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1. Introduction. 
F. Bacchus in [1] and J. Y. Halpern in [6] compare the propositions: 
(i) “a bird will fly”; 
(ii) “Tweety (a particular bird) is able to fly” 
and they underline their complete difference when we want to assign them a 
probability valuation. In fact, if we say that the probability of (i) is, for example, 0.9, 
this valuation arises from our past experience on the birds. Indeed it coincides with a 
statistical information about the proportion of fliers among the whole set of birds. 
The problem is to assign a probability to the second proposition. Indeed a 
probabilistic valuation seems possible only if we have a collection of elements while 
Tweety is a particular bird. As a matter of fact one expects only two possibilities: 
 
- Tweety is able to fly and so (ii) is true 
- Tweety is not able to fly and so (ii) is false. 
 
G. Gerla in [3] suggests to interpret (ii) as: 

“A bird with the same observable properties of Tweety is able to fly”. 
In accordance, when we assign to (ii) the probability 0.9 we mean that the ninety 
percent of all birds with the same observable properties of Tweety is able to fly. This 
idea was born by the conviction that our “degrees of belief” derive from the 
experience each of us stored in his memory about a class of past cases (the birds) we 
consider similar to the actual case ac (Tweety) under consideration. So, given a 
property α, if we want to know the probability that ac verifies α, we have: 
 
 1. to consider the observable (relevant) properties satisfied by ac; 
 2. to consider the set of past cases similar to ac, i.e., the cases satisfying the same 
properties of ac (Boolean valuation); 
 3. to determine the probability of α as the percentage of past cases similar to ac 
satisfying α (numerical valuation). 
 
Notice that two notions are on the basis of such an idea. The “similarity” relation 
which is intended as “satisfying the same observable relevant properties” and the 
notion of “Boolean valuation” that is necessary because, as it is well known, the 
probability valuations are not truth functional.  
 In this work we start from this idea to sketch out a method to design expert 
systems, probabilistic in nature. The inferential engine we propose is a data-base 
storing information about a set of “past cases”. The inferential process consists in a 
querying strategy to investigate about the main observable properties of the “actual 
case” ac. The resulting information enables us to isolate the past cases which are 
similar to ac to give a probabilistic valuation of a “non-observable” property of ac. 
 We also consider the possibility that the information about the past cases is 
incomplete. To this purpose we use a simple logic, Boolean in nature, we obtain by 
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the extension principle proposed in [2] and [5]. Due to the incompleteness of the 
information, the resulting valuations are not probabilities but super-additive 
measures, in general.  
 Finally, in spite of the theoretical nature of the paper, in order to taste the 
potentialities of the proposed notions, a prototype shell for expert systems was built 
up. The relational data-base Access is the used languages. Also, Visual Basic is used 
for the interface.  
 
2. Probability and Boolean valuations. 
Recall some elementary notions that are on the basis of any approach to probability 
logic. In the following we denote by F the set of formulas of a zero-order language. 
 
Definition 2.1. A probability valuation of F is any map µ : F → [0,1] such that: 
a) µ(α) = 1    for every tautology α; 
b) µ(α∨β) = µ(α) + µ(β) if α∧β is a contradiction; 
c) µ(α) = µ(β)  if α is logically equivalent to β. 
 
Observe that if µ is a probability valuation, then µ(α) = 0 for every contradiction α. 
Indeed, in such a case, since α is logically equivalent to α∨α and α∧α is a 
contradiction, by b) and c), we have that 

µ(α) = µ(α∨α) = µ(α) + µ(α). 
This entails that µ(α) = 0. As it is well known, the probability valuations are not 
truth-functional. In fact, the knowledge of the probability of two formulas α and β 
doesn’t allow to determine the probability of the composed formula  α∧β, in general. 
This is a strong obstacle for a probability logic. Nevertheless, the truth-functionality 
can be obtained by the notion of Boolean truth-functional valuation, in a sense. 
 
Definition 2.2. Let B be a Boolean algebra. We say that a map v : F → B is a truth-
functional B-valuation if the following properties hold for every x,y ∈ F, 
a) v(x∧y) = v(x)∧v(y); 
b) v(x∨y) = v(x)∨v(y); 
c) v(-x) = -v(x). 
 
Observe that a), b) and c) entail that v(1) = 1 and v(0) = 0. Indeed 

v(1) = v(-x∨x) = v(x)∨-v(x) = 1 
and 

v(0) = v(x∧-x) = v(x)∧-v(x) = 0. 
If B = {0,1}, the truth-functional B-valuations coincide with the usual classical 
interpretations of F.  
 The more interesting case is when B coincides with the class P(S) of all the 
subsets of a set S. Indeed, in such a case we can interpret S as the set of past cases 
stored in a data-base or as the set of  "possible worlds" in a Kripke semantics. In 
accordance, given any sentence α, we can interpret v(α) as the set of past cases 
(possible worlds) in which α is true.  
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Definition 2.3. We call B-probability valuation a structure (B, v, p) where B is a 
Boolean algebra, v : F → B is a truth-functional B-valuation and p : B → [0,1] is a 
finitely additive probability. 
 
The following proposition shows that the notion of B-probability valuation is strictly 
related with the notion of probability valuation. 
  
Proposition 2.1. Let (B,v ,p) be a B-probability valuation and define µ : F → [0,1] by 
setting µ(α) = p(v(α)) for every α ∈ F. Then µ is a probability valuation that we call 
associated with (B, v, p). Conversely, let µ : F → [0,1] be any probability valuation 
in F. Then a Boolean algebra B and a B-probability valuation (B, v, p) exist such that 
µ(α) = p(v(α)). 
 
Proof.  The first part of the proposition is obvious. Let µ : F → [0,1] be a probability 
valuation in F and denote by B the Lindenbaum algebra associated with F. This 
means that we set, for any formula α,  

[α] = {α’ ∈ F : α’ is logically equivalent to α} 
and 

B = {[α] : α ∈ F} 
Moreover, for any [α] and [β] in B, 

[α]∧[β] = [α∧β],    [α]∨[β] = [α∨β],  -[α] = [-α]. 
Define the function v : F → B by setting [ ]αα =)(v  for every F∈α  and define p : B 
→ [0,1] by setting p([α]) = µ(α). Then it is immediate that (B, v, p) is a B-probability 
valuation whose associated probability valuation is µ.                                         � 
 
3. Knowledge representation system. 
The starting point of the inferential process we will define is a data base storing the 
information about a series of past cases we consider related with the actual case. To 
represent this, we propose a formalism very near to the formalism proposed by 
Pawlak in [7]. The first distinction we have to do is between the observable 
properties and the not observable ones. We call observable the properties for which it 
is possible to detect in a direct way whether they are satisfied or not by the actual 
case. A property that will be materialized in the future is a typical example of non 
observable property. Now we can give the following definition.  
 
Definition 3.1. A (complete) knowledge representation system is a structure S = 
(PC, AT, OBS, tr) where: 
- PC is a finite set whose elements we call past cases; 
- AT is a finite set whose elements we call attributes; 
- OBS is a subset of AT, called the set of the observable attributes; 
- tr : PC × AT → {0,1} is a function, called information function. 
 
We denote by F (by Fobs) the set of formulas of the propositional calculus whose set 
of propositional variables is AT (is OBS, respectively). Obviously, tr can be extended 
to the whole set F of formulas by setting  
 tr(c,α∧β) = min{tr(c,α),tr(c,β)},  
 tr(c,α∨β) = max{tr(c,α),tr(c,β)}, 
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 tr(c,-α) = 1- tr(c,α). 

Given a formula α and a case c, the equation tr(c,α) = 1 means that α is true in c, 
while tr(c,α) = 0 means that α is false in c. In other words, tr associates any past case 
with a classical valuation of the formulas in F. Given a set T of formulas, we say that 
a past case c is a model of T, and we write c £ T, if tr(c,α) = 1 for every α ∈ T.  
 Now, PC, as the result of the whole past experience, is a too big basis of our 
inferential process, in general. A more workable tool can be obtained by observing 
that from the point of view of the inferential apparatus we will define, it is not useful 
to distinguish two past cases satisfying the same properties. Then, we define an 
equivalence relation on the set of past cases in the following way. 
 
Definition 3.2. Let S = (PC, AT, OBS, tr) be a knowledge representation system and 
A a set of formulas. Then we define a binary relation  ≅A  in PC by setting 

c1 ≅A c2   if and only if   tr(c1, α) = tr(c2, α) for every α ∈ A. 
 

If c1 ≅A c2, we say that c1 and c2 are A-indiscernible. Then two cases are A-
indiscernible if they satisfy the same properties in A. The proof of the following 
proposition is obvious. 
 
Proposition 3.1. Given any set A of formulas, ≅A is an equivalence relation. 
Moreover, if A and B are set of formulas, 

A ⊆ B  ⇒   ≅A ⊇ ≅B. 
 
In accordance with Proposition 3.1, given a set A of formulas and a case c, we can 
consider the relative equivalence class  

[c]A = {c' ∈ PC : c' ≅A c}. 
Also, we can define the quotient  

PCA = {[c]A : c ∈ PC}. 
In the following proposition, given a set A of formulas, we denote by L(A) the 
language generated by A, i.e. the set of formulas obtained from A by an iterated 
application of the disjunction, conjunction and negation operations.  
 
Proposition 3.2. The relation ≅L(A) coincides with ≅A. In particular, ≅F coincides with 
≅AT. Moreover, |PCA| ≤ 2|A| and, in particular,  

|PCF| = |PCAT| ≤ 2|AT|. 
 
Proof. Obvious. 
 
We write c1 ≅ c2 instead of c1 ≅F c2 and in this case we say that c1 and c2 are 
indiscernible. Moreover, we write [c] to denote [c]F.  
 At this point it is natural to consider in spite of S the related quotient S∗ = (PCF, 
AT, OBS, tr∗) where tr∗ is defined by setting, for every c ∈ PCF, 

tr∗([c], α) = tr(c, α). 
Obviously, since |PCF| = |PCAT| ≤ 2|AT| the cardinality of S is not too big. Also, in 
order to preserve the whole information of the initial knowledge representation 
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system we have to store, for each type-case [c], the number of elements contained in 
[c]. This leads to the following definition.  
 
Definition 3.3. A (complete) statistical inferential basis is a structure S = (TC, AT, 
OBS, tr, w) such that: 
- (TC, AT, OBS, tr) is a (complete) knowledge representation system such that two 
elements of TC are always discernible; 
- w : TC → N is a function called weight function. 
The elements of TC are called type-cases.  
 
In a sense, a statistical inferential basis is obtained by an abstraction process from our 
past experience. For every type-case t, w(t) can be seen as the number of concrete 
past cases represented by t. It is immediate that |TC| ≤ 2|AT|. We call total weight of S 
the number of the past cases represented globally by S, that is 

w(S)=Σ{w(c) : c∈TC}. 
 
Proposition 3.3. Every statistical inferential basis S defines a B-probability 
valuation (B,v,p) in F such that: 
- B is the Boolean algebra P(TC); 
- v(α) = {c∈TC : tr(c,α) = 1} is the set of type-cases satisfying α; 
- p : B → [0,1] is the probability defined by setting, for any set X of cases, 

p(X) = { }
)(

:)(
TCw

Xccw ∈∑ . 

 
We call entropy of S the entropy of the probability p, i.e. the number 

E(S) = -∑{p(c)lg(p(c)) : c∈ TC}. 
In accordance with Proposition 2.1, we can associate any statistical inferential basis 
S with a probability valuation µ of the formulas. It is evident that, for every formula 
α, 

{ }
)(

1),(:)()(
TCw

ctrcw =∑
=

ααµ . 

In other words, µ(α) represents the percentage of past cases in which α is true 
according to the initial dates. 
 
4. Inferential process 
Imagine that we have to evaluate the probability that an actual case ac satisfies a 
formula α in F. Here we call actual case any model of the language F and we denote 
by T(ac) the set of observable formulas satisfied by ac. Obviously, we are interested 
to the case that α is not observable. Then, we can imagine a step-by-step inferential 
process resulting from a queering strategy. At step i we obtain a formula αi as an 
answer to a “query” about the observable properties of the actual case ac. After n 
steps, the information about our actual case is collected in a set T = {α1,…,αn} ⊆ 
T(ac) of formulas. Given a statistical inferential basis S (basic information), we say 
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that T is satisfiable in S if a typical case exists which satisfies T. The theory T 
enables us to obtain a new statistical inferential basis S(T) from S. Namely, we set 

TC(T)  = {c∈TC : c £ T}, 
i.e., TC(T) is the set of cases c satisfying T. Equivalently, TC(T) is the set of past 
cases T-indiscernible from the actual case. Then, we can propose the following 
definition: 
 
Definition 4.1. Let S = (TC, AT, OBS, tr, w) be a statistical inferential basis and T ⊆ 
Fobs  a theory satisfiable in S. We call statistical inferential basis defined by T in S 
the structure: 

S(T) = (TC(T), AT, OBS, tr, w). 
 

In accordance with Proposition 3.3, S(T) defines a B-probability valuation 
(P(TC(T)), vT, pT) where: 

vT(α) = {c∈TC : c £ T ∪{α}} = TC(T) ∩ v(α) 
and, for any subset X of TC(T),  

{ }.
))((

:)()(
TTCw

XccwXpT
∈∑

=  

We can extend pT to the whole algebra P(TC) by setting pT({c}) = 0 for any c ∉ 
TC(T). Notice that in such a way we obtain the conditional probability p(_/TC(T)). In 
fact, for any X⊆TC,  
 

{ } { }
{ }

{ }

.
))((

))((
))((

:)(
:)(

)(:)(
))((

)(:)()(

TTCp
TTCXp

TTCw
TCccw

TCccw
TTCXccw

TTCw
TTCXccwXpT

∩
=

∈∑
⋅

∈∑
∩∈∑

=
∩∈∑

=
 

 
 Also, a probability valuation µT of the formulas is defined in such a way that 
 

  ,
} satisfies :)({

) and   satisfies :)({
)(

∑
∑=

Tccw
Tccw

T

α
αµ  (4.1) 

 
i.e,  µT(α) is the percentage of the past cases verifying α among the cases verifying 
T.  
 Now, we are able to give the main definition in this paper. 
 
Definition 4.2. Let α be a formula in F, and T ⊆ T(ac) the available information on 
the actual case ac. Then we call probability that ac satisfies α given T, the probability 
of α in the statistical inferential basis associated to T. 
 
In conclusion, we imagine an expert system whose inferential engine contains a 
statistical inferential basis S obtained by an abstraction process from a knowledge 
representation system. Given an actual case ac and a formula α in the language F, the 
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expert system furnishes a probabilistic valuation µ(α) of α by a step-by-step process 
as follows: 
 
1. Set T0 = ∅ and S0 = S(∅) = S. 
2. Given Ti  and Si, put Ti+1=Ti∪{αi+1} and Si+1 = S(Ti+1), where αi+1 as the answer 
to a query β about the actual case ac, i.e. αi+1=β if the answer is positive, and 
αi+1=¬β  if the answer is negative.  
3. If the information is sufficient, goto 4, otherwise goto 2. 
4. Set µ(α) = )(αµ

iT  as defined by (4.1). 
 
In the prototype, β is selected in order to minimize the expected value of the entropy. 
This is achieved by minimizing the value |µ(β)-µ(¬β)| where µ is the valuation 
related to Si.  
 Notice that in such a way we gives a precise meaning to the claim: 

“ The probability that the actual case ac satisfies a property α  is given by the 
percentage of the cases indiscernible from ac that in the past verified α”. 

 
5. An extension principle for incomplete information 
The inferential process in the previous section is related to the case of complete 
information about the past cases stored in the memory. This means that for every 
case c and α propositional variable, either tr(c,α) is equal to 0 or tr(c,α) is equal to 0. 
Assume that available information about the truth of the formulas is not complete for 
some past cases. This means that at least a past case c and an attribute α  exist such 
that we are not able to say whether α  is true in c or not. The question arises whether 
we can propose valuations probabilistic in nature in such a case, too. To deal with 
such a incomplete information, we need to recall some basic definitions of fuzzy set 
theory and an extension principle for closure operators proposed in [2] and [5].  
 Let L = (L, ∧, ∨, 0, 1) be a complete lattice and S a set. We call L-fuzzy subset, or 
L-subset of S any map s from S into L and we denote by LS the class of L-subsets of 
S. Usually, L coincides with the lattice [0,1] but in this paper we are interested to the 
case in which L is a complete Boolean algebra. Given x in S, the value s(x) is called 
degree of membership of x in s. It is immediate that LS is a complete lattice whose 
operations are pointwise defined. Then, by using the set-theoretical notations, we 
have that the union of two fuzzy subsets s and s' is defined by setting, for any x in S, 

(s∪s')(x) = s(x)∨s'(x). 
The intersection is defined by setting, for any x in S, 

(s∩s')(x) = s(x)∨s'(x). 
Moreover, we define the inclusion relation by setting 

s⊆s’  ⇔ s(x)≤s’(x) for every x∈S. 
Given an L-subset s of S and X⊆S, we define Incl(X,s) by setting 

Incl(X,s) = Inf{s(x) : x∈X}. 
In particular, we have that Incl(∅,X) = 1. The number Incl(X,s) is a multivalued 
valuation of the statement  

“for every x∈X, x is an element of s”, 
i.e. a measure of the degree of inclusion of X in s. Observe that, by identifying any 
subset X of S with the related characteristic function, we can consider P(S) as a 
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sublattice of F(S). Then any notion in fuzzy set theory have to be an extension of the 
corresponding notion in classical set theory. For example, notice that if s is the 
characteristic function of a subset Y of S then  

Incl(X,s) = 1 ⇔  if X⊆Y. 
 We introduce the notion of fuzzy logic in an abstract way by following Tarski 
point of view. Recall that, given a set F whose elements we call formulas, we can 
define an abstract crisp logic as any compact closure operator D in the lattice P(F). 
The intended meaning of D is that, given any set X of formulas (the set of axioms), 
D(X) is the set {α ∈ F : X ¢ α} of logical consequences of X. Recall that a closure 
operator in a set S is any map J : P(S)→ P(S) such that, for any X and Y in P(S),  
 i )   X ≤ Y ⇒ J(X) ≤ J(Y),   
 ii)   X ≤ J(X), 
 iii) J(J(X)) = J(X). 
J is called compact provided that 

J(X) = »{J(Xf) : Xf is a finite subset of X} 
for any subset X of S.  
 Now, to obtain a suitable definition of abstract fuzzy logic, we extend the 
definition of closure operator to any ordered set. Indeed, given an ordered set (G,≤), 
we can call closure operator any map J : G → G such that, for x and y in G,  
 j)     x ≤ y ⇒ J(x) ≤ J(y),  
 jj)    x ≤ J(x), 
 jjj)  J(J(x)) = J(x). 
In place of the notion of compactness, we consider the notion of continuity. We call 
directed any family (xi)i∈I of elements in G such that for every i and j ∈ I, there is 
h∈I such that xi≤xh and xj≤xh. If (G,≤) is complete, we say that J is continuous if  

J(»i∈I xi) = »i∈I J(xi) 
for every directed family (xi)i∈I of elements in G. In the case G = P(S), the 
continuous closure operators coincides with the compact closure operators. The 
notion of an abstract fuzzy logic is obtained by substituting P(F) with the lattice of 
all the L-subsets of F.  
 
Definition 5.1.  An abstract L-logic as any continuous closure operator D : LF → LF 
is the lattice of all L-subsets of F.  
 
If v : F → L is any L-subset of formulas (the L-subset of axioms), then we say that 
D(v) is the theory generated by v.  
 A simple fuzzy logic can be obtained by the following extension principle 
enabling to extend any operator J : P(S) → P(S) into an operator D* : LS → LS. 
 
Definition 5.2. Let J : P(S)→P(S) be an operator. Then we call canonical extension 
of J the operator J∗: LS→LS  defined by setting:  

J*(s)(x) = Sup{Incl(Xf,s) : Xf  is a finite subset of S and x ∈ J(Xf)}. 
 
In particular, we can apply such a principle to the abstract crisp logics, by obtaining 
an abstract L-logic.  
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Proposition 5.1. Let D : P(F) → P(F) be an abstract crisp logic and D* : LF → LF 
the related canonical extension. Then D* is an abstract L-logic (see [2] and [5]). 

 
Trivially, if v : F → L is any L-subset of formulas, then the L-subset D*(v) of 
consequences of v is defined by setting  

D*(v)(α) = Sup{Incl(Xf,v) : Xf  is a finite set of formulas such that Xf ¢α} 
where we write Xf ¢ α  to denote that α ∈ D(Xf).  
 In this paper we are interested to the case in which D is the deduction operator of 
the classical propositional calculus. We say that v is consistent if D∗(v)(α∧¬α) = 0 
for every α formula α . 
 
Proposition 5.2. Let D be the deduction operator of the classical propositional 
calculus and let v be a consistent L-subset of formulas. Then, for every α, β ∈ F: 
 i)   if α is a tautology, then D∗(v)(α) = 1, 
 ii)  if α is a contradiction, then D∗(v)(α) = 0, 
 iii) if α  entails β, then D∗(v)(α) ≤ D∗(v)(β), 
 iv) if α is logically equivalent to β,  then D∗(v)(α) = D∗(v)(β), 
 v)    D∗(v)(β) ≥ D∗(v)(α) ∧ D∗(v)(α→β), 
 vi)   D∗(v)(α∧β) = D∗(v)(α) ∧ D∗(v)(β), 
 vii)  D∗(v)(α∨β) ≥ D∗(v)(α) ∨ D∗(v)(β). 
Moreover, 

D∗(v)(α∨β) ≠ D∗(v)(α)∨D∗(v)(β), 
in general. 
 
Proof. Propositions i), ii), iii), iv), v) and vii) are evident. To prove vi) observe that, 
since α∧β → α and α∧β → β are tautologies, D∗(v)(α∧β) ≤ D∗(v)(α) and 
D∗(v)(α∧β) ≤ D∗(v)(β). Then,  

D∗(v)(α∧β) ≤ D∗(v)(α) ∧ D∗(v)(β). 
Moreover, by observing that from α1,...,αn  ¢ α  and β1,...,βm  ¢ β  it follows that 
α1,...,αn, β1,...,βm  ¢ α and α1,...,αn, β1,...,βm  ¢ β, we have that 
  D∗(v)(α) ∧ D∗(v)(β)  
        = (Sup{v(α1)∧…∧v(αn) : α1,...,αn ¢ α}) ∧ (Sup{v(β1)∧…∧v(βm) : β1,...,βm  ¢ β}) 
        = Sup{v(α1)∧…∧v(αn)∧v(β1)∧…∧v(βm) : α1,...,αn  ¢ α  and β1,...,βm  ¢ β} 
        ≤ Sup{v(γ1)∧ …∧v(γt) : γ1,...,γt ¢ α  and  γ1,...,γt ¢β}  
        = Sup{v(γ1)∧…∧v(γt) : γ1,...,γt  ¢ α∧β}  
  = D∗(v)(α∧β). 
Assume that α is undecidable in the support of v. Then, since  

D∗(v)(α) = D∗(v)(-α) = 0, 
we have that D∗(v)(α)∨D∗(v)(-α) = 0 while D∗(v)(α∨-α) = 1.                         � 
 
6. Incomplete information. 
Assume that the lattice L coincides with a complete Boolean algebra, as an example, 
with the Boolean algebra B = P(PC). Then, we interpret a B-subset v : F → B, by 
assuming that v(α) is the set of past cases in which we know that α is true. Moreover, 
it is easy to prove that D*(v)(α) = PC if α is a tautology and, otherwise, 
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D*(v)(α) = »{v(α1)∩…∩v(αn) : α1,…,αn ¢α}. 

This means that D*(v)(α) is the set of past cases in which we can prove that α is true. 
Moreover, v is consistent if and only if, given any contradiction α, D*(v)(α) = ∅, i.e. 
no case c exists such that a contradiction can be proved. 
 
Definition 6.1. Let B be a Boolean algebra, p : B → [0,1] a probability and v : F → B 
a B-subset of F. Then we call belief associated with v the map Bel(v) : F → [0,1] 
defined by setting, for every F∈α  

)))((())(( αα vDpvBel ∗= . 
 

In accordance with Proposition 5.2, D*(v) is not a truth-functional B-valuation. In 
fact, it is possible that Bel(v)(α) = Bel(v)(¬α) = 0. This entails that, differently of the 
case of complete information, Bel(v) is not a probability valuation, in general. The 
following proposition shows some basic properties of  Bel(v).  
 
Proposition 6.1. Let v be a consistent B-subset. Then the map Bel(v) : F → [0,1] 
satisfies the following properties: 
i) if α is a tautology, then Bel(v)(α) = 1 
ii) if α is a contradiction, then Bel(v)(α) = 0 
iii) if α implies β, then Bel(v)(α) ≤ Bel(v)(β) 
iv) if α is equivalent to β, then Bel(v)(α) = Bel(v)(β) 
v)   Bel(v)(α∨β) ≥ Bel(v)(α) + Bel(v)(β) - Bel(v)(α∧β). 
 
Proof. We confine ourselves to prove v). Indeed,  
      Bel(v)(α∨β) = p(D*(v)(α∨β))  
                           ≥ p(D*(v)(α) ∪ D*(v)(β))  
                           = p(D*(v)(α)) + p(D*(v)(β)) - p(D*(v)(α)∩D*(v)(β)) 
                           = Bel(v)(α) + Bel(v)(β) - p(D*(v)(α∧β)) 
                           = Bel(v)(α) + Bel(v)(β) - Bel(v)(α∧β).                                         � 
 
In the case of incomplete information, we propose the following obvious extension 
of Definition 3.1. 
 
Definition 6.2. We call (partial) knowledge representation system any structure S = 
(PC, AT, OBS, tr) such that tr : PC×F → {i,1} is a map from PC×F into {i,1}. 
  
Notice that tr is defined in the whole set F of formulas and not only in the set of 
propositional variables. In the case that tr(c,α) = i, we say that α  is undetermined in 
c. The information “α false in c” is stored by setting tr(c,-α) = 1. We say that two 
past cases c1 and c2 are indiscernible if tr(c1,α) = tr(c2,α) for every formula α. As in 
the case of complete information, we denote by S∗ = (PC∗, AT, OBS, tr∗) the quotient 
of S modulo the indiscernibility relation. Also, for every equivalence class [c], we 
consider the number of elements contained in [c]. It is also immediate how define the 
notion of (incomplete) statistical inferential basis. 
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Definition 6.3. We call incomplete statistical inferential basis, a structure S = (TC, 
AT, OBS, tr, w) such that  
i ) (TC, AT, OBS, tr) is a partial knowledge representation system,  
ii) two elements of TC are always discernible, 
iii) w : TC → N is a function we call the weight function.  
The elements of TC are called type-cases.  
 
Now, given an incomplete statistical inferential basis S, we can set 

v(α) = {c∈CT : tr(c,α) = 1}. 
Then, the map v : F → P(CT) is the function that associates any formula α with the 
set v(α) of cases in which we know that α was verified. Differently from the case of 
complete information, the map v is not truth-functional, in general. As a matter of 
fact, v is any map from F to P(TC). We interpret the B-subset v as a system of 
axioms (the available information). A natural semantics is obtained if we call model 
any truth-functional B-valuation m. We say that m is a model of v if m(α)⊇v(α). 
Consider the deduction operator D : P(F) → P(F) of the classical propositional 
calculus and the related extension D∗ : P(TC)F→ P(TC)F. To face the problem of the 
incomplete information, the idea is to consider D* as a tool to complete in part our 
information. We can interpret the set D∗(v)(α) as the set of the cases in which the 
available information is sufficient to prove α. Moreover, we can consider the belief 
Bel(v) : F → [0,1] associated with v. It is easy to prove that, given any formula α, the 
number Bel(v)(α) denotes the frequency of cases in which we have information 
sufficient to prove α, i.e., 

{ }
)(

))((:)(
))((

Sw
vDccw

vBel
α

α
∗∈∑

= . 

The inferential process from an incomplete statistical inferential basis S runs as in 
the complete statistical inferential basis. Indeed, given an actual case ac and a 
formula α in the language F, we obtain a probabilistic valuation of the claim that ac 
satisfies α as follows: 
- we obtain a set T of formulas in Fobs satisfied by ac as a result of a sequence of 
queries (tests) 
- we define a new representation system S(T) by considering only the cases 
satisfying T 
- we consider the quantity Bel(v)(α). 
We conclude by observing that from i) and v) in Proposition 6.1, it follows that  

1 = Bel(v)(α∨-α) ≥ Bel(v)(α) + Bel(v)(-α). 
By setting Bel(v)*(α) = 1- Bel(v)(-α), we have that 

Bel(v)(α) ≤ Bel*(v)(α). 
Then, our inferential apparatus furnishes, for every formula α, an interval valuation 
[Bel(v)(α), Bel*(v)(α)] of α, probabilistic in nature. The intended interpretation is 
that the “actual” probability of α is a number in such an interval. In the case of 
complete information Bel(v) = Bel*(v) is a probability valuation and the interval 
valuation coincides with it. 
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