclude that β is true at least at degree λ1 ⊗ λ2,
where ⊗ is a suitable binary operation in [0,1] and λ1and λ2 are elements in [0,1]. In accordance,
any proof of α furnishes a constraint on the truth value of α (a precise and general formalization
of approximate reasoning theory can be found in Pavelka [1979] and Gerla [2000]). In Goguen
[1968/69] the operation ⊗ coincides with the usual product.

Theorem 2.2 Approximate reasoning theory is able to give a formal representation of the heap
argument preserving its intuitive content but avoiding its paradoxical character.

Proof. Observe that everyone is convinced that Small(1) is true and the implications Small(n)
→ Small(n+1) are approximately true. Then by fuzzy logic we can “respect” this conviction
by considering the fuzzy set of axioms obtained by assigning the truth value 1 to the formula
Small(1) and a truth value near to 1, say 0.9, to the formulas Small(n) → Small(n+1). Also,
in accordance with Goguen, we can interpret ⊗ by the usual product. So, we can formalize the
Heap argument as follows:

• Since Small(1) [with degree 1]
and Small(1) → Small(2) [with degree 0.9]
we state Small(2) [at degree 1⊗ 0.9 = 0.9];

• Since Small(2) [with degree 0.9]
and Small(2) → Small(3) [with degree 0.9]
we state Small(3) [at degree 0.9⊗ 0.9 = 0.92] ;
. . .

• Since Small(n) [with degree 0.9n−1]
and Small(2) → Small(3) [with degree 0.9]
we state Small(n+1) [at degree 0.9n−1 ⊗ 0.9 = 0.9n].

Thus, if m is a very large number, we can prove Small(m) at degree 0.9m−1, and this is not
paradoxical. In fact, the resulting proof is valid at degree 0.9m−1 and this is a number very
close to 0. �

Note. The fact that we can prove Small(m) at degree 0.9m−1 doesn’t mean that this number
is the truth degree of Small(m) but that it is greater or equal to 0.9m−1. This since fuzzy logic

3



is a tool to find constraints on the truth values of the formulas and not necessarily their exact
truth values. Different proofs give different constraints.
As an example, assume that we know that in the sequence P1, P2,...P1000 of points in a plane
all the segments P iP i+1 have the same length and that such a length is very small. Then,
we can represent this information by claiming that all the formulas Near(P i,P i+1) are true
at degree 0.9, say. Also, in accordance with the meaning of the predicate Near, it is natural
to admit that the formulas Near(P i,P i+1)→ (Near(P i+1,P i+2)→ Near(P i,P i+2)) hold true at
degree 0.9. Then, by proceeding as in the Heap paradox, we can find a proof of Near(P1,P1000)
with a degree δ very near to 0. Now, assume that further information is available, for example
that each segment P iP i+1 forms the angle 2π/1000 with the segment P i+1P i+2. Then we can
prove that the points are placed in a circle and that P1000 = P1 . As a consequence, since
Near(P999,P1000) hold true at degree 0.9, we have a proof of Near(P999,P1) and therefore of
Near(P1,P999) with degree 0.9. Thus, we have two proofs of Near(P1,P999): the first one
giving the truth value δ < 0.9, the latter the truth value 0.9. Obviously no contradiction exists
between these two claims provided that these values are interpreted as lower constraints to the
exact truth value of Near(P1,P999).

3 Bald man paradox

Obviously, the core of Heap paradox lies in the vagueness of the predicate “small”. As a matter
of fact, it is easy to prove that any vague property which is “sufficiently graded” originates
a paradox similar to Heap Paradox. To prove this, we represent the vague properties by the
notion of fuzzy subset. A fuzzy subset of a set S is a map s : S → [0,1] where, given x ∈ S, the
value s(x ) is interpreted as the membership degree of x to s. A fuzzy relation is a fuzzy subset
of a Cartesian product (Zadeh [1975]).

Proposition 3.1 Any vague property which is “sufficiently graded” originates a paradox sim-
ilar to Heap Paradox.

Proof. Let P be any vague property in a set D and assume that the extension of such a
property is represented by a fuzzy subset s : D → [0,1] whose values go from 0 to 1 in a graded
way. This means that, for any x in S the number s(x ) is the truth degree of the claim “x
satisfies P”. Also, we assume that a very small number ε and a sequence d1, d2, ... of elements
of D exists such that
s(d1) = 1, 0 < s(dn)− s(dn+1) < ε, limn→∞ s(dn) = 0.
Under these conditions P(d1) is true and all the implications P (dn) → P (dn+1) look to be
very plausible. If we accept these formulas as a system of hypotheses in classical logic, then
we obtain a paradox similar to Heap Paradox. Indeed, given any integer n, after a suitable
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number of applications of MP we can prove P (dn). On the other hand, from the hypothesis
limn→∞ s(dn) = 0, it follows that P (dn) looks to be false for a sufficiently large integer n. �

As an example, if P denotes the vague predicate “bald”, then we obtain the famous Bald man
paradox. More precisely, assume that Bald(m) denotes the claim “a man with m hairs is bald”.
Then, Bald(1) is true and all the formulas Bald(n) → Bald(n+1) are plausible. So, given any
integer m, we are able to prove Bald(m). Observe that we can also consider paradoxes in reverse
form, going on by “subtraction”. As an example, let “Big” be the negation of “Small”, i.e., let
Big(n) denote the claim “a heap with n stones is big”. Then it is rather natural to admit that
for a sufficiently large integer m, Big(m) holds and that all the implications Big(n)→ Big(n-1)
are plausible. Thus, by using m-1 times M.P., we arrive to the paradoxical conclusion that
Big(1) holds.

Theorem 3.2 Bald man paradox and the reverse form of Heap paradox cannot be solved by
Gouguen’s fuzzy logic based on the product.

Proof. Assume that Bald(n) → Bald(n + 1) holds to a degree λ 6= 0. Then, since Bald(1)
holds to degree 1, in Goguen’s formalization Bald(10.000) can be proved at degree λm−1. Since
λm−1 6= 0, this contradicts the fact that Bald(10.000) is totally false. Likewise, let m be a
natural number such that Big(m) is true to suitable degree µ 6= 0 and assume that, given any
natural number n, the formula Big(n)→ Big(n−1) holds to a degree λ 6= 0. Then it is easy to
see that Big(1) can be proved to the degree µ · (λm−1) . Since µ · (λm−1) 6= 0 , this contradicts
the fact that Big(1) is totally false. �

Such a fact suggests to consider an operation different from the usual product in extending MP.
The more natural candidate is the  Lukasiewicz triangular norm defined by setting, for every
x, y ∈ [0, 1], x ⊗ y = max{x + y − 1, 0}. In fact, define the power λn as usual, i.e. by setting
λ0 = 1 and λn = λ ⊗ λn−1 . Then, by referring to the reverse form of the Heap paradox, it is
easy to see that a suitable integer m exists such that µ⊗ λm−1 = 0. So, it is not contradictory
to assume that the truth value µ of Big(m) is different from zero.

4 Theseus’s ship and Poincaré paradoxes

The just exposed paradoxes are based on a vague monadic predicate. A similar class of para-
doxes is related with vague binary relations, for example the approximate identities. As an
example, the so called ”paradox” of Poincaré refers to indistinguishability by emphasizing that,
in spite of common intuition, this relation is not transitive (see Poincaré [1902] and Poincaré

5



[1904]). In fact, it is possible that we are not able to distinguish d1 from d2, d2 from d3, . . .
,dm−1 from dm and, nevertheless, that we have no difficulty in distinguishing d1 from dm.
A similar paradox is the ancient Theseus’s ship paradox. Theseus and his men are sailing the
Mediterranean in a ship. Each day a sailor replaces the worn-out wooden planks in the ship so
that after five years every plank has been replaced. Are Theseus and his men still sailing in the
same ship that was launched five years earlier? “Yes” most will answer. But suppose that the
removed wooden planks are still sufficiently good and that therefore they are not destroyed but
taken ashore. Also, suppose that at the end of five years, a ship is rebuild with these planks
exactly in the same manner as the original Theseus’s ship. Is this ship on shore Theseus’s ship?
Or is the ship sailing the Mediterranean?
Such a problem is related with the more troubling problem of the persistence of personal iden-
tity. How do I know that I am that person who I was yesterday, or last year, or twenty-five
years ago? Why would an old high school friend say that I am G. Gerla, even though thousands
of things about me have changed since high school ? Probably no cells are in common between
my organism at this time and the organism that responded to the name G. Gerla forty years
ago.
Now an immediate solution of these paradoxes would merely conclude that our intuition about
the transitivity of the indiscernibility relation is wrong. A different solution is proposed by
fuzzy logic in which the paradoxical behavior of the indistinguishability is avoided by assuming
that such a relation is a fuzzy relation satisfying a weak notion of transitivity (Gerla [2008]).
More precisely, if I denotes such a relation, we assume the formula
I(x, y) ∧ I(y, z)→ I(x, z)
at a degree λ different from 1 and the formulas
I(di, di+1)
at degree 1. Then in fuzzy logic we can prove E(d1, d3) only at degree λ2 and, more in general,
the formula E(d1, dm) only at degree λm−1. On the other hand, such a value is very close to
zero.

5 Constraints and negative information

Consider the following form of Heap paradox. Again, we assume that a heap containing just
one stone is small, i.e., that
a) Small(1) is true
Moreover, we express directly our opposition to accept the existence of a critical number n such
that a heap with n stones is small and a heap with n+1 stones is not small. Indeed, we claim
that
b) Small(n)∧¬Small(n+ 1) is “impossible”.
Then,
- since Small(1) holds and Small(1) ∧ ¬Small(2) is impossible, Small(2) holds;
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- since Small(2) holds and Small(2) ∧ ¬Small(3) is impossible, Small(3) holds;
. . .
- since Small(n− 1) holds and Small(n− 1) ∧ ¬Small(n) is impossible, Small(n) holds.
In such an argument the presence of the expression “impossible” means that we admit negative
information as a premise in an inferential step. Notice that this is not usual in logic since
inference rules are preferred in which the premises are true formulas. Clearly, in any logic with
a good negation the distinction is not essential because we can translate the claim that a formula
is false into the equivalent claim that its negation is true. In spite of that, it is an interesting
task to formalize directly those forms of reasoning starting from negative information. Now,
the better way to express negative information is to consider signed formulas. We call signed
formula a pair (A,λ) where λ ∈ {0, 1} . The pair (A,0) represents the claim “A is false”, the
pair (A,1) the claim “A is true”. The signed formulas enable us to formalize the just exposed
argument by the classical “inference rule”

(A, 1) , (A ∧ ¬B, 0)
(B, 1)

and by assuming the signed formulas:
a) (Small(1), 1)
b) (Small(n) ∧ ¬Small(n+ 1), 0).
Indeed,

- from (Small(1), 1) and (Small(1) ∧ ¬ Small(2), 0) we prove (Small(2), 1),
- from (Small(2), 1) and (Small(2) ∧ ¬ Small(3), 0) we prove (Small(3), 1),
. . .
- from (Small(n-1), 1) and (Small(n-1) ) ∧ ¬ Small(n), 0) we prove (Small(n), 1).
Now, as observed in the note at the end of Section 2, in fuzzy logic it would be misleading to
consider the available information v(α) ∈ [0, 1] on a formula α as the truth value of α. Indeed,
such a number is a constraint on its actual truth value, namely a constraint like “the truth
value of α is greater than or equal to v(α)”. Now, it is rather natural to admit also that the
available information about an unknown fuzzy world can be expressed by constraints of a more
general kind. For example, constraints as “the truth value of α is between 0.3 and 0.5 ”,
“the truth value of β is less than 0.7 ”. The general form of such information is “the truth
value of α belongs to X ”, where X is a subset of U (see Gerla [1999]). The consideration
of the constraint enables us give a solution to the negative form of Heap paradox as follows.
Indeed, observe that everyone is convinced that the formulas Small(n) ∧ ¬ Small(n+1) are
very far from the truth but, in general, not completely false. In other words, the truth values
of these formulas are either equal to 0 or, in any case, “very near” to 0. This can be expressed
in a precise way by enlarging the notion of signed formula and, in accordance, by changing the
notion of fuzzy inference rule and fuzzy reasoning. Indeed we call signed formula a pair (A,X )

7



where A is a formula and X an interval in [0,1]. Moreover, we propose the rule

(A, [a, b]) , (A ∧ ¬B, [c, d])
(B, [e, f ])

where [e,f ] is the closed interval generated by the set {λ ∈[0,1] : there is x ∈[a,b] such that
x ⊗ (1 − λ) ∈ [c, d]}. By definition, this rule is sound with respect to  Lukasiewicz semantics.
Indeed, we refer to the set of possible truth values for B given the information that the truth
value of A is in [a,b] and the truth value of A ∧ ¬B is in [c,d ]. In particular, we have that

(A, [λ, 1]) , (A ∧ ¬B, [0, µ])
(B, [0 ∨ (λ− µ), 1])

Indeed, let x and y be the truth values of the formulas A and B, respectively. Then
x ≥ λ and (x+ (1− y)− 1) ∨ 0 ≤ µ⇔ x− y ≤ µ⇔ y ≥ λ− µ.
In such a case the rule says that:
IF A is approximately true (to degree λ ),
AND A ∧ ¬B is approximately false (to degree µ),
THEN B is approximately true (to degree λ− µ),
Coming back to the paradox, assume the signed formulas,
(Small(1),[1,1]) ,
(Small(n) → Small(n+1), [0,0.0001]).
Then we can consider the following approximate reasoning:
from (Small(1),[1,1])
and Small(1)∧¬Small(2),[0,0.0001]),
we state (Small(2),[0.9999,1]);
since (Small(2),[0.9999,1]) and (Small(2)∧¬Small(3),[0,0.0001]),
we state (Small(3),[0.9998,1]);
...
since (Small(10000),[0.0001,1]) and (Small(10000)∧¬Small(10001),[0,0.0001] ),
we state (Small(10001),[0,1]).
Thus, as in Section 3, for any integer n we can give a correct proof π of the formula Small(n)
but, for n > 10.000, no information about the truth value of Small(n) is furnished by π.

6 Darwin evolution theory, classical mechanics and

relativity theory

In this section we consider two paradoxes related with Darwin evolution theory and relativity
theory, respectively. Denote
- by Ub(x) the claim “x is an human being” and
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- by Anc(x′, x, n) the claim “x′ is an ancestor of x and x′ was born n years before x at least”,
where x and x′ vary in the class of life forms and n in the set of natural numbers. Then, we
can consider the following formulas
(a) Anc(x′′, x′, p) ∧Anc(x′, x, q)→ Anc(x′′, x, p+ q)
(b) Ub(x)→ ∃x′(Ub(x′) ∧Anc(x′, x, 10)).
We have that while (a) holds by definition, (b) is more questionable. In fact the opinion of
many religious men is that both ∃x′Anc(x′, Adam, 10) and ∃x′Anc(x′, Eve, 10) are false. Then,
since both Ub(Adam) and Ub(Eve) are true, (b) has to be rejected. Instead a non-creationist
point of view leads to admit (b) since it is sufficient to assume that x′ is the mother of x. This
since it is a characteristic of the human species that every man has a mother, that this mother
is an human being and that it is not possible for a woman to give birth before ten years. This
suggests to call non-creationist theory the theory defined by (a) and (b).

Theorem 6.1 Assume the non-creationistic theory. Then I have an extraterrestrial ancestor.
As a consequence, Darwin evolution theory is wrong.

Proof. Let Gianni be my name. Then for any natural number n it is possible to prove, by
induction on n, the formula

∃x′(Ub(x′) ∧Anc(x′, Gianni, 10× n)) (6.1)

In fact, in the case n = 1, since Ub(Gianni) is true, (6.1) follows from (b) by the particularization
rule and MP. Assume that (6.1) is satisfied by n and let Carlo be such that Ub(Carlo) ∧
Anc(Carlo,Gianni, 10× n) and Luigi such that Ub(Luigi) ∧Anc(Luigi, Carlo, 10). Then, we
can prove also the formula

Anc(Luigi, Carlo, 10) ∧Anc(Carlo,Gianni, 10× n).

Since by the particularization rule (a) entails

Anc(Luigi, Carlo, 10) ∧Anc(Carlo,Gianni, 10× n)→ Anc(Luigi,Gianni, 10× (n+ 1)),

by MP we obtain the formula Anc(Luigi,Gianni, 10× (n+ 1)) and therefore the formula

∃x′(Ub(x′) ∧Anc(x′, Gianni, 10× (n+ 1)))

This proves (6.1) completely. To prove the theorem, observe that (6.1) entails that an ancestor
of mine existed exactly 10× 10100.000 years ago. Since the earth is less than 10× 10100.000 years
old, such an ancestor was extraterrestrial. �

Obviously the claim in Theorem 5.1 is not a paradox. In fact there is no logical contradiction in
the claim that I have an extraterrestial ancestor. The paradox lies in the possibility of confuting
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a theory on factual reality by a purely logical argumentation. Plausibly, the paradox originates
from the vagueness of the notion “human being” in the scale of the evolution of the species. On
the other hand such a vagueness is a presupposition of evolution theory. So, perhaps a formal
solution of such a paradox by the fuzzy logic apparatus should be possible.
Another paradox is related with the “correspondence principle”, concerning the connection
between a new physical theory and the corresponding old one. Such a principle claims that an
empirically confirmed theory will not disappear as false with the appearance of a new, more
universal theory, but it preserves its importance as special case or the limiting of the new
theory. This contradicts Kuhn’s or Feyerabend’s conception of incommensurability claiming
that a scientific revolution generates not only a new theory, but it changes the whole world of the
given discipline. Also, this is related with Popper question: can we explain how one theory can
be closer to the truth, or has greater verisimilitude than another? (for a geometrical approach
to this question see Gerla [1992] and Gerla [2006]). The most widely known correspondence
principle was enunciated by Niels Bohr in 1923 and is related with quantum mechanics and
classical mechanics. We have also a correspondence principle for general relativity to special
relativity and special relativity to Newtonian mechanics. By referring, for example, to this last
case, the correspondence principle starts from the observation that Newton’s laws and classical
mechanics do a very good job of explaining and predicting motion at everyday speeds. Thus
we would hope that when small speeds are involved, the equations in special relativity should
reduce to the Newtonian form. So, in a sense, no contradiction exists between the two theories.
This is all O.K., but it is very difficult to give a precise and logical meaning to this principle.
Indeed, denote by CT the classical mechanics and by RT special relativity theory. Moreover,
assume that g is a physical quantity and that, since the velocities are very small
- in TR we can prove the claim αR = “g is 0.567662220”, and
- in CT we can prove the claim αC = “g is 0.567662221”.
Then, from TR ∪ CT we derive that 0.567662220 = 0.567662221, a contradiction. This means
that the two theories are mutually excluding and therefore, since we accept that RT is the
correct theory, we have reject CT completely. This contradicts the correspondence principle
and our feeling that, since the sentences αR and αC are approximately equivalent and αR is
totally correct,αC is approximately true. On the other hand, in classical logic the expressions
“approximately equivalent sentences” and “approximately true sentence” have no meaning.
Thus, we have the following paradox:

Theorem 6.2 Consider a world with small velocities. Then classical mechanics is a very useful
theory in spite of the fact that nearly all its theorems are false.

We can try to improve such an unsatisfactory situation by admitting that our language is
approximate and therefore that our claims are not completely accurate. Indeed, as claimed by
C. S. Peirce, “It is easy to be certain. One has only to be sufficiently vague”. For example,
we can decide to confine ourselves only to eight digit approximation of the real numbers. In
such a case both αR and αC coincides with the claim “g is 0.56766222” whose correct meaning
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is that “g is a value between 0.56766222 and 0.56766223”. In other words, by admitting an
approximate language, we can obtain precise (i.e., Boolean) truth values. Then, we can try
for a relaxed form of the inclusion principle: Assume that the velocities are small and that our
language is sufficiently approximate. Then, the theorems in CT coincide with the theorems in
TR. In any case my feeling is that also such a version of the inclusion principle is wrong and
this since the notion “small velocities” is vague and therefore originates paradoxes similar to
Heap paradox. As an example, denote by Small(x, y) the claim
“the velocity of y with respect to x is small”
and by Galilean(x, y) the claim
“assume that our language is sufficiently approximate, then y is connected with x by a Galilean
transformation.”
Then, the relaxed inclusion principle is expressed by the formula

Small(x, y)→ Galilean(x, y).

Now, consider a finite sequence R1, R2, ..., Rn of solid bodies such that the velocity of each Ri+1

with respect to Ri is small and that, nevertheless, the velocity of Rn with respect to R1 is
near to light velocity. In brief, assume that all the formulas Small(Ri, Ri+1) are valid and that
Small(R1, Rn) is false. Also, since the product of two Galilean transformation is a Galilean
transformation, assume the implication

Galilean(x, y) ∧Galilean(y, z)→ Galilean(x, z). (6.2)

Then
from Small(R1, R2) and Small(R1, R2)→ Galilean(R1, R2) we obtain Galilean(R1, R2)
from Small(R2, R3) and Small(R2, R3)→ Galilean(R2, R3) we obtain Galilean(R2, R3)
from Galilean(R1, R2), Galilean(R2, R3) and (5.2) we obtain Galilean(R1, R3)
. . .
from Galilean(R1, Rn−1), Galilean(Rn−1, Rn) and (5.2) we obtain Galilean(R1, Rn)

But this contradicts the basic assumption in RT that Rn is related with R1 by a Lorentz
transformation. Thus we have that RT contradicts CT also in a relaxed and imprecise language.

7 The induction principle is false.

Recall that the induction principle claims that, given a formula P (x) expressing a property
defined in the set of natural numbers, the formula
P (1)→ (∀n(P (n)→ P (n+ 1)))→ ∀nP (n),
is true. We can restate the Heap paradox by such a principle. Indeed, assume the following
two formulas
(a) Small(1)
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(b) ∀n(Small(n)→ Small(n+ 1))
Also, as a consequence of the induction principle, admit the formula
(c) Small(1)→ (∀n(Small(n)→ Small(n+ 1)))→ ∀n Small(n),
Then, from (a), (b) and (c) and two applications of MP we can prove the formula ∀n Small(n)
and therefore, by particularization, Small(m) for any natural number m. This means that
we obtain the same paradoxical conclusion as in Section 2. Nevertheless, this argument is
totally different since we arrive to Small(m) in a three steps reasoning and not in an m-1 steps
reasoning.

Proposition 7.1 If we admit the induction principle, fuzzy logic is not able to solve the Heap
paradox.

Proof. To try to solve such a form of the paradox by fuzzy logic, assume that (a) is completely
true, that (b) is valid at degree 0.9 and that (c) is completely true. Also, let ⊗ be the operation
used to extend MP. Then ∀n Small(n) can be proved at degree 1⊗ 0.9 = 0.9 and therefore, in
particular, any formula Small(m) can be proved at degree 0.9. Such a conclusion is as much
paradoxical as the conclusion that any formula Small(m) is true. �

From Proposition 6.1 it follows that in order to avoid the inconsistency of fuzzy logic we have
to reject the induction principle completely. As a matter of fact we can prove the following
theorem.

Theorem 7.2 The induction principle is false in any fuzzy logic in which both ⊗ and the
interpretation → of the implication are continuous functions.

Proof. Assume that the induction principle is valid with a degree λ 6= 0. Then, since λ⊗1 =
λ > 0, by the continuity hypothesis µ 6= 1 exists such that λ⊗ µ > 0. Since → is a continuous
function, and {(x, y) ∈ [0, 1] × [0, 1] : x = y} is a compact set contained in the open set
{(x, y) ∈ [0, 1]× [0, 1] : x→ y > µ}, a positive real number ε exists such that
y − x < ε⇒ x→ y > µ.
Let P be a vague predicate in a set S as in the proof of Proposition 2.3. Namely, we assume
that P is interpreted by a fuzzy set s : S → [0, 1] such that a sequence d1, d2, ... of elements of
S exists such that
s(d1) = 1 ; 0 < s(dn)− s(dn+1) < ε ; limn→∞ s(dn) = 0.
Under these conditions P (d1) is true and the truth degree of the formula ∀n(P (dn)→ P (dn+1))
is greater or equal to µ. Then ∀nP (dn) can be proved at degree 1 ⊗ λ ⊗ µ = λ ⊗ µ, and
therefore, by particularization, each P (dm) can be proved at degree λ⊗µ 6= 0. This contradicts
the hypothesis limn→∞ s(dn) = 0. �
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