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Abstract. Some attempts to establish a link between point-free geometry and the
categorical gpproach to fuzzy set theory is exposed. In fact, it is possible to find
functors between the category of fuzzy set as defined by Hohle in [4] and a category
whose objects are the pointless ultrametric spaces.
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1. Introduction.

The am of point-free geometry isto give an
axiomatic basis to geometry in which the
notion of point is not assumes as a
primitive. The fird example in such a
direction was furnished by Whitehead's
researches [6, 7] where the primitives are
the regions and the inclusion relation
between regions. Later Whitehead proposed
the topological notion of connection instead
of the inclusion [8]. In [2] Gerla proposed a
system of axioms in which regions,
inclusion, distance and diameter are
assumed as primitives.

In this note we expose some attempts to
edablish a link between point-free
geometry and the categorical approach to
fuzzy set theory. In fact, it is possible to
find functors between the category of fuzzy
set defined by Hohle in [4], and a category
whose objects are the pointless ultrametric
spaces. More precisaly, Section 2 is devoted
to give some preiminary notions. In
Section 3, darting from the definition of
pmspaces given by Gela in [2], we
introduce the pu-spaces . In Section 4 we
define the psu-spaces and we verify the
relations between these structures and the
previous ones. In Section Swe consider a
semi-smilarity and we examine the
relations existing with the pu-spaces and
the psu-spaces. Besides we give a
characterization of semi-amilarities by the
notion of semi-equivalence and we show an

example of semi-gmilarity. Findly, in
Section 6 we describe the category of fuzzy
set defined by Hohle in [4] and the category
of pointless ultrametric spaces and we
examine afunctor between these categories.

2. Preliminaries.
We introduce some basic notions such as
continuous t-normand fuzzy relation.

Definition 2.1. A continuous triangular
norm (t-norm), is a continuous binary
operation * on [0, 1] such that, for al x, v,
X1, X2, Y1, Yol [0, 1]
* iscommutative,
* s associdive,
* jsisotone in both arguments, i.e.,
XE X B X *YEX*Y,
YiE Yo P X YiE X* Y,
I*x=x=x*1 and 0*x=0=x*0.

The most important continuous t-norms are
minimum, product and Lukasiewicz
conjunction a* b = max(0, at+b-1).

Definition 2.2. Let * be acontinuous t—
norm. The residuation isthe operation
® . defined by

a® « b =Sup{x/ a* x£ b}

It isimmediate that
a*xEbU xEa®- b.



In this paper we confine ourselves to the
minimum t-norm In such a case the

resduation operation is the Godel

implication® ¢ :

2 ® b_‘ll if afb 21)
¢“"lp  ifb<a '

Let S be anonempty set. We cdl fuzzy
subset of Sany map s: S® [0,1]; the value
S(X) represents the membership degree of x
to s. A fuzzy relation is afuzzy subset of
S” S,i.e,amar: S WO, 1].

Definition 2.3. Let ord:S S® [0,1] be a
fuzzy-rdlation on S and consder the
following properties:

(i) ord(x,x)=1

(i) ord(x,y)Uord(y,z) £ ord(x,2)

(reflexivity)

(trangitivity)

(iti) ord(x,y)=ord(y,x)=1p x=y
(antisymmetry)
(iv) ord(x,y)=ord(y,x) (symmetry)

forevery x,y, zI S.
Then ord iscdled:
- fuzzy preorder if it satisfies (i) and

(i),

fuzzy order if it satisfies (i), (ii) and
(iii),

fuzzy similarity if it satisfies (i), (ii)
and (iv),

strict fuzzy similarity if it satisfies
(@), (i), (iii) and (iv).

3. Pointless ultrametric spaces.

In order to give a metric approach to point-
free geometry, G. Gerla in [2] defines the
notion of pointless metric space, briefly
pm-space. A pmspace isastructure (R, £,
d, ¥4/, where

- (RE) isan ordered s¢t,

-d R R® [0¥) isan order-reversing map,
-3/4R® [0, ¥] isan order-preserving map
and, for every x,y,z1 R thefollowing
axioms hold:

(@).d(x,x)=0

(82).d (x, y)=d (y, %)
@3).d(x,y)Ed(x,2 +d(z y) + ¥V2¥2
The elements of R are called regions, the
number d (X, y) iscaled distance between

regions and the number ¥x%zdiameter of the
region Xx.

In dternative, we can consider the inclusion
relation as a derived notion. In fact, the
following hold true:

Proposition 3.1. Let (R, d, %39 be a
structure satisfying al), a2) and a3) and
define £ by setting

x £y U Y&x¥E Ysandd (x,2) 2 d(y, 2)
foreveryzl R.

Then (R, d, ¥3/ isapm-space.

Example 3.1. A class of basic examples of
pm-spaces are obtained by considering a
metric space (M, d) and a class C of
nonempty subsets of M. The distance and
the diameter are defined by setting
dX, V=inf{d(x, y) /xI X, i Y} (3.1
yxya sup{d(x, y) /x, yT X}. (3.2)
and therelation £ isthe usud inclusion.
In fact, we can prove immediately (al) and
(a2); instead, let X, Y and Z be subsets of M,
xI X, yl'Y,zandZ1 Z; then
dX,V)Ed(x,y) Ed(x, 2 +d(z, Z) +d(Z,
y)Ed(X, 2)+d(Z,y) + VLY
and therefore we prove (a3):
dX,VYEA(X,2+d(ZY) + YL
Any pmspace of this type is caled
canonical.

In this paper we are interested to a
particular class of pmspaces which is
related with the notion of ultrametric space.
In accordance with Proposition 3.1, we do
not assume the inclusion as a primitive.

Definition 3.1. A pointless ultrametric
space, briefly pu-space, is a structure
R=(Rd,“3) where d (R R® [0, 1] and
Y345R ® [0, 1] are functions satisfying the
following axioms, for every x,y, z1 R :
(A2).d(xx)=0 (reflexivity)
(A2dxy)=dyx)  (symmetry)
(A3).d(x,y)Ed(x,2 U d(z y) Uz

(generdized triangle-inequdity)
where U isthe maximum.



We say that the region x overlapstheregion
y if there existszZl Rsuchthat z£x and z
£y.

Proposition 3.2. The relation £ is a
preorder. Moreover, in any pu-space the
following hold:

O xEybP d(xy) =0,

(2 xandyoverlap P d(x,y)=0.

Proof. It is easy to prove that £ is a
preorder. To prove (1), set z = X in
Definition (2.3); then by (A1) we have d
x,y)Ed(x,x) =0.
To prove (2), assumethat z£ xand z £ y;
then by (1) and by Definition (2.3)

dx y)Ed(X 2 =0.

Proposition 3.3. Any pu-space is a pm
space.

Proof. We need only to observe that
dx,y)Ed(x,2 U d(z,y) UvZ,
£d (X,2) +d (z, y) + V&%

Example 3.2.

We obtain canonica examples of pu-
spaces as in Example 3.1. In fact, recaling
that M, d) is a quas-ultrametric space if
the following hold:

(A1*).d(x, x) =0,

(A2*). d(x, y) = d(y, X),

(A3*).d(x,y) £d(x, 2 Ud(z y)

and defining the distance and the diameter

asin (3.1) and (3.2) , it results

d(X,Y)£d(x,y) £d(x, 2 Ud(z, 2) Ud(zZ,
y) £d(x, 20d(Z,y) U¥Z¥;

and therefore (R,d,%24) isapu-space. Any

pu-space of thistypeis called canonical.

4. Semi-ultrametric spaces.

We introduce a new class of structures
which verifies symmetry and a triangular
inequdity, but not reflexivity.

Definition 4.1. A semi-ultrametric space,
briefly psu-space, is a structure (R, d)
where R is a set whose elements are called
regions and d :R R® [0, 1] isafunction,

we call semi-distance, such that, for any X,
v,z R

(B1) d(x, y) =d(y, ),

(B2) d(x,y) £d(x,2) Ud(z ) .

Given a semi-distance d, we set:
UxYa =d(x, X) , 4.1
Observe that by setting z= x in (B2), we
obtain that d(x, X)£ d(x, y) Ud(y, 2 and
therefore by (B1) that d(x, X£ d(x, Y).
Likewise we have that d(y, y)£ d(x, y) and
therefore it results
d(x, y) 3 ¥axva Usya. 4.2
It is possible to associate any pu-space
(R,d,%3/ with a psu-space (R, dy) by setting
dg (%, y) = d(x, y) U¥aveU 145 (4.3)
forevery x, yl R.

Proposition 4.1. Let (Rd,*34) be a pu-
space, then the structure (R, dy) defined by
(4.3) isa psu-space such that Y34 = 13/

Proof. (B1) and the equality %3/ = Y3/.are
trivial. Besides,
dg (X, 2) = d(x, 2) UatAl/zys
£ d(x, y)Ud(y, 2) U ArasAlzYs
= (d(xy) Uiy U(d(y, 2) Uvy a2/
=dq (X, Y)Ud4 (y, 2.

Conversely, we can associate any psu-space
(R, d) with apu-space (Rdq) by setting

1o it d(xy) =[x, Uy
dd(x,y):} . ( ) ||d ,| |d

fd(xy) if d(xy)> |, U},
for every x,yl R.

(4.4)

Proposition 4.2. Let (R, d) be a psu-space,
then the structure (R,dq,%2/%) defined by
(4.1) and (4.4) isa pu-space.

Proof. Axioms (A1), (A2) are immediate.
To prove (A3) observe that if dy(x, y)=0
then the generdized triangle-inequdity is
trividly verified.

Assume that dq(X, y) = d(x, y) i.e. d(x,Y)
Syl UlyYa [*].
We can consider four cases:

1) dy(x, 2) = d(x, 20 and dyq(z, y) = d(z, y).
We have that



qd(x’ y) = d(X, y)£ d(?(, Z) Ud(z’,)’) = dd(Xv Z)
Udd(z y) £ dy(X, 2 Udy(z, y) UY2%.

1) dg(x, 2 =0 and dy(z, y) = d(z, y).

It means that

d(x, 2) =xva U ¥4 [**]
and Yy UYyYa < d(z, y).

By [**] it results

d(x, Y)E d(x, 2 Ud(z, y) = ¥ U¥as U
d(z y), butby[*]

d(x, y) £¥x% and therefore

dix,y) £ Y24 Ud(z y), i.e

dg(X, y) £ dy(X, 2) dg(z, y) UYa .

1) dy(X, 2) =d(x,2) and dyq(z,y) =0.Itis
analogueto II).

IV) de(x,2=0 anddy(z,y) =0, i.e

d(x, 2) =vaxva UYaYy [**]
and
d(z y) = vava Uvayva [¥%+] .

By [**] and [***] it results
da(x, y) = d(x, y)Ed(x, ) Ud(z, y) = ¥&¥ U
Yy U YayYa,
but by [*]
d(x, y) +¥&%% andd(x,y) +¥4%% ; therefore
da(X, y) £ Y24, i.e

da(x, y) £ da(x, 2Uda(zy)U¥2Y4.

5. Semi-similarities

In order to give a genera approach to fuzzy
set theory based on the notion of category,
now we consider a fuzzy relation E on R
that represents the dual concept of semi-
distance. According to the terminology of
M. Fourman and D.S. Scott [1], this relation
isa[0, 1]-valued equality and the pair (R,
E) isa[0, 1]-valued set. In the next section,
we shall see that (R, E) are objects of a
fuzzy category described in Hohle [4].

Definition 5.1. A semi-similarity isafuzzy
relation E on R such that the following

(eD) E(x, y) = E(. ) _(symmetry)
(e2) E(x, 2 UE(z y) £ E(X, y) (U-trangitivity)
hold for every x, y, z1T R A similarity isa
semi-similarity such that

(e3) E(x,x)=1.

E(x, y) is regarded as truth-vadue of a
statement like x =z y. Observe that by
setting x =y in (e2) we obtain E(x, z) U E(z,

X) £ E(x, X) and therefore that E(X, ) £ E(X,
X). This entails aso that

E(x, 2) £ E(x, X) UE(z, 2).
We can associate any psu-space (R, d) with
a semi-amilarity Eq by setting

Ea(x, Y) = 1-d(x, y) (5.1)
forevery x, ylI R

Proposition 5.1. Let d be a semi-distance,
then the fuzzy-relation Ey defined by (5.1) is
asemi-similarity.

Proof. Condition (el) is immediate. To

prove (eg) observe that .

Ea(x, y) UEq(y, 2) =(1-d(x, y))U (1- d(y, 2))
=1-(d(x, y) Ud(y, 2))£ 1- d(x, 2)
= E(x, 2.

Conversely, we can associate any semi-
gmilarity E with a psu-space (R, d) by
Setting

de(xy) = FE(xY) (52
forevery X,y I R

Proposition 5.2. Let E bea semi-similarity,
then the structure (R, dg), defined by (5.2),
isa psu-space.

Proof. Axiom (B1) isimmediate. To prove

(B2) it is sufficient to observe that

d(x, y) = 1- E(x, y) £ (1-E(x, 2) U 1-E(z, y))
=d(x, 2 Ud(z y) .

In accordance with Propostion 4.2 and
Proposition 5.2, we can associate directly
any semi-smilarity with  a pu-space.
Indeed the following proposition holds.

Proposition 5.3. Let E bea semi-similarity,
define %32 R® [0, 1] by setting

VY = 1-E(X, X) (5.3
and de :R R® [0, 1] by
g (xy)=10 1Eb)=EkxUEY.Y)

F 11- E(x,y)if E(x,y) <E(x,x)UE(y,y)
(54)

for every x, y1 R Then R=(Rde,||c) isa
pu-space.



In accordance with Proposition 4.1 and
Proposition 5.1, we can associate any pu-
space with a semi-amilarity.

Proposition 5.4. Let (Rd,||) beapu-space
and defineEq 'R R® [0,,1] !oy setting

Eai(xy) = 1- (d(xy)UKUIY) (5.5)
Then (R, Ey ) isasemismilarity.

5.1. Semi-equivalences.
Let Sbeaset, Rbeardationon Sand Dg

={xI S/$y:(x,¥)] R} thedomainof R.

Definition 5.1.1. Let Sheaset. A relation
Ron S iscalled semi-equivalence provided
that is symmetric and transitive.

Observe that if R is a semi-equivalence
rdation it results (x, y) T Rb (xx)T R for
every x, y1 S, i.e Ris reflexive in its
domain Dg . Equivaently, if x is not
related to itsdlf, it cannot be related to any
element. Therefore, every semi-equivalence
relation Ron Sis an equivaence relaion on
itsdomain D and viceversa.

The notion of semi-equivalence is related to
the notion of semi-similarity, as we can see
in the following propositions.

Proposition 5.1.1. Assumethat Eisa semi-
similarity and let R = C(E, | ) = {(x, y)/
E(x, y) 31} bea |-cut of E, wherel 1
[0,1] and x, y are regions. Then R isa
semi-equivalence.

Conversdly, let (R)itjoy be an order-
reversing family of semi-equivalence
relations, i.e, if | =pthen R, R, and let

Ex y)=p{l /(x,y)] R} (511
(where Sup(f ) = 0).

Proposition 5.1.2. Let (R)iij0y be an
order-reversing family of semi -equivalence
relations, then the fuzzy relation E defined
by (5.1.1) isa semi-similarity

. Proof. Condition (el) is immediate by
symmetry of R . To prove (e2), let us
consider

E(x,2)=Sup{l /(x, 21T R}
E(z y)=Sup{l /(zy)] R}
E(x, y) =Sup{l /(x,y)I R}
Suppose m£ x (likewise x £ nj. Since
(R)10y is an order-reversing family of
relations, it results R, I R.,,.Therefore we
have (x, 2 (z y) T Ryand then, by
trangtivity, (X, y)1 R, Buth =Sup{l /(x,
y)T R },then h3 mand, sncemUx =m
the condition (e2)
E(x, 2 UE(z y) £ E(X, Y)

is verified.

m
X
h.

5.2. Example of semi-smilarity.
Let X and Y be two nonempty sets and
denote by F(X, Y) the class of partid

functionsfrom Xto Y. If f1 F(X,Y) we
denote by D; the domain of f. We consider
afunction rel: X® [0,1] which gives the
“ degree of relevance” of any dement x 1
X.

Definition 5.2.1. Let S be a subset of X.
and rel: X® [0,1]. The degree of relevance
of S, is

Rel(S)= Sup{rel(x) / xT S}.

Let f, g be dements of F (X, Y) and
consider the equalizer of fand g, defined

by
eq(f, g) = {x1 D: CDy : f(X)=g(x)}.
We set
E(f, g) = 1- Sup {rel(x) / xI eq(f, @)} = Inf
{1-rel(x) /5 eqff, g)}. (5.2.1)

Observe that xi eq(f, g) means that x
belongs to the set C,EFEG, where
Ciy={XI X/x1 D; GCDgand f(x)* g(x)},
F={xI X/x D},

G ={xI X/xi Dg}. (5.2.2)

In other words, elements not belonging to
eq(f, g) are the elements on which f and g
“contrast”. Then, in a sense, E(f, Q)
measures the similarity between f and g,
because it gives the degree of
“irrelevance’, by 1-rel(x), of the elements
above.



Proposition 5.2.1. Let C be a nonempty
classof partial functions. Then therelation
E on C, defined by (5.21) is a semi-
similarity.

Proof. (el) isimmediate. To prove (€2) ,
observe that for every f, g, h1 C, the set
Ciy, defined in (5.22), is contained in
CinECngEH, where
Cn = {xI X/x1 D;CD,and f(x)* h(x)},
Chn = {XI X/x1 D,CDyand h(x) g(x)},
H={xl X/xi Dy}.

o,

{ril) / x T Cg} 1 {rilx)/ xT CuE
CthH}

and

Sup{ril(x) /xT Ci} £Sup{ril(x) /xT CnE
CwEH } i.e Ril(Cy) £ Ril(CiE ChgEH)
from which

1-Ril(Ctg) 3 1-Ril(CHE CigEH).

Then,

(L-RIl(C)UL-RI(FEG)) 2 (-Rl(ChE
CnEH))U(1-RI(FEG)), i.e.

1-(Ril(Ciy) URII(FEG)) 2 1-(Ril(CiE ChyEH
YURII(FEG)),

that is equivaent to

1-Ril(C(,EFEG)3
1-(Ril(CEC,(EHEFEG)=

1-(Ril(CE FEH)URil(Cr,EHEG))=
(1-Ril(CHE FE H))U(1-Ril(C,,EHEG)),
i.e

E(f, 9)3 E(f, hUE(h, g).

6. Thecategoriesof the semi-similarities
and of the pu-spaces

In order to organize the class of semi-
similarities into a category, we refer to the
categories of M*-SET as described by
Hohle in [4]. Namely, while Hohle defines
this category for any GL-monoid, we are
interested only with the particular GL-
monoid in [0,1] defined by the tnorm U. In
such a case we have the following
smplified definition.

Definition 6.1. The category of the semi-
similarities isthe category SS such that:
- the objects are the semi-amilarities;

- a morphismfrom (R, E') to (R, E')isa
mapf:R® R saisfying the axioms

(M1) E (f(x), f(X)) £ E(x, X)

(M2) E(x, y) £ E'(f(), f(¥))

foreveryx,yl X.

Observe that from M2 we have that E(X, X)
£ E' (f(x), f(x)) and therefore, by M1,

E(x, x) = E'(f(x), f(x))
The second category we consider is
defined by the class of pu-spaces.

Definition 6.2. The category PU of the pu-
spaces isthe category such that

- the objects are the pu-spaces,
-amorphismfrom (R, d, | ) to (R, d’,|[) is
amap f: RR R such that

(1) d(x, y) ® d' (F().f ()

(2) vxv2® vA(x)|'

In both the categories the composition isthe
usud compostion of maps and the
identities are the identicd maps.
Proposition 5.3 enables us to associate any
semi-amilarity (RE) with a pu-space (R,
de,] E). This suggests the definition of a
suitable functor.

Proposition 6.1. We define a functor F
from SSto PU by setting

-F(R B)) = (R de, | )

- F(f)=f.

Proof. We have only to provethat if fisa
morphism from (RE) to (R, E'), then fisa
morphism from (R, dg ,| [g) to (R, dg ,%%%).
Indeed, it isimmediate that

[f(X)[e = I-E(F(X).f(x)) = T-E(XX) = [X[e
To prove that
de(xy)® de(f(¥)f(y))  (6.1)
it is not redrictive to assume that
de (f(%)f(y)) * 0 and therefore that
E* (f(x).F(y)) <E'(f(x), F())UE (f(y), f(¥)-
and de (f(X) f(y)) = 1-E' (f(x),f(y)). Insuch a
case, since

E(xy) £ E(f().f(y))

<E(f(x), ) UE (F(y), £(y))

= E(xX)UE(y.y),
we have that dz(x,y) = 1-E(x)y). S0, (6.1) is
atrivia conseguence of M2.



Observe that in proving that F is a functor
we obtain that [f(X)le = K|z .On the other
hand, it is easy to find a morphism h in PU
such that [f(X)[e < [X|e for a suitable region.
As an example we can consider the
morphism induced by a contraction in the
canonical pu-space associated with a
Euclidean space. Then the proposed
functor is not surjective.

Proposition 5.4. Let (Rd,]||) beapu-space
and define By | :R"R® [0, 1] by setting

Eaj(xy) = 1~ (dxy)OKUy)  (55)
Then (R, Eq,)) is asemi-smilarity.

Proposition 5.4 suggest a definition of a
functor from the category of the pu-spaces
into the category of the semi-similarities.

Proposition 6.2. We define a functor F’
from PU to SS by setting
-F((Rd,[])=(R Eqp)

- F(f)=f.

Proof. Let (R, d,|])and (R,d,|[) be
two pu-spaces and denote by (R, E, ) and
(R, E4, ) the associated semi-similarities.
Then, for any morphism f from (R, d, | |) to
(R,d,|[), wehavethat

E'(f(0.f(x) = -f(x)] * 1-[x| = E(xx).

Moreover,

E(xy) = 1-(d(xy)Ux|Uly]) )
£ 1-(d" (f().f(y)) Uf CI Ul (y)I')
= E () f(y)).

Conclusions and future works.

This paper is a first attempt to establish a
link between point-free geometry and fuzzy
set theory. In spite of some promising
results, the proposed functor is not yet
satisfactory. Indeed, a complete equivaence
between the categories we are interested is
not yet obtained. Another open question is
to give a geometric interpretation of the
objects of the category of the fuzzy sets as
suggested by the obtained results. Future
works will be addressed to thisaims.
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