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Abstract: In accordance with Tarski point of view, in this chapter the theory of closure 
operators is proposed as a unifying tool for fuzzy logics. Indeed, let F be the set of formulas of 
a given language. Then an abstract fuzzy logic is defined by a fuzzy semantics (i.e. a class of 
valuations of the formulas in F) and by a closure operator in the lattice of the fuzzy subsets of F 
(we call deduction operator). One proves that Pavelka’s logic, similarity logic and graded 
consequence theory can be represented in this way. 
 

3.1  INTRODUCTION. 

Let U  be a nonempty set and denote by P(U) the lattice of all the subsets of U. Then  
a closure operator on U is any map J:P(U)→P(U) such that, 

X⊆Y ⇒ J(X)⊆J(Y) ;  X⊆J(X)  ;   J(J(X))=J(X), 
for every X and Y subsets of U. The theory of closure operators is a very useful tool in 
several areas of classical mathematics and, in particular, in (crisp) mathematical logic. 
Indeed, in account of the fact that the deduction operator of a monotonic logic is a 
closure operator, A. Tarski, D. J. Brown, R. Suszko and other authors proposed a 
general approach in which a logic is seen as a pair (F,D) where F is the set of 
formulas in a given language and D:P(F)→P(F)  is a closure operator (see, e.g., 
[Tarski 1956] and [Brown; Suszko 1973]).  
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In this chapter we will show that it is possible to extend such an abstract approach 
to fuzzy logic. To do this, we start from the notion of a closure operator in a complete 
lattice L (see, e.g., [Ward 1942]). Obviously, we are mainly interested in the case in 
which L is the lattice of the fuzzy subsets of the set of formulas of a given language. 
The resulting theory enables us to give a unified treatment of several different 
approaches to fuzzy logic (such as Pavelka's logic, similarity logic, graded 
consequence theory). It is worth noticing that the proposed extension of the theory of 
closure operators to the fuzzy framework is useful not only for fuzzy logic but also for 
many other branches of fuzzy set theory. Indeed, it gives an elegant and powerful way 
to treat notions such as those of fuzzy topologies, fuzzy subalgebras, necessity 
measures and envelopes (see, e.g., [Conrad 1980]), [Biacino; Gerla 1984], [Murali 
1991], [Biacino; Gerla 1992], [Biacino 1993]). 
 
3.2   CLOSURE OPERATORS IN A LATTICE 
 
Let L be a complete lattice whose minimum and maximum we denote by 0 and 1, 
respectively. An operator J:L→L is called a closure operator if, for every x,y∈L,  
 (i)    x≥y ⇒ J(x)≥J(y)    (monotony) 
 (ii)   x≤J(x)                   (inclusion) 
 (iii)  J(J(x))=J(x)            (idempotence). 

We call an almost closure operator in L, in brief a-c-operator, an operator J 
satisfying (i) and (ii). A class C of elements of L is called a closure system if the meet 
of any family of elements of C is an element of C. Every closure system C is a 
complete lattice in which the meets are the same as in L but the join of a subset X of C 
is the meet of the set of elements of C that are greater or equal to every element of X. 
So a closure system is not a sublattice of L, in general; as an example, consider the 
class of closed subsets of an Euclidean space. Moreover, given a class C⊆L, we define 
the operator J(C):L→L by setting,  
 J(C)(x)=Inf{y∈C | y≥x} (3.1) 
for every x∈L. If C is a closure system, then J(C)(x) belongs to C and it is called the 
element of C generated by x. Given an operator J, we set 
 C(J)={x∈L | J(x)=x}, (3.2) 
i.e., C(J) is the set of fixed points of J.  
 
Proposition 3.2.1 Given any C⊆L, the operator J(C):L→L defined in (3.1) is a closure 
operator. Given an a-c-operator J, the class C(J) ⊆L defined in (3.2) is a closure 
system.   
 
Proof. It is immediate that J(C) is a closure operator. To prove that C(J) is a closure 
system observe that, if (xi)i∈I is any family of elements of C(J) then by the monotony 
of J, J(Infi∈Ixi)≤xi for every i∈I. So we have J(Infi∈Ixi)≤Infi∈Ixi and, since the opposite 
inequality holds by (ii), it is J(Infi∈Ixi)=Infi∈Ixi. This proves tht C(J) is a closure 
system.   
 
    The class LL of the operators in L is a complete lattice with respect to the order 
relation defined by setting, for every J1 and J2 in LL, J1≤J2 provided that J1(x)≤J2(x), 
for every x∈L. The joins and meets in such a lattice are given by setting 
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(J1∨J2)(x)= J1(x)∨J2(x)  , (J1 ∧J2)(x)= J1(x)∧J2(x), 
for any x∈L. We have also the following proposition, whose proof is immediate. 
 
Proposition 3.2.2  The class CO(L) of the closure operators in L is a closure system in 
LL. The class CS(L) of the closure systems in L is a closure system in P(L).  
 
    In accordance with the first part of Proposition 3.2.2, given an operator J, we denote 
by c(J) the closure operator generated by J, i.e., the meet of all the closure operators 
greater than or equal to J.  
 
Proposition 3.2.3 Let J be an a-c-operator. Then  
 c(J)=J(C(J)), (3.3) 
i.e., for any x in L, c(J)(x) is the least fixed point of J greater than or equal to x. In 
particular, if J is a closure operator, then J=J(C(J)). 
 
Proof. Set J’=J(C(J)), then, J’ is a closure operator. To prove that J’≥J observe that 
for every x, if J’(x)=x’ we have x’≥x and J(x’)=x≥J(x), thus J’(x)≥J(x). Let H be a 
closure operator such that H≥J. Then J(H(x))≤H(H(x))=H(x); on the other hand 
J(H(x))≥H(x). This proves that H(x)∈C(J) and, since H(x)≥x, that H(x)≥ J’(x).  
 
   In accordance with the second part of Proposition 3.2.2, given a system C we denote 
by c(C) the closure system generated by C, i.e., the intersection of all the closure 
systems containing C.  
 
Proposition 3.2.4  Given a class C of elements of L, we have 
 c(C)=C(J(C)), (3.4) 
and therefore, C=C(J(C)) for every closure system C.  Moreover, 
 c(C)={Inf(X) | X⊆C}. (3.5) 
 
Proof.  (3.5) is immediate, to prove (3.4) observe that, since every element of C is a 
fixed point of J(C), C(J(C)) is a closure system containing C. Let C’ be a closure 
system containing C, and x an element of C(J(C)). Then, since x=J(C)(x), x is a meet 
of elements of C and hence belongs to C’. Thus C(J(C)) is contained in C’ and 
therefore C(J(C))=c(C).  
 
    If C and C’ are closure systems and J, J’ closure operators, then:  

C⊆C’ ⇔  J(C)≥J(C’)  ;  J≤ J’  ⇔  C(J)⊆ C(J’). 
Since in Propositions 3.2.3 and 3.2.4 we proved that J=J(C(J)) and C=C(J(C)), this 
shows that (3.1) defines a lattice isomorphism from CS(L) on CO(L) and (3.2) defines 
the inverse isomorphism from CO(L) on CS(L).  
 
Proposition 3.2.5  Let  J  be an a-c-operator and C  a class. Then  
 C(J)=C(c(J))  ;  J(C)=J(c(C)). (3.6) 
Moreover, let be J1, J2 a-c-operators and C1, C2  classes. Then 
 c(J1)=c(J2) ⇔ C(J1)=C(J2)  ;  c(C1)=c(C2) ⇔  J(C1)=J(C2). (3.7) 
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Proof. Every element of C(J) is a fixed point of J(C(J))=c(J) and this proves that 
C(J)⊆C(c(J)). Conversely, let x be a fixed point of c(J). Then x=J(C(J(x))) 
=Inf{y∈C(J) | y≥x}. But C(J) is a closure system, so x∈C(J). Thus C(J)⊇C(c(J)) and 
therefore C(J)=C(c(J)). The remaining part of the proposition is obvious.  
 
 
3.3  ABSTRACT LOGICS 

We define an abstract deduction system as a pair (L,D) where L is a complete lattice 
and D a closure operator in L. The elements in L are called pieces of information and 
D the deduction operator. A theory is defined as a fixed point of D, i.e., a piece of 
information τ such that τ≥D(τ). So, the theories are the deductively closed pieces of 
information. Obviously, τ is a theory iff a piece of information x exists such that 
τ=D(x). If this is the case, x is called a system of axioms for τ. The theory D(0) is 
called the system of tautologies and is denoted by Tau(D). Since D(1)=1, 1 is a theory, 
we call the inconsistent theory. A piece of information x∈L is consistent provided that 
D(x) is different from 1. We define an abstract semantics as a nonempty class M of 
elements of L such that 1∉M, and we call models the elements in M. If x is a piece of 
information and m∈M, then m is a model of x, in brief m £ x, provided that x≤m. We 
say that x is satisfiable if a model of x exists and we denote by Sat(M) the class of 
satisfiable pieces of information, i.e.,  

Sat(M)={x∈L | m∈M exists such that m £ x}. 
    Two pieces of information admitting the same models are said to be logically 
equivalent. In accordance with Proposition 3.2.1, M induces a closure operator we call 
logical consequence operator and we denote by ConM (or merely by Con). Then ConM 
is defined by setting, given a piece of information x, 

ConM (x)=Inf{m∈M | m £ x}. 
    We define the system of tautologies of M as  

Tau(M)=Inf{m | m∈M}, 
i.e., Tau(M)= ConM (0).  
 
Definition 3.3.1 An abstract logic is an object like (L,D,M) where (L,D) is a deduction 
system and M a semantics such that D=ConM .  
 
    For example, the classical first order logic is an abstract logic in which 
- the pieces of information are the sets of formulas (systems of axioms) 
- D(x) is the set of formulas we can derive from x 
- a theory τ is a set of formulas containing the logical axioms and closed under the 
inference rules  
- a model is identified with the related set of true formulas (and therefore M with the 
class of complete theories) 
- ConM (x) is the intersection of all the complete theories containing x. 
    Given any abstract deduction system (L,D) we can define an abstract logic in a 
trivial way by setting M equal to the class of consistent theories of D. In this sense any 
deduction system admits an abstract semantics. Nevertheless, such a semantics is 
unsatisfactory since we look for semantics containing only those theories that are 
complete systems of information, in a sense.  
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3.4 CONTINUITY FOR ABSTRACT LOGICS 
 
The deduction operators of the crisp logics are compact, i.e., for every α∈D(X) a finite 
subset Xf of X exists such that α∈D(Xf). This is an immediate consequence of the fact 
that a proof involves only a finite number of hypotheses. Since the notion of a finite 
subset is not defined in a generic lattice L, we have to search for a different notion of 
compactness. A nonempty class T of elements in L is called directed if 

x∈T , y∈T  ⇒ ∃z∈T , x≤z, y≤z. 
The chains are typical examples of directed classes. If  z=Sup(T) we say that z is the 
limit of  T and we write z=limT. If J is an order-preserving operator and T is directed, 
then the image J(T)={J(x) | x∈Τ}  is also directed, obviously.  
 
Definition 3.4.1 An operator J is called continuous if it is order preserving and, for 
every directed class T, 
 J(limT)=limJ(T). (3.8) 
 
    A continuous closure operator is also called an algebraic closure operator. One 
proves that if L is the lattice of all the subsets of a given set, then J is continuous iff J 
is compact.  
 
Definition 3.4.2 A class C of elements of L is called inductive if the limit of every 
directed family of elements in C belongs to C. An inductive closure system is called 
algebraic.  
 
    The following proposition, whose proof we omit, shows that the notion of algebraic 
closure system is the natural counterpart of the one of algebraic closure operator.  
 
Proposition 3.4.3  Given a nonempty class C,  

C is an algebraic closure system ⇔ J(C) is an algebraic closure operator. 
Given a closure operator J 

J is algebraic ⇔ C(J)  is an algebraic closure system. 
 
     The continuity is a necessary condition for a deduction operator D works well. 
Indeed, if we are able to approximate an information x with a partial information y 
such that y≤x, then D(y) has to be a suitable approximation of D(x).  
 
Definition 3.4.4 An abstract deduction system (L,D) (more generally, an abstract 
logic) is called continuous provided that D is continuous.  
 
 
3.5  STEP-BY-STEP DEDUCTION SYSTEMS 
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Usually a deduction operator D is obtained by starting from a suitable set A of logical 
axioms and a suitable set of inference rules. Namely, denote by J(X) the set of 
formulas that can be obtained by one application of the inference rules to formulas in 
X, and set  

H(X)=J(X)∪A∪X, 
i.e., α∈H(X) provided that  
- either α is obtained by applying an inference rule to formulas in X,  
- or α is a logical axiom  
- or α is an element in X.   
   Also, define Hn by induction on n, by setting H1=H and Hn+1=HoHn. Then it is 
immediate that H is an almost closure operator, D is the closure operator generated by 
H and that D(X)=∪Hn(X). Obviously, Hn(X) represents the set of formulas we can 
obtain from X by an n-step inferential process.  
    To extend such an approach to abstract logics we at first examine how to obtain the 
closure operator generated by a continuous a-c-operator.  
 
Proposition 3.5.1 Let H be a continuous a-c-operator. Then the set C(H) of fixed 
points of H is an algebraic closure system and the closure operator c(H) generated by 
H is continuous. 
 
Proof. Let T be a directed subclass of C(H). Then, since H is continuous  

H(Sup({x | x∈T}))=Sup({H(x) | x∈T})=Sup({x | x∈T}) 
and, hence, Sup({x | x∈T})∈C(H). This proves that C(H) is inductive. Thus, since by 
Proposition 3.2.3 c(H)=J(C(H)), by Propositions 3.4.3 we can conclude that c(H) is 
algebraic.  
 
    If H is a continuous a-c-operator the following famous theorem enables us to 
calculate the closure operator c(H) generated by H.  
 
Theorem 3.5.2 (Fixed-point Theorem) Let H be a continuous a-c-operator. Then 
 c(H)=Supn∈NHn . (3.9) 
 
Proof. We have to prove that, for every x∈L,  Supn∈NHn(x) is the least fixed point of H 
greater than or equal to x. Now, since H(x)≥x we have also that Hn+1(x)≥Hn(x) for 
every n, and hence the family (Hn(x))n∈N is directed. Since H is continuous 

H(Supn∈NHn(x))=Supn∈NHn+1(x)=Supn∈NHn(x) 
and Supn∈NHn(x) is a fixed point for H greater than or equal to x. If y is any fixed point 
such that y≥x, then for every n∈N, y=Hn(y)≥Hn(x) and hence y≥Supn∈NHn(x). This 
proves that Supn∈NHn(x)=c(H)(x).   
 
    In accordance with the above considerations, we propose the following definition. 
 
Definition 3.5.3 A step-by-step deduction system is an object like (L,J,a) where 
- J is a continuous operator (the immediate consequence operator) 
- a is an element of L (the system of logical axioms). 
 
    Let J  be a continuous operator and define H  by setting 
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 H(x)=J(x)∨a∨x (3.10) 
for every x∈L. Then it is easily seen that H is a continuous a-c-operator. H(x) 
corresponds to the set of formulas that either are immediate consequences of x, or are 
logical axioms or are hypotheses (i.e. elements in x). 
 
Definition 3.5.4 Let (L,J,a) be a step-by-step-deduction system, define H by (3.10) 
and denote by D the closure operator generated by H. Then (L,D) is called the 
deduction system associated with (L,J,a).   
 
    The following proposition is an obvious consequence of the Fixed-point Theorem. 
 
Proposition 3.5.5 Let (L,J,a) be a step-by-step-deduction system and (L,D) the 
deduction system associated with (L,J,a).  Then D is algebraic and 
 D(x)=Supn∈NHn(x). (3.11) 
Moreover,  τ is a theory of (L,D) iff 
 (i)  τ≥J(τ)     and     (ii)  τ≥a. (3.12) 
 
    Then, while for every integer n, Hn(x) represents the information available in n-
steps, Supn∈NHn(x) represents the whole information we can derive from x.  
 
 
3.6  LOGICAL COMPACTNESS 
 
A closure operator D is said to be logically compact, in brief l-compact, provided that 
the related class of consistent pieces of information is inductive. A semantics M is 
called logically compact provided that the related logical consequence operator C is 
logically compact, i.e., the class Sat(M) of satisfiable pieces of information is 
inductive. Note that logical compactness is different from continuity. Indeed, while 
the deduction operator of a fuzzy logic in Hilbert style is always continuous, there are 
very interesting examples of such logics whose deduction operator is not logically 
compact (as an example, see the logic of the necessities examined in [Biacino; Gerla 
1992]).  
 
Proposition 3.6.1 Let D be a deduction operator. Then the following are equivalent 
 (a)  D is continuous and logically compact  
 (b)  the class of consistent theories is inductive. 
 
Proof. (a)⇒(b). Let T be a directed family of consistent theories and denote by τ its 
limit. Then, since D is continuous, τ is a theory and, since D is logically compact, τ is 
consistent.   
(b)⇒(a). In order to prove that D is continuous we prove that the class of theories is 
inductive. Let T be any directed family of theories and denote by τ its limit. Then, if 
all the elements in T are consistent, we have that τ is a consistent theory. If the 
inconsistent theory 1 belongs to T, then τ=1. So, in any case τ is a theory. Let (xi)i∈I  be 
a directed family of consistent pieces of information and denote by x its limit. Then 
(D(xi))i∈I is a directed family of consistent theories and hence its limit τ is a consistent 
theory. Since x≤τ, this proves that x is consistent. Thus, D is logically compact.   
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    The interest of the logically compact semantics is expressed in the following 
propositions. 
 
Proposition 3.6.2 If M is logically compact, then every satisfiable piece of 
information admits a maximal model. Equivalently, every element of M is contained in 
a maximal element in M. 
 
Proof. Assume that x is satisfiable, then, since Sat(M) is inductive, the class 
C={y∈Sat(M) | y≥x} is inductive. By Zorn's Lemma, a maximal element z of C exists. 
Since z is satisfiable, m∈M exists such that m≥z. Since m∈C, by the maximality of z 
we can conclude that z=m. This proves both that z belongs to M and that z is a maximal 
element in M.  
 
    In the same way one proves that: 
 
Proposition 3.6.3 If D is logically compact every consistent piece of information is 
contained in a maximal theory. 
 
 
3.7  BASIC NOTIONS IN FUZZY SET THEORY 
 
Denote by ∨ and ∧ the maximum and the minimum operations in [0,1] and by ¬ the 
unary operation defined by setting ¬(x)=1-x for x∈[0,1]. Then ([0,1],∨,∧,¬) is a 
complete lattice with an involution. Given a set U, we denote by (F(U),∪,∩,c) the 
direct power of ([0,1],∨,∧,¬) with index set U and we call fuzzy subsets the elements 
of F(U). The operations ∪, ∩ and c are called union, intersection, complement, 
respectively. Then a fuzzy subset is a map A:U→[0,1] from U to [0,1] and, if A, B are 
fuzzy subsets of U, 

(A∪B)(x)=A(x)∨B(x) ; (A∩B)(x)=A(x)∧B(x)  ;  Ac(x)=1-A(x). 
    Notice that we prefer the notation Ac instead of the prefix notation c(A). A fuzzy 
subset A is called crisp provided that either A(x)=0 or A(x)=1. If X is a subset of U, 
then we denote by X the characteristic function of X, too, i.e. we denote by X the map 
defined by setting X(x)=1 if x∈X and X(x)=0 if x∉X. The following proposition 
summarizes the main properties of the class of fuzzy subsets. 
 
Proposition 3.7.1 (F(U),∪,∩,c) is a complete lattice with an involution extending the 
Boolean algebra (P(U),∪,∩,c). More precisely, the map associating every X∈P(U) 
with the related characteristic function is a complete monomorphism from 
(P(U),∪,∩,c) into (F(U),∪,∩,c). 

    Consequently, we can identify the subsets of U with the crisp fuzzy subsets. For 
every λ∈[0,1], we denote by Uλ the fuzzy subset constantly equal to λ. Obviously, in 
such a way U1 is (the characteristic function of) U and U0 is (the characteristic 
function of) the empty set. Given a fuzzy subset A of U, for every λ∈[0,1] the subsets 

Aλ={x∈U  | A(x)≥λ}  ;   A>λ={x∈U | A(x)>λ} 
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are called the closed λ-cut and the open λ-cut of A, respectively. In the propositions 
below we summarize some basic properties of the cuts.  
 
Proposition 3.7.2 Let A and B be two fuzzy subsets, (Ai)i∈I a family of fuzzy subsets 
and λ∈[0,1]. Then 
 (a)    A0=U            (b)    λ≤λ'  ⇒  Aλ⊇Aλ' 
 (c)    A⊆Β ⇒ Aλ⊆Bλ           (d)    Aλ=∩x<λA>x 
 (e)    (A∪B)λ=Aλ∪Bλ       (f)    (A∩B)λ=Aλ∩Bλ 
 (g)    Aλ=∩x<λAx                 (h)    (∩Ai)λ=∩(Ai)λ 
 (a')    A>1=∅            (b')    λ≤λ'  ⇒  A<λ⊇ A<λ' 
 (c')    A⊆Β ⇒ A>λ⊆Β>λ          (d')    A>λ=∪x>λAx 
 (e')    (A∪B)> λ = A>λ∪B>λ    (f')    (A∩B)>λ= A>λ∩B>λ   
 (g')    A>λ=∪x>λA>x         (h')    (∪Ai)>λ= ∪(Ai)>λ. 
 
    For every λ∈[0,1] and X⊆U, we denote by λ∧X the fuzzy subset Uλ∩X, that is 

(λ∧X)(x) =λ   if x∈X  ;    
(λ∧X)(x) =0  otherwise. 

    Dually, we define by λ∨X by setting  
(λ∨X)(x) =1  if x∈X   
(λ∨X)(x) =λ  otherwise. 

    The following proposition shows that a fuzzy subset is characterized both by its 
closed cuts and its open cuts. 
 
Proposition 3.7.3  For every fuzzy subset A 

 A=∪λ∧Aλ (3.13) 

 A=∪λ∧A>λ (3.14) 
and, dually,  

 A=∩λ∨Aλ (3.15) 

 A=∩λ∨A>λ. (3.16) 
 
Proof. It is sufficient to observe that it is possible to rewrite the above equalities as 
follows 
 A(x)=Sup{λ∈[0,1] | x∈Aλ} (3.17) 
 A(x)=Sup{λ∈[0,1] |  x∈A>λ)} (3.18) 
 A(x)=Inf{λ∈[0,1] | x∉Aλ} (3.19) 
 A(x)=Inf{λ∈[0,1] | x∉A>λ} (3.20) 
where x∈U.   
 
    It is possible to identify the fuzzy subsets with the continuous chains as was 
proposed in [Negoita; Ralescu 1975]. Consider the class P(U)[0,1] whose elements are 
the families of subsets of U with index set [0,1]. Such a class can be view as the direct 
power of the complete lattice P(U) with index set [0,1]. Therefore P(U)[0,1] is a 
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complete lattice whose order relation is defined by setting, for every (Aλ)λ∈[0,1] and 
(Bλ)λ∈[0,1] in P(U)[0,1] 

(Aλ)λ∈[0,1]≤(Bλ)λ∈[0,1] ⇔ Aλ⊆Bλ for every λ∈[0,1]. 
    Further, the join and the meet of these two families are (Aλ∪Bλ)λ∈[0,1], and 
(Aλ∩Bλ)λ∈[0,1], respectively. One similarly defines the infinite joins and meets. We are 
interested in a particular class of elements of P(U)[0,1]. 
 
Definition 3.7.4 We call a chain in U any order-reversing family (Cλ)λ∈[0,1] of subsets 
of U such that C0=U and we denote by Ch(U) the set of chains in U. We say that a 
chain (Cλ)λ∈[0,1] is continuous if 
 Cλ=∩x<λCx (3.21) 
for every λ∈[0,1]. We denote by CCh(U) the class of continuous chains. 
 
    The family of closed cuts of a given fuzzy set is an example of continuous chain. 
 
Proposition 3.7.5 The class Ch(U) of chains of subsets of U is a closure system in 
P(U)[0,1]. Let (Cλ)λ∈[0,1] be any family of subsets of U. Then the chain (C*

λ)λ∈[0,1]  
generated by (Cλ)λ∈[0,1] can be obtained by setting C*

0=U and, for  λ≠0, 
 C*

λ=∪x≥λCx (3.22) 
 
Proof. The first part of the proposition is obvious. It is immediate that (C*

λ)λ∈[0,1] is a 
chain containing (Cλ)λ∈[0,1]. Let (Aλ)λ∈[0,1] be a chain containing (Cλ)λ∈[0,1]. Then, given 
λ∈[0,1], for every µ≥λ, Aλ⊇Aµ⊇Cµ and therefore Aλ⊇C*

λ.   
 
Proposition 3.7.6  The class CCh(U) of the continuous chains is a closure system in 
Ch(U) (hence in P(U)[0,1]). Let (Cλ)λ∈[0,1] be a chain and let (C’λ)λ∈[0,1] be the 
continuous chain generated by (Cλ)λ∈[0,1]. Then, for every λ∈[0,1] 

 C’λ=∩x<λCx. (3.23) 
 
Proof. Let I be a set and, for every i∈I, let (Cλ

i)λ∈[0,1] be a continuous chain. Then the 
intersection of such a family of continuous chains is the chain (Cλ)λ∈[0,1] defined by 
Cλ=∩i∈ICλ

i.  Since 

∩x<λCx = ∩x<λ(∩i∈ICx
i) = ∩i∈I(∩x<λCx

i) = ∩i∈ICλ
i = Cλ , 

(Cλ)λ∈[0,1] is a continuous chain. Suppose (Cλ)λ∈[0,1] is a chain. Then, since Cµ⊇Cλ for 
every λ>µ, we have C’λ⊇Cλ. In order to prove that (C’λ)λ∈[0,1] is a continuous chain, 
observe that 

∩x<λC’x = ∩x<λ(∩y<xCy) = ∩y<λCy=C’λ. 
Finally, let (Aλ)λ∈[0,1] be a continuous chain containing (Cλ)λ∈[0,1], then 

Aλ = ∩x<λAx ⊇ ∩x<λCx = C’λ. 
 
    The following definition enables us to associate any family of subsets of U with a 
fuzzy subset of U. 
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Definition 3.7.7. Let (Cλ)λ∈[0,1] be any family of subsets of U and set 
 A=∪λ∧Cλ. (3.24) 
    Then A is said to be the fuzzy subset associated with (Cλ)λ∈[0,1].  
 
    The proof of the following propositions is matter of routine. 
 
Proposition 3.7.8 Let (Cλ)λ∈[0,1] be any family of subsets of U and A the associated 
fuzzy subset. Then, both the chain (C*

λ)λ∈[0,1] and the continuous chain (C’λ)λ∈[0,1] 
generated by (Cλ)λ∈[0,1] define the same fuzzy subset A. Moreover,  
 A>λ = ∪x>λCx ⊆ C*

λ ⊆ C’λ = Aλ. (3.25) 
 
   In particular, if (Cλ)λ∈[0,1] is a chain, the fuzzy subset associated with (Cλ)λ∈[0,1] by 
Equation (3.24) coincides with the fuzzy subset associated with (C’λ)λ∈[0,1]. 
 
Proposition 3.7.9 Let (Cλ)λ∈[0,1] be any chain of subsets of U and define A by (3.24). 
Then we have also that 

 A=∩λ∨Cλ. (3.26) 
Moreover,  

 A>λ=∪x>λCx⊆Cλ⊆∩x<λCx=Aλ. (3.27) 
 
If (Cλ)λ∈[0,1] is continuous, then, for every λ∈[0,1], Aλ=Cλ. 
 
    The following theorem shows that we can identify the lattices F(U) and CCh(U) 
(see [Negoita; Ralescu 1975]). 
 
Theorem 3.7.10  The correspondence h:F(U)→CCh(U) defined by setting, for every 
A∈F(U) 
 h(A) = (Aλ)λ∈[0,1] (3.28) 
is a lattice isomorphism between F(U) and CCh(U). Moreover, the inverse map  
h-1:CCh(U)→F(U) associates every continuous chain (Cλ)λ∈[0,1] with the fuzzy subset 
A defined by (3.24). 
 
 
3.8  ABSTRACT FUZZY LOGIC 
 
Let F be a set whose elements we call formulas. We call an abstract crisp deduction 
system, (crisp semantics, crisp logic) any abstract deduction system (semantics, logic) 
in the lattice of the subsets of F. Then, a crisp semantics is any class M of subsets of 
formulas such that F∉M. Also, given a set X of formulas and an element M of M, M is 
a model of X provided that X⊆M, and we define the set C(M)(X) of the logical 
consequences of X  by 

C(M)(X)=∩{M∈M | M⊇X}. 
An abstract crisp logic is an object like (F,D,M) such that D=C(M) and the elements of 
the set  
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Tau(M)=∩{M | M∈M}, 
are called tautologies. Also, the complement operation c enables us to define the set   

Contr(M)=∩{Mc | M∈M} 
whose elements we call contradictions. Then, a contradiction is a formula that is false 
in any model. We can justify the above definitions as follows. Consider a classical 
logic, then we can identify the class of possible models with the class M of the 
complete theories. Indeed, we associate each model M with the complete theory 
TM={α∈F | α is true in M} and, conversely, for every complete theory T a model M 
exists such that TM=T.  It is also immediate that M is a model of a set X of formulas iff 
X⊆TM and that the set C(M)(X) of logical consequences of X is the intersection of all 
the complete theories containing  X.   
    Given a set U, a fuzzy closure operator (system) in U is any closure operator 
(system) in the lattice F(U). We call an abstract fuzzy deduction system, (fuzzy 
semantics, abstract fuzzy logic) any abstract deduction system (semantics, logic, 
respectively) in the lattice of the fuzzy subsets of F. Then, a fuzzy semantics is a class 
M of fuzzy subsets of formulas such that U1∉M. The meaning of such a condition is 
obvious; no world in which every formula is true exists. The elements in M are named 
fuzzy models. Examples of fuzzy semantics are obtained by setting M equal to the class 
of the truth-functional valuations of the formulas in a multivalued logic. Another 
example is furnished by probability logic in which a model is a fuzzy set of formulas 
P such that, for every α,β∈F 
  P(α∨β)=P(α)+P(β)    (if α is inconsistent with β) 
  P(α)=P(β)                 (if α is logically equivalent to β) 
  P(α)=1                          (if α is logically true).  
    Sometimes we call an initial valuation (or a piece of fuzzy information or a fuzzy 
system of axioms) any fuzzy subset V of formulas. We interpret V as an incomplete 
information about an unknown world M, namely, since M is a model of V provided 
that V⊆Μ, the information carried on by V is that, given any formula α,  

"the actual truth value of α is at least V(α)". 
    From this point of view, an initial valuation V is not a fuzzy subset since the values 
V(α) are not truth degrees but constraints on the possible truth degrees. This is in 
accordance with the classical inferential processes where the available information is 
expressed by a set T of formulas (the assumptions) arising from a partial knowledge of 
a world M and the information carried on by T is that "at least the formulas in T are 
true in M”. Obviously, the logical consequence operator C is defined by setting, given 
an initial valuation V, 

C(V)=∩{M∈M | M⊇V}. 
    The meaning of C(V)(α) is still “α is true at least at degree C(V)(α)”, but we have 
also that 

C(V)(α) is the best possible valuation we can draw from the information V. 
Notice that, while C(V)(α)=1 entails that α is true in any model of V, C(V)(α)=0 does 
not mean that α is false but that the available information V says nothing that supports 
α. On the other hand, this happens in the classical logic, too. Indeed, assume that T is 
a set of sentences expressing our knowledge about an unknown world M and that α is 
a formula that is not a logical consequence of T. Then we cannot conclude that α is 
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false in M but only that we are not able to prove α. In other words C(V)(α) carries on 
only positive information about α. The negative information about α is represented by 
the number C(V)(-α)(provided that the language under consideration is equipped with 
a negation -). 
    Also, recall that the fuzzy subset of tautologies is defined by 

Tau(M)=∩{M | M∈M}. 
    The meaning of such a fuzzy subset is that, given any formula α, α is true in any 
model M at least at degree Tau(M)(α). We define a tautology as any formula α such 
that Tau(M)(α)=1, i.e., M(α)=1 for every M∈M. We can also define the fuzzy subset of 
contradictions Contr(M) as the intersection of all the complements of the elements in 
M,  i.e.,   

Contr(M)=∩{Mc | M∈M} 
It is immediate that  

Tau(M)(α)+Contr(M)(α)≤1 
and that 

Contr(M)(α)=1-Sup{M(α) | M∈M}. 
    The meaning of the fuzzy subset Contr(M) is that, given any formula α, α is true in 
any model M at most at degree 1-Contr(M)(α). As a consequence, the interval 
[Tau(M)(α),1-Contr(M)(α)] represents the a-prior information about a formula α. We 
define a contradiction as any formula α such that Contr(M)(α)=1, i.e., α is a 
contradiction provided that M(α)=0 for every M∈M. 
     We conclude this section by examining the notion of continuity for fuzzy 
operators. Recall that a classical closure operator J is continuous iff J is compact, i.e., 
for every subset X of U  
 J(X)=∪{Xf | Xf is a finite part of X}. (3.29) 
    Also, this is equivalent to saying that for every X⊆U and x∈U 
 x∈J(X) ⇔ a finite subset Xf exists such that x∈J(Xf). (3.30) 
    In order to extend this definition to fuzzy closure operators, we call finite any fuzzy 
subset whose support is finite.  
 
Definition 3.8.1  A fuzzy operator J is called compact if, for every fuzzy set A 

 J(A)=∪{J(Af) | Af finite and Af⊆Α}. (3.31) 
J is called p-compact provided that J is order-preserving and, for every fuzzy subset A 
and x∈U, a finite fuzzy subset Af of A exists such that 
 J(A)(x)=J(Af)(x). (3.32) 
 
    The definition of p-compactness was proposed in [Pavelka 1979]. The following 
proposition whose proof we omit shows that compacity, p-compacity and continuity 
are not equivalent notions for fuzzy operators.  
 
Proposition 3.8.2 Let J be a fuzzy operator. Then 
(i) J  p-compact ⇒ J  compact  ;   
(ii) J continuous ⇒ J compact  ; 
(iii) J continuous does not imply J  p-compact ;   
(iv) J  p-compact does not imply J continuous ; 
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(v) J compact does not imply  J  p-compact ; 
(vi) J compact does not imply J continuous. 
 
    Nevertheless, an interesting characterization of the continuous closure operators in 
terms of finite fuzzy subsets was established in [Murali 1991]. In the following, given 
two fuzzy subsets A and B, A`B means that A(x)<B(x) for every x∈Supp(A). 
 
Proposition 3.8.3 A fuzzy operator J is continuous iff, for every fuzzy subset A,  
 J(A)=∪{J(Af) | Af is finite and  Af`A} (3.33) 
 
Proof. At first we prove a basic property of the relation `, namely that if T is a 
directed class, then  

Af  finite fuzzy subset and   Af`∪{A' | A'∈T} ⇒ ∃A'∈T s.t. Af⊆A'. 
Indeed, if Supp(Af)={x1,...,xn}, then for i=1,...,n, from Af(xi)<Sup{A'(xi) | A'∈T} it 
follows that Ai∈T exists such that Af(xi)<Ai(xi). So it is sufficient to consider any 
element A' in T containing  A1,..., An. Suppose (3.33), then it is immediate that J is 
order-preserving. Let T be any directed class of fuzzy subsets. Then we must prove 

that J(∪{A' | A'∈T}) = ∪{J(A') | A'∈T}. Set  A=∪{A' | A'∈T}, then, on account of 
the above implication, 

J(A)= ∪{J(Af ) | Af  is finite and Af ` A}⊆∪{J(A') | A'∈T}. 
Since the converse inclusion is immediate, this proves that J is continuous. 
Conversely, assume that J is continuous. Then, since {Af | Af  is finite and Af ` A} is a 
directed family whose union is A, (3.33) is immediate.   
 
 
3.9. PAVELKA’S LOGIC 
 
This section is devoted to expose Pavelka's approach to fuzzy logic, i.e., an approach 
in Hilbert style (see also Chapter 2 in this book). We define a crisp Hilbert deduction 
system, in brief an H-system, as a pair S=(A,R) such that A is a subset of the set of 
formulas F, the set of logical axioms, and R is a set of crisp inference rules. In turn, a 
crisp inference rule is any partial operation in the set of formulas F, i.e., any map 
r:D→F where D⊆Fn, n∈N. We write Dom(r) to denote the domain D of r. A proof 
π of a formula α under the hypothesis γ1,...,γh is any sequence α1...αm of formulas 
such that αm=α and  
- either αi∈{γ1,...,γh},  
- or αi∈A  
- or αi=r(αi(1),...,αi(n)), i(1)<i, ... , i(n)<i.  
    Given a set X of formulas, we write X ¢ α to denote that a proof of α exists whose 
hypotheses are contained in X. These notions enable us to define an operator D by 
setting 
 D(X)={α∈F | a proof of α exists whose hypotheses are in X}. (3.34) 
Obviously, X ¢ α iff α∈D(X). The proof of the following proposition is immediate. 
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Proposition 3.9.1 The operator D associated with an H-system (A,R) by (3.34) is an 
algebraic closure operator. So, every crisp H-system (A,R) defines a crisp abstract 
deduction system (F,D).  
 
    By extending the above definitions, we define a fuzzy H-system as a pair (A,R) 
where A is a fuzzy subset of F, the fuzzy subset of logical axioms, and R is a set of 
fuzzy rules of inference. In turn, a fuzzy rule of inference is a pair r=(r',r"), where  
 - r' is a partial n-ary operation on F, i.e. a crisp inference rule 
 - r" is an n-ary operation on [0,1] preserving the least upper bound in each variable, 
i.e., 
 r"(x1,...,Supi∈Iyi,...,xn) = Supi∈Ir"(x1,...,yi,...,xn) (3.35) 
So an inference rule r consists of a syntactical component r' that operates on formulas 
and a valuation component r" that operates on truth values to calculate how the truth 
value of the conclusion depends on the truth values of the premises (see [Zadeh 
1975]). Condition (3.35) entails that r" is order-preserving with respect to any 
component. Such a condition is also called continuity condition since it enables us to 
prove that the deduction operator associated with a fuzzy H-system is continuous. We 
indicate an application of an inference rule r by 
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whose meaning is that: 
 
IF you know that the formulas α1,...,αn are true at least to the degree λ1,...,λn, 
THEN you can conclude that r'(α1,...,αn) is true at least to the degree r"(λ1,...,λn). 
 
   Examples of fuzzy inference rules can be obtained by assuming that r' is the 
classical modus ponens, i.e., the function associating with any pair of formulas of type 
α→β and α the formula β, and assuming that r" is any continuous T-norm (in this 
case, Dom(r)={(α,α→β) | α∈F, β∈F}).  
     A proof π is a sequence α1,...,αm of formulas, together with a sequence of related 
"justifications". This means that, given any formula αi, we must specify whether 
 (i)    αi is assumed as a logical axiom; or 
 (ii)   αi is assumed as a proper axiom; or 
 (iii) αi is obtained by a rule  (in this case we must indicate also the rule and the 
                                               formulas from α1,...,αi-1 used to obtain αi).  
Differently from the crisp case, the justifications are necessary since different 
justifications of the same formula give rise to different valuations. Indeed, let 
V:F→[0,1] be any initial valuation. Then the valuation Val(π,V) of a proof π with 
respect to V is defined by induction on the length m of π by setting 
Val(π,V) =A(αm)  if  αm is assumed as a logical axiom  
       =V(αm) if αm is assumed as a proper axiom   
             =r"(Val(π(i(1)),V),..., Val(π(i(n)),V))  if αm=r'(αi(1),...,αi(n)) 
where, for any i≤m, π(i) denotes the proof α1,...,αi. If α is the formula proven by π, the 
meaning we assign to Val(π,V) is that  
given the information V, the proof π assures that α holds at least to degree Val(π,V). 
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Now, it could happen that another proof π' of α exists such that Val(π',V)>Val(π,V). 
This happen, for instance, if the assumptions used in π' are more true than the 
assumptions used in π. In other words, unlike the usual Hilbert systems, in a fuzzy H-
system different proofs of a same formula α can give different contributions to the 
degree of validity of α. This suggests that, given a fuzzy set of axioms V (the available 
fuzzy information), in order to evaluate α we must refer to the whole set of proofs of 
α and to calculate the number Sup{Val(π,V ) | π is a proof of α}.  
 
Definition 3.9.2. The deduction operator of an H-system S is the operator 
D:F(F)→F(F) defined by setting,  
 D(V)(α)=Sup{Val(π,V ) | π is a proof of α} (3.36) 
for every initial valuation V  and every formula α. 
 
    The meaning of D(V)(α) is still 

given the information V, we may prove that α holds at least at degree D(V)(α), 
but we have also that 

D(V)(α) is the best possible valuation we can draw from the information V. 
    Pavelka proved the following proposition. 
 
Proposition 3.9.3 Let S be an H-system, then the operator D defined by (3.36) is a 
compact fuzzy closure operator. Consequently, every H-system is associated with a 
compact fuzzy abstract logic. 
 
    We show also that S defines a step-by-step deduction system in a natural way and 
therefore that D is continuous.  
 
Proposition 3.9.4 Let S=(A,R) be an H-system and define J  by 
 J(V)(α)=Sup{r"(V(α1),...,V(αn)) | (r',r")∈R and r'(α1,...,αn)=α}, (3.37) 
for every V∈F(F) and α∈F. Then (F(F),J,A) is a step-by-step deduction system whose 
associated deduction operator D coincides with the one associated with S. 
 
Proof. In order to prove that J is continuous, observe that, since every valuation 
component r" is an order-preserving map, J is order preserving, too. As a 
consequence, given a directed family T of fuzzy subsets and V=limT, J(V)⊇∪{J(X) | 
X∈T}=limJ(T). Conversely, given a formula α, by observing that for every S1,..., Sn∈T 
an element X∈T exists such that S1⊆X,..., Sn⊆X,  we have 
  J(V)(α)=Sup{r"(V(α1),...,V(αn)) | (r',r")∈R and r'(α1,...,αn)=α} 
              =Sup{r"(S1(α1),..., Sn(αn)) |  (r',r")∈R, r'(α1,...,αn)=α and S1,..., Sn∈T} 
              =Sup{r"(X(α1),..., X(αn)) |  (r',r")∈R , r'(α1,...,αn)=α and X∈T} 
              =∪{J(X)(α) | X∈T}.   
 
Define H as in (3.10), i.e., 
 H(V)=J(V)∪V∪Α. (3.38) 
Let D be the deduction operator associated with S, we have to prove that D is the 
closure operator generated by H, i.e., 
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 D(V)=c(H)(V)=∪Hn(V). (3.39) 
To this purpose we have to prove that D has the same fixed points of H and therefore 
of c(H). Indeed, V is a fixed point of H iff V⊇Α and V⊇J(V), i.e., V is closed with 
respect to the inference rules, i.e. r"(V(α1),...,τ(αn))≤V(r'(α1,...,αn)) for every (r',r")∈R 
and α1,...,αn in Dom(r'). Now, under these conditions, there is no difficulty to prove, 
by induction on the length of the proofs, that Val(π,V)≤V(α) for every formula α and 
π proof of α. In turn this is equivalent to say that D(V)=V.   
 
 
3.10 LOGICAL COMPACTNESS AND ULTRAPRODUCTS 
 
The relation `, defined in Section 3.8, enables us also to characterize the logical 
compactness for fuzzy operators. 
 
Proposition 3.10.1 A fuzzy closure operator J is logically compact iff, for every 
initial valuation V, 
 V consistent ⇔ every finite Vf`V is consistent. (3.40) 
 
Proof. Assume that J is logically compact. Then it is immediate that V consistent 
implies that every finite fuzzy subset Vf such that Vf`V is consistent. In order to prove 
the converse implication, assume that every finite fuzzy subset Vf such that Vf`V is 
consistent, then, since V is the inductive limit of the class {Vf | Vf`V, Vf finite}, V is 
consistent. This proves (3.40). Conversely, assume (3.40) and let H be an inductive 
class of consistent fuzzy subsets. We have to prove that V=limH is consistent. Now, 
for every finite fuzzy set Vf such that Vf`V an element A∈H exists such that Vf⊆A. 
Since A is consistent, Vf is consistent too, and by (3.40) V is consistent.    
 
    We can rewrite Proposition 3.10.1 in terms of fuzzy semantics as follows. 
 
Proposition 3.10.2 A fuzzy semantics is logically compact iff, for every initial 
valuation V, 
 V satisfiable ⇔ every finite Vf`V is satisfiable. (3.41) 
 
    This proposition suggests to call compact a fuzzy semantics M such that, for every 
fuzzy set of formulas V,  

V satisfiable ⇔ every finite fuzzy subset of V is satisfiable. 
 
Proposition 3.10.3 Every logically compact fuzzy semantics is compact while 
compact fuzzy semantics exist that are not logically compact.  
 
Proof. The first part of the proposition is obvious. The fuzzy class M={A∈F(F)  | 
A(α)<1 for every α∈F} is an example of compact semantics that is not logically 
compact. Indeed, F=F1 is limit of the class of satisfiable fuzzy subsets Fλ, λ≠1.  
 
     A simple compacity criterion for a fuzzy semantics is obtained by the notion of 
ultraproduct, (see, e.g., [Chang; Keisler 1966]). Recall that a class F of subsets of a set 
I is a filter provided that 
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X∈F and Y⊇X ⇒ Y∈F    and    X∈F and Y∈F  ⇒X∩Y∈F 
and that F is prime if, for every X∈P(I), either X∈F or Xc∈F. In this case, either F is 
generated by one element of I (i.e., is principal) or F contains the filter of co-finite 
subsets. One proves that a class C of subsets can be extended to a prime filter iff it 
satisfies the finite intersection property, i.e., the intersection of every finite family of 
elements of C is nonempty. Moreover, given a family (λi)i∈I of real numbers and a 
filter F, we write limF λi=λ provided that 

∀ε>0 ∃X∈F  ∀i∈X  |λ-λi|≤ε. 
    Equivalently, we can write 

for every neighborhood (a,b) of λ, {i∈I | λi∈(a,b)}∈F. 
Such a notion of convergence satisfies the same properties of the classical one but, in 
addition, if F is prime, for every bounded family (λi)i∈I, limF λi always exists. Also, 
assume that I is the set N of natural numbers, that U  is a prime filter on N and that U is 
not principal. Then, 

limn →∞ λn=λ ⇒  limU λn=λ. 
    Given a sequence (An)n∈N of fuzzy subsets of a set U and a prime filter U  on N, we 
call an ultraproduct modulo U of (An)n∈N the fuzzy subset A=limU An defined by 

A(x)=limU An(x)         x∈U. 
 
Theorem 3.10.4 Let M  be a fuzzy semantics closed with respect to the ultraproducts 
and V an initial valuation. Then,  
i) the ultraproduct of a family of models of V is a model of V 
ii) for every formula α a model M of V exists such that  

C(V)(α)=M(α) 
iii) M is logically compact. 
 
Proof. i) An immediate consequence of the definition of limit with respect to a filter.  
ii) Let V be an initial valuation and α a formula. Then, since C(V)(α)=Inf{M(α) | 
M∈M, M⊇V}, a sequence (Mn)n∈N of models of V exists such that Mn(α) is decreasing 
and C(V)(α)=limn→∞Mn(α). Let U be a non principal ultrafilter on N and M the 
ultraproduct of (Mn)n∈N modulo U. Then, M is a model of V such that 

M(α)=limU Mn(α)=lim n →∞Mn(α)=C(V)(α). 
iii) In order to apply Proposition 3.10.2, suppose that Vf is satisfiable for every Vf 
finite such that Vf`V. At first we prove that every finite fuzzy subset A of V is 
satisfiable. Indeed, it is easy to find an increasing sequence Vn of finite fuzzy subsets 
such that A(x)=lim n →∞Vn(x) for every x and Vn`A. Since we have also that Vn`V, by 
hypothesis a sequence of models Mn exists such that Mn⊇Vn. Let U  be a non-principal 
prime filter and let M be the ultraproduct of (Mn)n∈N modulo U . Then, since  

M(α)=limU Mn(α)≥limU Vn(α)=lim n →∞Vn(α)=A(α), 
we have that M is a model of A.   
    Denote by I the class of finite subsets of F and let i∈I. Then, since the restriction of 
V to i is satisfiable, an element Mi of M exists such that Mi(x)≥V(x) for every x∈i. We 
find a model M of V as a suitable ultraproduct of the obtained family (Mi)i∈I. To this 
purpose, we have to find an ultrafilter U such that for every x∈F the set B(x)={i∈I / 
Mi(x)≥V(x)}∈U. In turn, this is possible provided that the class {B(x) | x∈F} of subsets 
of I satisfies the finite intersection property. Now, let x1,...,xn be formulas and 
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i={x1,...,xn}. Then Mi(xj)≥V(xj) for j=1,...,n and therefore i belongs to B(x1)∩…∩B(xn). 
This concludes the proof.   
 
    Proposition 3.10.4 suggests a general method to obtain logically compact fuzzy 
semantics. In the following a closed k-ary relation is a closed subset R of Rk. The 
equality and the order relation are examples of closed binary relations. As it is usual, 
if x1,...,xk are real numbers, we write R(x1,...,xk) to denote that (x1,...,xk)∈R. 
 
Proposition 3.10.5 Denote by M the class of fuzzy subsets M of F satisfying a set of 
conditions like 
 R(M(p0(x1,...,xh)),...,M(pk(x1,...,xh))) (3.42) 
where  
- p0..., pk are partial operations on F defined in a domain D⊆Fh ; 
- R⊆Rk+1 is a closed relation. 
Then M is closed with respect to the ultraproducts. Hence, if F1∉M, M is a logically 
compact fuzzy semantics. 
 
Proof. At first observe that, since R is closed, if (λi

0)i∈I,...,(λi
k)i∈I are families of real 

numbers such that R(λi
0,...,λi

k) for every i∈I, then 
 R(limU λi

0,...,limUλi
k). Indeed, set λ0=limUλi

0,...,λk=limUλi
k and assume that (λ0,...,λk) 

is not in R. Then, since R is closed, k+1 intervals I0,...,Ik exist such that λ0∈I0,...,λk∈Ik 
and I0×...×Ik is disjoint from R. As a consequence, the sets  

X0={i∈I | λi
0∈I0}, . . . ,Xk={i∈I | λi

k∈Ik} 
belong to U. Since U is a filter X0∩...∩Xk is nonempty, so, if j is any element of this 
intersection, we have (λj

0,...,λj
k)∈I0×...×Ik. Thus, (λj

0,...,λj
k)∉R and this contradicts the 

hypothesis. 
    Now, let (Mi)i∈I be a family of elements of M, U an ultrafilter on I and M the 
ultraproduct of (Mi)i∈I modulo U . Then,  since for every i∈I 

R(Mi(p0(x1,...,xh)),...,Mi(pk(x1,...,xh)), 
in view of the property we have just proved, 

R(limU(Mi(p0(x1,...,xh)),...,limU(Mi(pk(x1,...,xh))). 
Thus, M∈M.   
 
    As an example, consider the class M of the truth-functional valuations in a 
multivalued logic and assume that the interpretations of the logical connectives are all 
continuous maps. Then M is the class of fuzzy subsets M satisfying conditions like 

M(h(α1,...,αk))=h'(M(α1),...,M(αk)) 
where h is a logical connective and h' is a continuous map interpreting h. We can 
apply Proposition 3.10.5 by setting pi equal to the i-projection for i=1,...,k and 

R ={(λ0,...,λk) | λ0=h'(λ1,...,λk)}   ;   p0(α1,...,αk)=h(α1,...,αk). 
Thus M is closed with respect to the ultraproducts and therefore logically compact. 
The same holds for the class of finitely additive probabilities, the class of necessities, 
the class of the super additive measures and so on (see, e.g., [Dubois, Lang, Prade 
1994], [Gerla 1997]). 
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3.11  AN EXTENSION PRINCIPLE FOR DEDUCTION OPERATORS 
 
Several notions in crisp mathematics are translated into the corresponding notions in 
fuzzy mathematics in a uniform way by the famous Zadeh's extension principle. So, it 
is very natural to put the following question: 
 Given a (crisp) closure operator, does there exist a canonical way to extend it in a 
fuzzy closure operator ?  
The answer is yes and is suggested by the identification of the fuzzy subsets with the 
continuous chains (see [Ramik 1983], [Gerla 1994], [Biacino; Gerla 1996], [Gerla; 
Scarpati [1997]). Indeed, given a closure operator J in U and a fuzzy subset A∈F(U), it 
is natural to proceed in the following way 
- identify A with the continuous chain (Aλ)λ∈[0,1]  
-apply J to each element of this chain by obtaining the chain (J(Aλ))λ∈[0,1] 
- consider the continuous chain (J(Aλ)’)λ∈[0,1] generated by such a family 
- assume as image of A the fuzzy subset J*(A) corresponding to such a chain. 
    The following diagram can picture such a procedure: 

A  →  (Aλ)λ∈[0,1]  →  (J(Aλ))λ∈[0,1] 
    ↓                                  ↓ 

J*(A)       ←          (J(Aλ)’)λ∈[0,1] 
Since, by Proposition 3.7.8, (J(Aλ))λ∈[0,1] and (J(Aλ)’)λ∈[0,1] define the same fuzzy 
subset, we can give the following definition.  
  
Definition 3.11.1 For every operator J, we define the canonical extension J* of J as 
the fuzzy operator defined by setting, for every A∈F(U) 
 J*(A)=∪λ∧J(Aλ) (3.43) 
or, equivalently, 
 J*(A)(x)=Sup{λ∈[0,1] | x∈J(Aλ)}. (3.44) 
 
    It is possible to reformulate such a definition in logical terms. Let (F,D) be a crisp 
deduction system and V a fuzzy set of formulas. Then we say that a formula α is a 
consequence of V at degree λ, in brief V ¢λ α, provided that α is a consequence of Vλ, 
i.e., α can be proved by formulas that are true at least at degree λ. 
 
Definition 3.11.2 Let (F,D) be a crisp deduction system. The canonical extension of 
(F,D) is the fuzzy deduction system (F,D∗) where D∗ is defined by 
 D*(V)(α)=Sup{λ∈[0,1] | V ¢λα}. (3.45) 
 
    The following lemma, whose proof is abvious, gives some information on the cuts 
of J*(A). 
  
Lemma 3.11.3 Let J be an a-c-operator. Then for every fuzzy subset A and µ∈[0,1] 

J*(A)>λ=∪x>λJ(Ax)⊆J(A>λ)⊆J(Aλ)⊆∩x<λJ(Ax)=J*(A)λ. 
 
    Note that, J*(A)>λ≠J(A>λ) and J*(A)λ≠J(Aλ), in general. For example, if J is the usual 
topological closure operator in the interval [0,1] and A is a continuous map, then 
J*(A)=A, and J*(A)>λ≠J(A>λ) since J*(A)>λ=A>λ is an open set, while J(A>λ) is closed.  
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Proposition 3.11.4 Let J be an order-preserving operator then 
 J*(A)=∩λ∨J(Aλ) (3.46) 

 J*(A)=∪λ∧J(A>λ) (3.47) 

 J*(A)=∩λ∨J(A>λ) (3.48) 
or, equivalently, 
 J*(A)(x)=Inf{λ∈[0,1] | x∉J(Aλ)} (3.49) 
 J*(A)(x)=Sup{λ∈[0,1] | x∈J(A>λ)} (3.50) 
 J*(A)(x)=Inf{λ∈[0,1] | x∉J(A>λ)}. (3.51) 
 
Proof.  (3.46) follows from Proposition 3.7.9. To prove (3.47) observe that, since J is 
order preserving, J(A>λ))⊆J(Aλ) and, hence, for every fuzzy subset A and x∈U 

Sup{λ∈[0,1] | x∈J(A>λ))}≤Sup{λ∈[0,1] | x∈J(Aλ)}=J∗(A)(x). 
Moreover, by Lemma 3.11.3 we have that J*(A)>λ⊆J(A>λ) and  

J∗(A)(x)=Sup{λ∈[0,1] | x∈J*(A)>λ}≤Sup{λ∈[0,1] | x∈J(A>λ)}. 
Finally, (3.48) follows from (3.47) and Proposition 3.7.9.   
 
Theorem 3.11.5 Let J be an operator. Then J* is an extension of J and the following 
equivalencies hold: 

J* almost closure operator ⇔ J almost closure operator 
J* closure operator ⇔ J closure operator. 

 
Proof. It is immediate that J* is an extension of J. Assume that J* is an a-c-operator (a 
closure operator) then, since J is the restriction of J* to the crisp subsets, J is an a-c-
operator (a closure operator). Let J be an a-c-operator. Then it is immediate that J* is 
order-preserving. In order to prove that J*(A)⊇A, observe that, since Aλ⊆J(Aλ),  

A(x)=Sup{λ∈[0,1] | x∈Aλ}≤Sup{λ∈[0,1] | x∈J(Aλ)}. 
Assume that J is a closure operator. In order to prove that J*(J*(A))=J*(A), we prove at 
first that every cut J*(A)λ is a fixed point for J. Indeed, observe that the intersection of 
a class of fixed points for J is a fixed point for J and that J*(A)λ=∩x<λJ(Ax). Thus 

J*(J*(A))(x)=Sup{λ∈[0,1] | x∈J(J*(A)λ)}=Sup{λ∈[0,1] | x∈J*(A)λ}=J*(A)(x).  
 
    Now, we will propose a way to extend a closure system C into a fuzzy closure 
system in accordance with the concept of canonical extension of a closure operator. 
Indeed, we set 
 C*={A∈F(U) | Aλ∈C for every λ≠0}, (3.52) 
and we say that C* is the canonical extension of C. The proof of the following 
proposition is immediate. 
 
Proposition 3.11.6 Let C∗ be the canonical extension of the class C of subsets. Then C 
coincides with the class of crisp elements of C* and therefore C* is an extension of C. 
Further,  

C* is a fuzzy closure system  ⇔  C is a closure system. 
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    The following proposition shows that the notions of canonical extension of a 
closure system and canonical extension of a closure operator are strictly related in 
accordance with the following diagrams 
 
                  C   →   J(C)                                       J   →   C(J) 
                  ↓              ↓                                        ↓           ↓ 
                 C*  ←   J(C)∗=J(C*)                           J*  ←  C(J)∗=C(J*). 
Proposition 3.11.7  Let C be a closure system and J a closure operator. Then  
 C*=C(J(C)*)  and  C(J)∗=C(J∗). (3.53) 
Moreover, 
 J*=J(C(J)*) and  J(C)∗=J(C∗). (3.54) 
 
Proof. In order to prove the first equation in (3.53), observe that if A is a fixed point 
for J(C)*, then by Lemma 3.11.3 

Aλ=(J(C)*)(A)λ=∩{J(C)(Ax) | x<λ}∈C. 
As a consequence, A∈C*. Conversely, if A∈C*, then, every cut Aλ belongs to C and 
hence is a fixed point for J(C).  Thus   

J(C)*(A)(x)=Sup{λ∈[0,1] | x∈J(C)(Aλ)}=Sup{λ∈[0,1] | x∈Aλ}=A(x). 
This proves that A is a fixed point for J(C)*. The remaining part of the proposition is 
immediate.   
 
    As an immediate consequence, we obtain the following theorem. 
 
Theorem 3.11.8 Let T be the class of theories of (F,D). Then T∗ is the class of theories 
of (F,D∗), i.e., for every fuzzy subset T of formulas,  

Τ is a theory of (F,D∗)   ⇔   every cut of  T is a theory of (F,D). 
 
    The following proposition gives a very simple way to obtain the canonical 
extension of a closure system. 
  
Proposition 3.11.9 Let C be a closure system and set 
 Q(C)={λ∨X | X∈C, λ∈[0,1]}. (3.55) 
Then, we have 
 C* =c(Q(C)), (3.56) 
i.e., C* is the fuzzy closure system generated by Q(C). 
 
Proof. Given X in C and λ∈[0,1], for every µ∈[0,1], since (λ∨X)µ=U if µ≤λ and 
(λ∨X)µ=X  if µ>λ, we have that λ∨X∈C*. So, Q(C)⊆C* and therefore c(Q(C))⊆C*. Let 
A∈C*, then, since A=∩λ∨Aλ and every Aλ belongs to C, we have that A∈c(Q(C)). 
Thus, c(Q(C))⊇C* and (3.56) is completely proven.  
 
    Let T be a theory of (F,D). Then the fuzzy subset λ∨T is a theory of (F,D∗), we call 
a λ-theory. If T denotes the class of theories of D, then Q(T) is the class of λ-theories, 
obviously. As an immediate consequence of Propositions 3.11.8 and 3.11.9, we have 
the following 
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Theorem 3.11.10 Every theory in (F,D*) is intersection of λ-theories. 
 
 
3.12  EXTENDING COMPACT DEDUCTION SYSTEMS 
 
The canonical extension (F,D*) of a compact deduction system (F,D) can be obtained 
as follows. 
 
Proposition 3.12.1 Let J be a compact a-c-operator. Then J* is continuous and, 
J*(V)(x)=1 if x∈J(∅) and  
 J*(V)(x)=Sup{V(x1)∧...∧V(xn) | x∈J({x1,...,xn})} (3.57) 
otherwise. 
 

Proof. Let (Ai)i∈I be a directed family of fuzzy subsets and A=∪i∈IAi. Then, since 

J(Aλ)=J(∪(Ai)λ)= ∪J((Ai)λ), we have that  
   J∗(A)(x)=Sup{λ∈[0,1] | x∈J((Ai)λ) for a suitable i∈I} 
                  =Supi∈I{Sup{λ∈[0,1] | x∈ J((Ai)λ)} 
                          =Supi∈IJ∗(Ai)(x). 
This proves the continuity of J∗. In order to prove (3.57), let x∈J(∅). Then, since 
J*(V)⊇J∗(∅)=J(∅), we have that J*(V)(x)=1. Suppose x∉J(∅) and let λ∈[0,1] such 
that Vλ≠∅, then, since J is compact,  
         J(Vλ) = ∪{J({x1,...,xn}) | {x1,...,xn}⊆Vλ} 

                      = ∪{J({x1,...,xn}) | V(x1)≥λ,...,V(xn)≥λ} 

                          = ∪{J({x1,...,xn}) | V(x1)∧...∧V(xn)≥λ}. 
As a consequence, 
   J*(V)(x)=Sup{λ∈[0,1] | x∈J(Vλ)} 
                   =Sup{λ∈[0,1] | ∃x1,...,∃xn s.t. V(x1)∧...∧V(xn)≥λ and x∈J({x1,...,xn})} 
                        =Sup{V(x1)∧...∧V(xn) | x∈J({x1,...,xn})}.     
 
    In terms of a deduction operator D we obtain immediately the following theorem in 
which we write α1,...,αn  ¢ α instead of α∈D({α1,...,αn}).  
 
Theorem 3.12.2  Let (F,D) be a crisp deduction system and assume that D is compact. 
Then D*(V)(α)=1  if α is a tautology and 
 D*(V)(α) = Sup{V(α1)∧...∧V(αn) | α1,...,αn ¢ α} (3.58) 
otherwise. 
 
    In the case of compact operators we have that the canonical extension can be 
obtained as follows.  
 
Proposition 3.12.3  Let J:P(U)→P(U) be a compact classical a-c-operator, then 
 J∗(A)(x)=Sup{λ∈[0,1] | x∈J(A>λ))}. (3.59) 
 
Proof. It is sufficient to prove that 
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 J*(A)>λ=J(A>λ). (3.60) 
Indeed, since (Aµ)µ>λ is a directed family, by Lemma 3.11.3 we have that  

J*(A)>λ= ∪x>λJ(Ax)=J(∪x>λAx)=J(A>λ)).   
 
Proposition 3.12.4  For every classical compact a-c-operator J we have that 

c(J*)=c(J)*, 
i.e.,  
 ∪n∈N(J*)n=(∪n∈NJn)*. (3.61) 
 
Proof. Observe at first that, for every n∈N, 
 (J*)n(A)>λ=Jn(A>λ). (3.62) 
Indeed, in the case n=1 (3.62) coincides with (3.60). Assume (3.62) for the integer n, 
then 

(J*)n+1(A)>λ =J*(J*n(A))>λ=J(J*n(A)>λ))=J(Jn(A>λ))=Jn+1(A>λ). 
Also, we have that 
 c(J*)(A)>λ=c(J)(A>λ). (3.63) 
Indeed, 

c(J*)(A)>λ=(∪n∈NJ*n(A))>λ=∪n∈N(J*n(A)>λ))=∪n∈NJn(A>λ)=c(J)(A>λ). 
Finally, by (3.63) 
  c(J*)(A)(x)=Sup{λ∈[0,1] | x∈(c(J*)(A))>λ} 
                        =Sup{λ∈[0,1] | x∈c(J)(A>λ)}=(c(J))*(A)(x).    
 
    The proof of the following proposition is immediate. 
 
Theorem 3.12.5 Let (P(F),J,A) be a step-by-step deduction system and define H and 
(P(F),D) as in Section 3.5, i.e., for X∈P(F), H(X)=J(X)∪A∪X. Then the fuzzy 
deduction system (F(F),D∗) can be obtained by setting 
 D∗=∪n∈N(H*)n. (3.64) 
 
 
3.13  SIMILARITY LOGIC 
 
By following [Ying 1994] and [Biacino; Gerla 1998], we will consider logics in 
which the reasoning may be approximate by allowing the antecedent clause of a rule 
to match its premises only approximately. Such an idea was explored in the direction 
of a similarity-based Prolog in [Ferrante; Formato; Sessa 1998]. As an example we 
can have an inference like 

1.     x is a thriller book   ⇒  x is good for me  + 
 2.                    b is a black book     + 
 3. “black book” is similar to  “thriller book”   =     

                 b is  good for me 
    But the similarity among predicates is a fuzzy notion, in general, so the degree at 
which we can admit the conclusion "b is good for me" depends on the degree of 
similarity between "black book" and "thriller book". Notice that such an approach, 
syntactical in nature, is rather different from the one proposed in [Esteva; Garcia; 
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Godo; Rodriguez 1997] and [Dubois; Esteva; Garcia; Godo; Prade 1997], semantical 
in nature. Indeed in the latter the similarity is defined on the set of worlds and not in 
the set of predicates. 
A fuzzy relation S:F×F→[0,1] in a set F is called a similarity if, for every x, y, z∈F: 
a)   S(x,x)=1          (reflexivity) 
b)   S(x,y)≥S(x,z)∧S(z,y)    (transitivity) 
c)   S(x,y)=S(y,x)   (symmetry), 
    Obviously, the crisp similarities coincide with the equivalence relations. The 
following proposition can be easily proved. 
 
Proposition 3.13.1 Let S be a fuzzy similarity and define SIM:F(F)→F(F) by setting, 
for any A∈F(F) and x∈F,  
 SIM(A)(x)=Sup{S(x',x)∧A(x') | x'∈F}. (3.65) 
Then SIM is a continuous closure operator we call the fuzzy closure operator 
associated with S. 
 
    We can interpret SIM(A) as the fuzzy subset of formulas similar to some formula in 
A. We say that a fuzzy subset A is closed with respect to S if A is a fixed point of SIM. 
It is immediate that a fuzzy subset A is closed with respect to S if and only if  
 A(x)≥A(x')∧S(x',x) (3.66) 
for every x, x' in F.  In particular, x, x' in F,  
 SIM(A)(x)≥SIM(A)(x')∧S(x',x). (3.67) 
Let D be the deduction operator of a continuous fuzzy logic and consider the operator 
 K=DoSIM. (3.68) 
    Given an initial valuation V, K(V) is the fuzzy subset of formulas that can be 
deduced, by D, from formulas that are either in V or are similar to formulas in V. We 
have that K is a continuous almost closure operator but K is not a closure operator, in 
general. Therefore it is rather natural to define a similarity logic as a step-by-step 
logic. 
 
Definition 3.13.4 An abstract similarity logic is a fuzzy logic (F(F),DS) whose 
deduction operator DS is the fuzzy closure operator generated by the operator K 
defined in (3.68) where D is the deduction operator of a continuous fuzzy logic and 
SIM the closure operator associated with a similarity S. 
 
    Since K is continuous, we have that, for every initial valuation V, 
 DS(V)=∪Kn(V), (3.69) 
i.e., 

V⊆SIM(V) ⊆ D(SIM(V)) ⊆ SIM(D(SIM(V))) ⊆ . . .→DS(V). 
    The proof of the following theorem is matter of routine. 
 
Theorem 3.13.5 DS(V) is the least fuzzy subset of formulas containing V closed with 
respect to the similarity relation S and to the deduction operator D. 
 
    
3.14  YING'S SIMILARITY LOGIC 
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In [Ying 1994] the starting point is the classical propositional calculus (F, ⇒, f) where 
F is the set of formulas, ⇒ is the implication and f is a constant to denote the false. 
Also only natural similarities are considered, i.e., similarities S:F×F→[0,1] obtained 
from a similarity S’:VAR→[0,1] on the set VAR of propositional variables  by 
(1)   S(x,y)=S’(x,y)          for every x, y∈VAR, 
(2)   S(f,x)=S(x,f)=1 if x=f and S(f,x)=S(x,f)=0 if  x≠f, 
(3)   S(x ⇒ y, x' ⇒ y') = S(x,x')∧S(y,y'), 
(4)   S(x,y)=0  otherwise. 
    S is extended to a fuzzy relation between sets of formulas by setting, for X and Y 
subsets of F, 
 S”(X,Y)=Infy∈YSupx∈XS(x,y) (3.70) 
    The number S”(X,Y) is a multivalued valuation of the claim that every element in Y 
is similar to a suitable element in X. If S is the identity relation then S” is the 
(characteristic function of the) inclusion relation. This enables to define a consequence 
relation Con:P(F) ×F→[0,1] by setting 
 Con(X,α)=Sup{S”(X∪Tau,Y) | Y ¢ α} (3.71) 
where  ¢ is the deduction relation in the classical propositional calculus and Tau is the 
related set of tautologies. In [Biacino; Gerla 1998] these definitions are extended by 
considering any crisp deduction system (P(F),D) and any similarity S on the set of 
formulas F. Then the relation S”:F(F)×P(F)→[0,1] is defined by setting 
 S”(V,Y)=Infy∈YSupx∈FS(x,y)∧V(x), (3.72) 
i.e., 
 S”(V,Y)=Infy∈YSIM(V)(y). (3.73) 
    The number S”(V,Y) gives the extent at which each formula of Y is similar to a 
formula of V.  
 
Definition 3.14.1  The fuzzy consequence relation Con:F(F)×F→[0,1] associated with 
a compact deduction system (P(F),D) and a similarity S is defined by 
 Con(V,α)=Sup{S”(V∪Tau,Y) |  Y⊆F, Y ¢ α} (3.74) 
where Tau is the set of tautologies of D, V an initial valuation, α a formula and ¢ the 
deduction relation associated with D. 
 
    Obviously, due to the compactness of the relation ¢, the set Y in (3.74) can be 
assumed to be finite. The meaning of Con(V,α) is immediate, it represents the degree 
at which we can prove α by using formulas that are similar to formulas in V or to 
tautologies. Note that if S is the identity relation, then 
 Con(V,α)=D*(V)(α) (3.75) 
where D∗ is the canonical extension of D. Consequently, Definition 3.14.1 extends the 
notion of canonical extension.  
 
Theorem 3.14.2 Define the operator H by setting, for every initial valuation V, 
 H(V)=SIM(V∪Tau). (3.76) 
Then H is a continuous closure operator such that 
 Con(V, . )=(D∗oH)(V). (3.77) 
 
Proof. We have that  S”(V∪A,Y)=Infy∈YH(V)(y) and, hence, 
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           Con(V,α)=Sup{H(V)(y1)∧...∧H(V)(yn) | y1,...,yn ¢ α}=D∗(H(V))(α).   
 
    We conclude this section by noticing that, by confining ourselves to the similarity 
relations considered by Ying, we can prove that the composition D∗oH is a closure 
operator (see [Biacino; Gerla; Ying 1998]). 
 
Theorem 3.14.3 Under Ying's hypothesis D∗oH is a continuous closure operator. 
Consequently, Ying's logic is an abstract similarity logic. 
 
 
3.15 STRATIFIED FUZZY LOGIC 
 
The formula for the canonical extension of a closure operator enables us to apply a 
crisp deduction apparatus to fuzzy information, i.e., information "stratified" at several 
levels of validity. It is also possible to have crisp information and "stratified" 
deduction apparatus, i.e., different deductive tools each with a related degree of 
validity. We can represent such a state of affairs by assuming that, for every λ∈[0,1], 
a crisp deduction operator Dλ is defined and that, given a set X of formulas and a 
formula α, α∈Dλ(X) means that α is a consequence of X (at least) at degree λ. More 
generally, it is possible that the available information and the deduction apparatus are 
both stratified. In this case, if V is the initial fuzzy information, it is rather natural to 
claim that α is a consequence of V at least at degree λ everywhere α∈Dλ(Vλ). Since 
we must consider the better lower bound for the truth degree of α we are able to 
obtain, it is natural to consider the number 

D(V)(α)=Sup{λ∈[0,1] | α∈Dλ(Vλ)} 
as the better lower constraint for this truth degree. This suggests the following 
generalization of the formula for the canonical extension of a classical closure 
operator. 
 
Definition 3.15.1 Let (Jλ)λ∈[0,1] be a family of operators in a set U and let J be the 
fuzzy operator defined by setting, for every A∈F(U) and x∈U, 
 J(A)(x)=Sup{λ∈[0,1] | x∈Jλ(Aλ)}. (3.78) 
Then we say that J is the fuzzy operator associated with (Jλ)λ∈[0,1]. 
 
    We are interested in families of operators with some natural properties. Namely, we 
say that a family (Jλ)λ∈[0,1] of operators is a chain provided that (Jλ(X))λ∈[0,1] is a chain 
for every subset X, i.e.,  
 (i)    J0 is the map constantly equal to U ;    
 (ii)   (Jλ)λ∈[0,1] is order-reversing        
    We say that (Jλ)λ∈[0,1] is a continuous chain provided that (Jλ(X))λ∈[0,1] is a 
continuous chain for every subset X, i.e.,  
 (j)   J0 is the map constantly equal to U ;    

 (jj)  Jλ(X)=∩x<λJx(X) for every subset X and for every λ∈[0,1]. 
    In terms of a stratified deduction apparatus, these conditions look to be rather 
natural. Indeed, (j) means that, given any set X of formulas, every formula can be 
considered as a consequence of X (at least) at degree zero. The inclusion 
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Jλ(X)⊆∩x<λJx(X), i.e., the order-reversing condition, means that if α is a consequence 
of X (at least) at degree λ, then α is a consequence of X (at least) at degree x for every 
x<λ. The continuity condition Jλ(X)⊇∩x<λJx(X) claims that if α is a consequence of X 
(at least) at degree x for every x<λ, then α is a consequence of X (at least) at degree λ, 
too. 
    It is obvious that if Jλ=H for every λ∈[0,1], then the operator defined by (3.78) is 
the canonical extension of H. Obviously, we are interested to families of closure 
operators.  
 
Proposition 3.15.2 Let (Jλ)λ∈[0,1] be a family of closure operators and let J be the 
associated operator. Then J is a fuzzy a-c-operator (but J is not a closure operator, in 
general). If (Jλ)λ∈[0,1] is a chain, then J is a fuzzy closure operator. 
 
    Observe that by Proposition 3.7.9 we have that, if (Jλ)λ∈[0,1] is a chain of closure 
operators and J the associated operator, then, for every λ∈[0,1] 
 J(A)>λ = ∪x>λJx(Ax) ⊆ Jλ(A>λ)) ⊆ ∩x<λJx(Ax) = J(A)λ. (3.79) 
    As an application of Proposition 3.7.8 it is possible to show that every fuzzy closure 
operator obtained by a chain of closure operators can be obtained by a continuous 
chain of closure operators, too. 
 
Proposition 3.15.3 Let (Jλ)λ∈[0,1] be any chain of closure operators and set, for every 
λ∈[0,1] and X⊆F 

Jλ’(X) = ∩x<λJx(X). 
Then (Jλ’)λ∈[0,1] is a continuous chain of closure operators whose associated fuzzy 
closure operator coincides with the one associated with (Jλ)λ∈[0,1]. 
 
Definition 3.15.4 Let (Jλ)λ∈[0,1] be a family of closure operators and let J be the 
associated fuzzy a-c-operator. We define the fuzzy closure operator associated with 
(Jλ)λ∈[0,1] as the closure operator c(J) generated by J. In this case we say that c(J) is 
stratified.  If (Jλ)λ∈[0,1] is a chain then we say that c(J)=J is well stratified. 
 
    We are not able either to prove or disprove that a stratified closure operator that is 
not well stratified exists. Now, we define a notion of stratified closure system that is 
well related with the one of stratified closure operator.  
 
Definition 3.15.5 Let U  be a set and (Cλ)λ∈[0,1] a family of classes of subsets of U.  
Then the fuzzy system 
 C={A∈F(U) | Aλ∈Cλ for every λ≠0} (3.80) 
is said to be the fuzzy system associated with (Cλ)λ∈[0,1].  
 
    We have the following obvious proposition. 
 
Proposition 3.15.6 Let (Cλ)λ∈[0,1] be a family of closure systems. Then the fuzzy 
system C associated with (Cλ)λ∈[0,1] is a fuzzy closure system. 
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Proof. Let (Ai)i∈I be a family of elements of C. Then, since, for every λ∈[0,1], 
(Ai)λ∈Cλ and (∩i∈IAi)λ = ∩ i∈I(Ai)λ∈Cλ, we have that ∩ i∈IAi∈C.    
 
    Obviously, (3.80) generalizes the formula for the canonical extension of a classical 
closure system. In order to give a notion of continuous chain for closure systems that 
is well related to the one of continuous chain for closure operators, we say that a 
family of closure systems (Cλ)λ∈[0,1] is a chain if  
(i)   C0={U}         ;            (ii)   (Cλ)λ∈[0,1] is order-preserving.  
    Such a family is called a continuous chain if, for every λ∈[0,1] 
(j)   C0={U}    ;           (jj)   Cλ=Sup{Cx | x<λ}, 
    Here the operator Sup is the join in the lattice of closure systems and hence (jj) 

means that Cλ is the closure system generated by ∪x<λCx.  
 
Definition 3.15.7 Let C be a fuzzy closure system associated with a family (Cλ)λ∈[0,1] 
of closure systems, then C is said to be stratified. If (Cλ)λ∈[0,1] is a chain, then C is said 
to be well stratified. 
 
    Any family (Jλ)λ∈[0,1] of closure operators defines a corresponding family 
(C(Jλ))λ∈[0,1] of closure systems and any family (Cλ)λ∈[0,1] of closure systems defines a 
corresponding family (J(Cλ))λ∈[0,1] of closure operators. We have the following 
equivalencies whose proof is matter of routine. 
 
Proposition 3.15.8  Let (Jλ)λ∈[0,1] be a family of closure operators. Then 

(Jλ)λ∈[0,1]  is a chain  ⇔  (C(Jλ))λ∈[0,1] is a chain 
(Jλ)λ∈[0,1]  is a continuous chain ⇔ (C(Jλ))λ∈[0,1] is a continuous chain. 

 
    The following proposition shows that the associated fuzzy closure operators and the 
associated fuzzy closure systems are related in a natural way. 
 
Proposition 3.15.9 Let (Jλ)λ∈[0,1] be a family of closure operators and J the associated 
fuzzy closure operator. Besides, let (C(Jλ))λ∈[0,1] be the corresponding family of 
closure systems and C the associated fuzzy closure system. Then, J=J(C), that is, 
                                             (Jλ)λ∈[0,1] → (C(Jλ))λ∈[0,1] 
                                               ↓                     ↓ 
                                             J(C)       ←       C 
 
Proof. In order to prove that J=J(C) we prove that C(J)=C. Let A be an element of C, 
then every cut Aλ belongs to C(Jλ) and Aλ is a fixed point for Jλ. Then  

J(A)(x)=Sup{λ∈[0,1] | x∈Jλ(Aλ)}=Sup{λ∈[0,1] | x∈Aλ}=A(x) 
and this proves that A∈C(J). Conversely, if J(A)=A, then, for every x∈U, 
A(x)=J(A)(x)=Sup{λ∈[0,1] | x∈Jλ(Aλ)}. In other words, x∈Jλ(Aλ) implies λ≤A(x), i.e., 
x∈Aλ. Then, since Jλ(Aλ) is contained in Aλ, Aλ is a fixed point for Jλ. Thus A∈C.    
 
    In a similar way one proves the following proposition. 
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Proposition 3.15.10 Let (Cλ)λ∈[0,1] be any family of closure systems and C the 
associated fuzzy closure system. Besides, let (J(Cλ))λ∈[0,1] be the corresponding family 
of closure operators and J the associated fuzzy closure operator. Then, C=C(J), that is, 
                                                 (Cλ)λ∈[0,1]  →  (J(Cλ))λ∈[0,1] 
                                                    ↓                     ↓ 
                                                 C=C(J)    ←      J 
 
Corollary 3.15.11  If J is a closure operator, then 

J stratified  ⇔  C(J) stratified 
J  well stratified  ⇔  C(J)  well stratified. 

If C is a fuzzy closure system, then 
C stratified  ⇔  J(C)  stratified. 

C well stratified  ⇔  J(C)  well stratified. 
 
    We can rewrite all the definitions and results in this section in terms of deduction 
systems. 
 
Definition 3.15.12 Let ((F,Dλ))λ∈[0,1] be a family of crisp deduction systems and D the 
closure operator associated with (Dλ)λ∈[0,1]. Then (F,D) is called, the fuzzy deduction 
system associated with ((F,Dλ))λ∈[0,1]. In this case, we say that (F,D) is stratified and, 
if ((F,Dλ))λ∈[0,1] is a chain, we say that (F,D) is well stratified. 
 
    We can reformulate formula (3.78) in logical terms. Let ((F,Dλ))λ∈[0,1] be a family 
of deduction systems. We say that a formula α is a consequence of an initial valuation 
V at degree λ, in brief V ¢λ α, provided α is a consequence of Vλ by (F,Dλ). Then the 
formula for the deduction system associated with ((F,Dλ))λ∈[0,1] becomes 
 D(V)(α)=Sup{λ∈[0,1] | V  ¢λ α}. (3.81) 
for every initial valuation V and α∈F.   
    We conclude this section by emphasizing the following immediate characterization 
of the theories of a stratified fuzzy deduction system. 
 
Theorem 3.15.13 Let (F,D) be a fuzzy deduction system. Then (F,D) is stratified iff 
the class of its theories is a stratified closure system. Also, if (F,D) is associated with 
the family ((F,Dλ))λ∈[0,1] of deduction systems, then  

Τ is a theory of (F,D)  ⇔  every cut Tλ of T is a theory of (F,Dλ). 
 
 
3.16  GRADED CONSEQUENCE RELATIONS 
 
The notion of a stratified deduction system will now be applied to the concept of 
graded consequence relation proposed in [Chakraborty 1988] and in [Chakraborty 
1995].  The idea is to extend the concept of consequence relation  ¢  that plays a 
central role in any crisp logic.   
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Definition 3.16.1 We call conclusion relation any relation ¢  from P(F) to F. For 
X∈P(F) and α∈F, we write X ¢ α to denote that (X,α)∈¢. We say that a conclusion 
relation  ¢ is a consequence relation if, for every X, Y, Z in P(F) and α∈F, 
 (i)    X ¢ α  whenever α∈X 
 (ii) X ¢ α  ⇒  X∪Y ¢ α 
 (iii)   X ¢ β for every β∈Z and  X∪Z ¢ α ⇒ X ¢ α. 
 
    If  ¢  is a consequence relation and X ¢ α, then we say that α is a consequence of X. 
The meaning of the above conditions is immediate. Condition (i) says that every 
formula in X is a consequence of X, condition (ii) that the logic under consideration is 
monotone, (iii) that if each formula in Z follows from X and we are able to prove α 
from X∪Z, then we may prove α directly from X. There is a strict connection between 
the operators and the conclusion relations. 
 
Definition 3.16.2  Given an operator J we call conclusion relation associated with J 
the relation ¢J  defined by  
 X ¢J α ⇔ α∈J(X). (3.82) 
Given a conclusion relation ¢ we call operator associated with ¢  the operator J¢  
defined by 
 J¢(X)={α∈F | X ¢ α}. (3.83) 
 
    The following proposition, whose proof is matter of routine, shows that (3.82) and 
(3.83) define a bijective correspondence between the class of the operators and the 
class of the conclusion relations. 
 
Proposition 3.16.3 Let J be an operator and  ¢ a conclusion relation. Then  
- the operator associated with ¢J

  coincides with J 
- the relation associated with J¢ coincides with ¢ . 
 
Definitions (3.82) and (3.83) establish also a one-to-one correspondence between crisp 
consequence relations and closure operators. 
 
Proposition 3.16.4  Let ¢ be a conclusion relation. Then 

¢ is a consequence relation  ⇔  J¢ is a closure operator. 
Let J be an operator. Then 

J is a closure operator  ⇔  ¢J is a consequence relation. 
 
Proof. At first we prove that if ¢ is a consequence relation, then J¢ is a closure 
operator.  Indeed, from (i) it follows that J¢(X)⊇X and from (ii) that X⊇Y implies  
J¢(X)⊇J¢(Y). In order to prove that J¢(J¢(X))=J¢(X), observe that, since X ¢ β for every 
β∈J¢(X), by (iii),  

J¢(X) ¢ α ⇒  X ¢ α. 
Thus, J¢(J¢(X)) = {α∈F | J¢(X) ¢ α} ⊆ J¢(X) and therefore J¢(J¢(X))=J¢(X). Now, we 
prove that if  J  is a closure operator, then ¢J is a consequence relation.  Indeed, (i) and 
(ii) are immediate. In order to prove (iii) suppose X ¢J β for every β∈Z and X∪Z ¢J α, 
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i.e., Z⊆J(X) and α∈J(X∪Z). Then, since X∪Z⊆J(X), α∈J(X∪Z)⊆J(J(X))=J(X) and 
this proves that X ¢J α.  Thus ¢J is a consequence relation. 
    Assume that ¢J is a consequence relation. Then, since by Proposition 3.16.3 the 
operator associated with ¢J is J, by the first implication we have just proven J is a 
closure operator.  Finally, assume that J¢ is a closure operator. Then, since we have 
just proven that the relation associated with J¢ is a consequence operator, by 
Proposition 3.16.3 ¢ is a consequence relation.   
 
    The following corollary shows that the theory of consequence relations coincides 
with the theory of the closure operators.  
 
Corollary 3.16.5 A conclusion relation ¢ is a consequence relation iff a deduction 
system (F,D) exists such that 
 X ¢ α  ⇔  α∈D(X). (3.84) 
 
    In order to extend the just given notions, we consider fuzzy binary relations from 
P(F) to F. We call a graded conclusion relation any fuzzy relation g:P(F)×F→[0,1]. 
By following [Chakraborty 1988], we write g(X ¢ α) instead of g(X,α). 
 
Definition 3.16.6  We say that a graded conclusion relation g is a graded consequence 
relation if, for every X,Y,Z∈P(F) and α∈F 
 (i)   g(X ¢ α)=1  for every α∈X  
 (ii)  g(X∪Y ¢ α)≥g(X ¢ α) 
 (iii)   g(X ¢ α)≥(Inf{g(X ¢ z) | z∈Z})∧g(X∪Z¢α). 
 
    The question arises wether an analogous of Corollary 3.16.5 holds for the graded 
consequence relations or not. Now, let J be a fuzzy closure operator and define a 
graded conclusion relation g by setting 
 g(X ¢ α)=J(X)(α) (3.85) 
for X⊆F and α∈F. Then g satisfies (i) and (ii) but not (iii) and hence is not a graded 
consequence relation, in general. The following example is due to M.K. Chakraborty. 
Let F={α1, α2, α3, α4} and define A1, A2 by setting  

A1(α1)=A1(α3)=1,  A1(α2)=0.7,  A1(α4)=0.8,  A2(α1)=A2(α3)=A2(α4)=1,  A2(α2)=0.9. 
Then, the class C={A1, A2} defines the fuzzy closure operator J=J(C) where, for every 
fuzzy subset A and α∈F, J(A)(α)=Inf{Ai(α) | Ai⊇A}. Take X={α1, α3} and Z={α4}, 
then a simple calculation gives 

J(X)(α2)=0.7 ,  J(X)(α4)=0.8  ,  J(X∪Z)(α2)=0.9 . 
So, we have that  

g(X ¢ α2)=0.7,  Inf{g(X ¢ z) | z∈Z}=0.8  and  g(X∪Z ¢ α2)=0.9. 
Hence, 

g(X ¢ α2)<(Inf{g(X ¢ z) | z∈Z})∧g(X∪Z ¢ α2), 
and this proves that (iii) is not satisfied.  
    The following theorem extends Corollary 3.16.5 in terms of stratified deduction 
systems (see [Gerla 1997]). 
 
Theorem 3.16.7 A graded conclusion relation g:P(F)×F→[0,1] is a consequence 
relation iff a well stratified deduction system (F,D) exists such that 
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 g(X ¢ α)=D(X)(α) (3.86) 
for every X subset of F and α∈F. 
 
Proof. Let g be a graded consequence relation and, for every λ∈[0,1], let Dλ be the 
operator defined by setting 
 Dλ(X)={α∈F | g(X ¢ α)≥λ}. (3.87) 
Then (Dλ)λ∈[0,1] is a continuous chain of closure operators. Indeed, it is immediate that 
each Dλ satisfies the inclusion and monotony properties. Let α∈Dλ(Dλ(X)), i.e., 
g(Dλ(X) ¢ α)≥λ. For every z∈Dλ(X) we have  g(X ¢ z)≥λ, and therefore, by condition 
(iii),  

g(X ¢ α)≥Inf{g(X ¢ z), z∈Dλ(X)}∧g(Dλ(X) ¢ α}≥λ. 
Thus, α∈Dλ(X). In order to prove that (Dλ)λ∈[0,1] is continuous, let X be a set of 
formulas. Then it is immediate that D0(X)=F  and, if µ∈[0,1], then 

α∈Dµ(X) ⇔ g(X ¢ α)≥µ  ⇔ g(X ¢ α)≥λ for every λ<µ  ⇔  α∈∩λ<µDλ(X). 
Let D be the fuzzy closure operator associated with (Dλ)λ∈[0,1]. It is immediate that 

g(X ¢ α)=Sup{λ | g(X ¢ α)≥λ}=Sup{λ | α∈Dλ(X)}=D(X)(α). 
Conversely, let (F,D) be the fuzzy deduction system associated with a given 
continuous chain ((F,Dλ))λ∈[0,1] of deduction systems and define g by (3.86). It is 
immediate that g satisfies (i) and (ii). In order to prove (iii) we have to prove that 
 Infz∈ZSup{λ | z∈Dλ(X)}∧Sup{λ | α∈Dλ(X∪Z)} ≤ Sup{λ | α∈Dλ(X)}. (3.88) 
Let ν = Infz∈ZSup{λ | z∈Dλ(X)}. Then for every z∈Z, Sup{λ | z∈Dλ(X)}≥ν whence, 
since (Dλ)λ∈[0,1] is a continuous chain, we have that, for every λ≤ν, Z⊆Dλ(X) and 
therefore Dλ(X∪Z)=Dλ(X). Then, if  Sup{λ | α∈Dλ(X∪Z)}<ν, we have that  

Sup{λ | α∈Dλ(X∪Z)} ≤ Sup{λ| α∈Dλ(X)} 
 and (3.88) holds.  In the case Sup{λ | α∈Dλ(X∪Z)}≥ν, it is Sup{λ | α∈Dλ(X)}≥ν. 
Indeed, otherwise we would have α∉Dν(X) but α∈Dν(X∪Z), while Dν(X∪Z)=Dν(X). 
Thus (3.88) holds again.    
 
    We conclude this section by considering the compactness property for a graded 
consequence relation. In the following, if X is a set we denote by Pf(X) the class of 
finite subsets of X. A conclusion relation ¢ is compact, provided that  

X ¢ α  ⇔  there exists Xf∈Pf(X) such that Xf ¢ α. 
It is immediate that 

¢ is compact  ⇔  J¢ is compact 
and that if J is an operator, 

J is compact ⇔ ¢J is compact. 
    A graded conclusion relation g is said to be compact if 
 g(X ¢ α)=Sup{g(Xf ¢ α) | Xf∈Pf(X)}. (3.89) 
Finally, g is called strongly compact if 
 g(X ¢ α)=Max{g(Xf ¢ α) | Xf∈Pf(X)}. (3.90) 
 
Theorem 3.16.8  A graded conclusion g is a compact graded consequence iff there 
exists a chain (Kλ)λ∈[0,1] of compact closure operators such that 
 g(X ¢ α)=Sup{λ∈[0,1] | α∈Kλ(X)}. (3.91) 
 



                 APPROXIMATE REASONING AND INFORMATION SYSTEMS 

Proof. Let (Kλ)λ∈[0,1] be a chain of compact closure operators such that (3.91) holds 
then, by Theorem 3.16.7, g is a graded consequence relation. To prove that g is 
compact, observe that 
  {λ∈[0,1] | α∈Kλ(X)} 
                 = {λ∈[0,1] | α∈∪{ Kλ(Xf) | Xf∈Pf(X)} 

                                                            = ∪{λ∈[0,1] | α∈Kλ(Xf), Xf∈Pf(X)}. 
Then,  
       g(X ¢ α)=Sup{λ∈[0,1] | α∈Kλ(X)} 
                            = Sup{λ∈[0,1] | Xf∈Pf(X), α∈Kλ(Xf)} 
                                            = Sup{g(Xf ¢ α) | Xf∈Pf(X)}. 
Conversely, suppose that g is a compact graded consequence relation and set, for 
every λ<1 and X⊆F, 
 Kλ(X)={α∈ F | g(X ¢ α)>λ}. (3.92) 
Then it is immediate that Kλ is compact and that satisfies inclusion and monotony 
properties. To prove idempotence, i.e., Kλ(Kλ(X))⊆Kλ(X), observe that 
         α∈Kλ(Kλ(X)) ⇔  g(Kλ(X) ¢ α)>λ  
                              ⇔ a finite subset Zf of Kλ(X) exists s.t. g(Zf ¢ α)>λ. 
Since, g(X ¢ z)>λ for every z∈Zf and g(X∪Zf ¢ α)≥g(Zf ¢ α)>λ, we have that 

g(X¢α) ≥ (Inf{g(X ¢ z), z∈Zf})∧g(X∪Zf ¢ α)>λ, 
and this proves that α∈Kλ(X). 
  Set K1 be equal to the identity map, then the family (Kλ)λ∈[0,1] is a chain of compact 
closure operators such that (3.91) holds.     
 
    The chain in the previous proposition is not continuous, in general. Indeed the 
following proposition holds: 
 
Proposition 3.16.9  Let g be a graded conclusion. Then g is a strongly compact 
consequence relation iff there exists a continuous chain (Kλ)λ∈[0,1] of compact closure 
operators such that (3.91) holds. 
 
Proof. Assume that g is representable by a continuous chain of compact closure 
operators (Kλ)λ∈[0,1] and let g(X ¢ α)=µ, i.e., µ=sup{λ∈[0,1] | α∈Kλ(X)}. Then, since 
α∈Kλ(X) for every λ<µ and Kµ(X)=∩λ<µKλ(X), we have that α∈Kµ(X). By the 
compactness of Kµ this happens whenever we have that a finite part Xf of X  exists 
such that α∈Kµ(Xf).  So, g(Xf ¢ α)≥µ and therefore g(X ¢ α)=g(Xf ¢ α). This proves 
that g is strongly compact. 
    Conversely, suppose that g is a strongly compact graded consequence and let 
(Dλ)λ∈[0,1] be defined by (3.87). In proving Theorem 3.16.7 we have early observed 
that (Dλ)λ∈[0,1] is a continuous chain of closure operators. To prove that each Dλ is 
compact, observe that 
α∈Dλ(X) ⇔ g(Xf ¢ α)≥λ for a suitable Xf  finite part of X   
                                    ⇔   α∈∪{Dλ(Xf) | Xf  finite part of X}.    
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    We conclude by noticing that Ying's similarity logic (see Section 3.14) defines a 
compact graded consequence. 
 
Proposition 3.16.10. Let Cons:P(F)×F→[0,1] be the graded conclusion defined in 
Ying's similarity logic. Then Cons is a compact graded consequence. 
 
Proof. By Theorem 3.14.2, Cons(X,α)=D∗(H(X))(α) where D∗ is the canonical 
extension of the classical deduction operator and H is defined by (3.76). By Theorem 
3.14.3, D∗oH is a closure operator. So, we have only to prove that a chain of compact 
closure operators can represent D∗oH. Now, at first observe that H is associated with a 
suitable chain of compact closure operators. Indeed, set, for any λ∈[0,1], 

Hλ(X)={x∈F | S(x,x')≥λ for a suitable x'∈X∪Tau}. 
Then we obtain a chain (Hλ)λ∈[0,1] of (compact) closure operators. Moreover, 
  H(V)(x)=SIM(V∪Tau)(x)=Sup{S(x,x')∧(V∪Tau)(x') | x'∈F} 
               =Sup{λ∈[0,1] | λ≤S(x,x') and λ≤(V∪Tau)(x') for a suitable x'∈F} 
                   =Sup{λ∈[0,1] | x∈Hλ((V∪Tau)λ)}=Sup{λ∈[0,1] | x∈Hλ(Vλ)}, 
where the last equality is justified by the fact that 

Hλ((V∪Tau)λ) = Hλ(Vλ∪Tau)=Hλ(Vλ). 
Since H is associated with (Hλ)λ∈[0,1], by (3.79) we have that H(A)>λ⊆Hλ(Aλ)⊆H(A)λ 
and therefore, by the monotony of D, 

D(H(A)>λ))⊆D(Hλ(Aλ)))⊆D(H(s)λ). 
Due to the compactness of D and Proposition 3.12.3, we have that 

D∗(H(A))(x) ≤ Sup{λ∈[0,1] | x∈D(Hλ(Aλ))} ≤ D∗(H(A))(x) 
and therefore that D∗oH is associated with the chain (DoHλ)λ∈[0,1] of compact 
operators. Finally, to prove that each DoHλ is a closure operator, denote by Hλ’ the 
operator associated with the crisp similarity Sλ by (3.76). Then, by Theorem 3.14.3, 
D∗oHλ’ is a closure operator. Thus, since Hλ coincides with Hλ’ and D∗ with D on the 
class of crisp subsets, DoHλ is a closure operator.    
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