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Abstract. Some attempts to establish a link between point-free geometry and the 
categorical approach to fuzzy set theory is exposed. In fact, it is possible to find 
functors between the category of fuzzy set as defined by Höhle in [4] and a category 
whose objects are the pointless ultrametric spaces. 
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1. Introduction. 
The aim of point-free geometry is to give an 
axiomatic basis to geometry in which the 
notion of point is not assumes as a 
primitive. The first example in such a 
direction was furnished by Whitehead’s 
researches [6, 7] where the primitives are 
the regions and the inclusion relation 
between regions. Later Whitehead proposed 
the topological notion of connection instead 
of the inclusion [8]. In [2] Gerla proposed a 
system of axioms in which regions, 
inclusion, distance and diameter are 
assumed as primitives.  
    In this note we expose some attempts to 
establish a link between point-free 
geometry and the categorical approach to 
fuzzy set theory. In fact, it is possible to 
find functors between the category of fuzzy 
set defined by Höhle in [4], and a category 
whose objects are the pointless ultrametric 
spaces. More precisely, Section 2 is devoted 
to give some preliminary notions. In 
Section 3, starting from the definition of 
pm-spaces given by Gerla in [2], we 
introduce the pu-spaces . In Section 4 we 
define the psu-spaces and we verify the 
relations between these structures and the 
previous ones. In Section 5 we consider a 
semi-similarity and we examine the 
relations existing with the pu-spaces and 
the psu-spaces. Besides we give a 
characterization of semi-similarities by the 
notion of semi-equivalence and we show an 

example of semi-similarity. Finally, in 
Section 6 we describe the category of fuzzy 
set defined by Höhle in [4] and the category 
of pointless ultrametric spaces and we 
examine a functor between these categories. 
 
2. Preliminaries. 
We introduce some basic notions such as 
continuous t-norm and fuzzy relation. 
 
Definition 2.1. A continuous triangular 
norm (t-norm), is a continuous binary 
operation ∗  on [0, 1] such that, for all x, y, 
x1, x2, y1, y2,∈[0, 1] 
• ∗  is commutative,  
• ∗  is associative, 
• ∗  is isotone in both arguments, i.e., 

x1≤  x2  ⇒  x1∗y≤ x2∗y, 
y1≤  y2  ⇒  x∗y1≤ x∗y2, 

• 1∗x = x = x∗1  and  0∗x = 0 = x∗0. 
 

The most important continuous t-norms are 
minimum, product and Lukasiewicz 
conjunction  a∗b = max(0, a+b-1). 
 
Definition  2.2.  Let  ∗  be a continuous  t–
norm .  The   residuation   is the operation 
→∗   defined by 

a→∗  b = Sup{x / a∗  x≤ b} 
 
It is immediate that  

a∗x≤ b ⇔ x≤ a→∗  b. 



In this paper we confine ourselves to the 
minimum t-norm. In such a case the 
residuation operation  is the Gödel 
implication →G : 





<
≤

=→
a.b if         b
ba if          1

ba G  (2.1) 

Let S be a nonempty set. We call fuzzy 
subset of S any map s: S→[0,1]; the value 
s(x) represents the membership degree of  x 
to s.  A fuzzy relation is a fuzzy subset of 
S S× , i.e., a map r: S×S→[0, 1]. 
 
Definition 2.3. Let ord:S×S→[0,1] be a 
fuzzy-relation on S and consider the 
following properties: 
(i)   ord(x,x)=1 (reflexivity) 
(ii) ord(x,y)∧ord(y,z) ≤ ord(x,z) 
 (transitivity) 
(iii) ord(x,y)=ord(y,x)=1⇒x=y 
 (antisymmetry) 
(iv) ord(x,y)=ord(y,x) (symmetry) 
for every x, y, z ∈S.  
Then ord is called: 

• fuzzy preorder if it satisfies (i) and 
(ii), 

• fuzzy order if it satisfies (i), (ii) and 
(iii),  

• fuzzy similarity if it satisfies (i), (ii) 
and (iv), 

• strict fuzzy similarity if it satisfies  
(i), (ii), (iii) and (iv). 

 
3. Pointless ultrametric spaces.  
In order to give a metric approach to point-
free geometry, G. Gerla in [2] defines the 
notion of pointless metric space, briefly 
pm-space. A pm-space  is a structure (R, ≤, 
δ, ), where  
- (R,≤) is an ordered set,   
- δ :R×R→[0,∞) is an order-reversing map, 
- :R → [0, ∞] is an order-preserving map 
and, for every  x, y, z ∈ R  the following 
axioms hold: 
(a1). δ (x, x) = 0 
(a2). δ (x, y) = δ ( y, x) 
(a3). δ (x, y) ≤ δ (x, z) + δ (z, y) + z. 
The elements of R are called regions, the 
number δ (x, y)  is called distance between 

regions and the number x diameter of the 
region x.  
In alternative, we can consider the inclusion 
relation as a derived notion. In fact, the 
following hold true: 
  
Proposition 3.1. Let (R, δ, ) be a 
structure satisfying a1), a2) and a3) and 
define ≤  by setting 
  x ≤ y ⇔ x≤ y and δ (x, z) ≥ δ (y, z)  
for every z∈ R.  
Then (R, δ, ) is a pm-space. 
 
Example 3.1. A class of basic examples of  
pm-spaces are obtained by considering a 
metric space (M, d) and a class C of 
nonempty subsets of M. The distance and 
the diameter are defined by setting  
    δ (X, Y) = inf{d(x, y) / x∈ X,  y∈Y} (3.1) 
    X= sup{d(x, y) / x, y ∈ X}. (3.2) 
and the relation  ≤  is the usual inclusion.  
In fact, we can prove immediately (a1) and 
(a2); instead, let X, Y and Z be subsets of M, 
x∈ X,  y∈Y, z and z’∈Z; then 
δ (X, Y) ≤ d(x, y) ≤ d(x, z) + d(z, z’) + d(z’, 
y) ≤ d(x, z) + d(z’, y) + Z  
and therefore we prove (a3): 
δ (X, Y) ≤ δ (X, Z) + δ (Z, Y) + Z.  
Any pm-space of this type is called 
canonical. 
 
In this paper we are interested to a 
particular class of pm-spaces which is 
related with the notion of ultrametric space. 
In accordance with Proposition 3.1, we do 
not assume the inclusion as a primitive. 
 
Definition 3.1. A pointless ultrametric 
space, briefly pu-space, is a structure 
R=(R,δ,) where δ :R×R→[0, 1] and 
:R → [0, 1] are functions satisfying the 
following axioms, for every x, y, z ∈ R  : 
(A1).δ(x,x)=0 (reflexivity) 
(A2).δ(x,y)=δ(y,x)  (symmetry) 
(A3). δ (x, y) ≤ δ (x, z) ∨  δ (z, y) ∨z| 

 (generalized triangle-inequality) 
where ∨  is the maximum. 
 



We say that the region x overlaps the region 
y if there exists z∈ R such that  z ≤ x  and z 
≤ y. 
 
Proposition 3.2. The relation ≤ is a 
preorder. Moreover, in any pu-space the 
following hold: 
(1) x ≤ y ⇒ δ (x, y) = 0, 
(2) x and y overlap  ⇒ δ (x, y) = 0 . 
  
Proof. It is easy to prove that ≤ is a 
preorder. To prove (1), set z = x  in 
Definition (2.3); then by  (A1) we have δ 
(x, y) ≤ δ (x, x)  = 0. 
To prove (2), assume that z ≤ x and z ≤ y; 
then by (1) and by Definition (2.3)  

δ (x, y) ≤ δ (x, z) = 0.  Ñ 
 
Proposition 3.3. Any pu-space is a pm-
space. 
 
 Proof. We need only to observe that 
δ (x, y) ≤ δ (x, z) ∨  δ (z, y) ∨ z 
            ≤δ (x, z) + δ (z, y) + z. Ñ 
  
Example 3.2. 
   We obtain canonical examples of  pu-
spaces as in Example 3.1. In fact, recalling 
that (M, d) is a quasi-ultrametric space if  
the following hold: 
(A1*). d(x, x) = 0, 
(A2*). d(x, y) = d(y, x), 
(A3*). d(x, y) ≤ d(x, z) ∨ d(z, y) 
and defining the distance and the diameter 
as in (3.1) and (3.2) , it results 
δ (X, Y) ≤ d(x, y) ≤ d(x, z) ∨ d(z, z’) ∨ d(z’, 

y) ≤ d(x, z)∨ d(z’, y) ∨ Z, 
and therefore (R,δ,)  is a pu-space. Any 
pu-space of this type is called canonical. 

 
4. Semi-ultrametric spaces. 
We introduce a new class of structures 
which  verifies symmetry and a triangular 
inequality, but not reflexivity.  
 
Definition 4.1. A semi-ultrametric space, 
briefly psu-space, is a structure (R, d) 
where R is a set whose elements are called 
regions and  d :R×R→[0, 1]  is a function, 

we call semi-distance, such that, for any x, 
y, z ∈ R: 
(B1) d(x, y) = d(y, x),  
(B2) d(x, y) ≤ d(x, z) ∨ d(z, y) . 
 
Given a semi-distance d, we set: 
                         xd =d(x, x) , (4.1) 
Observe that by setting z = x  in (B2), we 
obtain that  d(x, x)≤ d(x, y) ∨ d(y, z)  and 
therefore by  (B1) that d(x, x)≤ d(x, y). 
Likewise we have that d(y, y)≤ d(x, y) and 
therefore it results 
                d(x, y) ≥ xd ∨yd. (4.2) 
It is possible to associate any  pu-space 
(R,δ,) with a psu-space (R, dδ) by setting 
          dδ (x, y) = δ(x, y) ∨ x ∨ y,  (4.3) 
for every x, y∈ R. 
 
Proposition 4.1. Let (R,δ,)  be a pu-
space, then the structure (R, dδ) defined by  
(4.3)  is a  psu-space such that d = . 
 
 Proof. (B1) and the equality d =  are 
trivial. Besides,  
dδ (x, z) = δ(x, z)∨x∨z 
    ≤ δ(x, y)∨δ(y, z) ∨y∨x∨z 
    = (δ(x,y)∨x∨y)∨(δ(y, z)∨y∨z)  
    = dδ (x, y)∨ dδ (y, z).  Ñ 
 
Conversely, we can associate any psu-space 
(R, d) with a pu-space (R,δd) by setting 

  

( )
( )

( ) ( )





∨>

∨=
=

   yxyx,d if   y,xd

yxyx,d if           0
y,x

dd

dd
dδ (4.4) 

for every  x, y∈ R.. 
 
Proposition 4.2. Let (R, d) be a psu-space, 
then the structure (R,δd,d) defined by 
(4.1) and (4.4)  is a  pu-space . 
 
   Proof. Axioms (A1), (A2) are immediate. 
To prove (A3) observe that if δd(x, y) = 0 
then the generalized triangle-inequality is 
trivially verified. 
Assume that δd(x, y) = d(x, y)  i.e.  d(x, y) 
>xd ∨ yd [*]. 
We can consider four cases: 
I) δd(x, z) = d(x, z)  and  δd(z, y) = d(z, y). 
We have that 



δd(x, y) = d(x, y)≤ d(x, z) ∨ d(z, y) = δd(x, z) 
∨ δd(z, y) ≤ δd(x, z) ∨ δd(z, y) ∨ zd.  
 II) δd(x, z) = 0  and δd(z, y) = d(z, y). 
It means that 
d(x, z) =xd ∨ zd  [**] 
and zd ∨ yd < d(z, y). 
By  [**] it results 
d(x, y)≤ d(x, z) ∨ d(z, y) = xd ∨ zd ∨ 
d(z, y),  but by [*] 
d(x, y) hxd  and therefore  
d(x, y) ≤  zd ∨ d(z, y),  i.e. 
δd(x, y) ≤ δd(x, z) δd(z, y) ∨ zd . 
III) δd(x, z) = d(x, z)   and  δd(z, y) = 0. It is 
analogue to II). 
IV) δd(x, z) = 0   and δd(z, y) = 0, i.e. 
d(x, z) =xd ∨ zd   [**] 
and   
d(z, y) = zd ∨ yd  [***] . 
By  [**] and [***]  it results 
δd(x, y) =  d(x, y)≤ d(x, z) ∨ d(z, y) = xd ∨ 
zd ∨ yd, 
but by [*] 
d(x, y) hxd  and d(x, y) hyd  ; therefore  
δd(x, y) ≤  zd,  i.e. 

δd(x, y) ≤ δd(x, z)∨δd(z,y)∨zd.    Ñ 
 
5. Semi-similarities 
In order to give a general approach to fuzzy 
set theory based on the notion of category, 
now we consider a fuzzy relation E on R 
that represents the dual concept of semi-
distance. According to the terminology of 
M. Fourman and D.S. Scott [1], this relation 
is a [0, 1]-valued equality  and the pair (R, 
E) is a [0, 1]-valued set. In the next section, 
we shall see that (R, E) are objects of  a 
fuzzy category described in Höhle [4].  
 
Definition 5.1. A semi-similarity  is a fuzzy 
relation E on R such that the following  
(e1) E(x, y) = E(y, x)  (symmetry) 
(e2) E(x, z) ∧ E(z, y) ≤ E(x, y) (∧-transitivity) 
hold for every x, y, z ∈R. A similarity is a 
semi-similarity such that  
(e3) E(x,x) = 1 . 
 
E(x, y) is regarded as truth-value of a 
statement like x =R y. Observe that by 
setting x = y in (e2) we obtain E(x, z) ∧ E(z, 

x) ≤ E(x, x) and therefore that E(x, z) ≤ E(x, 
x). This entails also that  

E(x, z) ≤ E(x, x) ∧ E(z, z). 
We can associate any psu-space (R, d)  with 
a semi-similarity Ed by setting  

  Ed(x, y) = 1-d(x, y) (5.1) 
for every x, y ∈R. 
 
Proposition 5.1. Let d be a semi-distance, 
then the fuzzy-relation Ed defined by (5.1) is 
a semi-similarity. 
 
 Proof. Condition (e1) is immediate. To 
prove (e2) observe that 
Ed(x, y) ∧ Ed(y, z) = (1- d(x, y))∧ (1- d(y, z)) 
                  = 1-(d(x, y) ∨ d(y, z))≤ 1- d(x, z)  
                  = Ed(x, z).   Ñ 
 
Conversely, we can associate any semi-
similarity E with a psu-space (R, dE) by 
setting   
 dE(x,y) = 1-E(x,y) (5.2) 
for every x, y ∈R. 
 
Proposition 5.2. Let E be a semi-similarity, 
then the structure  (R, dE), defined by (5.2), 
is a  psu-space. 
 
 Proof. Axiom (B1) is immediate. To prove 
(B2) it is sufficient to observe that 
d(x, y) = 1- E(x, y) ≤ (1-E(x, z) ∨ 1-E(z, y)) 
           = d(x, z) ∨ d(z, y) .                          Ñ 
 
In accordance with Proposition 4.2 and 
Proposition 5.2, we can associate directly 
any semi-similarity with  a pu-space. 
Indeed the following proposition holds. 
 
Proposition 5.3. Let E be a semi-similarity, 
define E:R → [0, 1] by setting  

xE = 1 – E(x, x) (5.3) 
and  δE :R×R→[0, 1] by  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )




∧<−
∧=

=
       y,yEx,xEy,xE if y,xE1

y,yExx,Ey,xE if       0
y,xEδ         

                                                               (5.4)               
for every x, y ∈R. Then  RE=(R,δE ,| |E) is a 
pu-space. 
 



In accordance with Proposition 4.1 and 
Proposition 5.1, we can associate any pu-
space with a semi-similarity.  
 
Proposition 5.4. Let (R,δ ,| |) be a pu-space 
and define Eδ, | |:R×R → [0, 1] by setting  

Eδ, | |(x,y) = 1 – (δ(x,y)∨|x|∨|y|) (5.5) 
Then (R, Eδ, | |) is a semisimilarity. 
 
5.1. Semi-equivalences. 
Let S be a set,  R be a relation on S and  DR 
= {x∈S / ∃ y: (x, y)∈ R} the domain of R .      
 
Definition 5.1.1.  Let S be a set. A relation 
R on S  is called semi-equivalence  provided 
that  is symmetric and transitive.     
 
Observe that if R is a semi-equivalence 
relation it results (x, y) ∈ R ⇒ (x,x) ∈ R  for 
every x, y ∈ S , i.e. R is reflexive in its 
domain  DR . Equivalently, if  x is not 
related to itself, it cannot be related to any 
element. Therefore, every semi-equivalence 
relation R on S is an equivalence relation on 
its domain DR  and viceversa.  
 
The notion of semi-equivalence is related to 
the notion of semi-similarity, as we can see 
in the following propositions. 
 
Proposition 5.1.1. Assume that E is a semi-
similarity and let  Rλ = C(E, λ) = {(x, y)/  
E(x, y) ≥λ}  be a λ-cut of E, where λ ∈ 
[0,1] and x, y are regions. Then Rλ is a 
semi-equivalence.  
 
Conversely, let (Rλ)λ∈[0,1]  be an order-
reversing family of semi-equivalence 
relations, i.e., if λ=µ then Rµ Œ Rλ and let 
          E(x, y) = Sup{λ /(x, y) ∈ Rλ } (5.1.1) 
(where Sup(φ) = 0). 
 
Proposition 5.1.2. Let (Rλ)λ∈[0,1]  be an 
order-reversing family of semi-equivalence 
relations, then the fuzzy relation E defined 
by (5.1.1) is a semi-similarity 
. 
   Proof. Condition (e1)  is immediate by 
symmetry of λR . To prove (e2), let us 
consider 

E(x, z) = Sup{λ /(x, z) ∈ Rλ } = µ 
E(z, y) = Sup{λ /(z, y) ∈ Rλ } = ξ 
E(x, y) = Sup{λ /(x, y) ∈ Rλ } = η. 
Suppose µ ≤ ξ  (likewise ξ ≤ µ). Since 
(Rλ)λ∈[0,1]   is an order-reversing family of 
relations, it results Rξ ⊆ Rµ..Therefore we 
have (x, z) ,(z, y) ∈ Rµ..and then, by 
transitivity,  (x, y) ∈ Rµ. But η =Sup{λ /(x, 
y) ∈ Rλ }, then  η ≥ µ  and, since µ ∧ ξ = µ,  
the condition (e2) 

E(x, z) ∧ E(z, y) ≤ E(x, y) 
is verified.     Ñ 
 
5.2. Example of semi-similarity. 
Let X and Y  be two nonempty sets and 
denote by F(X, Y) the class of partial 
functions from X to Y. If  f ∈ F(X, Y)  we 
denote by  Df  the domain of  f. We consider 
a function rel: X→  [0,1] which gives the 
“degree of relevance” of any element x ∈ 
X. 
 
Definition 5.2.1. Let  S be a subset of  X. 
and rel: X→[0,1]. The degree of relevance 
of S , is 

Rel(S)= Sup{rel(x) / x ∈ S}. 
 
Let  f, g be elements of F (X, Y) and 
consider the equalizer of  f and g , defined 
by 

eq(f, g) = {x ∈ Df ∩Dg : f(x)=g(x)}. 
We set  
E(f, g) = 1- Sup {rel(x) / x∉eq(f, g)} = Inf 
{1-rel(x) / x∉eq(f, g)}. (5.2.1) 
 
Observe that  x∉eq(f, g) means that x 
belongs to the set Cfg∪F∪G, where  
Cfg = {x∈X / x ∈Df ∩Dg and  f(x) ≠ g(x)},  
F = {x∈X / x∉Df},  
G ={x∈X / x∉Dg}.  (5.2.2) 
 
In other words, elements not belonging to 
eq(f ,  g) are the elements on which f and g 
“contrast”. Then, in a sense, E(f, g) 
measures the similarity between  f and g, 
because it gives the degree of 
“irrelevance”, by 1-rel(x), of the elements 
above.  

 



Proposition 5.2.1. Let C be a nonempty 
class of partial functions. Then the relation 
E on C, defined by (5.2.1) is a semi-
similarity. 
 
   Proof. (e1) is immediate. To prove (e2) , 
observe that for every f, g, h ∈ C, the set 
Cfg, defined in (5.2.2), is contained in 
Cfh∪Chg∪H, where 
Cfh =  {x∈X / x ∈Df ∩Dh and  f(x) ≠ h(x)},    
Chg =  {x∈X / x ∈Dh ∩Dg and  h(x) ≠ g(x)},  
H = {x∈X / x∉Dh}.  
So, 
{ril(x) / x ∈ Cfg} ⊆ {ril(x) / x ∈ Cfh∪ 
Chg∪H }  
and  
Sup{ril(x) / x ∈ Cfg} ≤ Sup{ril(x) / x ∈ Cfh∪ 
Chg∪H }  i.e. Ril(Cfg) ≤ Ril(Cfh∪ Chg∪H) 
from which 
1-Ril(Cfg) ≥ 1-Ril(Cfh∪ Chg∪H).  
Then, 
(1-Ril(Cfg))∧(1-Ril(F∪G)) ≥ (1-Ril(Cfh∪ 
Chg∪H ))∧(1-Ril(F∪G)), i.e. 
1-(Ril(Cfg)∨Ril(F∪G)) ≥ 1-(Ril(Cfh∪ Chg∪H 

)∨Ril(F∪G)), 
that is equivalent to  
1-Ril(Cfg∪F∪G)≥ 
1-(Ril(Cfh∪Chg∪H∪F∪G)= 
1-(Ril(Cfh∪F∪H)∨Ril(Chg∪H∪G))= 
(1-Ril(Cfh∪ F∪ H))∧(1-Ril(Chg∪H∪G)),  
i.e. 
E(f, g)≥ E(f, h)∧E(h, g). Ñ 
 
6. The categories of the semi-similarities 
and of the pu-spaces 
In order to organize the class of semi-
similarities into a category, we refer to  the 
categories of M*-SET as described by 
Hohle in [4]. Namely, while Hohle defines 
this category for any GL-monoid, we are 
interested only with the particular GL-
monoid in [0,1] defined by the t-norm ∧. In 
such a case we have the following 
simplified definition. 
 
Definition 6.1. The category of the semi-
similarities is the category SS such that: 
- the objects are the semi-similarities;  

- a morphism from (R’, E’) to (R’, E’) is a 
map f : R → R’  satisfying the axioms 
(M1) E’(f(x), f(x)) ≤ E(x, x)   
(M2) E(x, y) ≤ E’(f(x), f(y))  
for every x, y ∈ X .  
 
Observe that from M2 we have that E(x, x) 
≤ E’(f(x), f(x)) and therefore, by M1, 
                    E(x, x) = E’(f(x), f(x)) 
 The second category we consider is 
defined by the class of pu-spaces. 
 
Definition 6.2. The category PU of the pu-
spaces is the category such that 
- the objects are the pu-spaces; 
- a morphism from (R, δ, | |) to (R', δ’,| |') is 
a map f: R→R'  such that  
(1) δ(x, y) ≥ δ’(f(x),f(y))   
(2) x ≥ f(x)|'  
 
In both the categories the composition is the 
usual composition of maps and the 
identities are the identical maps. 
Proposition 5.3 enables us to associate any 
semi-similarity (R,E) with a pu-space (R, 
δE,|  |E). This suggests the definition of a 
suitable functor. 
 
Proposition 6.1. We define a functor F 
from SS to PU  by setting 
• F((R, E)) = (R, δE , | |E)   
• F(f)=f. 
 
   Proof.  We have only to prove that if f is a 
morphism from (R,E) to (R', E'), then f is a 
morphism from (R, δE ,| |E)  to (R', δE' ,E'). 
Indeed, it is immediate that 
       |f(x)|E’ = 1-E(f(x),f(x)) = 1-E(x,x) = |x|E. 
To prove that 
                  δE(x,y) ≥ δE’(f(x),f(y))           (6.1) 
it is not restrictive to assume that 
δE’(f(x),f(y)) ≠0 and therefore that  
     E’(f(x),f(y)) < E’(f(x), f(x))∧E’(f(y), f(y)).  
and δE’(f(x),f(y)) = 1-E’(f(x),f(y)). In such a 
case, since 
  E(x,y) ≤ E’(f(x),f(y))  
            < E’(f(x), f(x))∧E’(f(y), f(y)) 
            = E(x,x)∧E(y,y), 
we have that δE(x,y) = 1-E(x,y). So, (6.1) is 
a trivial consequence of M2. Ñ 



Observe that in proving that F is a functor 
we obtain that |f(x)|E’ = |x|E .On the other 
hand, it is easy to find a morphism h in PU 
such that |f(x)|E’ < |x|E for a suitable region. 
As an example we can consider the 
morphism induced by a contraction in the 
canonical pu-space associated with a 
Euclidean space. Then the proposed 
functor is not surjective. 
 
Proposition 5.4. Let (R,δ ,| |) be a pu-space 
and define Eδ, | |:R×R → [0, 1] by setting  

Eδ, | |(x,y) = 1 – (δ(x,y)∨|x|∨|y|) (5.5) 
Then (R, Eδ, | |) is a semi-similarity. 
 
  Proposition 5.4 suggest a definition of a 
functor from the category of the pu-spaces 
into the category of the semi-similarities. 
 
Proposition 6.2. We define a functor F’ 
from PU to SS  by setting 
• F’((R, δ , | |)) = (R, Eδ, | |)   
• F(f)=f. 
 
   Proof.  Let (R, δ , | |) and (R’, δ , | |’) be 
two pu-spaces and denote by (R, Eδ, |  |) and 
(R’, Eδ’, |  |’) the associated semi-similarities. 
Then, for any morphism f from (R, δ , | |) to 
(R’, δ , | |’), we have that  
       E’(f(x),f(x)) = 1-|f(x)|’ ≥ 1-|x| = E(x,x). 
  Moreover, 
     E(x,y) = 1-(δ(x,y)∨|x|∨|y|)  

          ≤ 1-(δ’(f(x),f(y))∨|f(x)|’∨|f(y)|’) 
          = E’(f(x),f(y)). Ñ 

 
Conclusions and future works. 
This paper is a first attempt to establish a 
link between point-free geometry and fuzzy 
set theory. In spite of some promising 
results, the proposed functor is not yet 
satisfactory. Indeed, a complete equivalence 
between the categories we are interested is 
not yet obtained. Another open question is 
to give a geometric interpretation of the 
objects of the category of the fuzzy sets as 
suggested by the obtained results. Future 
works will be addressed to this aims. 
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