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Abstract

A general approach to fixed point theory is proposed which is related to the notion of fuzzy ordering. This approach extends both
the fixed point theorems in metric spaces and the ones in ordered sets.
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1. Introduction

Fixed point theory for operators in a lattice is a basic tool in formal logic and, in particular, in logic programming.
Indeed, given the power set P(BP ) of the Herbrand base BP of a given program P and the single-step operator
TP : P(BP )→ P(BP ), associated with P, the fixed points of TP are the Herbrand models for P [13]. Now, to obtain
the Herbrand models, fixed point theorems for ordered sets, such as Tarski theorem, are used. Unfortunately, such a
theorem does not apply when the single-step operator is not monotone, for instance, in programs with negation. In
such a case, it is possible to find in literature metric approaches (see [9,8,15,17,18]), so fixed point theorems in metric
spaces result useful. This paper is an attempt to face these questions by unifying fixed point theory in ordered sets and
fixed point theory in metric spaces. This is done by the notion of fuzzy order in account of the fact that it allows us to
extend simultaneously both the metric notions and the ones of ordered set theory.

2. Preliminaries

Let S be a set. We call fuzzy subset of S any function s : S → [0, 1]. Given two fuzzy subsets s1 and s2, we say
s1 ⊆ s2 provided that s1(x)�s2(x), for every x ∈ S.

Definition 2.1. A triangular norm (briefly t-norm) [11] is an associative and commutative operation ⊗ on [0, 1] such
that ⊗ is isotone in both the arguments and it verifies the boundary conditions

1⊗ x = x = x ⊗ 1 and 0⊗ x = 0 = x ⊗ 0.

An example of t-norm is the minimum operation ∧ in [0, 1]. We call it Gödel t-norm. An interesting class of t-norms
is the one of the Archimedean t-norms satisfying the condition x ⊗ x < x for every x different from 0 and 1. In fact,
these t-norms can be obtained by the notion of additive generator [14].
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Definition 2.2. Let f : [0, 1] → [0,∞] be a continuous, strictly decreasing function such that f (1) = 0 and define
in [0, f (0)] the truncated sum ⊕ by setting x ⊕ y = (x + y) ∧ f (0). Also, set

x ⊗ y = f−1(f (x)⊕ f (y)), (1)

then, we say that f is the additive generator of ⊗.

It is well known that the operation⊗, defined by (1), is a continuous Archimedean t-norm, and that every continuous
Archimedean t-norm can be obtained by a suitable additive generator.

Given a nonempty set S, a binary fuzzy relation on S is a map ord : S × S → [0, 1]. Let ⊗ be a triangular norm
and let ord : S × S → [0, 1] be a fuzzy relation on S. We are interested in the following properties (see, for example,
[6,21]):

(1) ord(x, x) = 1 (reflexivity),
(2) ord(x, y) = ord(y, x) (symmetry),
(3) ord(x, y)⊗ ord(y, z)�ord(x, z) (⊗-transitivity),
(4) Eord(x, y) = 1⇒ x = y (antisymmetry),

where Eord(x, y) denotes ord(x, y)⊗ ord(y, x) and x, y, z ∈ S.

Definition 2.3. A fuzzy relation ord : S × S → [0, 1] on a nonempty set S is called:

• ⊗-fuzzy preorder if it satisfies (1) and (3),
• ⊗-fuzzy order, if it satisfies (1), (3) and (4),
• ⊗-similarity, if it satisfies (1)–(3),
• strict ⊗-similarity, if it satisfies (1)–(4).

Usually, we denote a similarity by e instead of ord. Notice that the antisymmetry property is sometimes expressed
by the implication

Eord(x, y) �= 0⇒ x = y

(see [1]). However, we prefer to express such a property by (4) in order to have a duality with functions which are
metric in nature, as we are going to see in the next section.

The proof of the following proposition is immediate.

Proposition 2.4. Given a ⊗-fuzzy preorder ord : S × S → [0, 1], the relation Eord is a ⊗-similarity. If ord is a
⊗-fuzzy order, then Eord is a strict ⊗-similarity.

Observe that a ⊗-fuzzy preorder is a ⊗-fuzzy order according to the definition proposed in [1,12] with respect to
Eord. Observe also that if ⊗ is the Gödel t-norm and e is a similarity, then Ee = e.

Definition 2.5. Let ord be a fuzzy preorder and 0�� < 1. Then we denote by � � the open �-cut {(x, y) ∈ S ×
S|ord(x, y) > �} of ord and by ≡� the open �-cut {(x, y) ∈ S × S|Eord(x, y) > �} of Eord. Also, given 0 < ��1,
we denote by �� the closed �-cut {(x, y) ∈ S × S|ord(x, y)��} of ord and by ≡� the closed �-cut {(x, y) ∈
S × S|Eord(x, y)��} of Eord.

In particular, we are interested to the relations �1 and ≡1 we denote by � and ≡, respectively. Observe that
� is a preorder and ≡ is an equivalence relation. Also, � is an order relation if and only if ≡ coincides with the
identity =.

3. A basic duality

We will introduce some notions metrical in nature, since there is an easy understandable duality between the notions
of “closeness” and the one of “distance”. Indeed, in comparing some objects, it is possible to use either a measure of
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how they are “similar” or a measure of how they are “distant”. Obviously, the smaller the distance is, the bigger
the closeness is. Also, as we will see, there is a duality between the notion of quasi-metric and the one of fuzzy
order.

Let S be a nonempty set and d : S × S → [0,∞) be a mapping and consider the following properties where
x, y, z ∈ S:

(d1) d(x, y) = 0⇒ x = y,
(d′1) d(x, x) = 0 (reflexivity),
(d2) d(x, y) = d(y, x) (symmetry),
(d3) d(x, z)�d(x, y)+ d(y, z) (triangular inequality),

(d′3) d(x, z)�d(x, y) ∨ d(y, z) (strong triangular inequality),
(d4) d(x, y) = 0 and d(y, x) = 0⇒ x = y.

Definition 3.1. A map d : S × S → [0,∞) on a nonempty set S is called

• metric distance, if d satisfies (d1), (d′1), (d2) and (d3);
• pseudometric distance, if d satisfies (d′1), (d2) and (d3);
• quasi-metric distance, if d satisfies (d1), (d′1), (d3) and (d4);
• quasi-pseudometric distance, if d satisfies (d′1), (d3);
• semi-metric distance, if d satisfies (d2), (d3) and (d4).

Likewise, if we have axiom (d′3) instead of (d3), then d is called

• ultrametric distance,
• pseudoultrametric distance,
• quasi-ultrametric distance,
• quasi-ultrapseudometric distance,
• semi-ultrametric distance,

respectively. Finally, if axiom (d4) is not required, then they are called generalized distances (metric, ultrametric,
pseudometric, etc.).

Let us observe that (d′3) entails (d3). So, any ultrametric distance is a metric distance. In the case that the map d
takes values in the closed interval [0,∞] the distances are called extended.

The following propositions, whose proofs are immediate, extend to fuzzy orders and quasi-(ultra)metric distances a
connection between similarities and metrics exposed, for example, in [20,5]. We start by analyzing the case involving
the Gödel t-norm.

Proposition 3.2. Let ⊗ be the Gödel t-norm, let d : S × S → [0, 1] be a map, and let us set

ord(x, y) = 1− d(x, y).

Then

(i) ord is a ⊗-similarity if and only if d is a pseudoultrametric;
(ii) ord is a ⊗-fuzzy preorder if and only if d is a generalized quasi-ultrametric;

(iii) ord is a ⊗-fuzzy order if and only if d is a quasi-ultrametric.

If we consider t-norms different from the Gödel one it is possible to obtain a result which is analogous to
Proposition 3.2.

Proposition 3.3. Let ⊗ be a continuous Archimedean t-norm and f : [0, 1] → [0,∞] be an additive generator of⊗.
Moreover, let d : S × S → [0, 1] be a map and let us define the fuzzy relation ordf (d) : S × S → [0, 1] by setting

ordf (d)(x, y) = f−1(d(x, y) ∧ f (0)).
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Then

(i) d is an extended (generalized) pseudometric⇒ ordf (d) is a ⊗-similarity;
(ii) d is an extended quasi-metric⇒ ordf (d) is a ⊗-fuzzy order;

(iii) d is an extended generalized quasi-metric⇒ ordf (d) is a ⊗-fuzzy preorder;
(iv) d is an extended metric⇒ ordf (d) is a strict ⊗-similarity.

Conversely, the following proposition shows how it is possible to associate some fuzzy relations with extended
distances.

Proposition 3.4. Let f : [0, 1] → [0,∞] be an additive generator and ⊗ be the related t-norm. Let ord : S × S →
[0, 1] be a map and let us consider the function df (ord) : S × S → [0,∞] defined by setting

df (ord)(x, y) = f (ord(x, y)).

Then

(i′) ord is a ⊗-similarity⇒ df (ord) is an extended generalized pseudometric;
(ii′) ord is a ⊗-fuzzy order⇒ df (ord) is an extended quasi-pseudometric;

(iii′) ord is a ⊗-fuzzy preorder⇒ df (ord) is an extended generalized quasi-pseudometric;
(iv′) ord is a strict ⊗-similarity⇒ df (ord) is an extended metric.

Examples. Let d be the usual distance in an Euclidean space and let f (x) = 1− x. Then if we set ordf (d)(x, y) =
1− d(x, y) if d(x, y)�1, and ordf (d)(x, y) = 0 otherwise, ordf (d) is a⊗-fuzzy order, where⊗ is the Łukasiewicz
t-norm. As another example, let us assume that f (x) = − log(x). Therefore, we set ordf (d)(x, y) = e−d(x,y) and we
obtain a ⊗-fuzzy order, where ⊗ is the product t-norm.

Vice versa, considering the Łukasiewicz t-norm and its additive generator f (x) = 1 − x, we obtain a distance by
setting df (ord)(x, y) = 1 − ord(x, y). If ⊗ is the product t-norm and f (x) = − log(x) its additive generator, we
obtain a distance by df (ord)(x, y) = − log(ord(x, y)).

4. Convergence by fuzzy orders

Every fuzzy order is associated with some notions topological in nature.
Let us remark that we will denote by N0 the set of natural numbers including 0 and by N the set of natural numbers

without 0.
Recall that a sequence of elements of a set S is a map f : N → S, we denote by (xn)n∈N, where xn = f (n). We

denote by (xn)n�n the sequence of yi = xn+i−1.

Definition 4.1. A sequence (xn)n∈N of elements of S is said to be forward Cauchy in (S, ord) if, for every 0�� < 1,
there exists a natural number n0 such that m�n�n0 entails xn � �xm.

Equivalently, (xn)n∈N is forward Cauchy provided that, for every 0�� < 1 there is n0 such that m�n�n0 entails
ord(xn, xm) > �. The following proposition shows that the notion of forward Cauchy sequence extends both the one
of order-preserving sequence in an ordered set and the one of Cauchy sequence in a metric space.

Proposition 4.2. Let ord be the characteristic function of a crisp partial order � . Then a sequence (xn)n∈N is forward
Cauchy if and only if there is a natural number n such that (xn)n�n is increasing.

Let e be the strict similarity defined by a metric d and an additive generator f. Then a sequence is forward Cauchy
in (S, e) if and only if it is a Cauchy sequence in the metric space (S, d).

Proof. The first part of the proposition is obvious. Let e(x, y) = f−1(d(x, y) ∧ f (0)) and assume that (xn)n∈N is
forward Cauchy. Then for every 0�� < 1 there is n0 such that m�n�n0 entails f−1(d(xn, xm) ∧ f (0)) > �. Let
� be such that 0 < � < f (0) and set � = f−1(�). Then, since f−1(d(xn, xm) ∧ f (0))�� = f−1(�) if and only
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if d(xn, xm)��, (xn)n∈N is a Cauchy sequence in the metric space (S, d). In a similar way we can prove that every
Cauchy sequence in (S, d) is also a forward Cauchy sequence in (S, e). �

Definition 4.3. We say that l ∈ S is a limit of a sequence (xn)n∈N in (S, ord) if, for every x ∈ S, we have that the
sequence ord(xn, x)n∈N converges and

lim
n→∞ ord(xn, x) = ord(l, x).

Proposition 4.4. Let e be the strict similarity corresponding to a metric d, then the convergence, defined in Definition
4.3, coincides with the usual one in the metric space (S, d).

It is possible that a sequence has more than one limit. Nevertheless the following proposition holds.

Proposition 4.5. Let (xn)n∈N be a sequence in (S, ord) and assume that l is a limit for it. Then l′ is a limit of (xn)n∈N

if and only if l′ is similar with l, i.e. l′ ≡ l (see Definition 2.5). As a consequence if ord is a ⊗-fuzzy order, a sequence
admits at most a limit.

Proof. Let us assume that l is a limit of (xn)n∈N. Then in the case that also l′ is a limit, we have that, ord(l, x) =
limn→∞ ord(xn, x) and ord(l′, x) = limn→∞ ord(xn, x) for every x ∈ S. In particular, by setting x = l′,

1 = ord(l, l) = lim
n→∞ ord(xn, l) = ord(l′, l′),

by setting x = l′,
1 = ord(l′, l′) = limn→∞ ord(xn, l′) = ord(l, l′). Then 1 = ord(l′, l) = ord(l, l′) and l′ is similar with l′. Con-

versely, assume l′ is an element such that l′ ≡ l. Then it is immediate that ord(l′, x) = ord(l, x) = limn→∞ ord(xn, x)

for every x ∈ S. �

In accordance with Proposition 4.5 we will write limn→∞(xn) ≡ l to denote that l is a limit of (xn)n∈N.
The proof of the following proposition is immediate.

Proposition 4.6. Assume that ord is the characteristic function of a partial order � on S, then l is a limit of (xn)n∈N

if and only if

∀x ∈ S(l�x ⇔ ∃m∀n�m, xn �x).

As a consequence, if (xn)n∈N is a Cauchy sequence and n is a natural number such that (xn)n�n is order-preserving,
then limn→∞(xn) ≡ l if and only if l = sup{xn|n�n}.

Definition 4.7. A structure (S, ord) is called complete if every forward Cauchy sequence converges to a limit.

If ord is a crisp order, the completeness coincides with the existence of the least upper bound for any increasing
sequence. If e is the strict similarity corresponding to a metric d, then the completeness coincides with the usual
completeness in (S, d).

Definition 4.8. Let ord be a⊗-fuzzy preorder on S. Then a map f is called continuous if for every convergent sequence
(xn)n∈N in S,

lim
n→∞ xn ≡ l⇒ lim

n→∞ f (xn) ≡ f (l).

Obviously, when ord is a partial order, f is continuous if and only if it preserves upper bounds of chains. If ord is the
similarity associated with a distance d, then such a notion of continuity coincides with the continuity in the metric
space (S, d).
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5. Fuzzy inclusions based on a possibility

Given a nonempty set S, we call generalized ⊗-fuzzy inclusion a ⊗-fuzzy preorder Incl : P(S) × P(S) → [0, 1]
such that

(1) Incl extends the classical inclusion relation, i.e. X ⊆ Y ⇒ Incl(X, Y ) = 1;
(2) X1 ⊆ X2 ⇒ Incl(X1, Y )�Incl(X2, Y );
(3) Y1 ⊆ Y2 ⇒ Incl(X, Y1)�Incl(X, Y2).

The value Incl(X, Y ) is called the degree of inclusion of X in Y. We say that Incl is a ⊗-fuzzy inclusion if Incl is a
⊗-fuzzy order.

Proposition 5.1. Let � : P(S)→ [0, 1] be a possibility measure, i.e. a map such that �(X ∪ Y ) = �(X) ∨ �(Y ) and
�(∅) = 0, and set

Incl(X, Y ) = 1− �(X − Y ).

Then Incl is a generalized fuzzy inclusion with respect to the minimum t-norm. Moreover, if �(X) �= 0, for any X �= ∅,
then Incl is a fuzzy inclusion.

Proof. First let us observe that if X ⊆ Y , then X − Y = ∅, and therefore Incl(X, Y ) = 1. This proves that Incl is an
extension of ∅. Reflexivity follows trivially by the definition. To prove that Incl(X, Z)�Incl(X, Y ) ∧ Incl(Y, Z), let
us observe that

X − Z ⊆ ((X − Y ) ∪ (Y − Z)). (2)

In fact, let x ∈ X−Z. If x ∈ Y , then we have that x ∈ Y −Z, otherwise, if x /∈ Y , we have that x ∈ X−Y . Therefore,
thanks to (2) we can write

�(X − Z)��((X − Y ) ∪ (Y − Z)) = �(X − Y ) ∨ �(Y − Z)

and then

1− �(X − Z)�1− (�((X − Y ) ∪ (Y − Z))) = (1− �(X − Y )) ∧ (1− �(Y − Z)).

So the ∧-transitivity is satisfied and Incl is a ∧-fuzzy preorder.
Moreover, let us assume that �(X) �= 0 for every X �= ∅. Then �(X) = 0 entails that X = ∅. Thus, from �(X−Y ) = 0

it follows that X− Y = ∅, and therefore X ⊆ Y . Similarly, from �(Y −X) = 0 it follows that Y −X = ∅ and Y ⊆ X.
So, in such a case Incl results a fuzzy inclusion. �

Proposition 5.2. The fuzzy inclusion associated with a possibility measure satisfies the following properties:

(i) Incl(X, Y ) = Incl(X − Y,∅) = Incl(S, Y ∪ −X);
(ii) Incl(X1 ∪X2, Y ) = Incl(X1, Y ) ∧ Incl(X2, Y );

Conversely, assume that Incl is a ⊗-fuzzy inclusion satisfying (i) and (ii). Then Incl is the fuzzy inclusion associated
with a suitable possibility measure.

Proof. To prove (i), it is sufficient to observe that Incl(X, Y ) = 1−�(X−Y ) = 1−�((X−Y )−∅) = Incl(X−Y,∅) =
1− �(S − (Y ∪ −X)) = Incl(S, Y ∪ −X). To prove (ii), observe that

Incl(X1 ∪X2, Y )= 1− �(X1 ∪X2 − Y ) = 1− �((X1 − Y ) ∪ ((X2 − Y ))

= 1− (�(X1 − Y ) ∨ �(X2 − Y ))

= (1− �(X1 − Y )) ∧ (1− �(X2 − Y ))

= Incl(X1, Y ) ∧ Incl(X2, Y ).
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Conversely, assume (i) and (ii) and set �(X) = 1− Incl(X,∅). Then �(∅) = 1− Incl(∅,∅) = 0 and, by (ii),

�(X ∪ Y )= 1− Incl(X ∪ Y,∅) = 1− (Incl(X,∅) ∧ Incl(Y,∅))
= (1− Incl(X,∅)) ∨ (1− Incl(Y,∅))
= �(X) ∨ �(Y ).

This proves that � is a possibility measure. Also, by (i),

Incl(X, Y ) = Incl(X − Y,∅) = 1− �(X − Y ). �

In the following proposition, where we denote by −X the complement of X in S, we list some basic properties
of Incl.

Proposition 5.3. The ⊗-fuzzy inclusion Incl associated with a possibility measure satisfies the following properties:

(i) Incl(X, Y ) = Incl(−Y,−X);
(ii) Incl(X, Y ) = Incl(X − Y, Y );

(iii) Incl(X, Y ) = Incl(X, X ∩ Y );
(iv) Incl(X, Y ) = Incl(X ∩ Z, Y ) ∧ Incl(X − Z, Y );
(v) (Incl(X, Y1 ∩ Y2) = Incl(X, Y1) ∧ Incl(X, Y2);

(vi) Incl(X, Y1 ∪ Y2) = Incl(X − Y1, Y2);
(vii) Incl(X1 ∩X2, Y ) = Incl(X1, Y ∪ −X2);

(viii) Incl(X, Y )�Incl(X ∩ Z, Y ∩ Z);
(ix) Incl(X, Y )�Incl(X ∪ Z, Y ∪ Z).

Proof. Proving the properties is quite trivial. Let us prove, for example, (i), (iv) and (viii). For (i) we have Incl(X, Y ) =
1− �(X − Y ) = 1− �(−Y − (−X)) = Incl(−Y,−X); for (iv) we have Incl(X, Y ) = 1− �(X − Y ) = 1− (�((X ∩
Z − Y ) ∪ ((X − Z) − Y ))) = 1 − (�((X ∩ Z − Y ) ∨ �((X − Z) − Y ))) = (1 − �(X ∩ Z − Y )) ∧ (1 − �((X −
Z)− Y )) = Incl(X ∩Z, Y )∧ Incl(X −Z, Y ); to prove (viii) observe that, since (X ∩Z)− (Y ∩Z) ⊆ (X − Y ), it is
�(X − Y )��((X ∩ Z)− (Y ∩ Z)), so 1− �(X − Y )�1− (�((X ∩ Z)− (Y ∩ Z))); analogously for (ix). �

As an example, given a set S (think, for example, to the set of facts in a program), let us consider a fuzzy set
rl : S → [0, 1], we interpret as the fuzzy subset of the relevant elements. Then, it is possible to define the function
� : P(S)→ [0, 1] by setting

�(X) = sup{rl(x)|x ∈ X}.
The number �(X) is the truth degree of the claim “there is a relevant element in X”. In accordance, if irl(x) = 1− rl(x),
a ⊗-fuzzy inclusion Incl on P(S) is defined by setting

Incl(X, Y ) = 1− �(X − Y ) = inf{irl(x)|x ∈ X − Y }. (3)

We interpret Incl(X, Y ) as the truth degree of the claim “all the elements belonging to X and not to Y are non-relevant”,
or, in other words, “all the relevant elements of X are in Y”. Let us investigate the meaning of being forward Cauchy
with respect to the fuzzy relation Incl.

Proposition 5.4. Set R� = {x ∈ S|rl(x) > �}. Then

X� �Y ⇔ X ∩ R1−� ⊆ Y.

In accordance, a sequence (Xn)n∈N of subsets of S is forward Cauchy if, for every 0�� < 1, there exists a natural
number n0 such that Xn ∩ R� ⊆ Xm whenever m�n�n0.

Proof. We have

Incl(X, Y )��⇔ inf{irl(x)|x ∈ X − Y }��

⇔ inf{1− rl(x)|x ∈ X − Y }��
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⇔ ∀x ∈ X − Y, 1− rl(x)��

⇔ X − Y ⊆ {x|1− rl(x)��}
⇔ (X − Y ) ∩ {x|rl(x) > 1− �} = ∅
⇔ X ∩ R1−� ⊆ Y. �

In other words a sequence is forward Cauchy if for every �, it is definitely increasing with respect to the �-relevant
elements. In particular, we have the following proposition.

Proposition 5.5. Assume that there exists � < 1 such that for every x ∈ S, rl(x) > �. Then a sequence (Xn)n∈N of
subsets of S is forward Cauchy if and only if it is definitely increasing with respect to the classical inclusion. In such a
case, there is n0 such that limn→∞Xn =⋃

n�n0
Xn.

Proof. Since (Xn)n∈N is definitely increasing, it is Incl(Xn, Xn+1) = 1, from a suitable n0 on and so the first part
of the proposition is proved. Besides, a limit L is such that Incl(L, X) = limn→∞ Incl(Xn, X), for every X ∈ P(S).
Reminding that Incl(Xn, X)�Incl(Xn+1, X), we have, for every X, limn→∞ Incl(Xn, X) = infn�n0 Incl(Xn, X) =
infn�n0{irl(x)|x ∈ Xn −X} = inf{irl(x)|x ∈⋃

n�n0
Xn}. So we have that limn→∞(Xn) =⋃

n�n0
Xn.

The second part of the proposition is trivially proved. �

It is also interesting to examine the quasi-metric associated with a fuzzy relevance-based fuzzy inclusion.

Proposition 5.6. Let Incl be a fuzzy inclusion based on a relevance function rl : S → [0, 1] and define d : P(S) ×
P(S)→ [0, 1] by setting

d(X, Y ) = inf{� ∈ [0, 1]|X ∩ R� ⊆ Y }. (4)

Then d is an ultra-quasimetric such that

Incl(X, Y ) = 1− d(X, Y ).

Proof. Obviously, if ���, then X ∩ R� ⊆ Y , entails X ∩ R� ⊆ Y . This means that {� ∈ [0, 1]|X ∩ R� ⊆ Y } is an
interval and,

d(X, Y )= inf{� ∈ [0, 1]|X ∩ R� ⊆ Y }
= sup{� ∈ [0, 1]|X ∩ R� is not contained in Y}
= sup{� ∈ [0, 1]|x ∈ X exists such that x ∈ R� and x /∈ Y }
= sup{� ∈ [0, 1]|x ∈ X − Y exists such that rl(x) > �}
= sup{rl(x)|x ∈ X − Y } = �(X − Y ).

So, Incl(X, Y ) = 1− d(X, Y ) = 1− �(X − Y ). �

6. An example from logic programming

We denote by P a program in a first-order language and by BP the Herbrand basis associated with it. We call
Herbrand interpretation any subset of BP , i.e. any set of facts. Equivalently, since we identify a subset with the related
characteristic function, an Herbrand interpretation is an element in {0, 1}BP , i.e. any mapping v : BP → {0, 1} . If P ∗
denotes the set of all the ground instances of the clauses in P, then the single-step operator TP : {0, 1}BP → {0, 1}BP

is defined for every v ∈ {0, 1}BP in two steps:

(1) we extend v to the negations of the ground atoms by the equation

v(¬X) = 1− v(X),

(2) we set:
TP (v)(A) = 1 if there is A← B1, . . . , Bn in P ∗ such that v(B1) = 1, . . . , v(Bn) = 1; TP (v)(A) = 0 otherwise.
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Now, if P is definite, TP is a monotone operator in the complete lattice {0, 1}BP and therefore the Tarski theorem
applies. For a general logic program P (that is a program with possible negation) TP cannot be monotone. In such a
case, techniques based on a fuzzy inclusion using a level mapping l : BP → N0 can be taken under consideration. It
is useful to consider the sets

I (X, k) = {x ∈ X|l(x) < k},
where k ∈ N and X is a subset of BP .

Proposition 6.1. Let l : BP → N0, be a level mapping and set rl(x) = f (l(x)), where f : N0 → [0, 1] is an injective
order-reversing map such that f (0) = 1 and limn→∞ = 0. Consider the fuzzy inclusion based on such a relevance
function and let (Xn)n∈N be a sequence of subsets of BP . Then, the followings are equivalent:

(i) for every k ∈ N, there exists a natural number n0 such that I (Xn, k) ⊆ I (Xm, k) whenever m�n�n0;
(ii) (Xn)n∈N is forward Cauchy.

Proof. Assume (i) and let 0�� < 1. Since f (0) = 1, the set {n : f (n) > �} is nonempty and since limn→∞ = 0 this
set is bounded. Then we can consider m(�) = max{n : f (n) > �}. Then,

Xn ∩ R� = {x ∈ Xn|rl(x) > �} = {x ∈ Xn|f (l(x)) > �}
= {x ∈ Xn|l(x) < m(�)} = I (Xn, m(�)).

This means that for every � such that 0�� < 1, there is k ∈ N such that I (Xn, k) = Xn ∩ R� and so (ii) is verified.
Conversely, assume (ii) and let k be an element of N. If we set � = f (k), we obtain that

Xn ∩ R� = {x ∈ Xn|f (l(x)) > �} = {x ∈ Xn|l(x) < k} = I (Xn, k),

where � < 1. So (i) is verified. �

In other words, Proposition 6.1 says that (Xn)n∈N is forward Cauchy provided that for every k ∈ N, the set of facts
whose level is less than k becomes stable from a suitable point on. As an example (see [8,9]) consider the program P

even(0)←
even(s(x))← even(x)

Then we can calculate the sequence

TP (∅)=BP

T 2
P (∅)= {even(0)}

T 3
P (∅)= {even(0), even(s2(0)), even(s3(0)), even(s4(0)), even(s5(0)), . . .}
=BP − {even(s(0))}

T 4
P (∅)= {even(0), even(s2(0))}

T 5
P (∅)= {even(0), even(s2(0)), even(s4(0)), even(s5(0)), . . .}
=BP − {even(s(0)), even(s3(0))}

. . .

By referring to the characteristic functions, we represent such a sequence by the following table:
It is evident that such a sequence is not monotone. Nevertheless, define the level mapping l : BP → N0, by setting

l(even(sn(0))) = n and define the relevance measure rl : BP → [0, 1] by setting rl(x) = 1/(l(x) + 1). Then by
referring to the fuzzy inclusion Incl based on rl, we can give the following proposition (for the proof see [9]).

Proposition 6.2. The sequence (T n
P (∅))n∈N is forward Cauchy and it converges to the set {even(sn(0)) ∈ BP |n is even}

and therefore this set is the least Herbrand model of the program P.

Obviously, we can consider also a different relevance function. As an example we can set rl(x) = 2−l(x). In such a
case we obtain a fuzzy inclusion Incl′ which is related with the quasi-metric d ′ : P(BP ) × P(BP ) → [0, 1] defined
by Seda in [17] and [18].
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even(0) even(s(0)) even(s2(0)) . . .

TP (∅) 1 1 1 1 1 1 1 . . .

TP
2(∅) 1 0 0 0 0 0 0 . . .

TP
3(∅) 1 0 1 1 1 1 1 . . .

TP
4(∅) 1 0 1 0 0 0 0 . . .

TP
5(∅) 1 0 1 0 1 1 1 . . .

TP
6(∅) 1 0 1 0 1 0 0 . . .

TP
7(∅) 1 0 1 0 1 0 1 . . .

TP
8(∅) 1 0 1 0 1 0 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

7. Fixed point theorems by fuzzy orders

Let us recall some well-known fixed point theorems for ordered sets and for metric spaces (see [7,16,19]). The first
theorem refers to the notion of continuity in a partially ordered set (S, �), saying that a map f : S → S is continuous
if, for every order-preserving sequence (xn)n∈N having a supremum,

f (sup
n∈N

xn) = sup
n∈N

f (xn).

Theorem 7.1 (Tarski). Let (S, �) be a partially ordered set such that every countable chain has a supremum and let
f : S → S be a continuous map. Assume that b is an element in S such that b�f (b). Then b0 = supn∈N f n(b) is the
least fixed point of f greater or equal to b.

In the next theorem we refer to the notion of contractive function [7]. Given a metric space (S, d), a map f : (S, d)→
(S, d) is called contractive if for every x, y ∈ X, d(f (x), f (y))�Md(x, y), where M is a fixed constant M < 1.

Theorem 7.2 (Banach). Let (S, d) be a complete metric space and let f : S → S be contractive. Then, f has a unique
fixed point, which can be obtained as the limit of the sequence (f n(x))n∈N, for any x ∈ S.

Both the theorems can be extended into a unique theorem provided that we refer to the notion of quasi-metric. If
(S, d) is a quasi-metric space, then an order relation �d is defined by setting x�dy if d(x, y) = 0. A map f : S → S

is called non-expansive provided that d(f (x), f (y))�d(x, y) for every x, y ∈ S. The notion of continuity is given in
a usual way.

Theorem 7.3 (Rutten–Smith). Let (S, d) be a complete quasi-metric space and let f : S → S be a non-expansive
map.

• If f is continuous and there exists x ∈ S with x�df (x), then f has a fixed point, which is the least fixed point above x;
• If f is continuous and contractive, then f has a unique fixed point.

In accordance with the dualities shown in Section 3, such a theorem suggests that the notion of fuzzy order enables
us to demonstrate theorems simultaneously generalizing the fixed point theorem of Tarski for ordered structures and
the theorems for metric spaces [4].

Definition 7.4. Let ord be a fuzzy preorder on a set S. We say that x is a fixed point for f with respect to ord if x ≡ f (x).

Obviously, in the case ord is a ⊗-fuzzy order, x is a fixed point of f if and only if f (x) = x.
Now let us call an almost operator a linguistic modifier (see [3]) Al : [0, 1] → [0, 1], verifying

(1) for every x �= 0, x �= 1, Al(x) > x, while Al(0) = 0 and Al(1) = 1;
(2) Al is monotone and continue;
(3) for every x �= 0 there is x �= 0 such that

Aln(x)⊗ · · · ⊗ Aln−r+1(x)�Aln(x) for every n, r ∈ N.
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Then 0 and 1 are the only fixed points of Al and, for every x �= 0,

lim
n→∞Aln(x) = 1.

In fact (Aln(x))n∈N is a strictly increasing sequence whose limit lim
n→∞Aln(x) = sup

n∈N

Aln(x) is a fixed point of Al

different from 0.

Example. Set Al(x) = xc with 0 < c < 1 and assume that⊗ is the usual product. Then Al verifies properties (1) and
(2), trivially. Besides, since

cn + cn+1 + · · · + cn+r−1 = cn − cn+r−1

1− c
= cn(1− cr−1)

1− c
� cn

1− c
,

it is

xcn · xcn+1 · · · · · xcn+r−1 = xcn+cn+1+···+cn+r−1 �xcn/(1−c)

and (3) is satisfied by setting x = x1/(1−c).

Definition 7.5. Let ord be a ⊗-fuzzy preorder on S and Al be an almost operator. Then we say that a map f : S → S

is contractive if

ord(f (x), f (y))�Al(ord(x, y)).

In other terms, a contraction is a map that strengthens the degree of relationship between two elements. The logical
meaning is expressed by the formula

Al(Ord(x, y))→ Ord(f (x), f (y)),

where Al and Ord are expressions to denote Al and ord, respectively, saying that “if x is almost similar with (greater
than) y, then f (x) is similar with (greater than) f (y)”. In the case ord is the characteristic function of an order relation,
f is contractive if and only if it is order-preserving.

The following is an existence theorem for fixed points.

Theorem 7.6. Let (S, ord) be a complete ⊗-fuzzy preorder, let f : S → S be a continuous and contractive map and
x0 an element in S such that ord(x0, f (x0)) �= 0. Then, the sequence (f n(x0))n∈N converges and limn→∞ f n(x0) = l

is a fixed point for f .

Proof. Firstly we will prove that the sequence (f n(x0))n∈N is forward Cauchy. In fact, let Al be an almost operator
for f, then

ord(f n(x0), f
n+1(x0))�Aln(ord(x0, f (x0))).

Consequently, in account of ⊗-transitivity and (3), there is x �= 0 such that

ord(f n(x0), f
n+r (x0))

�ord(f n(x0), f
n+1(x0))⊗ ord(f n+1(x0), f

n+2(x0))⊗ · · · ⊗ ord(f n+r−1(x0), f
n+r (x0))

�Aln(ord(x0, f (x0)))⊗ Aln+1(ord(x0, f (x0)))⊗ · · · ⊗ Aln+r−1ord(x0, f (x0)))

Aln(x),

for every r ∈ N. Since limn→∞ Aln(x) = 1, for every � < 1 there exists a natural number n0 such that ord
(f n(x0), f

n+r (x0))�Aln(x)��, for every n�n0 and r ∈ N. This proves that (f n(x0))n∈N is forward Cauchy and
by the completeness a limit l of such a sequence exists. Also, since f is continuous, f (l) ≡ limn→∞ f (f n(x0)) =
limn→∞ f n+1(x0) = limn→∞ f n(x0) ≡ l, and this proves that l is a fixed point for f. �
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Theorem 7.7. Let (S, ord) be a complete ⊗-fuzzy preorder, let f : S → S be a continuous and contractive map and
let x0 be an element in S such that ord(x0, f (x0)) �= 0. Then, if l and l′ are two fixed points for f, ord(l, l′) is either 0
or 1. Moreover, if l is the fixed point limn→∞ f n(x0), then

l′ fixed point and x0 � l′ ⇒ l� l′.

Proof. Let Al be an almost operator for f. Then, since f is a contractive map,

ord(l, l′) = ord(f (l), f (l′))�Al(ord(l, l′)).

Hence, ord(l, l′) is a fixed point for Al. This entails that either ord(l, l′) = 1 or ord(l, l′) = 0. To prove the second
part of the proposition, observe that if l′ is a fixed point, then

ord(l′, f n(l′))⊗ ord(f n(l′), l′) = 1,

i.e. l′ is a fixed point for every natural number n. Indeed, for every natural number h,

ord(f h−1(l′), f h(l′))�Alh(ord(l′, f (l′)) = 1

and

ord(l′, f n(l′))�ord(l′, f (l′))⊗ ord(f (l′), f 2(l′))⊗ · · · ⊗ ord(f n−1(l′), f n(l′)).

Assume that x0 � l′, i.e. that ord(x0, l
′) = 1. Then, since

ord(f n(x0), f
n(l′))�Aln(ord(x0, l

′)) = Aln(1) = 1,

we have that ord(f n(x0), f
n(l′)) = 1, for every n. Since l′ is a fixed point,

ord(f n(x0), l
′)�ord(f n(x0), f

n(l′))⊗ ord(f n(l′), l′) = 1.

Thus

ord(l, l′) = lim
n→∞ ord(f

n(x0), l
′) = 1. �

Let us observe that if ord is a fuzzy order corresponding to a distance d, then ord(x, y) �= 0. Hence, ord(l, l′) =
ord(l′, l) = 1 and, therefore, by antisymmetry, l = l′. So, in such a case a contractive map has a unique fixed point. If
ord is the characteristic function of a crisp order, Theorem 7.3 says that limn→∞ f n(x0) = sup{f n(x0)|n ∈ N} is the
least fixed point greater or equal to x0.

8. Future work

This is an exploratory paper and our researches on the convergence associated with fuzzy orders are at a very initial
state. So, there are a lot of open questions. First it should be opportune to analyze fixed point theorems with respect
to the different classes of fuzzy orders defined in literature. For example, in [2] some methods for representation and
construction of fuzzy weak orders are given.

Besides, it is not clear whether the fuzzy orders associated with a relevance measure are complete or not. Also it is
not explored the convergence associated with a very interesting notion of excess in a metric space (a canonical example
of quasi-metric).

Another direction we will explore is in the framework of fuzzy logic programming [10]. In fact, also in this case of
monotony, fixed point theorems based on fuzzy orders should be useful. Indeed, it is again true that Tarski fixed point
theorem works taking in account the Zadeh inclusion between fuzzy subsets. Nevertheless, the process to obtain such a
fixed point happens in a continuous environment and it cannot finish by giving the exact output. Rather it is an endless
approximation process and we have to consider sufficient a suitable approximation after a finite number of step. From
here the need arises to define someway the notion of “approximate fixed point” and to calculate the related degree of
approximation. We argue that the notion of convergence associated with a fuzzy order gives useful tools to do this.
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