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Abstract. In Gerla [2000] a fuzzy logic in narrow sense is proposed as a 
theoretical framework for triangular norm based fuzzy control. In this note 
we show that the resulting theory is also able to express the implication-
based fuzzy control. 

 
Introduction 
The aim of control theory is to define a function f : X → Y whose 
intended meaning is that f(x) is the correct answer given the input x. 
Fuzzy approach to control, as devised in Zadeh [1965], [1975]a, [1975]b 
and in Mamdani [1981], furnishes an approximation of such a (ideal) 
function f : X → Y on the basis of pieces of fuzzy information (fuzzy 
granules). This approximation is represented by a system of fuzzy IF-
THEN rules like 
  IF x is Ai THEN y is Bi 
where i = 1,...,n and Ai and Bi are labels for fuzzy subsets ai and bi. We 
associate the i-rule with the Cartesian product ai×bi and the whole system 
with the fuzzy function f = »i=1,...,nai×bi. A suitable defuzzification 
process enable us to define a function f' we consider a suitable 
approximation of f. Now, as it is well known, the interpretation of such a 
rule as a logical implication A(x)→B(y) in a formalized logic is rather 
questionable (see, e.g., Hájek [1998]). Then in Gerla [2000]a, we 
propose to give a logical meaning to a fuzzy IF-THEN rule by translating 
the system of rules into the set 
 Ai(x) ∧ Bi(y) → Good(x,y) 
of first order formulas. The intended meaning of Good(x,y) is that given 
x the value y gives a correct control (see also Gerla [2000]). Since it is 
natural to assign suitable weights to these formulas, the information 
carried on by a system of fuzzy IF-THEN rules is represented by a fuzzy 
theory in a fuzzy logic. Such a theory is a fuzzy program, i.e. a fuzzy set 
of Horn clauses. So, the computation of the fuzzy function f is equivalent 
to the computation of the least fuzzy Herbrand model of this fuzzy 
program.  
 Now, in literature we have an alternative procedure for fuzzy control 
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based on an implication operation (see, for example, Klir and Yuan 
[1995]). Namely, let → be a binary operation in U able to interpret the 
logical connective "implies". Then any rule "IF x is Ai THEN y is Bi" is 
associated with the fuzzy relation ai → bi defined by setting, for any x ∈ 
X and y ∈ Y, (ai → bi)(x,y) = ai(x) → bi(y). The whole system of rules is 
associated with the fuzzy function  f = …i=1,...,n ai → bi. 
 In this note we show that also implication-based fuzzy control can be 
represented by a suitable fuzzy theory in fuzzy logic. This is achieved by 
admitting also negative information, i.e. more general theories. Then our 
proposal contains both the norm-based and implication-based fuzzy control. 
 
1. Preliminaries 
Let S be a set, then we denote by P(S), Pf(S), F(S)) the class of all 
subsets, finite subsets, fuzzy subsets of S, respectively. A fuzzy subset of 
S, i.e. a map s : S → [0,1] it is also called fuzzy granule of S. Given λ ∈ 
U, we denote by C(s,λ) the λ-cut {x ∈ S : s(x) ≥ λ} of s. The set Supp(s) 
= {x ∈ S : s(x) ≠ 0} is called the support of s. If (si)i∈I is directed, i.e., for 
any i,j ∈ I, an index h exists such that both si and sj are contained in sh, 
then the union »i∈I si is also denoted by limi∈Isi. A continuous T-norm, in 
brief a norm, is any continuous, associative, commutative operation ü : U 
× U → U, non-decreasing with respect both the variables and such that x 
ü 1 = x. A continuous T-co-norm, in brief a co-norm, is an operation ⊕ 
obtained from a norm ü by setting  

x⊕y = 1-(1-x) ü (1-y) 
for any x, y in U. A basic example of norm is the minimum, we denote 
by *, whose associated co-norm is the maximum, we denote by +. 
Łukasiewicz norm is defined by setting xüy = (x+y-1)+0, the related co-
norm is defined by setting x⊕y = (x+y)*1. Another simple norm is the 
usual product whose relate co-norm is defined by setting x⊕y = x + y –xy.  
Given a triangular norm ü, two set X and Y and two fuzzy subsets a : X 
→ U and b : Y → U, the Cartesian product is the fuzzy subset a×b : X × 
Y → U of  X × Y defined by setting  

(a×b)(x,y) = a(x)üb(y) 
for any x ∈ X and y ∈ Y. Given a finite subset X  of  S, we define the 
inclusion degree Incl(X,s) of X in s (with respect. to ü) by setting:  
 
                          1                             if X = ∅                       
 Incl(X,s) =  
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                          s(x1) ü...ü s(xn)      if X = {x1,...,xn}. 
 
A fuzzy function f : X ~>Y from X to Y is any fuzzy relation, i.e. any 
fuzzy subset f of X × Y. We call fuzzy operator in S any map J : F(S) → 
F(S) and we say that J is continuous if   

limi∈I D(si) = D(limi∈I si) 
for every directed family (si)i∈I of elements in F(S). Moreover, we say 
that J is a fuzzy closure operator if: 
 (i)     s ⊆ s'  ⇒ J(s) ⊆ J(s')    (order-preserving), 
 (ii)    s ⊆ J(s)                        (inclusion), 
 (iii)  J(J(s)) = J(s)                 (idempotence). 
A closure system is a class C of fuzzy subsets closed under intersections. 
A fixed point of J is a fuzzy subset s such that J(s) = s. We recall the 
following basic theorem (for the proof, see Gerla [2000]) .  
 
Theorem 1.1. Let H : F(S) →  F(S) be a continuous operator such that 
H(s) ⊇ s for any s ∈ F(S). Then the class of fixed points of H is a closure 
system. Let D(s) the last fixed point of H containing s. Then 

D(s) = »n∈N Hn(s). 
The resulting operator D : F(S) → F(S) is a continuous closure operator 
whose fixed points coincides with the fixed points of H. 
 
We call D the closure operator generated by H.  
 
2. Classical fuzzy control 
The following is the main definition in fuzzy control based on a 
triangular norm. We consider a system Ò of IF-THEN fuzzy rules like 
 IF x is A1 THEN y is B1 
  . . . (2.1) 
 IF x is An THEN y is Bn 

where the labels Ai and Bi are interpreted by the fuzzy granules ai : X → 
U and bi : Y → U. We associate any rule with the Cartesian product ai×bi 
: X × Y → U and the whole system of rules with the fuzzy function f : X 
~>Y defined by 
  f = »i=1,...,n ai×bi. (2.2) 
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Obviously, such a procedure depends on the triangular norm we consider 
to define the Cartesian product.  
 A totally different procedure for fuzzy control is based on an 
implication operation and not by a triangular norm (see, for example, 
Klir and Yuan [1995]). Namely, let → be a binary operation in U able to 
interpret the logical connective "implies" and consider the system 
 IF x is C1 THEN y is D1 
             . . .  (2.3) 
 IF x is Cn THEN y is Dn 
of IF-THEN fuzzy rules. Also, assume that each Ci is interpreted by the 
fuzzy subset ci and each Di by the fuzzy subset di. Then in the 
implication-based fuzzy control any rule "IF x is Ci THEN y is Di" is 
associated with the fuzzy relation ci → di defined by setting, for any x ∈ 
X and y ∈ Y 

(ci → di)(x,y) = ci(x) → di(y). 
The whole system of rules is associated with the fuzzy function  f : X 
~>Y defined by  
  f = …i=1,...,n ci → di. (2.4) 
In both cases a defuzzification process enables us to associate the fuzzy 
function f with a classical function f'. Usually the defuzzification process 
is obtained by the centroid method where we set, for every r ∈ X, 

∫
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In Picture 3 both the fuzzy function f and the result f' of the 
defuzzification process are represented (the triangular norm is the 
minimum *). 
 The final phase is the learning process in which the rules and the 
fuzzy granules associated with the labels are changed until we can accept 
f' as a good approximation of the ideal function f. More information on 
fuzzy control are in Gottwald [1993] and Gerla [2000]. 
 
3. Fuzzy deduction systems 
We denote by Å a set whose elements we interpret as sentences of a 
logical language and we call formulas. If α is a formula and λ ∈ U, the 
pair (α,λ) is called a signed formula. To denote the signed formula (α,λ) 
we can write also 
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 α          (λ). 
Any fuzzy set of formulas s : Å →U can be identified with the set {(α,λ) 
∈ Å × U : s(α) = λ} of signed formulas. Conversely, any set T of signed 
formulas is associated with the fuzzy subset 

s(x) = Sup{λ : (x,λ) ∈ T}. 
We define a fuzzy Hilbert system as a pair S = (a, Ñ) where a is a fuzzy 
subset of Å, the fuzzy subset of logical axioms, and Ñ is a set of fuzzy 
rules of inference. In turn, a fuzzy inference rule is a pair r = (r',r"), 
where  
- r' is a partial n-ary operation on Å whose domain we denote by Dom(r), 
- r" is an n-ary operation on U preserving the least upper bound in each 
variable, i.e. 
  r"(x1,..., Supi∈I yi, ..., xn) = Supi∈I r"(x1, ..., yi, ..., xn). (3.1) 
In other words, an inference rule r consists  
  - of a syntactical component r' that operates on formulas (in fact, it is a 
rule of inference in the usual sense), 
  - of a valuation component r" that operates on truth-values to calculate 
how the truth-value of the conclusion depends on the truth-values of the 
premises (Zadeh [1975], Pavelka [1979]).  
 We indicate an application of an inference rule r by the picture 
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whose meaning is that:  
IF     
     you know that α1,…,αn  are true (at least) to the degree  λ1,…,λn 
THEN   
     r'(α1,…,αn) is true (at least) at level r"(λ1,…,λn). 
A proof π of a formula α is a sequence α1,...,αm of formulas such that αm 

= α, together with the related "justifications". This means that, for any 
formula αi, we must specify whether 
  (i)    αi is assumed as a logical axiom; or 
  (ii)   αi is assumed as an hypothesis; or 
  (iii)  αi is obtained by a rule (in this case we must indicate also the rule 
and the formulas from α1,...,αi–1 used to obtain αi).  
We call length of π the number m. Observe that we have only two proofs 
of α whose length is equal to 1. The formula α with the justification that 
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α is assumed as a logical axiom and the formula α with the justification 
that α is assumed as an hypothesis. Moreover, as in the classical case, for 
any i ≤ m, the initial segment α1,...,αi  is a proof of αi we denote by π(i). 
Differently from the crisp case, the justifications are necessary since 
different justifications of the same formula give rise to different 
valuations. Let v : Å → U be any initial valuation and π a proof. Then the 
valuation Val(π,v) of π with respect to v is defined by induction on the 
length m of π as follows. If the length of π is 1, then we set  
 Val(π,v) = a(αm) if  αm is assumed as a logical axiom,  
 Val(π,v) = v(αm) if αm  is assumed as an hypothesis.  
Otherwise, we set 
 
                       a(αm)                if  αm is assumed as a logical axiom, 
  Val(π,v) =    v(αm)                       if  αm  is assumed as an hypothesis, 
                       r"(Val(π(i(1)),v),…,Val(π(i(n)),v))  if αm = r'(αi(1),…, αi(n)) 
 
where, 1≤ i(1)<m,…,1≤ i(n)<m. If α is the formula proven by π, the 
meaning we assign to Val(π,v) is that: 
given the information v, π assures that α holds at least at level Val(π,v). 
Different proofs of the same formula gives different valuations. This 
suggests the following definition. 
 
Definition 3.3. Given a fuzzy Hilbert's system S, we call deduction 
operator associated with S the operator D : F(Å) → F(Å) defined by 
setting,  
  D(v)(α) = Sup{Val(π,v) : π  is a proof of α}, (3.2) 
for every initial valuation v and every formula α. 
 
The meaning of D(v)(α) is still 
  given the information v, we may prove that α holds at least at level 
D(v)(α), 
but we have also that 
 D(v)(α) is the best possible valuation we can draw from the 
information v. 
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The following proposition holds: 
 
Proposition 3.4. The deduction operator D: F(Å) → F(Å) of a fuzzy 
logic is a continuous closure operator. 
 
We say that a proof π = α1,...,αn is normalized if the formulas in π are 
pairwise different and two integers h and k exist such that: 
- α1,...,αh are the formulas assumed as hypothesis, 
- αh+1,...,αk the formulas justified as logical axiom, 
- αk+1,...,αn are obtained by an inference rule. 
In computing D(v)(α) we can limit ourselves only to normalized proofs, 
obviously.  
 We are interested to a very simple logic in which Å is the set of 
formulas of a first order logic, a the characteristic function of the set Taut 
of all logically true formulas and Ñ contains the two fuzzy rules: 
 
Generalization 
                                   α                        ;                          λ 
                               ∀xi(α)                                               λ 
  
Fuzzy Modus Ponens   
  

                       α  , α  → β                    ;                        λ, µ         
                             β                                                     λ ü µ 
  
We call canonical extension of a first order logic by a continuous 
triangular norm ü such a kind of fuzzy logic. Also, we can consider 
some derived rule. As an example, if Q(α) denotes the universal closure 
of the formula α, we can consider the Extended Generalization 
 

                                  α                           ;                        λ 
                               Q(α)                                                 λ 
 
that we can obtain by an iterate application of Generalization Rule. We 
have also the Extended fuzzy Modus Ponens   
  

        α1, ... ,αn  , α1 ∧ ... ∧ αn → α           ;                λ1, ... ,λn, λ         
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                             α                                               λ1 ü ... ü λn ü λ 
 
we can obtain by observing that the formula 

(α1 ∧ ... ∧ αn → α) → (α1 → (...(αn → α)...) 
is logically true. Finally, we have the Particularization Rule 
  
                         α(x1,...,xn)                        ;                      λ 
                         α(t1,...,tn)                                                λ 
 
where t1,…,tn are ground terms. Such a rule can be obtained by observing 
that the formula α(x1,...,xn) → α(t1,...,tn) is logically true. 
  
Theorem 3.5. Let D be the deduction operator of a canonical extension 
of a first order logic. Then, 
  D(v)(α) = Sup{Incl(X, v) : X ∈ Pf(Å) and X ¢ α}  (3.3)  
  
 Proof. Assume that α ∈ Taut. Then, D(v)(α) = 1 and, since ∅ ¢ α and 
Incl(∅,v) = 1, (3.3) is proved. Otherwise, set  

d = Sup{v(x1)ü...üv(xn) : x1, … , xn ¢ α} 
and let α1,…,αn formulas such that α1,…,αn ¢ α. We claim that a proof π 
of α exists such that Val(π,v) = v(α1)ü...üv(αn). In fact, recall that in first 
order calculus a weak form of Deduction Theorem holds and therefore 
that α1,...,αn  ¢  α  entails that Q(α1) → (... (Q(αn) → α)) is logically true 
where Q(α) denotes the universal closure of α. Then, if α1,...,αn ¢ α, we 
obtain the following proof together with the related valuation 
 
 α1,  v(α1), 
  ... ,  ... 
 αn, ,  v(αn), 
 Q(α1),  v(α1), 
 ...  ... 
 Q(αn), v(αn), 
 Q(α1) → (... (Q(αn) → α)), 1 
 Q(α2) → (... (Q(αn) → α)),  v(α1) 
 . . .                                          ... 
 α                                          v(α1) ü ... ü v(αn). 
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Since Val(π,v) = v(α1) ü ... ü v(αn), this proves that d ≤ D(v)(α).   
 Conversely, to prove that d ≥ D(v)(α), observe that, for any x ∈ U, it 
is xüx ≤ xü1 ≤ x and therefore xn ≤ x for any integer n. Let π = α1,...,αm 
be any normalized proof of α and assume that α1,...,αh are the formulas 
assumed as an hypothesis. Then it is immediate that n(1), ..,n(h) exist 
such that 

Val(π,v) = v(α1)n(1) ü ... ü v(αh)n(h).  
By observing that α1,...,αk ¢ α  and that 

v(α1)n(1) ü ... ü v(αh)n(h) ≤ v(α1) ü ... ü v(αh), 
we can conclude that Val(π,v) ≤ d. Thus D(x) ≤ d. � 
 
Proposition 3.6. Let D be the deduction operator of the canonical 
extension of a first order logic by the minimum *. Then 
  D(v)(α) = Sup{λ ∈ U : C(v,λ) ¢ α}.  (3.4) 
 
 Proof. In the case that α is logically true, i.e. ∅ ¢ α, both the sides of 
(3.3) are equal to 1. Otherwise, observe that if X is a finite set such that 
Incl(X,v) = λ, then X ⊆ C(v,λ) and therefore C(v,λ) ¢ α. Conversely, if 
C(v,λ) ¢ α, then a finite subset X of C(v,λ) exist such that X ¢ α. It is 
immediate that Incl(X,v) = λ.   � 
 
Note. Observe that (3.3) is based on a multivalued interpretation the 
metalogic claim 

"a proof π of α exists whose hypotheses are contained in v". 
This in accordance with the fact that in first order multivalued logics and 
in fuzzy logic the existential quantifier is usually interpreted by the 
operator Sup : P(U)→U. Now, this is rather questionable everywhere the 
logical connective "and" is interpreted by a triangular norm different 
from the minimum. In fact the operator used to interpret ∃ must extend to 
the infinitary case the interpretation of the binary connective "or", i.e. the 
co-norm ⊕ associated with ü. Obviously, Sup satisfies such a condition 
only in the case that ü is the minimum and therefore ⊕ is the maximum. 
Then a natural candidate for the general case is the operator ⊕ : P(U) → 
U defined by setting, for any subset X of U,  

⊕(X) = Sup{x1⊕ ...⊕xn : x1,...,xn ∈ X}. 
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In accordance, should be interesting examine a fuzzy logic whose 
deduction operator is defined by  
  D(v)(α) = ⊕({Incl(X, v) : X ∈ Pf(Å) and X ¢ α}) (3.5)  
Such a proposal requires further investigation, obviously. For example, it 
is not clear whether D is a closure operator or not.  
 
4. Fuzzy programs and fuzzy Herbrand models 
We recall some basic notions in logic programming (see, e.g., Lloyd 
[1987]). Let L be a first order language with some constants and denote 
by Å  the related set of formulas. A ground term of L is a term not 
containing variables, the set UL of ground terms of L. is called the 
Herbrand universe for L. If L is function-free, then UL is the set of 
constants. A ground atom is an atomic formula not containing variables 
and the set BL of ground atoms is called the Herbrand base for L. We 
call an Herbrand interpretation any subset M of BL. The name is 
justified by the fact that M defines an interpretation of L in which: 
  - the domain is the Herbrand universe UL,  
  - every constant in L is assigned with themselves, 
  - any n-ary function symbol f in L is interpreted as the map associating 
     any t1,...,tn in UL with the element f(t1,...,tn) of UL 
  - any n-ary predicate symbol r is interpreted by the n-ary relation r' 
defined by setting 
  (t1,...,tn) ∈ r'  ⇔  r(t1,...,tn) ∈ M. 
A ground instance of a formula α is a closed formula β obtained from α 
by suitable substitutions of the free variables with closed terms. Given a 
set X of formulas, we set 

Ground(X) = {α ∈ Å : α is a ground instance of a formula β ∈ X}. 
 A definite program clause is either an atomic formula or a formula of 
the form β1 ∧ ... ∧ βn → β  where β, β1,...,βn are atomic formulas. We 
denote by PC the set of program clauses. A definite program is a set Ï of 
definite program clauses. We associate Ï with the operator JÏ : P(BL) → 
P(BL) defined by setting, for any subset X of BL , 
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JÏ(X) = {α ∈ BL : α1 ∧...∧ αn → α ∈ Ground(Ï),  α1,…,αn ∈ X }  
∪{α ∈ BL : α ∈ Ground(Ï)} ∪  X. 

JÏ is called the immediate consequence operator. Such an operator is 
continuous, then, in accordance with Theorem 1.1, we denote by HÏ the 
closure operator generated by JÏ, i.e., for any set X of ground atoms 
  HÏ(X) == »n∈N(JÏ)n(X). (4.1) 
 
Definition 4.1. We call Herbrand model of Ï any fixed point of JÏ 
(equivalently, of HÏ). Given a set X of ground atoms, we say that HÏ(X) 
is the least Herbrand model for Ï containing X. We denote by MÏ the 
model HÏ(∅) and we call it the least Herbrand model for Ï.  
 
 The following theorem shows that the least Herbrand model for Ï is 
the set of ground atoms that we can derive from Ï.  
 
Theorem 4.2. For every program Ï, 
  MÏ = {α ∈ BL : Ï  ¢ α}. (4.2) 
 
The above definitions can be extended in an obvious way to many-sorted 
languages.  
 To extend the above notions of logic programming to the fuzzy 
framework, observe that there is no semantics for the proposed fuzzy 
logic (see also the observation at the end of the paper). So, we define a 
fuzzy Herbrand interpretation of L  as the restriction of a fuzzy theory to 
BL. Like the classical case, m defines a multi-valued interpretation of L 
in the Herbrand universe in which any n-ary predicate symbol r is 
interpreted by the fuzzy n-ary relation r' on UL defined by setting 
  r'(t1,...,tn) = m(r(t1,...,tn)). 
We call fuzzy program any fuzzy subset p : PC → U of program clauses. 
We define the least fuzzy Herbrand model of p as the fuzzy subset of 
ground atoms that can be proved from p. 
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Definition 4.3. Let D be the deduction operator of a canonical extension 
of a predicate calculus by a norm and let p be a fuzzy program. Then, the 
least fuzzy Herbrand model for p is the fuzzy set mp : BL → U defined by 
setting, for any α ∈ BL , 
  mp(α) = D(p)(α). (4.3) 
 
Then, if α is a ground atom, in accordance with (3.3) 
  mp(α)= Sup{Incl(Ï,p) : Ï  ∈ Pf(Supp(p)) s.t. α ∈ MÏ }. (4.4) 
Assume that the triangular norm under consideration is the minimum and 
denote by Ï(λ) the program C(p,λ). Then, by Proposition 3.6, 

mp(α) = Sup{λ ∈ U : α ∈ MÏ(λ)}. 
In the case that Supp(p) is finite, in the co-domain of p there are only a 
finite number of elements λ(1) > λ(2) > ... > λ(n) different from zero. As 
a consequence, to calculate mp(α) it is sufficient to calculate the least 
Herbrand models MÏ(λ(1)) ⊆  . . .  ⊆ ΜÏ(λ(n)) by a parallel process.   
 
5.  Fuzzy control and logic programming 
Consider a fuzzy system Ò of IF-THEN rules like 
 
      IF x is A1 THEN y is B1 
             . . .  (5.1) 
    IF x is An THEN y is Bn 
 
To give a logical interpretation of such a system, we consider Ai and Bi as 
names for fuzzy predicates and not labels for fuzzy granules. In 
accordance, we interpret "x is Ai" and "y is Bi" as "x satisfies Ai" and "y 
satisfies Bi", respectively. Moreover, we associate the IF-THEN fuzzy 
system (5.1) with the set  
 
  A1(x) ∧ B1(y) → Good(x,y) (λ1) 
                   . . .  (5.2) 
  An(x) ∧ Bn(y) → Good(x,y) (λn) 
 
of signed clauses, where λ1 =...=λn = 1 and Good(x,y) is a new predicate 
whose intended meaning is  

"given x, y is a good value for the control variable". 
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The meaning of the value λi is that the i-rule is accepted at level λi. In the 
general case λ1,...,λn can be different from 1 and are the result of a 
learning process. Also, by assuming that Ai and Bj are interpreted by the 
fuzzy subsets ai and bj, we consider, for i,j = 1,...,n, r ∈ X and t ∈ Y, the 
signed ground atoms 
 Ai(r) (ai(r)) 
 Bj(t) (bj(t)). 
In other words, we associate the system (5.1) with the fuzzy program p : 
PC → U defined by setting 
 
               λi      if α  is the clause Ai(x) ∧ Bi(y) → Good(x,y), 
               ai(r) if α is the ground atom Ai(r), 
 p(α) =    (5.3) 
                   bi(t)      if α is the ground atom Bi(t), 
                   0      otherwise. 
 
Each element in X or in Y is considered as a constant. Therefore, the 
Herbrand universe of p is X ∪ Y.  
 
Theorem 5.1. Define the fuzzy relation good : X × Y → U, by setting, for 
any r ∈ X and t ∈ Y 

good(r,t) = D(p)(Good(r,t)). 
Then good coincides with the fuzzy function associated with the fuzzy 
control system (5.1).  
 
 Proof. Consider the fuzzy program p associated with the system (5.1) 
 A1(x) ∧ B1(y) → Good(x,y) [λ1] 
               . . .   
 An(x) ∧ Bn(y) → Good(x,y) [λn] 
 Ai(r) [ai(r)] 
         . . . 
 Bj(t) [bj(t)] 
where λ1, ... ,λn are elements in U, r varies in X and t varies in Y. Then, 
given the constants r and t, we can try to prove the ground atom 
Good(r,t). Consider the ground instance of the first rule, 
 A1(r) ∧ B1(r) → Good(r,t)  
and the ground atoms 
 A1(r), 



 14  

 B1(t). 
Then, by the extended fuzzy Modus Ponens rule, we can prove Good(r,t) 
at level λ1üa1(r)üb1(t). Likewise, from the second fuzzy clause we obtain 
a proof of Good(r,t) able to prove Good(r,t) at level λ2üa2(r)üb2(t) and 
so on. It is immediate that these are the only possible proofs of Good(r,t) 
and therefore that 
 good(r,t) = D(p)(Good(r,t)) = Max{λ1üa1(r)üb1(t), ... , λnüan(r)übn(t)}. 
By using the notion of Cartesian product, and assuming that λ1 = ... = λn 
= 1, we can conclude that 

good = (a1 × b1) ∪ ... ∪ (an × bn), 
in accordance with Definition 2.1.  � 
 
 Theorem 5.1 shows that we can look at the calculus of the fuzzy 
function associated with a IF-THEN system as at the calculus of the least 
Herbrand model of a suitable program. More precisely, in account of the 
fact that "Good" is the only predicate occurring in the head of a rule, we 
have complete information about all the predicates different from 
"Good", and the only calculus we have to do is related to ground atoms 
like "Good(r,t)". In other words, while Pictures 1 and 2 are given, Picture 
3 is calculated. These tree pictures represent the least fuzzy Herbrand 
model of the fuzzy program p.  
 As we will show in the following, such a logical approach gives the 
possibility of expressing the information of an expertise in a more 
complete way. 
 
6. Fuzzy control by implications and negative information. 
In order to give a logical interpretation of implication-based fuzzy 
control, we assume that λ→µ is equal to ~λ∆µ where ∆ is the 
Łukasiewicz disjunction. Moreover, we consider a new binary predicate 
name Bad(x,y) and the following system of fuzzy rules:   
  (¬C1(x)) ∧ D1(y) → Bad(x,y) [λ1] 
                   . . .  (6.2) 
  (¬Cn(x)) ∧ Dn(y) → Bad(x,y) [λn]. 
 
Theorem 6.1. Consider the fuzzy control system (7.1). Then the calculus 
of the fuzzy function obtained by the implication procedure is equivalent 
to the calculus of the least fuzzy Herbrand model of the fuzzy definite 
program given by (7.3) for λ1 = …=λn=1. More precisely, the fuzzy 
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function (7.2) coincides with the complement of the interpretation of the 
vague predicate Bad in such a model. 
 
 Proof. Let bad be the interpretation of Bad in the least fuzzy Herbrand 
model of (7.3).Then, by proceeding as in Section 5, we have that 

bad = » i=1,...,n (-ci)×di.  
Equivalently, 
~bad(x,y) = … i=1,...,n ~(~ ci(x)üdi(y)) =… i=1,...,n (ci(x)∆~di(y)) =… i=1,...,n ci(x) 

→ di(y) 
and therefore 
  ~bad = … i=1,...,n ci → di = g. (7.4) 
   � 
 
Such a logical approach to fuzzy control enables us to emphasize the 
different meaning of the two procedures (see also Dubois and Prade 
[1997]). Indeed, in a sense, fuzzy control by a triangular norm is useful 
to give positive information (the fuzzy set of pairs (x,y) we consider 
good). Fuzzy control by an implication is useful to manage negative 
information (the fuzzy subset of pairs (x,y) we will avoid). Also, this 
approach enable us to consider the two different approaches at the same 
time. In fact we can consider a fuzzy definite program containing rules 
for the predicate Good and rules for the predicate Bad. Moreover, by 
adding to the language the predicate Optimum and the rule 

Good(x,y)∧¬Bad(x,y) → Optimum(x,y), 
we can compose the two different kinds of information. It is immediate 
to verify that the fuzzy relation optimum interpreting Optimum is defined 
by setting  
 
                                  0                                  if good(x,y) ≤ bad(x,y), 
 optimum(x,y) = 
                                  good(x,y) − bad(x,y)   otherwise. 
 
Clearly, we have to refer to the predicate "Optimum" and not "Good" in 
the successive defuzzification process. 
 This leads to the more general problem of using "negative" 
information in fuzzy logic programming. Unfortunately, this is an hard 
problem even in classical logic programming and it is faced, for 
example, by the closed world rule (see, e.g. Lloyd [1987]):  
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if a ground atom A is not a logical consequence of a program Ï, then 
we are entitled to infer ¬A.  

Obviously, this rule is rather questionable both from a semantic and a 
computational viewpoint. We can try to extend closed world rule to 
fuzzy logic programming by assuming that the negation ¬A of a ground 
atom A is true at degree 1−D(p)(A). As in the classical case, this "rule" 
creates several problems. As an example, if a proof π gives a lower 
bound Val(π,p) for the truth value of A then 1−Val(π,p) gives an upper 
bound for the truth value of ¬A. On the other hand, the fuzzy logic 
deduction machinery as proposed in literature is not able to manage these 
upper bounds. Perhaps, the extended notion of fuzzy logic by constraints 
examined in Chapter 5 should be the appropriate tool to manage both 
positive and negative information.  
 In any case, if the negation occurs in the body of the rules of the 
simple fuzzy definite programs we associate with a fuzzy IF-THEN 
system, no difficulty arises.  
 

Example 1 (Negative information for a safe control). Suppose we 
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Picture 6 :  the predicate Safe
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need to take into account that there are some control actions we have to 
avoid. For instance, assume that a too fast control y is considered 
dangerous. Then, we can express this by adding to the fuzzy definite 
program giving Good the following rule: 

Clearly(Veryfast)(y) → Dangerous(y). 
Obviously, it should be possible to consider a more complex definition of 
the vague predicate Dangerous. Once the vague predicate Dangerous is 
defined, we can define the predicate "Safe" by adding the rule 

Good(x,y) ∧ ¬(Dangerous(y)) → Safe(x,y). 
Denote the interpretations of Dangerous and Safe by dangerous : Y → U 
and safe : X×Y → U, respectively. Then, given r ∈ X and t ∈ Y, the first 
clause enables us to calculate  

dangerous(t) = D(p)(Dangerous(t)) = clearly(veryfast(t)). 
By the closed world rule  
D(p)(¬Dangerous(t)) = 1− D(p)(Dangerous(t)) = 1−clearly(veryfast(t)). 
Then, by the second clause  

safe(r,t) = D(p)(Safe(r,t)) = good(r,t)ü(1−clearly(veryfast(t)). 
Clearly, in such a case we have to refer to the predicate "Safe" and not 
"Good" in the successive defuzzification process. Picture 6 represents 
such a new predicate. 
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        Picture 7 : adding the default rule
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Example 2 (Negative information for a default rule). Another 
interesting use of the negation connective is the possibility of defining a 
"default" rule, i.e., a rule enabling us to choose a control in the case in 
which no condition A1,...,An in (5.2) is satisfied. As an example, assume 
that in this case an expert suggests a slow y. Then, by assuming that 
Domain(x) is the formula A1(x) ∨ ...∨ An, we can add the rule 

¬Domain(x) ∧ Slow(y) → Good(x,y). 
In such a case the degree of completeness of the system increases (see 
Picture 7). 
 
 Observe that in the just given examples, the fuzzy relation safe is 
contained in the fuzzy relation good while the default rule increases such 
a relation. This shows that, by adding new information, it is possible 
both:  
 - to increase the area of the fuzzy upper covering of the objective 
function f, in order to get completeness, i.e., to be sure that the whole set 
of points of f is covered, 
 - to decrease such an area, in order to get a more precise 
representation of the objective function f. 
 
Negative information for a safe control. The use of "negative" 
information is very delicate in classical logic programming. This is 
obtained by the closed world rule, for example (see, e.g. Lloyd [1987]). 
Such a rule says that if a ground atom A is not a logical consequence of a 
program Ï, then we are entitled to infer ¬A. Such a rule is useful in 
several cases but rather questionable both from a semantical and 
computational viewpoint. We can tray to extend it to fuzzy logic 
programming by assuming that the negation ¬ A of a ground atom A is 
true at level 1-D(p)(A). As in the classical case, this "rule" originates 
several difficulties. As an example, if a proof π gives a lower bound 
Val(π,p) for the truth value of A then 1-Val(π,p) gives an upper bound for 
the truth value of ¬A. Unfortunately, the fuzzy logic deduction 
machinery as proposed in literature is not able to manage these upper 
bounds. Some suggestions for an approach to fuzzy logic in which this is 
possible can be find in Gerla [1999]).  
 In any case, in the simple fuzzy programs we associate with a fuzzy 
IF-THEN system no difficulty arises since we have a complete 
description of all the predicates different from Good. Consequently, the 
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negation of such predicates is at semantical level, in a sense, and it can 
be achieved directly by the complement operator.  
 As an example suppose that we need to take into account that there 
are some control actions we have to avoid. For instance, assume that we 
consider dangerous a "too fast" control x. Then, we can express this by 
adding the following rule 

Clearly(Veryfast)(y) → Dangerous(y). 
In accordance we can define the predicate "Safe" by adding the rule 

Good(x,y) ∧ ¬(Dangerous(y)) → Safe(x,y). 
Denote by dangerous : Y → U  and safe : X×Y → U the interpretations of 
Dangerous and Safe, respectively. Then, given r ∈ X and t ∈ Y, the first 
clause enables us to calculate  

dangerous(t) = D(p)(Dangerous(t)) = clearly(veryfast(t)). 
By the closed world rule  
D(p)(¬Dangerous(t)) = 1- D(p)(Dangerous(t)) = 1-clearly(veryfast(t)). 

Then, by the second clause  
safe(r,t) = D(p)(Safe(r,t)) = (good(r,t)ü(1-clearly(veryfast(t)). 

In the case of  Łukasiewicz norm, 
 
                          0                        if   good(x,y) ≤ clearly(veryfast(y)), 
 safe(x,y) = 
                          good(x,y) − clearly(veryfast(y))   otherwise. 
 
Obviously, we have to refer to the predicate "Safe" and not "Good" in the 
successive defuzzification process (see Picture 6).  
 
Negative information for a default rule. Another interesting use of the 
negation is the possibility of defining a "default" rule, i.e., to suggest the 
control we have to choice in the case in which no condition "Little", 
"Medium", "Big", "Verybig", "Small" is satisfied. As an example, assume 
that in this case an expertise suggests to choose a slow y. Then, by 
assuming that Domain(x) is the formula  

Little(x) ∨ Small(x) ∨ Medium(x) ∨ Big(x)  ∨ Verybig(x), 
we can add the rule 

¬Domain(x) ∧ Slow(y) → Good(x,y) 
In such a case the predicate "Good" is represented by Picture 7 and the 
degree of completeness of the system increases. 
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 Notice that the fuzzy relation safe is contained in the fuzzy relation 
good while the default rule increases the fuzzy relation interpreting the 
predicated Good. This shows that, by adding new information, it is 
possible both:  
-   to increase the area of the fuzzy upper covering of the ideal function f, 
in order to obtain completeness, i.e. to be sure that the whole set of 
points of f is covered, 
- to decrease such an area, in order to obtain a more precise 

representation of f . 
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Picture 3: the fuzzy function and the result of the
defuzzyfication process.
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Picture 4 : the predicate Clearly(Good)
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Picture 5: the predicate Vaguely(Good)
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        Picture 7 : adding the default rule
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